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LAW OF LARGE NUMBERS FOR CERTAIN CYLINDER FLOWS

PATRÍCIA CIRILO, YURI LIMA, AND ENRIQUE PUJALS

Abstract. We construct new examples of cylinder flows, given by skew prod-
uct extensions of irrational rotations on the circle, that are ergodic and ra-
tionally ergodic along a subsequence of iterates. In particular, they exhibit
law of large numbers. This is accomplished by explicitly calculating, for a
subsequence of iterates, the number of visits to zero, and it is shown that such
number has a gaussian distribution.

1. Introduction

The purpose of this paper is to construct examples of skew product extensions of
irrational rotations of the additive circle T = R/Z exhibiting law of large numbers.
More specifically, under some weak diophantine conditions on the irrational number
α ∈ R, we construct roof functions φ : T → Z for which the skew product

F : T× Z −→ T× Z

(x, y) 7−→ (x+ α, y + φ(x))
(1.1)

is ergodic and rationally ergodic along a subsequence of iterates. This, in particular,
implies that F has a law of large numbers. See Subsection 2.4 for the proper
definitions.

One must, first of all, observe that F has a natural invariant measure, given by
the product of the Lebesgue measure on T and the counting measure on Z, and
it is infinite. In this situation, classical theorems of ergodic theory are not valid.
For instance, Birkhoff’s averages converge to zero almost surely, and this leads us
to the following question: what would be a good candidate for a Birkhoff-type
theorem in this context? Denoting by Snψ the Birkhoff sum of the L1-function
ψ : T × Z → R, the most natural way is try to find a sublinear sequence (an)
of positive real numbers and consider the averages Snψ/an. However, by a result
of J. Aaronson (see Theorem 2.3), there is never a universal sequence (an) for
which Snψ/an converges pointwise to the right value. Nevertheless, Hopf’s theorem
(Theorem 2.2) is an indication that some sort of regularity might exist and it might
still be possible, for a specific sequence (an), that the averages oscillate without
converging to zero or infinity and so one can hope for a summability method that
smooths out the fluctuations and forces convergence. Such second order ergodic
theorems were considered by J. Aaronson, M. Denker, and A. Fisher in [5].

Another attempt of obtaining a Birkhoff-type theorem has been made by Aaron-
son in [2], in which he defined and constructed examples of rationally ergodic
maps. These maps possess a sort of Cèsaro-averaged version of convergence in

Date: January, 29, 2012.
1991 Mathematics Subject Classification. 28D05, 37A40.
Key words and phrases. cylinder flow, irrational rotation, law of large numbers, rationally

ergodic, skew product, weakly homogeneous.

1

http://arxiv.org/abs/1108.3519v2


2 PATRÍCIA CIRILO, YURI LIMA, AND ENRIQUE PUJALS

measure: there is a sequence (an) such that, for every L1-function ψ and every
subsequence (nk) of positive integers, there exists a further subsequence (nl) such
that Snl

ψ(x)/anl
converges Cèsaro almost surely to

∫

ψ. This latter property is
called weak homogeneity and the sequence (an) is called a return sequence. Weak
homogeneity implies the existence of law of large numbers. See 2.4 for the specific
definitions.

A natural program of investigation regards three kinds of questions.

(i) What are the conservative, ergodic, rationally ergodic maps?
(ii) What fluctuations can the Birkhoff sums have?
(iii) What are the ergodic locally finite, σ-finite invariant measures?

Our goal in this work is to give contributions to (i) and (ii) by constructing
examples of the form (1.1) that are ergodic and rationally ergodic along a subse-
quence of iterates. Up to our knowledge, the first examples of ergodic cylinder flows
were given by A. Krygin [22] and K. Schmidt [27]. Their examples differ in nature.
Krygin assures the existence, for any irrational α, of a roof function φ for which F is
ergodic. Actually, there exist elegant categorical proofs that the set of pairs (α, φ),
in various different contexts, for which F is ergodic forms a residual set. See [11],
[19]. On the other hand, Schmidt constructs an explicit example motivated by the
theory of random walks. The roof function considered by him is equal to the Haar
function defined in Section 3, which is actually the basis function for our example.
Subsequent works [14], [12] of J.-P. Conze and M. Keane extended Schmidt’s results
to a larger class of irrationals α and roof functions

φ(x) = (β + 1) · 1[0, β
β+1 )

(x)− β. (1.2)

There are many other works regarding this question. See for instance [7], [16], [17],
[24], [25].

Regarding (ii), J. Aaronson and M. Keane further investigated Schmidt’s exam-
ple in [6]. They studied the asymptotic behavior of the number of visits to zero and
proved that the Birkhoff sums represent a sort of “deterministic random walk”. In
particular, they showed that if α is quadratic surd1 then F is rationally ergodic with
return sequence an = n/

√
logn, which is relatively close to the linear sequence.

J. Aaronson et al identified in [8] all the locally finite and σ-finite measures
invariant under F for the function in (1.2). More recently, J.-P. Conze has extended
this analysis to the class of functions

φ(x) =
∑

j

cj1Ij (x) − β

where cj are integers, {Ij} is a finite family of intervals of T and φ has zero integral.
Assuming that the set of accumulation points of the sequence ({qnβ}) is infinite,
where (qn) stands for the sequence of denominators of the convergents of α, he
described in [13] the set of all ergodic and locally finite measures invariant under
F .

Not much is known regarding rational ergodicity. There are actually a few ex-
amples that have been proved to be rationally ergodic. See for instance [2], [3], [6],
[9], [23], where this property is shown to hold in different contexts. With respect

1The irrational number α is quadratic surd if it satisfies a quadratic equation with integer
coefficients.
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to cylinder flows given by skew products extensions of irrational rotations on the
circle, the only known examples are those in [6].

The most significant contribution of our work is to construct a new class of
cylinder flows that are rationally ergodic along a subsequence of iterates and, in
particular, possess law of large numbers. The two main results are enclosed below.

Theorem 1.1. For any α ∈ R such that lim infq→∞ q‖qα‖ = 0, there exists a skew
product

F : T× Z −→ T× Z

(x, y) 7−→ (x+ α, y + φ(x))

such that

(a) φ belongs to Lp(T), for every p ≥ 1, and
(b) F is conservative and ergodic.

If we slightly reinforce the diophantine properties of α, the rational ergodicity
of F along a subsequence of iterates is also guaranteed. This is the content of our
second result.

Theorem 1.2. For any divisible α ∈ R, there exists a skew product that satisfies
Theorem 1.1 and is rationally ergodic along a subsequence of iterates. In particular,
F has a law of large numbers.

An irrational number α is divisible if it has a sequence of continuants (qn) with
a certain divisibility property and such that limn→∞ qn‖qnα‖ = 0. See Subsection
2.2 for the specific definitions. It is worth noting that the set of α satisfying these
two conditions has full Lebesgue measure, according to the content of Appendix B.
Thus, in contrast to [6], in which the set of parameters is countable, Theorems 1.1
and 1.2 hold for a set of parameters of full Lebesgue measure2.

A remarkable feature of Theorem 1.2 is that the number of visits to zero along the
iterates in which F is rationally ergodic exhibits a gaussian distribution. The return
sequence is given by aqn+1 = qn+1/

√
πn and the normalized averages, described in

equation (6.2), do not depend on the choice of α neither on the sequence (qn).
This implies, as a scholium, an analytical fact about random walks, described in
Corollary 6.1.

The roof function we construct is different in nature from the others used in this
context. We consider the Haar function T defined in Section 3 as a basis function
and let

φ(x) =
1

2

∑

j≥1

[

T (qj(x + α))− T (qjx)
]

for a specific chosen sequence of positive integers (qn). One can see φ as the limit
of worser and worser coboundaries

φn(x) =
1

2

n
∑

j=1

[

T (qj(x + α))− T (qjx)
]

. (1.3)

Observe that, if we just consider the coboundary φn, the respective cylinder flow will
not be ergodic and, moreover, will be conjugate to a rigid rotation. The increasing
bad feature of each φn is what will guarantee that φ has the required properties.

2In a previous version of this paper, Theorem 1.2 required stronger conditions on α for which
the set of parameters has zero Lebesgue measure, but it was pointed to us that the proof works
for any divisible irrational number.



