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Abstract

We prove that a large family of Fejer convergent iterative methods still converges to a solution
when summable errors are incorporated to the algorithm. We define approximate resolvents, show
that methods based on approximate resolvents fall within the aforementioned family and prove
that approximate resolvents are the iteration maps of the hybrid proximal-extragradient method.
We prove that the forward-backward splitting method, Tseng’s modified forward-backward split-
ting method and Koreplevich method are all based in particular computations elements in ap-
proximate resolvents.
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1 Introduction

The aim of this work is to prove that convergence under summable errors is a generic property
of a large class of Fejer convergent method, to introduce approximate resolvents, to show that
approximate resolvents are the iteration map of the Hybrid Proximal Extragradient method and to
prove that methods based on approximate resolvents belongs to the aforementioned class of Fejer
convergent method.

We also show that the Forward-Backward method, Tseng’s Modified Forward-Backward method
and Korpelevich’s method are all based in particular computations of elements in approximate re-
solvents, or equivalently, are particular cases of the Hybrid Proximal Extragradient method. In
particluar, all these methods fal within the aforementioned class of Fejer convergen methods.

The original contribution of this work are: the definition of a class of Fejer convergent methods
which accept summabel errors; the definition of approximate resolvents; a new transportation for-
mula for the ε-enlargement of cocoercive operators and the proof that the Forward-Backwar splitting
method is based on a particular computation of points in approximate resolvents/Hybrid Proximal-
Extragradient iterations. Beside that, we provide an unifying framework for the Forward-Backward
splitting method, Tseng’s Modified Forward-Backward method and Korpelevich’s method, this ex-
tending previous results on [10, 7]. This framework also leads to new algoritms, as exposed on [6].

∗IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil (benar@impa.br) Partially supported by
CNPq grants 302962/2011-5, 474944/2010-7, FAPERJ grant E-26/102.940/2011 and by PRONEX-Optimization.

1



This work is organized as follows. In Section 2 we introduce some basic definition and results.
In Section 3 we define a class of Fejer convergent methods which accept summable errors in the
computation of its iterates. In Section 4 de define approximate resolvents, show that these are the
iteration maps of the Hybrid Proximal Extragradient method and prove that’ methods based on
approximate resolvents fall within the aforementioned class of Fejer convegent methods. In Section 5
we show that the Forward-Backward method is based on approximate resolvents, which is to say
that is a particular case of the Hybrid Proximal-Extragrdient method. In Section 6 we reacall that
Tseng’s Modifed Forward-Backward method is based on approximate resolvents, which is to say
that is a particular case of the Hybrid Proximal-Extragrdient method. In Section 7 we recall that
Korpelevich’s method is based on approximate resolvents, which is to say that is a particular case of
the Hybrid Proximal-Extragrdient method. In Section 8

2 Basic definitions and results

In the first part of this section we review the concept and properties of Quasi-Fejer convergence,
which will be used in our analysis of a class of Fejer convergent methods which converges even
when a summable sequences of errors are incorporated. In the second part we stablish the notation
concerning point-to-set maps, which will be used for defining the aforementioned class.

The last part of this section contains the material which will be needed to define approximate
resolvents and the Hybrid Proximal-Extragradient (HPE) method, to prove that methods based on
approximate resolvents/HPE method belongs to the aforementioned class, and to prove that some
well know decomposition methods are based on approximate resolvents/HPE method.

As far as we know, this section contains just one original result, namely, Lemma 2.7 which is a
transportation formula for co-coercive operators.

Quasi-Fejer convergence

The concept of Quasi-Fejer convergence was introduce by Ermol’ev[4] in the context of sequences of
random variables. We will use a deterministic version of this notion, considered in [5, Definition 4.1].
All this material is standard knowledge and will be included for the sake of completeness. We do no
claim to give her any original contribution to this over-studied concept.

Definition 2.1. Let X be a metrical space. A sequence (xn) in X is Quasi-Fejer convergent to
Ω ⊂ X if, for each x∗ ∈ Ω there exists a non-negative, summable sequence (ρn) such that

d(x∗, xn) ≤ d(x∗, xn−1) + ρn

The next proposition summarizes the properties of Quasi-Fejer convergent sequences in metrical
spaces.

Proposition 2.2. Let X be a metrical space and (xn) be a sequence in X which is Quasi-Fejer
convergent to Ω ⊂ X then,

1. if Ω is non-empty, then (xn) is bounded;

2. for any x∗ ∈ Ω there exists limn→∞ d(x∗, xn) <∞

3. if the sequence (xn) has a cluster point x∗ ∈ Ω then it converges to such a point.
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Proof. Take x∗ ∈ Ω and let (ρn) be as in Definition 2.1. Then for n < m

d(x∗, xm) ≤ d(x∗, xn) +
m∑

i=n+1

ρi

Hence

lim sup
m→∞

d(x∗, xm) ≤ d(x∗, xn) +
∞∑

i=n+1

ρi <∞,

which proves item 1. To prove item 2, note that (ρn) is summable and take the lim infn→∞ at the
right hand side of the first inequality in the above equation. Item 3 follows trivially from item 2.

