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Partially hyperbolic geodesic flows

by Fernando Carneiro and Enrique Pujals

Abstract

We construct a category of examples of partially hyperbolic geodesic flows which are not
Anosov, changing the metric of a compact locally symmetric space of nonconstant negative
curvature. We also show that candidates for such example as the product metric and
locally symmetric spaces of nonpositive curvature with rank bigger than one are not partially
hyperbolic. We also prove that if a metric of nonpositive curvature is not a Riemannian
product and its geodesic flow is partially hyperbolic, then its rank is one. Other obstructions
to partial hyperbolicity of a geodesic flow are also analyzed
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1 Introduction

The theory of hyperbolic dynamics has been one of the extremely successful stories in
dynamical systems. Originated by studying dynamical properties of geodesic flows on
manifolds with negative curvature [An] and geometrical properties of homoclinic points
[Sm], hyperbolicity is the cornerstone of uniform and robust chaotic dynamics; it char-
acterizes the structural stable systems; it provides the structure underlying the presence
of homoclinic points; a large category of rich dynamics are hyperbolic (geodesic flows
in negative curvature, billiards with negative curvature, linear automorphisms, some me-
chanical systems, etc.); the hyperbolic theory has been fruitful in developing a geometrical
approach to dynamical systems; and, under the assumption of hyperbolicity one obtains
a satisfactory (complete) description of the dynamics of the system from a topological
and statistical point of view. Moreover, hyperbolicity has provided paradigms or models
of behavior that can be expected to be obtained in specific problems.

Nevertheless, hyperbolicity was soon realized to be a property less universal than it
was initially thought: it was shown that there are open sets in the space of dynamics
which are nonhyperbolic. To overcome these difficulties, the theory moved in different
directions; one being to develop weaker or relaxed forms of hyperbolicity, hoping to
include a larger class of dynamics.

There is an easy way to relax hyperbolicity, called partial hyperbolicity, which allows
the tangent bundle to split into Df -invariant subbundles TM = Es⊕Ec⊕Eu, such that
the behavior of vectors in Es, Eu is similar to the hyperbolic case, but vectors in Ec may
be neutral for the action of the tangent map. This notion arose in a natural way in the
context of time one maps of Anosov flows, frame flows or group extensions. See [BP],
[Sh], [M1], [BD], [BV] for examples of these systems and [HP], [PS] for an overview.

However, and differently to hyperbolic ones, partially hyperbolic systems where un-
known in the context of geodesic flows induced by Riemannian metrics. As far as we know,
the way to produce partially hyperbolic systems in discrete dynamics are the following:
time-one maps of Anosov flows, skew-products over hyperbolic dynamics, products and
derived of Anosov deformations (DA). The two last approaches can be adapted to flows.

Our work shows that one is able to deform a specific metric that provides an Anosov
geodesic flow to get a partially hyperbolic geodesic flow. This is done inspired by the
Mañé’s DA construction of a partially hyperbolic diffeomorphism [M1].

We prove the following theorems:

Theorem 1.1. There is a Riemannian metric such that its geodesic flow is partially
hyperbolic but not Anosov.

Actually, we prove:
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Theorem 5.17. For some compact locally symmetric space (M, g) whose sectional cur-
vature takes values in the whole interval [−1,−1

4
], there is a metric g∗ in M such that its

geodesic flow is partially hyperbolic but not Anosov.

Remark 1.2. The theorem works for the compact Kahler manifold of constant holomor-
phic curvature −1 [G], and also for the quaternionic Kahler locally symmetric spaces of
negative curvature. Both these locally symmetric spaces are even-dimensional. In sec-
tion 7.3 we will see that there are no partially hyperbolic geodesic flows for Riemannian
metrics in odd dimensional manifolds, by an idea of Contreras [Co2].

Remark 1.3. A classical Mañé theorem [M3] says that if, for a geodesic flow of a Rie-
mannian manifold there is an invariant Lagrangian subbundle, then this Riemannian
manifold does not have conjugate points. The existence of a partially hyperbolic non-
Anosov geodesic flow implies that this theorem does not generalize to the case of invariant
isotropic subbundles.

The next two corollaries are given by the persistence of quasi-elliptic nondegenerate
periodic orbits.