4 PATRÍCIA CIRILO, YURI LIMA, AND ENRIQUE PUJALS

The sequence (qn) will be chosen via the continued fraction expansion of α and
this is why the diophantine properties of α influence the dynamical properties of
F . Even though φ is unbounded, the good feature of it is that we can explicitly
calculate the number of visits to zero along a sequence of iterates of F . See Lemma
5.4 and Subsection 5.2.

In some sense, our construction resembles Anosov-Katok method of fast approx-
imations developed in [10], in which they construct differentiable maps sufficiently
close to fibered maps of the torus (and, more generally, of any manifold that ad-
mits a T-action) with exotic dynamical properties. Indeed, the referred maps are
obtained as limits of periodic maps and here we will also use this perspective to
prove Theorem 1.2.

Another example that resembles ours is Hajian-Ito-Kakutani’s map. See Section
3.3 of [26] for a detailed exposition of this map.

The paper is organized as follows. In Section 2 we introduce the basic notations
and definitions as well as the necessary background for the sequel. Section 3 is
devoted to the construction of the roof function φ and the related convergence
issues. In Section 4 we establish Theorem 1.1 with the aide of the theory of random
walks. To this matter, Appendix A treats the required results, adapted to our
context. Section 5 calculates the number of returns of a generic point to its fiber.
This in particular implies Theorem 1.2, which is the content of Section 6. In
Appendix B, we enclose the results on continued fractions that allows us to state
our results in the greatest possible generality.

2. Preliminaries

2.1. General notation. Given a set X , #X denotes the cardinality of X . If A is
a subset of X , 1A : X → {0, 1} denotes the characteristic function of A:

1A(x) =

{

1 , if x ∈ A
0 , if x ∈ X\A.

Z denotes the set of integers and N the set of positive integers. Each n ∈ N defines
the ring Zn of the residue classes module n. A complete residue system is a set
{a1, . . . , an} of integers such that {a1, . . . , an} modulo n is equal to Zn.

Given a real number x, ⌊x⌋ and {x} are the integer and fractional parts of x,
respectively. Let ‖x‖ be the distance from x to the closest integer,

‖x‖ = min{{x}, 1− {x}}.
We use the following notation to compare the asymptotic of functions.

Definition 2.1. Let f, g : N → R be two real-valued functions. We say f . g if
there is a constant C > 0 such that

|f(n)| ≤ C · |g(n)| , ∀n ∈ N.

If f . g and g . f , we write f ∼ g. We say f ≈ g if

lim
n→∞

f(n)

g(n)
= 1.

Let T = R/Z denote the circle, parameterized by [0, 1), and let d : T × T → R

be the induced distance function. For every α ∈ R, Rα : T → T is the rotation
Rαx = x+ α.
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Let λ be the Lebesgue measure on T and µ the measure defined on the cylinder
T×Z by µ = λ× counting measure on Z. Given a function ψ : T → R, its Lp-norm
with respect to λ is defined as

‖ψ‖p =

(∫

T

|ψ|pdλ
)1/p

and the space of Lp-integrable functions as Lp(T). Due to the index p, there will
be no confusion between the integer norm ‖ · ‖ and the Lp-norm ‖ · ‖p.
2.2. Continued fractions. Given an irrational number α, consider its continued
fraction expansion

α = a0 +
1

a1 +
1

a2 +
1

. . .

:= [a0; a1, a2, . . .] ,

whose nth-convergent is

αn =
pn
qn

= [a0; a1, a2, . . . , an], n ≥ 0.

The qn are called the continuants. They give the best rational approximations
to α. More precisely, the approximation is equal to

‖qnα‖ = qn ·
∣

∣

∣

∣

α− pn
qn

∣

∣

∣

∣

·

It is known, by Dirichlet’s theorem, that

lim inf
q→∞

q‖qα‖ ≤ 1

for any α ∈ R. Let α be divisible if it has a sequence (qnj
) of continuants satisfying

2qnj
divides qnj+1 and lim

j→∞
qnj

‖qnj
α‖ = 0.

The set of divisible numbers has full Lebesgue measure in R. This is the content
of Proposition B.1 which, in particular, guarantees that Theorem 1.1 and Theorem
1.2 are valid for Lebesgue almost every α ∈ R.

From now on, (qn) will denote a sequence of (instead of all) continuants of α
such that

lim
n→∞

qn‖qnα‖ = 0 (2.1)

and, whenever α is divisible, this chosen sequence (qn) will also satisfy that 2qn
divides qn+1. We will also make constant use of the following conditions:

(CF1) For any n ≥ 1,

2
∑

j>n

‖qjα‖ < ‖qnα‖.

(CF2) For any p ≥ 1,
∑

j≥1

jp+1 · ‖qjα‖ <∞.

(CF3) For any p ≥ 1,
n
∑

j=1

jp+1 · qj < qn+1 for n > n(p).
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(CF4) For any n ≥ 1,


2n
n−1
∑

j=1

qj



 · qn‖qnα‖ < 1.

Condition (CF2) is always satisfied. Indeed,

∑

j≥1

jp+1 · ‖qjα‖ <
∑

j≥1

jp+1

qj

is bounded for every p ≥ 1, because the exponential behavior of qj controls the
polynomial behavior of jp+1. (CF1), (CF3) and (CF4) are assured by passing, if
necessary, to a subsequence of (qn).

2.3. Birkhoff sums. Let α ∈ R, φ : T → R a L1-measurable function and F
defined as in (1.1). The dynamics of F is intimately connected to the cocycle
S(α, φ) : T× Z → R defined as the Birkhoff sums of φ with respect to the rotation
Rα:

S(α, φ)(x, n) =















































n−1
∑

k=0

φ(x + kα) , if n ≥ 1

0 , if n = 0

−
−n
∑

k=1

φ(x − kα) , if n < 0.

For simplicity, we denote S(α, φ)( · , n) : T → R by Sn(α, φ). By Birkhoff’s theorem,

Sn(α, φ)(x)

n
−→

∫

T

φdλ as n→ ∞

for Lebesgue almost every x ∈ T. In particular, if
∫

T
φdλ 6= 0, almost every point

diverges, which does not allow any kind of recurrence. From now on, we assume φ
has zero mean. In this situation, Birkhoff sums have a sublinear growth.

2.4. Infinite ergodic theory. Let (X,A, µ, F ) be a measure-preserving system:
(X,A, µ) is a measure space, µ a σ-finite measure and F is a measurable transfor-
mation on X invariant under µ. Assume that µ is conservative: µ(A) = 0 whenever
A ∈ A is such that {F−nA}n≥0 are pairwise disjoint. We say that F is ergodic if it
has only trivial invariant sets, that is, if µ(A) = 0 or µ(X\A) = 0 whenever A is a
measurable set invariant under F .

Let φ : X → R be a measurable function. A successful area in ergodic theory

deals with the convergence of the averages n−1 ·∑n−1
k=0 φ

(

F kx
)

, x ∈ X , when n
goes to infinity. The well known Birkhoff’s theorem states that, if µ(X) <∞, such
limit exists for almost every x ∈ X whenever φ is a L1-function. This is not the
case when µ is infinite. Indeed, if µ(X) = ∞, these averages converge to zero for
almost every x ∈ X . Nevertheless, they converge to zero in the same proportional
rate, according to the following result.

Theorem 2.2 (Hopf [18]). Let (X,A, µ, F ) be a conservative ergodic measure-
preserving system. Then, for every φ, ψ ∈ L1(X,A, µ) such that ψ ≥ 0 and
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∫

X
ψdµ > 0,

∑n−1
k=0 φ

(

F kx
)

∑n−1
k=0 ψ (F kx)

−→
∫

X φdµ
∫

X
ψdµ

for µ-almost every x ∈ X.

At this point, it is natural to ask if there exists some “appropriate” rate of
convergence: is there a normalizing sequence of constants (an) such that an

−1 ·
∑n−1

k=0 φ
(

F kx
)

converges almost surely? The negative answer was given by J.
Aaronson.

Theorem 2.3 (Aaronson [1]). Let (X,A, µ, F ) be a conservative ergodic measure-
preserving system with µ(X) = ∞, and let (an) be a sequence of positive real num-
bers. Then, for every φ ∈ L1(X,A, µ) such that φ ≥ 0 and

∫

X
φdµ > 0,

lim sup
n→∞

∑n−1
k=0 φ

(

F kx
)

an
= ∞ a.e or lim inf

n→∞

∑n−1
k=0 φ

(

F kx
)

an
= 0 a.e.