Now we recall Opial’s Lemma [8], which is useful for analyzing Quasi-Fejer convergence in Hilbert
spaces:

Lemma 2.3 (Opial). If in a Hilbert space X the sequence (xn) is weakly convergent to x0, then for
any x 6= x0

lim inf
n→∞

‖xn − x‖ > lim inf
n→∞

‖xn − x0‖

The next result was proved in [9], for the case of a specific sequence generated by an inexact
proximal point method, but the proof presented there is quite general, and we summarize it for the
sake of completeness.

Proposition 2.4. If in a Hilbert space X the sequence (xn) is Quasi-Fejer convergent to Ω ⊂ X
then, it has at most one weak cluster point in Ω.

Proof. If x∗ ∈ Ω is a weak cluster point of (xn), then there exists a subsequence (xnk
) weakly

convergent to x∗. Therefore, using item 2 of Proposition 2.2 and Opial’s Lemma we conclude that,
for any x′ ∈ Ω, x′ 6= x∗

lim
n→∞

‖xn − x′‖ = lim inf
k→∞

‖xnk
− x′‖ > lim inf

k→∞
‖xn − x∗‖ = lim

n→∞
‖xn − x∗‖

which trivially implies the desired result.

Point-to-set operators

Let X, Y be arbitrary sets. A point-to-set map F : X ⇒ Y is a function F : X → ℘(Y ), where
℘(Y ) is the power set of Y , that is, the family of all subsets of Y . If F (x) is a singleton, that is, a
set with just one element, one says that F is point-to-point. Whenever necessary, we will identify a
point-to-point map F : X ⇒ Y whit the unique function f : X → Y such that F (x) = {f(x)} for all
x ∈ X,

A point-to-set map F : X ⇒ Y is L-Lipschitz if X and Y are normed vector spaces and,

∅ 6= F (x′) ⊂ {y + u | y ∈ F (x), u ∈ Y, ‖u‖ ≤ L‖x− x′‖}, ∀x, x′ ∈ X. (1)

Note that if F is point-to-point and it is identified with a function then in the above definition we
retrieve the classical definition of a L-Lipschitz continuous function.
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Maximal monotone operators and the ε-enlargement

The ε-enlargement of a maximal monotone operators will be used to define approximate resolvents
in Section 4. In this section we review the definition of the ε-enlargement and discuss those of its
properties which will be used in the analysis and applications of approximate resolvents.

From now on X is a real Hilbert space. A point-to-set operator T : X ⇒ X is monotone if

〈x− y, u− v〉 ≥ 0, ∀x, y ∈ X, u ∈ T (x), v ∈ T (y)

and it is maximal monotone if it is monotone and maximal in the family of monotone operators in
X with respect to the partial order of the inclusion.

Let T : X ⇒ X be a maximal monotone operator. Recall that the ε-enlargement of T is defined
as [1]

T [ε](x) = {v | 〈x− y, v − u〉 ≥ −ε}, x ∈ X, ε ≥ 0. (2)

Now we will state some elementary of ε-enlargement of T which follows trivially from the above
definition and the basic properties of maximal monotone operators. Their proofs can be found
in [1, 3, 13].

Proposition 2.5. Let T : X ⇒ X be maximal monotone. Then

1. T = T [0];

2. if 0 ≤ ε1 ≤ ε2 then T [ε1](x) ⊂ T [ε2](x) for any x ∈ X;

3. λ
(
T [ε](x)

)
= (λT )[λε](x) for any x ∈ X, ε ≥ 0 and λ > 0;

4. if vk ∈ T [εk](xk) for k = 1, 2, . . . , (xk) converges weakly to x, (vk) converges strongly to v and
(εk) converges to ε then v ∈ T [ε](x);

5. if T = ∂f , where f is a proper closed convex function in X, then ∂εf(x) ⊂ T [ε](x) = (∂f)[ε](x)
for any x ∈ X, ε ≥ 0.

The ε-enlargements of two operators can be “added” as follows. This fact was proved in [1] in a
finite dimensional setting, but its extension to Hilbert and Banach spaces are straightforward.

Proposition 2.6. It T1, T2 : X ⇒ X are maximal monotone and T1 +T2 is also maximal monotone
then, for any ε1, ε2 > 0 and x ∈ X

T
[ε1]
1 (x) + T

[ε2]
2 (x) ⊂ (T1 + T2)

[ε1+ε2](x)

A maximal monotone operator B : X → X is α-cocoercive, For (α > 0) if

〈x− y,Bx−By〉 ≥ α‖Bx−By‖2, ∀x, y ∈ X.