Corollary 5.19. There is an open set U of metrics in the set of metrics of M such that
for g ∈ U , the geodesic flow of g is partially hyperbolic but not Anosov, for (M, g) as in
the previous theorem. There is also an open set U ′ of metrics such that for g ∈ U ′, the
geodesic flow of g is partially hyperbolic non-Anosov and with conjugate points.

Corollary 5.21. There is an open set V of Hamiltonians in the set of Hamiltonians of
(TM,ωTM), near geodesic Hamiltonians, such that for h ∈ U , the Hamiltonian flow of h
is partially hyperbolic but not Anosov.

For Hamiltonians it is easy to construct one that is partially hyperbolic, just create
a Hamiltonian flow that is a suspension flow. But suspensions are not close to geodesic
flows.

We also show that product metrics of Anosov geodesic flows are not examples with
the partially hyperbolic property:

Theorem 3.3. If (M1, g1) and (M2, g2) are Riemannian manifolds such that the geodesic
flow of at least one of them is Anosov, then the geodesic flow of (M1×M2, g1 + g2) is not
partially hyperbolic.

For compact locally symmetric spaces of nonpositive curvature the following holds:

Theorem 6.9. If the geodesic flow of a compact locally symmetric space of nonpositive
curvature is partially hyperbolic, then is curvature takes values on the whole interval
[−1,−1

4
].

The proof of theorem 3.3 and theorem 6.9 imply the following:

Theorem 7.2. If (M, g) is a compact Riemannian manifold with nonpositive sectional
curvature and partially hyperbolic geodesic flow then (M, g) has rank one.
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And these hypothesis above imply also that:

Theorem 7.3. If (Mn, g) is a Riemannian manifold with partially hyperbolic geodesic
flow then n is even, and if n ≡ 2 mod 4, then dimEs = 1 or n− 1.

Remark 1.4. If the locally symmetric space has nonconstant negative curvature, then its
curvature takes values on the whole interval [−1,−1

4
] [H].

Remark 1.5. Of course, if we multiply the metric by a constant, the Anosov or the partially
hyperbolic splitting remain the same, but the curvature does not. So, we consider the
maximal sectional curvature of the locally symmetric space to be −1, which is true after
multiplication of the metric by a constant.

Roughly speaking, the strategy of the construction of theorem 1.1 is done following
the next steps:

1. It is chosen a metric whose geodesic flow is Anosov and whose hyperbolic invariant
splitting is of the form T (SM) = Ess ⊕ Es⊕ < X > ⊕Eu ⊕ Euu (section 4);

2. we take a closed geodesic γ without self-intersections (section 5.2);

3. we change the metric in a tubular neighborhood of γ in M , such that along γ
the strong subbundles (Ess and Euu) remain invariant and the weak subbundles
disapear, becoming a central subbundle with no hyperbolic behavior (section 5.3):

4. outside the tubular neighborhood of γ, the dynamics remains hyperbolic;

5. we show that for the geodesics that intersect the tubular neighborhood the cones
associated to the extremal subbundles (Ess and Euu) are preserved (sections 5.3.3,
5.3.4, 5.3.5, 5.3.6); we prove that for vectors in the unstable cones there is expansion,
and for vectors inside the stable cones there is contraction, under the action of the
derivative of the new geodesic flow (section 5.3.7)

We would like to recall that in the symplectic context, the existence of a dominated
splitting with two subbundles of equal dimension implies hyperbolicity. This was observe
first by Newhouse for surfaces maps [Ne], latter by Mane in any dimension [M2], by
Ruggiero in the context of geodesic flows [R1] and Contreras for symplectic and contact
flows [Co1]. We want to point out that thse results do not contradict ours: the splitting
that the opens set of examples shows has more than two subbundles.

There are partially hyperbolic Σ-geodesic flows, defined over a distribution Σ $ TM
which arise in the study of the dynamics of free particles in a system with constrains (see
[CKO]). However, if the distribution is involutive then the leaves of the distribution have
negative curvature, and we are again in the Anosov geodesic flows case.

The article is organized as follows:
In the second section of the article, we introduce basic results about the geodesic flow,

partial hyperbolicity and the equivalent property of the proper invariance of cone fields
[P], [HP].
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In the third section we prove that product metrics are not examples of partially
hyperbolic non-Anosov geodesic flows.