This means that any attempt of normalization will under or overestimate the
behavior of Birkhoff sums. Nevertheless, one can hope for a summability method
that smooths out the fluctuations and forces convergence. More generally, one can
hope for a law of large numbers.

Definition 2.4. A law of large numbers for a conservative ergodic measure-preserv-
ing system (X,A, µ, F ) is a function L : {0, 1}N → [0,∞] such that, for any A ∈ A,
the equality

L(1A(x),1A(Fx),1A(F
2x), . . .) = µ(A)

holds for µ-almost every x ∈ X .

One can see the function L as a sort of blackbox: given the input of hittings of
a generic point x ∈ X to a fixed set A ∈ A, the output is the measure of A. For
example, if µ(X) = 1, the function L : {0, 1}N → [0,∞] defined by

L(x0, x1, . . .) =



















lim
n→∞

1

n

n−1
∑

k=0

xk , if the limit exists,

0 , otherwise

is a law of large numbers. The infinite measure situation is quite different: there
are systems with no law of large numbers. For example, let F be squashable: there
is G : (X,A) → (X,A), commuting with F , such that

µ(G−1A) = c · µ(A) for all A ∈ A, (2.2)

for some c 6= 1. If F had a law of large numbers, say L, then for µ-almost every
x ∈ X we would have

µ(A) = L(1A(Gx),1A(FGx), . . .)

= L(1A(Gx),1A(GFx), . . .)

= L(1G−1A(x),1G−1A(Fx), . . .)

= µ(G−1A),

contradicting the assumption (2.2). See [4] for more on squashable systems.
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There are, fortunately, some conditions that guarantee the existence of law of
large numbers. Given A ∈ A, let Sn(A) : X → N be the Birkhoff sum of the
characteristic function 1A with respect to F .

Definition 2.5. A conservative ergodic measure-preserving system (X,A, µ, F ) is
called rationally ergodic along a subsequence of iterates if there is a set A ∈ A with
0 < µ(A) <∞ satisfying the Renyi inequality

∫

A

Snk
(A)2dµ .

(∫

A

Snk
(A)dµ

)2

for some increasing sequence (nk) of positive integers.

We note the above definition differs from the original one [2], since the Renyi
inequality is asked to hold, instead of all positive integers, only for a subsequence
of them.

Definition 2.6. A conservative ergodic measure-preserving system (X,A, µ, F ) is
called weakly homogeneous if there is a sequence (ank

) of positive real numbers such
that, for all φ ∈ L1(X,A, µ),

1

N

N
∑

k=1

1

ank

nk−1
∑

j=0

φ
(

F jx
)

−→
∫

X

φdµ (2.3)

for µ-almost every x ∈ X .

(ank
) is called a return sequence of F and it is unique up to asymptotic equality.

Theorem 2.7 (Aaronson [2]). Every measure-preserving system (X,A, µ, F ) that
is rationally ergodic along a subsequence of iterates is weakly homogeneous. More
specifically, every subsequence (ank

) can be refined to a further subsequence such
that (2.3) holds for µ-almost every x ∈ X.

Theorem 2.7 also gives that

ank
=

1

µ(A)2

∫

A

Snk
(A)dµ =

1

µ(A)2

nk−1
∑

j=0

µ
(

A ∩ F−jA
)

. (2.4)

Observe that weak homogeneity defines a law of large numbers L : {0, 1}N →
[0,∞] by

L(x0, x1, . . .) =



















lim
N→∞

1

N

N
∑

k=1

1

ank

nk−1
∑

j=0

xj , if the limit exists,

0 , otherwise.

The goal of this work is to construct examples of cylinder flows given by skew
product extensions of irrational rotations on the circle that are ergodic and ra-
tionally ergodic along a subsequence of iterates and, therefore, have law of large
numbers.
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3. Construction of roof function φ

Let T : T → Z be the Haar function, defined as

T (x) =























1 , if x ∈
[

0,
1

2

)

−1 , if x ∈
[

1

2
, 1

)

.

1

-1

1
1
2

Figure 1: the graph of T .

Let α ∈ R and (qn) its associated sequence of continuants, that is, satisfying
(2.1) and (CF1) to (CF4). For each j ≥ 1, let Tj : T → Z be the dilation of T by
qj , that is, Tj(x) = T (qjx), where qjx (and any expression appearing as argument
of T ) is taken modulo 1. The function we will consider is

φ(x) =
1

2

∑

j≥1

[

Tj(x+ α)− Tj(x)
]

.

First of all, it is not clear that this defines a L1-measurable function. The proof of
this fact depends on a couple of auxiliary lemmas.

Lemma 3.1. Let q be a positive integer and β, γ ∈ T. Then the set

{x ∈ T ; T (qx+ β) 6= T (qx+ γ)}

has Lebesgue measure equal to 2‖β − γ‖.

Proof. First, observe that changing x by x − β/q, we can assume that β = 0. The
function x 7→ T (qx) is 1/q-periodic, with

T (qx) =























1 , if x ∈
[

0,
1

2q

)

⋃

[

2

2q
,
3

2q

)

⋃ · · ·⋃
[

2q − 2

2q
,
2q − 1

2q

)

−1 , if x ∈
[

1

2q
,
2

2q

)

⋃

[

3

2q
,
4

2q

)

⋃

· · ·
⋃

[

2q − 1

2q
, 1

)

.
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1

-1

2
2q

1
2q

2q−2
2q

2q−1
2q

1

Figure 2: the graph of x 7→ T (qx).

For each interval
[

i
2q ,

i+1
2q

)

, T (qx) is different from T (qx+ γ) if and only if the

discontinuity 1/2 belongs to the interval in T defined by the points qx and qx+ γ.
This happens for an interval3 of length ‖γ‖/q and so, multiplying by the number
2q of these intervals, the desired assertion is proved. �

Lemma 3.2. Let (qn) be a sequence of positive integers and (βn), (γn) sequences
in T. If ψ : T → Z is defined by

ψ(x) =
1

2

∑

j≥1

[

T (qjx+ βj)− T (qjx+ γj)
]

,

then

‖ψ‖pp ≤ 2
∑

j≥1

jp+1 · ‖βj − γj‖. (3.1)

Proof. Assume the right hand side of (3.1) is finite. In particular,
∑ ‖βj − γj‖ is

convergent. For each n ≥ 1, let

Λn = {x ∈ T ; T (qjx+ βj) = T (qjx+ γj), ∀ j > n}.

In Λn, we have

ψ(x) =
1

2

n
∑

j=1

[

T (qjx+ βj)− T (qjx+ δj)
]

.

The complement of Λn is defined by the property that T (qjx + βj) 6= T (qjx+ γj)
for some j > n. By Lemma 3.1, its Lebesgue measure is at most 2

∑

j>n ‖βj − γj‖.
Then the sequence of functions (ψn) given by ψn = ψ · 1Λn

converges pointwise to
ψ. By Fatou’s Lemma, the result will follow if we manage to prove (3.1) for each
ψn.

Fixed n ≥ 1, we have

|ψn(x)| ≤
n
∑

j=1

∣

∣

∣

∣

T (qjx+ βj)− T (qjx+ γj)

2

∣

∣

∣

∣

, ∀x ∈ T.

3If γ ∈
[

0, 1
2

)

, the interval is
[

i+1

2q
− γ

q
, i+1

2q

)

; if γ ∈
[

− 1

2
, 0
)

, the interval is
[

i
2q
, i
2q

− γ

q

)

.
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Define, for each m ∈ {1, . . . , n}, the set

Am =







x ∈ T ;

n
∑

j=1

∣

∣

∣

∣

T (qjx+ βj)− T (qjx+ γj)

2

∣

∣

∣

∣

= m







.

If we further define, for each j ∈ {1, . . . , n}, the set

Aj
m = {x ∈ Am ; j is the largest index such that T (qjx+ βj) 6= T (qjx+ γj)} ,

then

Am =
n
⊔

j=m

Aj
m.

Each Aj
m is contained in the set {x ∈ T ; T (qjx + βj) 6= T (qjx + γj)} and so, by

Lemma 3.1, its Lebesgue measure is at most 2‖βj −γj‖. Summing up this estimate
in j and m, we obtain that

‖ψn‖pp =

∫

T

|ψn|pdλ

≤
n
∑

m=1

mp · λ(Am)

≤ 2

n
∑

m=1

mp
n
∑

j=m

‖βj − γj‖

≤ 2

n
∑

m=1

n
∑

j=m

jp · ‖βj − γj‖

≤ 2
∑

j≥1

jp+1 · ‖βj − γj‖ ,

thus establishing (3.1) for ψn. �

Lemma 3.2 will be used repeatedly in the next subsections, the first time being
to prove that φn, as defined in (1.3), converges to φ.