There is an interesting “transportation formula” for cocoercive operators. This result was proved in
the first draft of [6], but the proof was afterward removed. Whe inted to supress its proof, in case it
reapears in that manuscript.

Lemma 2.7. If A : X → X is α-cocoercive, then for any x, z ∈ X,

A(z) ∈ A[ε](x), with ε =
‖x− z‖2

4α
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Proof. Take y ∈ X. Then

〈x− y,Az −Ay〉 = 〈x− z,Az −Ay〉+ 〈z − y,Az −Ay〉
≥ 〈x− z,Az −Ay〉+ α‖Az −Ay‖2

≥ −‖x− z‖‖Az −Ay‖+ α‖Az −Ay‖2.

where the first inequality follows form the cocoercivity of A and the second from Cauchy-Schwarz
inequality. To end the proof, note that

−‖x− z‖‖Az −Ay‖+ α‖Az −Ay‖2 ≥ inf
t∈R

αt2 − ‖x− z‖t

and compute the value of the left hand-side of this inequality.

The next result was essentialy proved in [10]. The usefulness of the σ-approximate resolvent
follows from the next elementary result, essentially proved in [10, Lemma 2.3, Corollary 4.2].

Lemma 2.8. Suppose that T : X ⇒ X is maximal monotone, x ∈ X λ > 0 and σ ≥ 0. If{
v ∈ T [ε](y),
‖λv + y − x‖2 + 2λε ≤ σ2‖y − x‖2, z = x− λv,

then ‖λv‖ ≤ (1 + σ)‖y − x‖, ‖z − y‖ ≤ σ‖y − x‖ and for any x∗ ∈ T−1(0)

‖x∗ − x‖2 ≥ ‖x∗ − z‖2 + ‖y − x‖2 −
[
‖λv + y − x‖2 + 2ε

]
≥ ‖x∗ − z‖2 + (1− σ2)‖y − x‖2.

Proof. Since ε ≥ 0, ‖λv + y − x‖ ≤ σ‖y − x‖ and the two first inequalities of the lemma follows
trivially from this inequality, triangle inequality and the definition of z.

To prove the third inequality of the lemma, take x∗ ∈ T−1(0). Direct combination of the algebraic
identities

‖x∗ − x‖2

= ‖x∗ − z‖2 + 2 〈x∗ − y, z − x〉+ 2 〈y − z, z − x〉+ ‖z − x‖2

= ‖x∗ − z‖2 + 2 〈x∗ − y, z − x〉+ ‖y − x‖2 − ‖y − z‖2

with the definition of z yields

‖x∗ − x‖2 = ‖x∗ − z‖2 + 2λ 〈x∗ − y,−v〉+ ‖y − x‖2 − ‖λv + y − x‖2

Using the inclusions 0 ∈ T (x∗), v ∈ T [ε](y) and definition (2) we conclude that 〈x∗ − y, 0− v〉 ≥ −ε.
To end the proof, of the third inequality, combine this inequality with the above equations.

The last inequality follows trivially from the third one and the assumptions of the lemma.
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3 A class of Fejer convergent methods

Let X be a Hilbert space and Ω ⊂ X. We are concerned with iterative methods for solving problem

x ∈ Ω. (3)

which, in their exact or inexact form, generates sequences (xn) as

xn ∈ Fn(xn−1) or xn ∈ Fn(xn−1) + rn, n = 1, 2, . . .

respectively, where F1 : X ⇒ X,F2 : X ⇒ X, . . . are point-to-set maps and r1, r2 . . . are errors. The
basic elements here are the set Ω and the family of point-to-set maps (Fn).

We will consider two properties of a general family of point-to-set maps (Fn : X ⇒ X)n∈N with
respect to Ω ⊂ X:

P1: if x̂ ∈ Fn(x) and x∗ ∈ Ω then
‖x∗ − x̂‖ ≤ ‖x∗ − x‖

P2: if (zk)k∈N converges weakly to z̄, ẑk ∈ Fnk
(zk) for n1 < n2 < · · · and for some w ∈ Ω

lim
k→∞

‖w − zk‖ − ‖w − ẑk‖ = 0

then z̄ ∈ Ω.

Property P1 ensures that points in the image of Fn(x) are closer (or no more distant) to Ω than x.
Regarding property P2, note that (using property P1) we have

‖w − zk‖ − ‖w − ẑk‖ ≥ 0.

The left hand-side of the above inequality measures the progress of ẑk toward the solution set, as
compared to zk. Hence, property P1 ensures that if the progress become “negligible” than the weak
limit point of (zk) belongs to Ω.

Theorem 3.1. Suppose that Ω ⊂ X is non-empty and (Fn : X ⇒ X) is a sequence of point-to-set
maps which satisfies conditions P1, P2 with respect to Ω.