In the fourth section we introduce properties and the classification of locally symmetric
spaces of negative curvature which are the natural candidates to deform into partially
hyperbolic non-Anosov geodesic flows.

In the fifth section we show that the deformed metric has a partial hyperbolic non-
Anosov geodesic flow. We give a proof of the proper invariance of the strong cones based
on the calculation of the variation of the opening of the cones of an appropiate cone
field, and then we prove the exponential expansion or contration for vectors in the strong
unstable and stable cones.

In the sixth section we show that compact locally symmetric spaces of nonpositive
sectional curvature are not partially hyperbolic, except the spaces of nonconstant negative
sectional curvature, which are the candidates for the deformation, since they have the
property mentioned in the first item of the strategy above [E2],[E3], [J].

In the last section we show some obstructions to the existence of a partially hyperbolic
geodesic flow. Obstructions for the rank of the manifold if the Riemannian manifold has
nonpositive sectional curvature, and for the dimension of the Riemannian manifold and
the dimension of the hyperbolic invariant subbundles in the general case.
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2 Preliminary definitions

In this section, we give some preliminary definitions. In the first subsection, the definitions
are about geodesic flows. The basic reference for this subsection is the book by Paternain
[P]. In the second subsection, we give the main definitions about partial hyperbolicity
and the basic reference is the survey by Hasselblat and Pesin [HP].
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2.1 Geodesic flows

A Riemannian manifold (M, g) is a C∞-manifold with an Euclidean inner product gx in
each TxM which varies smoothly with respect to x ∈ M . So a Riemannian metric is a
smooth section g : M → Symm+

2 (TM), where Symm+
2 (TM) is the set of positive definite

bilinear and symmetric forms in TM . Along the article we will consider the topology of
the space of metrics of a manifold M to be the C2-topology on the space of these sections.

The geodesic flow of the metric g is the flow

φt : TM → TM : (x, v)→ (γ(x,v)(t), γ
′
(x,v)(t)),

such that γ(x,v) is the geodesic for the metric g with initial conditions γ(x,v)(0) = x and
γ′(x,v)(0) = v. Since the speed of the geodesics is constant, we can consider the flow

restricted to SM := {(x, v) ∈ TM : gx(v, v) = 1}.
Definition 2.1. πV : V (TM)→ TM ,which is called the vertical subbundle, is the bundle
whose fiber at θ ∈ TxM , V (θ), is given by V (θ) = ker(dθπ), where π : TM → M is the
canonical projection of the tangent bundle.

Definition 2.2. K : T (TM)→ TM , which is called the connection map associated to the
metric g, is defined as follows: given ξ ∈ TθTM let z : (−ε, ε) → TM be an adapted
curve to ξ; let α : (−ε, ε) → M : t → πM ◦ z(t), and Z the vector field along α such
that z(t) = (α(t), Z(t)); then Kθ(ξ) := (∇α′Z)(0). πH : H(TM) → TM , the horizontal
subbundle, is given by H(θ) := ker(Kθ).

Some properties of H and V are:

1. H(θ) ∩ V (θ) = 0,

2. dθπ and Kθ give identifications of H(θ) and V (θ) with TxM ,

3. TθTM = H(θ)⊕ V (θ).

The geodesic vector G : TM → T (TM) in this decomposition H(θ)⊕ V (θ) ≈ TxM ⊕
TxM is given by (v, 0).

The decomposition in horizontal and vertical subbundles allows us to define the Sasaki
metric on TM :

ĝθ(ξ, η) := gx(dθπ(ξ), dθπ(η)) + gx(Kθ(ξ), Kθ(η))

= gx(ξh, ηh) + gx(ξv, ηv)

for ξ and η ∈ TθTM , with ξ = (ξh, ξv) and η = (ηh, ηv) in the decomposition TθTM =
H(θ)⊕ V (θ), with ξh and ηh ∈ TxM ∼= H(θ), ξv and ηv ∈ TxM ∼= V (θ).