3.1. (φn) converges to φ in Lp(T). By Lemma 3.2,

‖φ− φn‖pp =

∥

∥

∥

∥

∥

∥

1

2

∑

j>n

[

T (qjx+ qjα)− T (qjx)
]

∥

∥

∥

∥

∥

∥

p

p

≤ 2
∑

j>n

jp+1 · ‖qjα‖

which, by condition (CF2), goes to zero as n goes to infinity.

3.2. (φ̃n) converges to φ in Lp(T). In order to make the calculations of Section
5, in which estimates on the return map of F will be given, we need to approximate
φ by something easier to manage with. We will approximate φ not by φn, but by
its “rational” truncated versions φ̃n, defined as

φ̃n(x) =
1

2

n
∑

j=1

[

Tj(x+ αn+1)− Tj(x)
]

. (3.2)
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The reason we do this will become clear in Section 5. The argument is similar in
spirit to the Anosov-Katok method of fast approximations [10], in which the authors
construct differentiable examples of skew products with prescribed topological and
ergodic properties sufficiently close to fibered maps of the torus. There, the func-
tions that define the transformations are obtained as the limit of coboundaries, not
from the proper irrational rotation, but from good rational approximations of it. In
order to guarantee smoothness of the limit function, these rational approximations
must converge fast and the irrationals that appear in this limiting procedure end
up being Liouville. Contrary to them, smoothness is not our interest here, and this
does not require any kind of fast approximation.

Let us prove that the functions φ̃n converge to φ in Lp(T) for any p ≥ 1. This
follows by another application of Lemma 3.2. Indeed, as

φn(x) − φ̃n(x) =
1

2

n
∑

j=1

[

T (qjx+ qjα)− T (qjx+ qjαn+1)
]

,

we have

∥

∥

∥φ̃n − φn

∥

∥

∥

p

p
≤ 2

n
∑

j=1

jp+1 · ‖qjα− qjαn+1‖

≤ 2

n
∑

j=1

jp+1 · qj · |α− αn+1|

=
2‖qn+1α‖
qn+1

n
∑

j=1

jp+1 · qj

≤ 2‖qn+1α‖ ,

where in the last inequality we used (CF3).

4. Proof of Theorem 1.1

4.1. Branches and plateaux. We call a branch of Tj any of the branches
[

i
qj
, i+1

qj

)

,

i = 0, 1, . . . , qj − 1, of the expanding map x 7→ qjx. Each branch of Tj decomposes

itself in two subintervals
[

2i
2qj
, 2i+1

2qj

)

and
[

2i+1
2qj

, 2i+2
2qj

)

, each of them called a plateau

of Tj, in which Tj is constant (see figure 2). The first will be called a positive plateau
and the second a negative plateau.

Let Ij(x) denote the plateau of Tj containing x and

mn(x) := T1(x) + · · ·+ Tn(x) , n ≥ 1.

If (qn) satisfies the divisibility condition, then clearly I1(x) ⊃ I2(x) ⊃ · · · and so
we have the implication

y ∈ In(x) =⇒ mn(x) = mn(y). (4.1)

This is also true if, instead of the divisibility condition, (qn) satisfies Lemma A.1.
More specifically, using the notation of Appendix A,

In0(x) ⊃ In0+1(x) ⊃ · · · whenever x ∈ Ω∞
n0
.
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For such a fixed x, there is a positive integer n1 = n1(x) such that

In(x) ⊂ I1(x), . . . , In0(x)

=⇒
n
⋂

j=1

Ij(x) = In(x)

for every n ≥ n1 and so (4.1) remains valid. We will use this condition below.

4.2. Ergodicity. We will prove ergodicity in two steps.

Step 1. For any A ⊂ T × {0} of positive measure, the union
⋃

n≥1 F
nA contains

T× {0} modulo zero.

Step 2. F (T×{0})∩(T×{1}) and F (T×{0})∩(T×{−1}) have positive measure.

Once this is done, it is clear that F will be ergodic. Actually, let A ⊂ T × Z

be F -invariant with positive measure. We can assume that A has positive measure
when restricted to the fiber T×{0}. By Step 1, A has full measure in T×{0}. By
Step 2, A has also positive measure in both fibers T×{1} and T×{−1}. Applying
repeatedly Steps 1 and 2, we conclude that A has full measure in T × Z. Step 1
will follow from the next

Lemma 4.1. Let A1, A2 ⊂ T × {0} have positive µ-measure. Then there is n ≥ 1
such that the intersection FnA1 ∩ A2 has positive µ-measure.

To prove Lemma 4.1, we will localize A1 and A2 to subsets in which φ and
φn coincide, and actually their Birkhoff sums up to the order qn+1. Letting D =
{0, 1/2}, this set is defined as

Λn = {x ∈ T ; d(qjx,D) > qj‖qjα‖ for j > n} .
Note that

d(qj(x + kα), qjx) = ‖kqjα‖ = k‖qjα‖ ≤ qj‖qjα‖
whenever j > n and k = 1, . . . , qn+1. This implies that

F k(x, 0) = (x+ kα, Sk(α, φn)(x)) , x ∈ Λn, k = 1, . . . , qn+1.

Observe that the Λn’s form an ascending chain of subsets of T and that T\Λn

has Lebesgue measure at most
∑

j>n qj‖qjα‖. We can suppose, after passing to a

subsequence4, that this sum is smaller than 2−n.

Proof of Lemma 4.1. We will assume the additional condition

(CF5) For any n ≥ 1, {α, 2α, . . . , qn+1α} is
(

1
2qn

)2

-dense in T.

This can be assumed by passing, if necessary, to a subsequence of (qn).
Define the set

Σn =

{

x ∈ T ; d(x, ∂Ij(x)) >

(

1

2qj

)2

for j > n

}

.

4Here is where Theorem 1.1 requires that lim infq→∞ q‖qα‖ = 0.



14 PATRÍCIA CIRILO, YURI LIMA, AND ENRIQUE PUJALS

The sequence (Σn) also forms an ascending chain of subsets of T and5

λ(T\Σn) ≤
∑

j>n

1

qj
·

This together with the fact that λ(Λn), λ(Ω
∞
n ) → 1 as n → ∞ allows us to take

n0 ≥ 1 large enough and assume that

(i) A1 ⊂ Λn0 ,
(ii) A1, A2 ⊂ Σn0 and
(iii) A1, A2 ⊂ Ω∞

n0
.

By the Lebesgue differentiation theorem, let x1, x2 be points of density for A1, A2,
respectively. Now choose n1 ≥ 1 large enough (see Subsection 4.1) such that

(iv)
⋂n

j=1 Ij(xi) = In(xi) for every n ≥ n1 and i = 1, 2.

Finally, let n ≥ n0, n1 such that

(v) mn(x1) = mn(x2) and

(vi) λ

(

Ai ∩
(

xi −
(

1
2qn

)2

, xi +
(

1
2qn

)2
))

> 3
4 · 2

(

1
2qn

)2

for i = 1, 2.

The existence of such n is assured by Lemma A.1 and the fact that xi is a point of
density for Ai. For simplicity, let

Ãi = Ai ∩
(

xi −
(

1

2qn

)2

, xi +

(

1

2qn

)2
)

, i = 1, 2.

By (ii), Ãi ⊂ In(xi). Now use (CF5) to choose k ∈ {1, 2, . . . , qn+1} such that

d(x1 + kα, x2) <

(

1

2qn

)2

· (4.2)

The proof of the lemma will follow from the next two claims.

Claim 1. The set (Ã1 + kα) ∩ Ã2 ⊂ T has positive Lebesgue measure.

Indeed, (4.2) implies that the union (Ã1 + kα) ∪ Ã2 is contained in an interval

of length 3 ·
(

1
2qn

)2

and so, by (vi),

λ((Ã1 + kα) ∩ Ã2) = λ(Ã1 + kα) + λ(Ã2)− λ((Ã1 + kα) ∪ Ã2)

>
3

2
·
(

1

2qn

)2

+
3

2
·
(

1

2qn

)2

− 3 ·
(

1

2qn

)2

= 0 .

Claim 2. The set F k(Ã1 × {0}) ∩ (Ã2 × {0}) ⊂ T× Z has positive µ-measure.