If

xn ∈ Fn(xn−1) + rn,
∑
‖rn‖ <∞

then (xn) is Quasi-Fejer convergent to Ω, it converges weakly to some x̄ ∈ Ω and for any w ∈ Ω
there exists limn→∞ ‖w − xn‖.

Moreover, if rn = 0 for all n, then (xn) is Fejer-convergent to Ω.

Proof. To simplify the proof, define
x̂n = xn − rn.

Take an arbitrary x∗ ∈ Ω. Since x̂n ∈ Fn(xn−1), ‖w − x̂n‖ ≤ ‖w − xn−1‖,

‖w − xn‖ ≤ ‖w − x̂n‖+ ‖rn‖ ≤ ‖w − xn−1‖+ ‖rn‖
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and (xn)n∈N is Quasi-Fejer convergent to Ω. Therefore this sequence is bounded and there exists
limn→∞ ‖w − xn‖. In particular

lim
n,m→∞

‖w − xn‖ − ‖w − xm‖ = 0

Since (xn)n∈N is bounded it has a weak cluster point, say x̄ and there exists a subsequence
(xnk

)k∈N which converges weakly to x̄. Direct use of the definition of x̂n yields

| ‖w − xnk
‖ − ‖w − x̂nk

‖ | ≤ | ‖w − xnk
‖ − ‖w − xnk+1‖ |+ ‖rnk+1‖.

Therefore, using P2, the two above equations and the inclusion x̂n ∈ F (xn) we conclude that x̄ ∈ Ω.
Hence, all weak cluster points of (xn) belongs to Ω. To end the proof, use Proposition 2.4

Note that properties P1, P2 are “inherited” by specializations. Will state formally this result
and the proof, being quite trivial, will be omitted

Proposition 3.2. If (Fn : X ⇒ X) is a sequence of point-to-set maps which satisfies conditions P1,
P2 with respect to Ω ⊂ X and (Gn : X ⇒ X) is a sequence of point-to-set maps such that, for any
x ∈ X

Gn(x) ⊂ Fn(x), n = 1, 2, . . .

then (Gn : X ⇒ X) also satisfies conditions P1, P2 with respect to Ω.

What about compositions? Suppose that (Fn) is a sequence satisfying P1, P2, and that

Fn = Gn ◦Xn

where Gn : X ⇒ Y , Hn : Y ⇒ X and all Gn’s are L-Lipschitz continuous (Y is Hilbert). One may
consider a sequences

x̃n ∈ Hn(xn−1) + rn, xn ∈ Gn(x̃n) + r′n

where (rn) and (r′n) are summable. Indeed, since xn − r′n ∈ Gn(x̃n), using also (1) we conclude that
there exists x̂n ∈ Gn(x̃n − rn)

‖x̂n − (xn − r′n)‖ ≤ L ‖rn‖.

Therefore, defining sn = xn − x̂n and noting that x̃n − rn ∈ Hn(xn−1) we conclude that

xn ∈ Fn(xn−1) + sn,
∑
‖sn‖ ≤

∑
L‖rn‖+ ‖r′n‖ <∞.

On may also consider compositions of m+ 1 maps

F = G1,n ◦G2,n · · · ◦Gm,n ◦Hn

adding summable errors in each stage, assuming each Gi,n : Yi ⇒ Yi−1 to be L-Lipschitz continuous,
Hn : X ⇒ Ym, Y0 = X etc.
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4 Approximate resolvents and the Hybrid Proximal-Extragradient
Method

In this section first we define σ-approximate resolvents, analyze some of their properties and study
conditions under which sequences of σ-approximate resolvents satisfy properties P1, P2. After that
we recall the definition of the Hybrid Proximal Extragradient method and shows that σ-approximate
resolvents are the iteration maps of such method. At the end of the section we discuss the incor-
poration of summable errors to sequences of σ-approximate resolvents and to the Hybrid Proximal
Extragradient method.

Recall that the resolvent of a maximal monotone operator T : X ⇒ X is defined as

JT (x) = (I + T )−1(x), x ∈ X. (4)

We shall consider approximations of the resolvent in the following sense.

Definition 4.1. The σ-approximate resolvent of a maximal monotone operator T : X ⇒ X is the
point-to-set operator JT,σ : X ⇒ X

JT,σ(x) =

x− v
∣∣∣∣∣∣
∃ε ≥ 0, y ∈ H,
v ∈ T [ε](y)
‖v + y − x‖2 + 2ε ≤ σ2‖y − x‖2


where σ ≥ 0.

First we analyze some elementary properties of approximate resolvent and find a convenient
expression for JλT,σ. In particular, we will show that the σ-approximate resolvent is indeed and
extension (in the sense of point-to-set maps) of the classical resolvent.