It also allows us to define a symplectic 2-form and a almost complex structure J̃ on
TM and a contact form on SM :



7

Ωθ(ξ, η) := gx(dθπ(ξ), Kθ(η))− gx(Kθ(ξ), dθπ(η))

= gx(ξh, ηv)− gx(ηh, ξv),
J̃(ξh, ξv) := (−ξv, ξh),

αθ(ξ) := ĝθ(ξ,G(θ)) = gx(dθπ(ξ), v) = gx(ξh, v).

Since the geodesic flow leaves SM invariant, and we can define a contact form on SM
such that its Reeb vector field is the geodesic vector field, S(θ) := kerαθ is an invariant
subbundle for the geodesic flow, and R ·G⊕ S = T (SM).

The derivative of the geodesic flow is related to the Jacobi fields of the metric that
generates the flow.

Definition 2.3. A Jacobi field along a geodesic γθ, θ = (x, v) is a vector field obtained by
a variation of the geodesic γθ through geodesics:

ζ(t) :=
∂

∂s
|s=0π ◦ φt(z(s)),

where z(0) = θ, z′(0) = ξ and z(s) = (α(s), Z(s)).
It satisfies the following equation:

ζ ′′ +R(γ′θ, ζ)γ′θ = 0.

Its initial conditions are:

ζ(0) =
∂

∂s
|s=0π ◦ z(s) = dθπξ = ξh,

ζ ′(0) =
D

dt

∂

∂s
|t=0,s=0π ◦ φt(z(s)) =

D

∂s

∂

∂t
|s=0,t=0π ◦ φt(z(s))

=
D

∂s
|s=0Z(s) = Kθξ = ξv.

The derivative of a geodesic flow is: dθφt(ξ) = (ζξ(t), ζ
′
ξ(t)).

Remark 2.4. We define the curvature tensor R : Γ(TM) × Γ(TM) × Γ(TM) → Γ(TM)
as in do Carmo’s book [Ca]:

R(X, Y )Z := ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z.
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2.2 Partial hyperbolicity

Definition 2.5. A partially hyperbolic flow φt : M →M in the manifold M generated by
the vector field X : M → TM is a flow such that its quotient bundle TM/〈X〉 have an
invariant splitting TM/〈X〉 = Es ⊕ Ec ⊕ Eu such that these subbundles are non trivial
and with the following properties:

dφt(x)(Es(x)) = Es(φt(x)), dφt(x)(Ec(x)) = Ec(φt(x)), dφt(x)(Eu(x)) = Eu(φt(x)),

||dφt(x)|Es || ≤ C exp(tλ), ||dφ−t(x)|Eu|| ≤ C exp(tλ),

C exp(tµ) ≤ ||dφt(x)|Ec || ≤ C exp(−tµ),

for λ < µ < 0 < C.

Definition 2.6. A splitting E ⊕ F of the quotient bundle TM/〈X〉 is called a dominated
splitting if:

dφt(x)(E(x)) = E(φt(x)), dφt(x)(F (x)) = F (φt(x)),

||dφt(x)|E(x)|| · ||dφ−t(φt(x))|F (φt(x))|| < C exp(−tλ)

for some constants C and λ > 0.

2.2.1 Partial hyperbolicity and cone fields

There is a criterion useful for verifying partial hyperbolicity, called the cone criterion:
Given x ∈M , a subspace E ⊂ TxM and a number δ, we define the cone at x centered

around E with angle δ as

C(x,E(x), δ) = {v ∈ TxM : ∠(v, E) < δ},
where ∠(v, E) is the angle that the vector v ∈ TxM makes with its own projection to the
subspace E ⊂ TxM .

One flow is partially hyperbolic if there are δ > 0, some time T > 0, and two contin-
uous cone families C(x,E1(x), δ) and C(x,E2(x), δ) such that:

dxφ−t(C(x,E1(x), δ)) $ C(x,E1(φ−t(x)), δ),

dxφt(C(x,E2(x), δ)) $ C(x,E2(φt(x)), δ),

‖dxφtξ1‖ < K exp(tλ), ‖dxφ−tξ2‖ < K exp(tλ),

for ξ1 ∈ C(x,E1(x), δ), ξ2 ∈ C(x,E2(φt(x)), δ), some constants K > 0, λ < 0 and all
t > 0.
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2.2.2 Partial hyperbolicity and angle cone variation

To know if there is proper invariance of cones we need to check the following inequality:

d

dt

g(PrEv, PrEv)

g(v, v)
> 0 (1)

for v ∈ ∂C(x,E(x), δ) := {v ∈ TxM : ∠(v, E(x)) = δ}, where PrE : TM → E is the
orthogonal projection to E, where πE : E →M is a vector subbundle of TM .