It is enough to prove that Sk(α, φ)(x) = 0 for every x satisfying Claim 1. By (i),
x ∈ Λn0 ⊂ Λn and so

Sk(α, φ)(x) = Sk(α, φn)(x) = mn(x+ kα)−mn(x).

Observe that

5For each plateau of Tj , we remove two intervals of length
(

1

2qj

)2

. As Tj has 2qj plateaux,

the estimate is correct.
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• x ∈ Ã1 ⊂ In(x1) and so (iv) guarantees that mn(x) = mn(x1).

• x+ kα ∈ Ã2 ⊂ In(x2). Using (iv) again, mn(x + kα) = mn(x2).

By assumption (v) it follows that Sk(α, φ)(x) = 0 for every x satisfying Claim 1.
This concludes the proof of Claim 2 and also from the lemma. �

We thus obtained Step 1. Step 2 follows from Lemma 3.1. Indeed, for s ∈
{−1, 1}, the set of points x ∈ T such that

• T1(x + α) = T1(x) + 2s and
• Tj(x+ α) = Tj(x) for j > 1

has Lebesgue measure at least ‖q1α‖ − 2
∑

j>1 ‖qjα‖, which is positive by (CF1).
This concludes the proof of ergodicity.

4.3. Conservativity. This is a scholium of Lemma 4.1. Indeed, let A ⊂ T×Z have
positive µ-measure. By the Lebesgue differentiation theorem, almost every x ∈ A is
a point of density for A. For such a fixed x, if n0 is large enough then x is also a point
of density for the each of the sets A∩Λn0 , A∩Σn0 and A∩Ω∞

n0
and so we can assume

conditions (i) to (vi) of the previous subsection for A1 = A2 = A∩Λn0 ∩Σn0 ∩Ω∞
n0

and x1 = x2 = x. This proves that F is conservative.

5. Counting the number of returns

Let A = T× {0}. The purpose of this section is to count the number of returns
of an arbitrary point (x, 0) ∈ A to A via the map F . More specifically, identifying
A with T, we want to investigate the function SF

qn+1
: T → N defined as

SF
qn+1

(x) =

qn+1
∑

k=1

(1A ◦ F k)(x, 0).

In the next section we will apply the estimates obtained here to establish Theorem
1.2.

As remarked before, we will not directly calculate SF
qn+1

. Instead, we consider
the rational truncated versions of F defined by the skew product

F̃n : T× Z −→ T× Z

(x, y) 7−→ (x+ αn+1, y + φ̃n(x)),

where φ̃n is given by (3.2), and calculate the value of SF̃n
qn+1

: T → N given by

SF̃n
qn+1

(x) =

qn+1
∑

k=1

(1A ◦ F̃ k
n )(x, 0).

By approximation, SF
qn+1

and SF̃n
qn+1

coincide for a large subset of T and then we
will have the value of the former function in this large set.

This section is organized as follows. In Subsection 5.1, we calculate the distri-

bution of SF̃n
qn+1

. After that, Subsection 5.2 establishes the distribution of SF
qn+1

.
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5.1. The function SF̃n
qn+1

. Observe that

F̃ k
n (x, 0) = (x+ kαn+1, Sk(αn+1, φ̃n)(x))

so that F̃ k
n (x, 0) belongs to A if and only if

Sk(αn+1, φ̃n)(x) = 0 ⇐⇒ mn(x + kαn+1) = mn(x).

Then

SF̃n
qn+1

(x) = #{1 ≤ k ≤ qn+1 ; mn(x+ kαn+1) = mn(x)}.

The idea to calculate the above cardinality is: for each sequence s = (s1, . . . , sn) ∈
{−1, 1}n, consider the set

Bs = {1 ≤ k ≤ qn+1 ; Tj(x+ kαn+1) = sj for j = 1, . . . , n}.

If we manage to prove that each Bs has the same cardinality (independent of s), it
must be equal to qn+1/2

n. Then

SF̃n
qn+1

(x) =
∑

s∈{−1,1}n

s1+···+sn=mn(x)

#Bs

=
qn+1

2n
·#{s ∈ {−1, 1}n ; s1 + · · ·+ sn = mn(x)}

and so

SF̃n
qn+1

(x) =
qn+1

2n

(

n
n+mn(x)

2

)

· (5.1)

This is indeed the case. Roughly speaking, we prove that each Bs has the same
cardinality by interpreting mn(x) as a random walk. More specifically, we consider
the intermediate sets

B(s1,...,si) = {1 ≤ k ≤ qn+1 ; Tj(x+ kαn+1) = sj for j = 1, . . . , i}

and associate to them a binary tree as follows:

• The root of the tree is B = {1, 2, . . . , qn+1}.
• B(s1,...,si) has exactly two descendants: B(s1,...,si,1) and B(s1,...,si,−1).

Observe that

B(s1,...,si) = B(s1,...,si,1) ⊔B(s1,...,si,−1)

so that, at each level i, the union of the B(s1,...,si)’s is equal to B. We will prove
that, in each subdivision of B(s1,...,si), half of the elements belong to B(s1,...,si,1)

and the other half to B(s1,...,si,−1). Once this is done, (5.1) will be established.
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B

B1 B−1

B(1,1) B(1,−1) B(−1,1) B(−1,−1)

...
...

...
...

Figure 3: the binary tree.

Fix x ∈ T. The idea is to see k as a variable z ∈ R and to prove that the
evaluations of the functions z 7→ Tj(αn+1z + x), j = 1, 2, . . . , n, along the inte-
gers 1, 2, . . . , qn+1 satisfy the required binary property. Each of these functions is
periodic6. Their period is calculated according to the following

Lemma 5.1. Let β, γ ∈ T. Then the function

ψ : R −→ R

z 7−→ T (βz + γ)

has period 1/β.

Proof. Let π be the period. The 1-periodicity of T implies that

β · π + γ = (β · 0 + γ) + 1 =⇒ βπ = 1 =⇒ π =
1

β
·

�

Thus z 7→ Tj(αn+1z + x) has period equal to

πj =
1

qjαn+1
=
qn+1/qj
pn+1

=:
uj
v

·

Better than this, consider the functions given by the composition with the dilation
z 7→ z/v, defined as

ψj : R −→ R

z 7−→ T

(

z

uj
+ qjx

)

, j = 1, 2, . . . , n , (5.2)

whose period is equal to uj ∈ Z. We thus want to investigate ψ1, . . . , ψn along the
integers v, 2v, . . . , u1v. Observe that

• {v, 2v, . . . , u1v} is a complete residue system modulo u1,
• un is even and uj is a multiple of 2uj+1 for j = 1, . . . , n− 1, and
• for a set x ∈ T of full Lebesgue measure, ψ1, . . . , ψn are continuous in Z.

These are the assumptions we make below.

Proposition 5.2. Let ψj : R → R be a periodic function with period uj ∈ Z,
j = 1, . . . , n. Assume that

6The period of a function ψ : R → R is the smallest π > 0 such that ψ(z+ π) = ψ(z) for every
z ∈ R.
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(a) un is even and uj is a multiple of 2uj+1 for j = 1, . . . , n− 1, and
(b) there are z1, . . . , zn ∈ R\Q such that

ψj |[zj ,zj+uj

2 )
≡ 1 and ψj |[zj+uj

2 ,zj+uj) ≡ −1

for j = 1, . . . , n.

Let R be a complete residue system modulo u1. Then, for any sequence (s1, . . . , sn) ∈
{−1, 1}n,

#{k ∈ R ; ψj(k) = sj for j = 1, . . . , n} =
u1
2n

·

The proof is by induction on n. Let us give an idea of why this must be true. As-
sume that x = 0 and that, instead of being interested in the behavior of ψ1, . . . , ψn

along integers, we want to compute the Lebesgue measure of the set

{z ∈ [0, u1) ; ψj(k) = sj for j = 1, . . . , n}. (5.3)

For n = 1, we have

{z ∈ [0, u1) ; ψ1(k) = 1} =
[

0,
u1
2

)

{z ∈ [0, u1) ; ψ1(k) = −1} =
[u1
2
, u1

)

.