Proposition 4.2. Let T : X ⇒ X be maximal monotone. Then, for any x ∈ X,

1. JT,σ=0(x) = {JT (x)};

2. if 0 ≤ σ1 ≤ σ2 then JT,σ1(x) ⊂ JT,σ2(x);

3. for any λ > 0 and σ ≥ 0,

JλT,σ(x) =

x− λv
∣∣∣∣∣∣
∃ε ≥ 0, y ∈ H,
v ∈ T [ε](y)
‖λv + y − x‖2 + 2λε ≤ σ2‖y − x‖2


Proof. Items 1, 2 and 3 follow trivially from Definition 4.1 and Proposition 2.5, items 1, 2 and 3.

Note that in view of item 1 of the above proposition, if point-to-set operators which are point-
to-point are identified with functions, we have

JT,0 = JT .

Next theorem is the main result of this section and states that, in some sense, approximate resolvents
are “almost as good” as resolvents for finding zeros of maximal monotone operators.
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Theorem 4.3. Suppose that T : X ⇒ X is maximal monotone, σ ∈ [0, 1), λ > 0 and (λk) is a
sequence in [λ,∞). Then, the sequence of point-to-set maps

(JλkT,σ)k∈N

satisfies properties P1, P2 with respect to Ω = T−1(0).

Proof. Suppose that x̂ ∈ JλkT,σ(x). This means that there exists y, v ∈ X, ε ≥ 0 such that

x̂ = x− λkv, v ∈ T [ε](x), ‖λkv + y − x‖2 + 2λε ≤ σ2‖y − x‖2.

Therefore, using Lemma 2.8 we conclude that for any x∗ ∈ (λkT )−1(0) = T−1(0),

‖x∗ − x‖2 ≥ ‖x∗ − x̂‖2 + (1− σ2)‖y − x‖2 ≥ ‖x∗ − x̂‖2

which proves that the family (JλkT,σ) satisfies P1.
Suppose that (zk) converges weakly to z̄, ẑk ∈ Jλnk

T,σ(zk), 0 ∈ T (x∗) and

lim
k→∞

‖x∗ − zk‖ − ‖x∗ − ẑk‖ = 0 (5)

To simplify the proof, let µk = λnk
≥ λ. For each k there exists vk, yk ∈ X, εk ≥ 0 such that

ẑk = zk − µkv, vk ∈ T εk(zk), ‖µkvk + yk − zk‖2 + 2µkε ≤ σ2‖yk − zk‖2. (6)

Using again Lemma 2.8 we conclude that

‖x∗ − zk‖2 ≥ ‖x∗ − ẑk‖2 + (1− σ2)‖yk − zk‖2.

Therefore

(1− σ2)‖yk − zk‖2 ≤ ‖x∗ − zk‖2 − ‖x∗ − ẑk‖2

= (‖x∗ − zk‖ − ‖x∗ − ẑk‖)(‖x∗ − zk‖+ ‖x∗ − ẑk‖)

Since (zk) is weakly convergent, it is also bounded. Tanking this fact in to account and using the
above equation and (5) we conclude that

lim
k→∞

‖yk − zk‖ = 0

So, (yk) also converges weakly to z̄. Since εk ≥ 0, using the last relation in (6) we conclude that

µkεk ≤
σ2

2
‖yk − zk‖2, ‖µkvk‖ ≤ (1 + σ)‖yk − zk‖

Therefore, since (µk) is bounded away from 0,

lim
k→∞

εk = 0, lim
k→∞

vk = 0

and 0 ∈ T [0](z̄) = T (z̄).
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The Hybrid Proximal-Extragradient/Projection methods were introduced in [11, 10, 12]. These
methods are variants of the Proximal Pinto method which uses relative error tolerances for accepting
inexact solutions of the proximal subproblems. Here we are concerned with the variant introduced
in [10], which will be called, from now on, the Hybrid Proximal-Extragradient (HPE) method.

Algorithm: (projection free) HPE method[10]:
Choose x0 ∈ X, σ ∈ [0, 1), λ > 0 and for k = 1, 2, . . .
a)

Choose λk ≥ λ and find/compute vk, yk ∈ X ε ≥ 0 such that

vk ∈ T εk(yk), ‖λkvk + yk − xk−1‖2 + 2λkεk ≤ σ2‖yk − xk−1‖2

b) Set xk = xk−1 − λkvk

To generate iteratively sequences by means of approximate resolvents is equivalent to applying the
HPE method in the following sense.

Proposition 4.4. Let T : X → X be maximal monotone, σ ≥ 0, λ > 0 and (λk) be sequence in
[λ,∞).

A sequence (xk) satisfies the recurrent inclusion

xk ∈ JλkT,σ(xk−1), k = 1, 2, . . .

if and only if there exists sequences (yk), (vk), (εk) which, together with the sequences (xk), (λk)
satisfy steps a) and b) of the HPE method.

Proof. Use Definition 4.1 and Proposition 4.2 item 3.

Convergence of the HPE method perturbed by a summable sequence of errors was proved directly
in [2]. Here we can obtain this result combining Proposition 4.4 with Theorem 4.3.