Remark 2.7. The quantity on the left side of the inequality equals twice the square of
the cosine of the angle between v and the subspace E, so if it increases along the flow,
then the cone field is properly invariant. Since the quantity above is the angle between
vectors in the cone, and since we need to calculate this quantity only at the boundary
of the cones of a cone field, we call the derivative above the angle cone variation. This
calculation is inspired by the calculations in [W], although we do not use quadratic forms
here.

The proper invariance of the cones by the derivative of the geodesic flow implies the
existence of a dominated splitting. For the exponential expansion or contraction in the
unstable and stable directions, respectively, we only need to check exponential expansion
or contraction inside the unstable and stable cones, respectively.

Lemma 2.8. For a fixed δ > 0, and a fixed subbundle E →M , E(x) ⊂ TxM , if inequality
(1) holds for v ∈ ∂C(x,E(x), δ), then the cone field is proper invariant for the geodesic
flow.

Proof. Let c ∈ (1, 2) be such that 2 cos2(δ) = c. Then

C(x,E(x), δ) =

{
g(PrEv, PrEv)

g(v, v)
≥ c

}
,

∂C(x,E(x), δ) =

{
g(PrEv, PrEv)

g(v, v)
= c

}
.

Notice that the quantity on the left side of (1) is the same for v and for kv for every
k > 0. Then we can calculate for v such that g(v, v) = 1. Define

∂1C(x,E(x), δ) = {g(PrEv, PrEv) = c, g(v, v) = 1}.

Then the set of vectors in the boundary of the cones of the cone field is compact, which
implies the derivative is bounded away from zero:

d

dt

g(PrEv, PrEv)

g(v, v)
≥ a > 0.

Its imediate consequence is that the cone field is properly invariant for the flow of X.
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3 The geodesic flow of a product metric is not partially hyper-
bolic

Now, we are going to show that some simple candidates for partially hyperbolic geodesic
flows are not partially hyperbolic. In particular, we are going to prove that product
metrics are not Anosov or partially hyperbolic.

A natural candidate for symplectic partially hyperbolic dynamics is the following:
take any hyperbolic symplectic action Φ : R→ Sp(E,ω), π : E → B a symplectic bundle
with ω as its symplectic 2-form, one can produce another symplectic action Φ∗ : R →
Sp(E,ω) ⊕ Sp(B × R2, ω0) : t → Φ(t) ⊕ Id. The symplectic flow associated with this
symplectic R-action is partially hyperbolic with a central direction of dimension 2. In
the case of geodesic flows this construction does not work.

Suppose we have a Riemannian manifold (M, g) whose geodesic flow is Anosov. Then,
we can say:

Theorem 3.1. The product Riemannian manifold (M ×Tn, g+ g0) where (Tn, g0) is Tn
with its canonical flat metric, is not partially hyperbolic.

Proof. Observe that {x} × Tn is a totally geodesic submanifold of (M × Tn, g + g0). So,
its second fundamental form is identically zero. Since the metric in Tn is flat this implies
that:

R(γ′(x,y,0,v), (0, w))γ′(x,y,0,v) = 0.

For a product metric in (M1×M2, g1 + g2), let us say R is the curvature tensor of the
product Riemannian manifold with the product metric, K its curvature, R1 the curvature
tensor of the Riemannian manifold M1. Then the following properties hold:

i. R(X, Y, Z,W ) = R1(X, Y, Z,W ), for X, Y, Z,W tangent to M1, because of the
Gauss’ equation and the fact that the second fundamental form is zero [Ca];

ii. R(X, Y, Z,N), for X, Y, Z tangent to M1 and N tangent to M2, because of Codazzi’s
equation and the fact that the second fundamental form is zero [Ca];

iii. R(X,N,X, N̂) = 0, for X, Y tangent to M1 and N, N̂ tangent to M2, because
K(X,N) = 0 [Ca].