For n = 2, observe that in both intervals
[

0, u1

2

)

,
[

u1

2 , u1
)

the function ψ2 alternately
changes sign at each interval of length u2/2 so that, for any s1, s2 ∈ {−1, 1},
{z ∈ [0, u1) ; ψj(k) = sj for j = 1, 2} is the union of u1/2u2 intervals of length
u2/2. For arbitrary n, (5.3) is the union of u1/2

n−1un intervals of length un/2 each
and so its Lebesgue measure is equal to u1/2

n. Proposition 5.2 is nothing but a
discrete version of this. In order to prove it, we just have to make sure that none
of the discontinuities of ψ1, . . . , ψn are integer. This is accomplished by condition
(b).

The next auxiliary lemma constitutes the basis of induction.

Lemma 5.3. Let ψ : R → R be a function with period u ∈ Z such that

(a) u is even and
(b) there is z ∈ R\Q such that

ψ|[z,z+u
2 )

≡ 1 and ψ|[z+u
2 ,z+u) ≡ −1.

Let R be a complete residue system modulo u. Then

#{k ∈ R ; ψ(k) = 1} = #{k ∈ R ; ψ(k) = −1} =
u

2
·

Proof. Consider the sets

Ψ+ =
{

i ∈ Z ; i ∈
[

z, z +
u

2

)}

(mod u) and

Ψ− =
{

i ∈ Z ; i ∈
[

z +
u

2
, z + u

)}

(mod u) .

It is clear that Ψ+ ∪Ψ− = Zu and that #Ψ+ = #Ψ− = u/2. Also, ψ(k) = 1 if and
only if k ≡ i (mod u) for some i ∈ Ψ+. Because R is a complete residue system
module u, the lemma is proved. �
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Proof of Proposition 5.2. The basis of induction is Lemma 5.3. It remains to prove
the inductive step. We will do the case n = 2, as the general inductive step follows
the same lines of ideas, except that more notation would have to be introduced.

Let ψ1, ψ2 : R → R be two functions satisfying the conditions of the proposition.
For j = 1, 2, consider the equipartition of Zuj

by the subsets

Ψj
+ =

{

i ∈ Z ; i ∈
[

zj , zj +
uj
2

)}

(mod uj) and

Ψj
− =

{

i ∈ Z ; i ∈
[

zj +
uj
2
, zj + uj

)}

(mod uj) .

For s1, s2 ∈ {−1, 1} ∼= {−,+},






ψ1(k) = s1

ψ2(k) = s2

⇐⇒







k ≡ i1 (mod u1) for i1 ∈ Ψ1
s1

k ≡ i2 (mod u2) for i2 ∈ Ψ2
s2 .

Because u2 divides u1, residue classes module u1 define residue classes module u2.
This implies that the above congruences are equivalent to







k ≡ i1 (mod u1) for i1 ∈ Ψ1
s1

i1 ≡ i2 (mod u2) for i2 ∈ Ψ2
s2

and then we want to count the cardinality of the set
{

k ∈ R ;
k ≡ i1 (mod u1) for i1 ∈ Ψ1

s1
i1 ≡ i2 (mod u2) for i2 ∈ Ψ2

s2

}

· (5.4)

Each residue class modulo u2 is equal to the union of u1/u2 residue classes modulo
u1. More specifically,

i1 ≡ i2 (mod u2) ⇐⇒ i1 ≡ i2, i2 + u2, . . . , i2 + (u1 − u2) (mod u1)

so that (5.4) is equal to the union
⋃

i2∈Ψ2
s2

{i2, i2 + u2, . . . , i2 + (u1 − u2)} ∩Ψ1
s1 .

Independent of i2, half of the residue classes i2, i2 + u2, . . . , i2 + (u1 − u2) modulo
u1 belong to Ψ1

+ and half to Ψ1
−. Thus

#{k ∈ R ; ψ1(k) = s1 and ψ2(k) = s2} = #Ψ2
s2 ·

u1
2u2

=
u2
2

· u1
2u2

=
u1
4
,

where in the second equality we used Lemma 5.3. �

In our context, Proposition 5.2 is translated to

Lemma 5.4. For every m ∈ {−n, . . . , n} with the same parity of n,

SF̃n
qn+1

(x) =
qn+1

2n

(

n
n+m
2

)

for a set of x ∈ T of Lebesgue measure
(

n
n+m

2

)

/2n.
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Proof. Let uj = qn+1/qj for j = 1, . . . , n and apply Proposition 5.2 to the functions
in (5.2). The random walk character of mn(x) guarantees that mn(x) = m in a set
of Lebesgue measure

(

n
n+m

2

)

/2n, for every m ∈ {−n, . . . , n} with the same parity of

n. �

5.2. The function SF
qn+1

. It is a matter of fact that φ and φ̃n coincide in a large
set, and actually their Birkhoff sums up to the order qn+1. This set is defined by
those points simultaneously satisfying

(i) Tj(x+ kα) = Tj(x+ kαn+1) for j = 1, . . . , n and k = 1, . . . , qn+1, and
(ii) d(qjx,D) > qj‖qjα‖ for j > n.

Call this set Λn. Note that

d(qj(x + kα), qjx) = ‖kqjα‖ = k‖qjα‖ ≤ qj‖qjα‖

whenever j > n and k = 1, . . . , qn+1 and so (ii) implies Tj(x + kα) = Tj(x). This
equality guarantees that

F k(x, 0) = (x+ kα, Sk(α, φ̃n)(x)) for x ∈ Λn, k = 1, . . . , qn+1

=⇒ SF
qn+1

(x) = SF̃n
qn+1

(x) for x ∈ Λn. (5.5)

By Lemma 3.1, the Lebesgue measure of points not satisfying (i) is at most

∑

1≤k≤qn+1
1≤j≤n

‖kqj(α− αn+1)‖ < |α− αn+1| · q2n+1 ·
n
∑

j=1

qj < 2−n−1 ,

where in the last inequality we used (CF4). The points not satisfying (ii) have
Lebesgue measure at most7

∑

j>n qj‖qjα‖ < 2−n and so

λ(T\Λn) < 2−n+1 . (5.6)

The above estimate will be used in the next section.

6. Proof of Theorem 1.2

Once we have established Theorem 1.1, it remains to prove that, if α is divisible,
then F satisfies the Renyi inequality along (qn). This will be obtained via the
estimates of Section 5. More specifically, we first prove, as a consequence of Lemma
5.4, that the rational truncated version F̃n of F satisfies the Renyi inequality in

the time qn+1, uniformly in n. We then prove that ‖SF
qn+1

‖1 ≈ ‖SF̃n
qn+1

‖1 and

‖SF
qn+1

‖2 ≈ ‖SF̃n
qn+1

‖2, which allows us to push the Renyi inequality to F .

7Remember we are assuming
∑

j>n qj‖qjα‖ < 2−n.
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6.1. Renyi inequality for F̃n. By Lemma 5.4,
∥

∥

∥SF̃n
qn+1

∥

∥

∥

1
=

∫

T

SF̃n
qn+1

dλ

=
∑

−n≤m≤n

m≡n(mod 2)

[

qn+1

2n

(

n
n+m

2

)]

·
[

1

2n

(

n
n+m

2

)]

=
qn+1

22n

n
∑

i=0

(

n

i

)2

=
qn+1

22n

(

2n

n

)

≈ qn+1

22n
· 22n√

πn

=
qn+1√
πn

,

where in the fifth passage we used Stirling’s formula8 to estimate the central bino-
mial coefficient. On the other hand,

∥

∥

∥SF̃n
qn+1

∥

∥

∥

2

2
=

∑

−n≤m≤n

m≡n(mod 2)

[

qn+1

2n

(

n
n+m

2

)]2

·
[

1

2n

(

n
n+m

2

)]

=
q2n+1

23n

n
∑

i=0

(

n

i

)3

≤ q2n+1

23n

(

n
n
2

) n
∑

i=0

(

n

i

)2

=
q2n+1

23n

(

n
n
2

)(

2n

n

)

≈
√
2 · q

2
n+1

πn

and therefore
∥

∥

∥SF̃n
qn+1

∥

∥

∥

2
∥

∥

∥SF̃n
qn+1

∥

∥

∥

1

.