Corollary 4.5. If T : X ⇒ X is maximal monotone, T−1(0) 6= ∅, λ > 0, σ ∈ [0, 1), for k = 1, 2, . . .

λk ≥ λ
vk ∈ T [εk](x̃k), ‖λkvk + x̃k − xk−1‖2 + 2λkεk ≤ σ‖x̃k − xk−1‖2

xk = xk−1 − λkvk + rk

and
∑
‖rk‖ <∞ then (xk) (and (x̃k)) converges weakly to a point x̄ ∈ T−1(0)

Corollary 4.6. If T : X ⇒ X is maximal monotone, T−1(0) 6= ∅, λ ≥ λ > 0, σ ∈ [0, 1), for
k = 1, 2, . . .

λ ≥ λk ≥ λ
vk ∈ T [εk](x̃k), ‖λkvk + x̃k − xk−1‖2 + 2λkεk ≤ σ‖x̃k − xk−1‖2

xk = xk−1 − λk(vk + rk)

and
∑
‖rk‖ <∞ then (xk) (and (x̃k)) converges weakly to a point x̄ ∈ T−1(0)
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5 The Forward-Backward splitting method

We will prove in this section that the iteration maps of the Forward-Backward splitting method are
specialization or selections of σ-approximate resolvents and the sequence of iteration maps satisfies
properties P1, P2. As a consequence of this result, sequences generated by the inexact Forward-
Backward splitting methods with summable errors still converges weakly to solutions of the inclusion
problem, if any. Equivalently, the Forward-Backward splitting method is a particular instance of the
HPE method.

The Forward-Backward Splitting method solves the inclusion problem

0 ∈ (A+B)x

where

h1) A : X → X is α-cocoercive, α > 0;
h2) B : X ⇒ X is maximal monotone.

This method proceed as follows:

Forward-Backward Splitting method
0) Initialization: Choose 0 < λ ≤ λ̄ < 2α and x0 ∈ X;
1) for k = 1, 2, . . .
a) choose λk ∈ [λ, λ̄] and define

xk = (I + λkB)−1(xk − λkA(xk−1))

= JλkB ◦ (I − λkA) (xk−1). (7)

Note that the generic iteration map of the Forward-Backward method is

JλB ◦ (I − λA) (8)

whith λ = λk in the k-th iteration.

Lemma 5.1. If A,B satisfies assumptions h1 and h2 then, for any λ > 0 and x ∈ X,

JλB ◦ (I − λA)(x) ∈ Jλ(A+B),σ(x).

with σ =
√
λ/2α.

Proof. Take x ∈ X and let z = JλB ◦ (I − λA)(x). This means that

a := λ−1(x− λA(x)− z) ∈ A(z).

Define ε = ‖x − z‖2/(4α), v = a + A(x). Using Lemma 2.7 we conclude that A(x) ∈ A[ε](z).
Therefore combining this result with these two definitions, the above equation, Proposition 2.6 and
Proposition 2.5 item 1 we conclude that

v ∈ (B +A[ε])(z) ⊂ (A+B)[ε](z), ‖λv + z − x‖2 + 2λε = σ2‖z − x‖2

z = x− λv,

which proves the lemma.
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Corollary 5.2. Let A,B be as in h1, h2 and λ, λ̄ and (λk), (xk) be as in the Forward Backward
method. Define

σ = λ̄/(2α).

Then 0 < σ < 1, for any x ∈ X

JλkB ◦ (I − λkA)(x) ∈ Jλk(A+B);σ (x), k = 1, 2, . . . (9)

in particular
xk = JλkB ◦ (I − λkA)(xk) ∈ Jλk(A+B);σ (xk), k = 1, 2, . . . (10)

and the sequence of maps (JλkB ◦ (I−λkA)) satisfies properties p1, p2 with respect to (A+B)−1(0).

Proof. The bounds for σ follows trivially from its definition and the choices for λ, λ̄ in the Forward-
Backward method.

Define σk = λk/(2α) for k = 1, 2, . . . . Since λk ∈ [λ, λ̄], 0 < σk ≤ σ for all k. Therefore, using
also Lemma 5.1 and Proposition 4.2 item 2 we conclude that for any x ∈ X

JλkB ◦ (I − λkA)(x) ∈ Jλk(A+B);σk(x) ⊂ Jλk(A+B);σ(x), k = 1, 2, . . .

The equality in (10) follows trivially from the definition of the Forward-Backward method while the
inclusion follows from the above equation. To end the proof, note that 0 < λ < λk for all k, and use
Theorem 4.3, Proposition 3.2 and the above equation.

Proposition 5.3. Let (λk), (xk) be sequences generated by the Forward-Backward Splitting method.
Define

σ =

√
λ

2α
, vk = λ−1k (xk−1 − xk), εk =

‖xk − xk−1‖2

4α
, k = 1, 2, . . .