Then, for a submanifold {x} × Tn with the flat metric:

R(γ′(x,y,0,v), ·)γ′(x,y,0,v) ≡ 0.

So, the derivative of the geodesic flow along geodesics in {x} × Tn does not have any
exponential contration or expansion. So, there is no partially hyperbolic splitting for its
geodesic flow.

Now, suppose we have two Riemannian manifolds with Anosov geodesic flows: (M1, g1)
and (M2, g2).
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Theorem 3.2. The geodesic flow of the Riemannian manifold (M1 ×M2, g1 + g2) is not
Anosov.

Proof. The proof that this geodesic flow is not Anosov is easy. It is a classical result that
(x0, γ(y,v)(t)) and (γ(x,u)(t), y0) are geodesics of the product metric, x0 ∈M1, y0 ∈M2, u ∈
TxM1, v ∈ TyM2, γ(x,u)(0) = x and γ′(x,u)(0) = u, γ(y,v)(0) = y and γ′(y,v)(0) = v. So, we

choose x0 and x1 ∈M1 close enough, and (x0, γ(y,v)(t)) and (x1, γ(y,v)(t)) are two geodesics
with initial conditions (x0, y, 0, v) and (x1, y, 0, v). Let dist be the distance function for
the Sasaki metric of S(M1×M2) and dist1 be the distance function for the Sasaki metric
of SM1. The geodesic flow is not expansive, because dist(φt(x0, y, 0, v), φt(x1, y, 0, v) =
dist1((x0, 0), (x1, 0)): if x0 and x1 are close enough, dist1((x0, 0), (x1, 0)) < ε, for any
ε > 0, then the geodesic flow is not Anosov.

Theorem 3.3. The geodesic flow of the product metric of a product manifold of two
Riemannian manifolds with Anosov geodesic flows is not partially hyperbolic.

Proof. Take local coordinates for the geodesic flow of the product metric. Let x ∈ M1,
y ∈ M2, u ∈ TxM1, v ∈ TyM2, and let γ(x,y,u,v)(t) be the geodesic with initial conditions
γ(x,y,u,v)(0) = (x, y) and γ′(x,y,u,v)(0) = (u, v). Since the product metric is a sum of the
two metrics, we have that πi : M1 ×M2 → Mi, i = 1, 2, the natural projection from the
product manifold to Mi, is a isometric submersion. So γ(x,y,u,v)(t) = (γ(x,u)(t), γ(y,v)(t)).

Let us construct an orthonormal basis of parallel vector fields for γ(x,y,u,v)(t). Suppose
g1
x(u, u) = 1 and gy(v, v) = 1. So, to have (x, y, u, v) in the unitary tangent bundle of
M1 ×M2 we take (x, y, αu, βv), and

g(x,y)((αu, βv), (αu, βv)) = α2g1
x(u, u) + β2gy(v, v) = α2 + β2 = 1.

Then

γ(x,y,αu,βv)(t) = (γ(x,αu)(t), γ(y,βv)(t)), γ
′
(x,y,αu,βv)(t) = (αγ′(x,u)(t), βγ

′
(y,v)(t)).

Take Ei, i = 2, . . . , dim(M1), an orthogonal frame of parallel vector fields along the
geodesic γ(x,u). Take Fj, j = 2, . . . , dim(M2), an orthogonal frame of parallel vector fields
along the geodesic γ(y,v).

Notice that along the geodesic γ(x,y,αu,βv), since its componentes are γ(x,αu) and γ(y,βv),
the following holds:

g1
γ(x,αu)(t)

(γ′(x,αu)(t), γ
′
(x,αu)(t)) = α2, g2

γ(y,βv)(t)
(γ′(y,βv)(t), γ

′
(y,βv)(t)) = β2,

so the proportion (α, β) is preserved along the geodesic.
So {(αγ′(x,u)(t), βγ

′
(y,v)(t)), (βγ

′
(x,u)(t),−αγ′(y,v)(t)), (Ei(t), 0), (0, Fj(t))}i,j is an orthonor-

mal frame of parallel vector fields along the geodesic γ(x,y,αu,βv)(t).
The fact that the second fundamental form of the submanifolds {p}×M2 and M1×{q}

is zero, together with Gauss and Codazzi equations, imply that:
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R((u1, 0), (u2, 0), (u3, 0), (u4, 0)) = R1(u1, u2, u3, u4),

R((0, v1), (0, v2), (0, v3), (0, v4)) = R2(v1, v2, v3, v4),

R((u1, 0), (u2, 0), (u3, 0), (0, v1)) = 0,

R((0, v1), (0, v2), (0, v3), (u1, 0)) = 0.