4
√
2 · qn+1√

πn
qn+1√
πn

. 1 . (6.1)

6.2. Renyi inequality for F . Using (5.6),
∣

∣

∣

∥

∥

∥SF
qn+1

∥

∥

∥

1
−
∥

∥

∥SF̃n
qn+1

∥

∥

∥

1

∣

∣

∣ ≤
∫

T\Λn

∣

∣

∣SF
qn+1

− SF̃n
qn+1

∣

∣

∣ dλ < qn+1 · 2−n+1

and so
∣

∣

∣

∣

∣

∣

∥

∥

∥SF
qn+1

∥

∥

∥

1
∥

∥

∥SF̃n
qn+1

∥

∥

∥

1

− 1

∣

∣

∣

∣

∣

∣

.
qn+1 · 2−n+1

qn+1√
πn

≈ 0,

8Stirling’s formula states that n! ≈
√
2πn

(

n
e

)n
.
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proving that
∥

∥

∥SF
qn+1

∥

∥

∥

1
≈
∥

∥

∥SF̃n
qn+1

∥

∥

∥

1
. Analogously,

∣

∣

∣

∣

∣

∣

∣

∥

∥

∥SF
qn+1

∥

∥

∥

2

2
∥

∥

∥SF̃n
qn+1

∥

∥

∥

2

2

− 1

∣

∣

∣

∣

∣

∣

∣

.
q2n+1 · 2−n+1

q2n+1

πn

≈ 0

and so
∥

∥

∥SF
qn+1

∥

∥

∥

2
≈
∥

∥

∥SF̃n
qn+1

∥

∥

∥

2
. These two estimates, together with (6.1), guarantee

that
∥

∥

∥
SF
qn+1

∥

∥

∥

2
.
∥

∥

∥
SF
qn+1

∥

∥

∥

1
,

thus establishing the Renyi inequality for F along (qn). This concludes the proof
of Theorem 1.2.

We calculate the return sequence (aqn) for F . According to (2.4), it is given by

aqn+1 =
∥

∥

∥
SF
qn+1

∥

∥

∥

1
≈
∥

∥

∥
SF̃n
qn+1

∥

∥

∥

1
≈ qn+1√

πn

and so for a fixed x ∈ Λn the normalized averages

SF
qn+1

(x)

aqn+1

≈

qn+1

2n

(

n
n+mn(x)

2

)

qn+1√
πn

=

(

n
n+mn(x)

2

)

2n√
πn

≈
√
2 ·

(

n
n+mn(x)

2

)

(

n
n
2

) (6.2)

do not depend on the choice of α neither on the sequence (qn). We thus obtain, as
a consequence of Theorem 2.7, the following analytical result.

Corollary 6.1. For almost every x ∈ T,

1

N

N
∑

n=1

(

n
n+mn(x)

2

)

(

n
n
2

) −→ 1√
2
·

7. Final comments

1. As remarked after Definition 2.5, our definition of rational ergodicity differs
from the original one [2]. A natural approach to obtain rational ergodicity in its
full extent is to represent any integer as a finite linear combination of the qn’s and
then to break up the Birkhoff sums into blocks of these sizes. Unfortunately, this
does not work in our situation since the sequence (qn) is not the sequence of con-
tinuants and its fast growth is an obstruction for the desired control.

2. We didn’t succeed to obtain a counting procedure described in Section 5 when
(qn) does not satisfy the divisibility property. Without this assumption, the de-
scendants of B(s1,...,si) in the binary tree do not necessarily have the same number
of elements. An alternative approach is to observe that, even without the divisibil-
ity condition, their cardinality differs by few and so an argument of discarding the

excess might be applied to obtain the asymptotics of SF̃n
qn+1

.
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3. In order to obtain ergodic cylinder flows on T × R, one can consider a similar
construction to ours with roof function as in (1.2), where β ∈ R is irrational. In
this case, the image of the map is contained in T × {m+ nβ ; m,n ∈ Z}, which is
dense in T× R.

4. So far, all the examples of rationally ergodic cylinder flows use non-continuous
roof functions. Another natural program is to construct examples with continuous
(even C1 and C∞) roof functions. It seems to us that the same approach developed
in the present paper might work if one can interpret the sequence (mn) as defined
in Subsection 4.1 from a random perspective.

5. Another interesting situation is to consider Z2-extensions. In the case of Z-
extensions, it is known that ergodicity is equivalent to the set of essential values
being equal to Z. The description for Z2-extensions is not so simple (see for instance
[28]). In our work, ergodicity is guaranteed by the recurrence of simple random
walks in Z. The same happens to Z2 and so our construction can give rise to
examples of ergodic Z2-extensions of irrational rotation of the circle.
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Appendix A. Random walks

Let T : T → Z as defined in Section 3. For each sequence of positive integers
(qn), we associate the sequence (Tn) of functions defined on T by Tn(x) = T (qnx).
This appendix is devoted to the analysis of the partial sums

mn(x) = T1(x) + · · ·+ Tn(x) , n ≥ 1.

The sequence (mn) defines a random walk in Z and we are particularly interested
in its recurrence to the origin 0 ∈ Z. We say that (mn) is recurrent if the set

{x ∈ T ; mn(x) = 0 for infinitely many n}
has full Lebesgue measure.

If we assume that 2qn divides qn+1 then every plateau of Tn contains exactly the
same number of positive and negative plateaux of Tn+1. If this holds for every n
then, for any s1, . . . , sn ∈ {−1, 1},

λ({x ∈ T ; Tj(x) = sj for j = 1, . . . , n}) = 2−n

and so the (Tn) are independent and identically distributed (i.i.d). In this case
(mn) is not only recurrent but also, for any m ∈ Z, the set

{x ∈ T ; mn(x) = m for infinitely many n} (A.1)

has full Lebesgue measure. See for instance Section 3.2 of [15].
The same might not be true if 2qn does not divide qn+1. On the other hand,

if qn+1 is much larger than qn, almost every plateau of Tn+1 is entirely contained
inside a plateau of Tn and so (Tn) exhibits some sort of asymptotic independence.
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This is the content of the next result, which is used in Section 4 to prove ergodicity
when one does not have the divisibility condition. The idea is to remove plateaux of
Tn+1 not entirely contained inside plateaux of Tn in such a way that independence
holds in their complement.

Lemma A.1. Let (qn) be a sequence of positive integers and let (Tn), (mn) be as
above. If

∑

n≥1

qn
qn+1

<∞

then (mn) is recurrent.

Proof. We will construct a descending chain of Borel sets (Ωn) of T such that,
restricted to Ωn, the first n functions T1, . . . , Tn are i.i.d. A simple argument of
induction will imply that the (Tn) are i.i.d in the intersection Ω∞ =

⋂

n≥1 Ωn.
The construction is by induction. Let Fn be the family of plateaux of Tn and

Fn = F+
n

⊔F−
n its decomposition in positive and negative plateaux, respectively.

Assume that Ω1 = T, . . . ,Ωn have been constructed satisfying the following condi-
tions.

(i) For 1 ≤ j ≤ n, there is a set Gj ⊂ Fj such that Ωj =
⋃

J∈Gj
J .

(ii) For 1 ≤ i < j ≤ n, every element of Gj is contained in exactly one element of
Gi.

(iii) For any s1, . . . , sn ∈ {−1, 1},

λ({x ∈ Ωn ; Tj(x) = sj for j = 1, . . . , n}) = λ(Ωn)

2n
·

Observe that (ii) automatically implies that {x ∈ Ωn ; Tj(x) = sj for j = 1, . . . , n}
is the union of elements of Gn. Now let

Gn+1 = {J ∈ Fn+1 ; ∃ I ∈ Gn such that J ⊂ I} and Ωn+1 =
⋃

J∈Gn+1

J.

For each I ∈ Gn, the number of elements of Gn+1 entirely contained in I is between
qn+1/qn−2 and qn+1/qn. We may assume, removing at most two of these plateaux,
that

#
{

J ∈ G+
n+1 ; J ⊂ I

}

= #
{

J ∈ G−
n+1 ; J ⊂ I

}

(A.2)

and it is independent of I. (i) and (ii) are satisfied by definition. For (iii), fix
s1, . . . , sn ∈ {−1, 1} and let G ⊂ Gn such that

{x ∈ Ωn ; Tj(x) = sj for j = 1, . . . , n} =
⋃

I∈G

I.