Then 0 < σ < 1 and for k = 1, 2, . . .

vk ∈ (B +A)[εk](xk), ‖λkvk + xk − xk−1‖2 + 2λkεk ≤ σ‖xk − xk−1‖2

xk = xk−1 − λkvk.

In particular, the Forward-Backward splitting method above defined is a particular case of the HPE
method with σ ∈ (0, 1).

Proof. Se the proofs of Lemma 5.1 and Corollary 5.2.

6 Tseng’s Modified Forward-Backward splitting method

In [10, 7] it was proved that Tseng’s Modified Forward-Backward splitting method is a particular
case of the HPE method. Here we will cast this result in the framework of approximate resolvents.

We will present examples of application of Theorem 3.1 to the analysis of Tseng’s Modified
Forward-Backward Splitting Method [14]. It is important to remark that this choice is arbitrary, and
we do not pretend to present a new algorithm, because we believe that addition of summable errors
to well-know algorithms does not create a new method.
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In this section we consider the inclusion problem

0 ∈ (A+B)x

where

t1) A : X → X is monotone and L-Lipschitz continuous (L > 0);
t2) B : X ⇒ X is maximal monotone.

The exact Tseng’s Modified Forward-Backward Splitting method [14] proceeds as follows:
Tseng’s Modified Forward-Backward method
Choose 0 < λ ≤ λ̄ < 1/L and x0 ∈ X;
for k = 1, 2, . . .
a) choose λl ∈ [λ, λ̄] and compute

yk = (I + λkB)−1(xk−1 − λkA(xk−1)), xk = yk−1 − λk(A(yk)−A(xk−1)).

In order to cast this method in the formalism of Section 3 define for λ > 0

Hλ : X → X ×X, Hλ(x) = (x, JλB(x− λA(x))) (11)

Gλ : X ×X → X, Gλ(x, y) = y − λ(A(y)−A(x))) (12)

Note that the second component of the (generic) operator Hλ is JλB ◦ (I − λA) which is the generic
iteration map of the forward backward method in (8). Trivially

xk = Gλk ◦Hλk (xk−1). (13)

The next two result were essentially proved in [7], in the context of the Hybrid Proximal extragradient
method.

Lemma 6.1. If A,B satisfy assumptions t1, t2, then, for any λ > 0 and x ∈ X

Gλ ◦Hλ(x) ∈ JA+B;σ (x)

for σ = λL.

Proof. Take x ∈ X and let

y = JλB(x− λA(x)), z = y + λ(A(y)−A(x))

Note that z = Gλ ◦Hλ(x). Using the definition of y we have

a := λ−1(x− λA(x)− y) ∈ B(y).

Therefore

v := a+A(y) ∈ (A+B)(y), ‖λv + x− y‖2 = ‖λ(A(y)−A(x))‖2

≤ (λL)2‖y − x‖2

where the inequality follows from assumption t2). To end the proof, note that z = x− λv.
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Corollary 6.2. Let A,B be as in t1, t2 and 0 < λ < λ̄ < 2α and (λk), (xk) be as in Tseng’s
Modified Forward Backward method. Define

σ = λ̄L.

Then 0 < σ < 1, for any x ∈ X

Gλk ◦Hλk(x) ∈ Jλk(A+B);σ (x), k = 1, 2, . . . (14)

in particular
xk = Gλk ◦Hλk(xk−1) ∈ Jλk(A+B);σ (xk−1), k = 1, 2, . . . (15)

and the sequence of maps (Gλk ◦Hλk) satisfyes properties p1, p2 with respect to (A+B)−1(0).

Proof. The bounds for σ follows trivially from its definition and the choices for λ and λ̄ in Tseng’s
Forward-Backward method.

Define σk = λkL for k = 1, 2, . . . . Since λk ∈ [λ, λ̄], 0 < σk ≤ σ for all k. Therefore, using also
Lemma 6.1 and Proposition 4.2 item 2 we conclude that for any x ∈ X

JλkB ◦ (I − λkA)(x) ∈ Jλk(A+B);σk(x) ⊂ Jλk(A+B);σ(x), k = 1, 2, . . .

The equality in (15) follows trivially from the definition of the Forward-Backward method while the
inclusion follows from the above equation. To end the proof, note that 0 < λ < λk for all k, and use
Theorem 4.3, Proposition 3.2 and the above equation.

Note that for 0 < λ ≤ λ̄, the maps Hλ, Gλ are Lipschitz continuous with constant

2 + λ̄L, 1 + 2λ̄L

respectively. Hence, this method can be perturbed by summable sequences of errors in the evaluations
of the resolvents JλkB and/or in the evaluation of A(xk), A(yk) etc, and will still converge weakly to
a solution, if any exists.

7 Korpelevich’s method

In [7] it was proved that Korpelevich’s method, with fixed stepsize, is a particular case of the HPE
method. The extension of this result for variable stepsizes is trivial, and here we will analyze such
an extension in the framework of approximate resolvents.