Also the fact that the curvature is zero for planes generated by one vector tangent to M1

and another tangent to M2 implies:

R((u1, 0), (0, v1), (u2, 0), (0, v2)) = 0.

All these equations imply that along the geodesic γ(x,y,αu,βv)(t):

R(γ′(x,y,αu,βv), (Ei, 0), γ′(x,y,αu,βv), (Ek, 0)) = α2R1(γ′(x,u), Ei, γ
′
(x,u), Ek),

R(γ′(x,y,αu,βv), (0, Fj), γ
′
(x,y,αu,βv), (0, Fl)) = β2R2(γ′(y,v), Fj, γ

′
(y,v), Fl),

R(γ′(x,y,αu,βv), (Ei, 0), γ′(x,y,αu,βv), (0, Fj)) = 0.

Now, we are going to write the system of Jacobi fields. If we have ζ(t) =
∑

i=2 fiUi, then
ζ ′′(t) =

∑
i=2 f

′′
i Ui and

0 =
∑
j=2

(f ′′j +
∑
i=2

fiR(γ′, Ui, γ
′, Uj))Uj.

So, it can be written as: [
f
f ′

]′
=

[
0 I
−K 0

] [
f
f ′

]
where Kij = R(γ′, Ui, γ

′, Uj).
In the case of the product metric we have:

[
f
f ′

]′
=


0 0 I 0
0 0 0 I

−α2K1 0 0 0
0 −β2K2 0 0

[ff ′
]
.

With a change in the order of the basis of parallel vector fields we have:

F ′ =


0 I 0 0

−α2K1 0 0 0
0 0 0 I
0 0 −β2K2 0

F.
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So the systems decouples and the solutions are given imediately by the solutions for M1

and M2.
Now suppose the geodesic flow of the product metric is partially hyperbolic with

splitting Es ⊕ Ec ⊕ Eu, dimEs = p, dimEu = q. So the geodesic flow of each metric g1

and g2 is partially hyperbolic, each geodesic flow inherits a partially hyperbolic splitting:

Es
1 ⊕ Ec

1 ⊕ Eu
1 ,

along geodesics in M1 × {y} (β = 0), such that Es
1 ⊕Eu

1 ⊂ TxM1 ⊕ {0} ⊂ TxM1 ⊕ TyM2,
and

Es
2 ⊕ Ec

2 ⊕ Eu
2 ,

along geodesics in {x} ×M2 (α = 0), such that Es
2 ⊕Eu

2 ⊂ {0} ⊕ TyM2 ⊂ TxM1 ⊕ TyM2.
For geodesics of the product metric which have α 6= 0 6= β, we get a splitting into five

invariant subbundles Es
1 ⊕ Es

2 ⊕ Ec ⊕ Eu
1 ⊕ Eu

2 , without the domination, since α and β
multiply the Lyapunov exponents of each subbundle. Since we already have an splitting,
Es and Eu are necessarilly one of a combination of subbundles of Es

1 and Es
2, Eu

1 and Eu
2 ,

respectively:

Es ∈ {E ⊕ F : E ⊂ Es
1, F ⊂ Es

2, dimE + dimF = p},

Eu ∈ {E ⊕ F : E ⊂ Eu
1 , F ⊂ Eu

2 , dimE + dimF = q}.

So there is no way to go from the case α = 0 to β = 0 without breaking the continuity
of the splitting, because one cannot go from the case dim E = 0, when β = 0, to dim
F = 0, when α = 0 continuously.

4 Anosov geodesic flow with many invariant subbundles

In this section, we introduce the metric which we are going to change to produce the
example of a partially hyperbolic and non-Anosov geodesic flow.

The candidate for the deformation is a compact locally symmetric space which is a
quotient of the symmetric space of nonconstant negative curvature M := G/K by a
cocompact lattice Γ [Bo].