Then

{x ∈ Ωn+1 ; Tj(x) = sj for j = 1, . . . , n and Tn+1(x) = 1} =
⋃

I∈G

⋃

J∈G
+
n+1

J⊂I

J

has Lebesgue measure equal to

#G ·#{J ∈ G+
n+1 ; J ⊂ I} · 1

2qn+1
,

which is, by (A.2), independent of s1, . . . , sn. Doing the same when Tn+1(x) = −1,
(iii) is established.
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The same argument applies to prove that, for m ≥ n,

λ({x ∈ Ωm ; Tj(x) = sj for j = 1, . . . , n}) = λ(Ωm)

2n

and so, letting m→ ∞,

λ({x ∈ Ω∞ ; Tj(x) = sj for j = 1, . . . , n}) = λ(Ω∞)

2n
,

proving that the (Tn) are independent in Ω∞.
Now we estimate λ(Ω∞). By construction, inside each I ∈ Gn at most 4 elements

of Fn+1 are removed and so

λ







⋃

J∈Gn+1
J⊂I

J






≥ λ(I) − 4 · 1

2qn+1
·

Summing this up in I yields

λ(Ωn+1) ≥ λ(Ωn)−#Gn · 2

qn+1
≥ λ(Ωn)−

4qn
qn+1

and then

λ(Ω∞) ≥ 1− 4
∑

n≥1

qn
qn+1

·

If, instead of beginning the construction in step 1 we start in step n0, the limit set
Ω∞

n0
has Lebesgue measure at least 1− 4

∑

n≥n0
qn/qn+1. By (A.1), the restriction

of the sequence (mn − mn0−1)n≥n0 to Ω∞
n0

attains almost surely every value in
{−n0 + 1, . . . , n0 − 1} infinitely often, that is, (mn) is recurrent in Ω∞

n0
and we’re

done, since
⋃

n0≥1 Ω
∞
n0

has full Lebesgue measure. �

Appendix B. A fact on continued fractions

For a function Ψ : (0,∞) → (0,∞), let

K(Ψ) =

{

α ∈ R ;

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

< Ψ(q) for infinitely many rational numbers
p

q

}

denote the set of Ψ-approximable real numbers. In 1924, Khintchine [20] (see also
his book [21]) used the theory of continued fractions to prove that, if the map
x 7→ x2Ψ(x) is non-increasing, then K(Ψ) has Lebesgue measure zero if the sum
∑

x≥1 xΨ(x) converges and full Lebesgue measure otherwise. In this appendix, we
want to prove some related result. Remember the definition of Subsection 2.2:
α ∈ R is divisible if it has a sequence (qnj

) of continuants satisfying

2qnj
divides qnj+1 and lim

j→∞
qnj

‖qnj
α‖ = 0.

The result is

Proposition B.1. Lebesgue almost every α ∈ R is divisible.

To prove it, we first collect an auxiliary lemma and identify a mechanism to
guarantee the divisibility property. Once this is done, Proposition B.1 will follow.
We acknowledge Carlos Gustavo Moreira for communicating us this proof.
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For positive integers a1, . . . , an, we recall the continuant K(a1, . . . , an) denotes
the denominator of the rational number

[0; a1, . . . , an] =
1

a1 +
1

a2 +
1

.. . +
1

an

·

Lemma B.2. Let n ≥ 3, a1, a2, . . . , an−1 and q be positive integers. Then there
exist integers a, b such that if

{

an ≡ a (mod q)
an+1 ≡ b (mod q)

then q divides K(a1, a2, . . . , an, an+1).

Proof. Let a be the product of the primes that divide q and do not divide neither of
the continuants K(a1, a2, . . . , an−2), K(a1, a2, . . . , an−1). If an ≡ a (mod q), then

K(a1, a2, . . . , an) = a ·K(a1, a2, . . . , an−1) +K(a1, a2, . . . , an−2)

and q are coprime. This guarantees that, as b varies modulo q, the number

K(a1, a2, . . . , an, an+1) = b ·K(a1, a2, . . . , an) +K(a1, a2, . . . , an−1)

runs over all residues modulo q and so, for one of these classes, it is divisible by
q. �

The auxiliary lemma concerns the following elementary facts about continued
fractions and continuants.

Lemma B.3. Let α = [a0; a1, a2, . . .] be an irrational number.

(a) If (qn) is the sequence of continuants of α, then

1

an+1 + 2
< qn‖qnα‖ <

1

an+1
·

(b) The probability that an+1 = k, given that a1 = k1, . . . , an = kn, is between
1

(k+1)(k+2) and 2
k(k+1) .

(c) The probability that an+1 = k, given that a1 = k1, . . . , an = kn, is between
1

k+1 and 2
k .

Proof. (a) is a well-known fact and can be checked in any introductory text of
continued fractions. Let’s prove (b). Once a1, . . . , an are fixed, the number α =

[0; a1, . . . , an, αn+1] belongs to the interval with endpoints pn

qn
and pn+pn−1

qn+qn−1
. In these

conditions, an+1 = k if and only if α belongs to the interval of endpoints kpn+pn−1

kqn+qn−1

and (k+1)pn+pn−1

(k+1)qn+qn−1
. Using the relation |pnqn−1 − pn−1qn| = 1, it follows that the

ratio of the lengths of these two intervals is equal to

qn(qn + qn−1)

[kqn + qn−1][(k + 1)qn + qn−1]
=

1 + qn−1

qn
(

k + qn−1

qn

)(

k + 1 + qn−1

qn

) ,
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which belongs to
[

1
(k+1)(k+2) ,

2
k(k+1)

]

. This establishes (b). To prove (c), just

observe that
∑

j≥k

1

(j + 1)(j + 2)
=

1

k + 1
and

∑

j≥k

2

j(j + 1)
=

2

k
·

�

Proof of Proposition B.1. For each positive integer q, let Dq be the set of α ∈ R

for which there are infinitely many n ∈ N such that q divides qn and an+1 ≥ n.

Claim. Dq has full Lebesgue measure.

We prove this via the auxiliary lemmas. Assume that a1, a2, . . . , a3k−1 are given.
By Lemma B.2, there are a, b ∈ {1, . . . , q} such that K(a1, a2, . . . , a3k−1, a, b) is
divisible by q. By Lemma B.3, the probability that a3k = a, a3k+1 = b and
a3k+2 ≥ 3k + 1 is at least 1

(q+1)2(q+2)2(3k+1) and so, as

∏

k≥k0

(

1− 1

(q + 1)2(q + 2)2(3k + 1)

)

= 0,

the claim is proved.
It is clear that for any α in the full Lebesgue measure set

⋂

q≥1Dq one can

inductively construct a sequence (nj) such that 2qnj
divides qnj+1 and anj+1 ≥ nj.

Observing that, by Lemma B.3,

lim
j→∞

qnj
‖qnj

α‖ ≤ lim
j→∞

1

anj+1
= 0,

the proof is complete. �

Remark B.4. The above argument, together with the fact that, for Lebesgue
almost every α ∈ R, (qn) grows at most (and at least) exponentially fast, can be
used to show that Lebesgue almost every α ∈ R has a sequence of continuants (qnj

)
such that 2qnj

divides qnj+1 and

qnj
‖qnj

‖ < 1

log qnj

·

More generally, if Ψ : N → (0,∞) is decreasing and
∑

n≥1 Ψ(n)/n = ∞ (as in

Khintchine’s theorem), then Lebesgue almost every α ∈ R possesses a sequence of
continuants (qnj

) such that 2qnj
divides qnj+1 and

qnj
‖qnj

‖ < Ψ(qnj
) .
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28 PATRÍCIA CIRILO, YURI LIMA, AND ENRIQUE PUJALS

[5] J. Aaronson, M. Denker and A. Fisher, Second order ergodic theorems for ergodic
transformations of infinite measure spaces, Proc. Amer. Math. Soc. 114 (1992), no. 1, 115–
127.

[6] J. Aaronson and M. Keane, The visits to zero of some deterministic random walks, Proc.
London Math. Soc. 44 (1982), no. 3, 535–553.

[7] J. Aaronson, M. Lemanćzyk, C. Mauduit, and H. Nakada, Koksma’s inequality
and group extensions of Kronecker transformations, Algorithms, fractals, and dynamics
(Okayama/Kyoto, 1992), 27–50, Plenum, New York (1995).

[8] J. Aaronson, H. Nakada, O. Sarig and R. Solomyak, Invariant measures and asymp-
totics for some skew products, Israel J. Math. 128 (2002), 93–134.

[9] J. Aaronson and D. Sullivan, Rational ergodicity of geodesic flows, Ergodic Theory &
Dynamical Systems 4 (1984), no. 2, 165–178.

[10] D. Anosov and A. Katok, New examples in smooth ergodic theory. Ergodic diffeomor-
phisms, Transactions of the Moscow Mathematical Society 23 (1970), 1–35.

[11] L. Baggett and K. Merrill, Smooth cocycles for an irrational rotation, Israel J. Math. 79
(1992), no. 2-3, 281–288.
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