In this section we consider the inclusion problem

0 ∈ NC(x) +B(x)

where

k1) A : X → X is monotone and L-Lipschitz continuous (L > 0).
k1) NC is the normal cone operator of C ⊂ X, a non-emplty closed convex set;

Korpelevich’s method
Choose 0 < λ ≤ λ̄ < 1/L and x0 ∈ X;
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for k = 1, 2, . . .
a) choose λk ∈ [λ, λ̄] and define

yk = PC(xk−1 − λkF (xk−1)), xk = PC(xk−1 − λkF (yk)) (16)

In order to cast this method in the formalism of Section 3 define for λ > 0

Hλ : X → X ×X, Hλ(x) = (x, PC(x− λA(x)) (17)

Gλ : X ×X → X, Gλ(x, y) = PC(x− λA(y)). (18)

Observe that since Pc = JλNC
, the second component of the (generic) operator Hλ is JλB ◦ (I − λA)

with B = NC which is the generic iteration map of the forward backward method in (8) (whit
B = NC). Note also that the map Hλ above defined can be obtained from (11) setting B = NC .

map Hλ above defined has an equivalent expression

Hλ(x) = (x, JλNC
(x− λA(x)))

which can be obtained by setting B = NC in (11) B = NC . Trivially,

xk = Gλk ◦Hλk(xk−1), k = 1, 2, . . . (19)

The next two result were essentially proved in [7], in the context of the Hybrid Proximal extragradient
method.

Lemma 7.1. If A and C satisfy assumptions k1 and k2, then, for any λ > 0 and x ∈ X

Gλ ◦Hλ(x) ∈ JA+NC ;σ (x)

for σ = λL.

Proof. Take x ∈ X and let

y = PC(x− λA(x)), z = PC(x− λA(y))

Note that z = Gλ ◦Hλ(x). Define

η =
1

λ
(x− λA(x)− y),

ν =
1

λ
(x− λA(y)− z), ε = 〈ν, z − y〉, v = ν +A(y).

Trivially, η ∈ NC(y) and ν ∈ NC(z) = ∂δC(z). Therefore,

ν ∈ ∂εδC(y) ⊂ (∂δC)[ε](y) = (NC)[ε](y),

and
v ∈ (A+NC)[ε](y), z = x− λv. (20)
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Trivially, η ∈ NC(y). Therefore

‖λv + y − x‖2 + 2λε = ‖y − z‖2 + 2λ〈ν, z − y〉
= ‖y − z‖2 + 2λ〈ν − η, z − y〉+ 2λ〈η, z − y〉
≤ ‖y − z‖2 + 2λ〈ν − η, z − y〉

Direct algebraic manipulations yields

‖y − z‖2 + 2λ〈ν − η, z − y〉 = ‖λ(ν − η) + z − y‖2 − ‖λ(ν − η)‖2

≤ ‖λ(ν − η) + z − y‖2

= ‖λ(A(x)−A(y))‖2

Combining the two above equations and using assumption k1 we conclude that

‖λv + y − x‖2 + 2λε ≤ (λL)2‖y − x‖2

The conclusion follows combining this inequality with (20).

Corollary 7.2. Let A,NC be as in k1, k2 and 0 < λ < λ̄ < 2α and (λk), (xk) be as in Korpelevich’s
method. Define

σ = λ̄L.

Then 0 < σ < 1, for any x ∈ X

Gλk ◦Hλk(x) ∈ Jλk(A+B);σ (x), k = 1, 2, . . .

in particular
xk = Gλk ◦Hλk(xk−1) ∈ Jλk(A+B);σ (xk−1), k = 1, 2, . . .

and the sequence of maps (Gλk ◦Hλk) satisfies properties p1, p2 with respect to (A+NC)−1(0).

Proof. Use the same reasonings as in Corollary 7.2

Endowing X ×X with the canonical inner product of Hilbert space products

〈(x, y), (x′, y′)〉 = 〈x, x′〉+ 〈y, y′〉

it is trivial to check that for 0 < λ ≤ λ̄, the maps Hλ and Gλ are Lipschitz continuous with constants

2 + λ̄L, 1 + λ̄L

respectively. Hence, one can analyze Korpelevich’s method with (summable) errors in the projections
and/or evaluations of A etc.

8 Discussion

We defined two properties of exact Fejer convergent algorithms which guarantee convergence of the
inexact version (of them) using summable errors.

It has been since long recongized that Korpelevich’s Method (an may be even the Forward-
Backward method) is an “inexact” vesion of the proximal point method. However, the nature and
degree of this “inexactness” where not known. We provided formal definition of aproximate solution
of the prox by means of the σ-approximate resolvent which, while enconparsing many classical decom-
position schemes, also guareantee weak convergence of sequences generated by suchh approximate
resolvents (even in the presence of additional summable errors).
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