Cartan classified the symmetric spaces of negative curvature (see [H], [He]). They are:

i. the hyperbolic space RHn of constant curvature −c2, which is the canonical space
form of negative constant curvature;

ii. the hyperbolic space CHn of curvature −4c2 ≤ K ≤ −c2, which is the canonical
Kahler hyperbolic space of constant negative holomorphic curvature −4c2 [G];
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iii. the hyperbolic space HHn of curvature −4c2 ≤ K ≤ −c2, which is the canonical
quaternionic Kahler symmetric space of negative curvature [Be], [Wo];

iv. the hyperbolic space CaH2 of curvature −4c2 ≤ K ≤ −c2, which is the canonical
hyperbolic symmetric space of the octonions of constant negative curvature.

Theirs geodesic flows are all Anosov, but the geodesic flow of the first one has not
more than the two invariant subbundles, the stable and the unstable, which can not be
decomposed in other subbundles. The others have more invariant subbundles, as in the
first item of the strategy written in section 1. So, the metrics which are the candidates
to produce a partially hyperbolic geodesic flow which is not Anosov are the metrics in
items [ii.], [iii.] and [iv.]. Through the article we are going to consider c = 1

2
.

For these type of metrics we need the following properties to hold:

i. For all v ∈ TxM , the subspace {w ∈ TxM : K(v, w) = −1} is parallel; another way
to say this is that the derivative of the projection to this subspace of TxM along
geodesics is zero;

ii. For closed geodesics γ : [0, T ] → M , (γ(0), γ′(0)) = (γ(T ), γ′(T )), the parallel
translation from γ(0) to γ(T ) along γ of these subspaces {w ∈ TxM : K(v, w) = −1}
and {w ∈ TxM : K(v, w) = −1

4
}, where v = γ′(0), preserves orientation.

The examples that satisfy the properties above are:

i. compact Kahler manifolds of negative holomorphic curvature −1 (see [G]),

ii. compact locally symmetric quaternionic Kahler manifolds of negative curvature (see
[Be]).

4.1 Subspaces of S(SM) and SM

Since the candidate has nonconstant negative curvature, then its sectional curvature, up
to multiplication of the metric by a constant, has planes of setional curvature −1 and
planes of sectional curvature −1

4
. Actually, every vector v ∈ TM is in a plane with

curvature −1 and in another with curvature −1
4
.

We define

A(x, v) := {w ∈ TxM : K(v, w) = −1}, (2)

B(x, v) := {w ∈ TxM : K(v, w) = −1

4
}. (3)

If we restrict the derivative of the geodesic flow to the subbundle S(SM) = kerα →
SM , where α is the contact form on SM , then S(x, v) = Ĥ(x, v)⊕ V̂ (x, v), and Ĥ(x, v)

and V̂ (x, v) are identified with {v}⊥ = A(x, v) ⊕ B(x, v) ⊂ TxM , (x, v) ∈ SM . The
subbundles A and B are invariant by parallel translation along the geodesic with initial
conditions (x, v).
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Lemma 4.1. The geodesic flow of the symmetric spaces of nonconstant negative curvature
induces a hyperbolic splitting of the contact structure defined on SM : S(SM) = Ess ⊕
Es ⊕ Eu ⊕ Euu.

Proof. We can define the subbundles P u
K(v), P s

K(v) ⊂ T(x,v)SM , K = A,B such that

dφt(v)P u
K(v) = P u

K(φt(v)), dφt(v)P s
K(v) = P s

K(φt(v)),

P u
K(v) = {(w, αKw) ∈ S(x, v) : w ∈ K(x, v)},

P s
K(v) = {(w,−αKw) ∈ S(x, v) : w ∈ K(x, v)}.

where αA = 1 and αB = 1
2
.

This invariant subbundles are exactly the subbundles of the decomposition in the first
item of the strategy stated in the introduction:

Euu(x, v) = P u
A(x, v),

Ess(x, v) = P s
A(x, v),

Es(x, v) = P s
B(x, v),

Eu(x, v) = P u
B(x, v).

Following proposition 6.4, they are invariant subbundles and the splitting is domi-
nated: Jacobi fields in Euu and Ess contract for the past and the future, respectively, at
rate e−t and Jacobi fields in Eu and Es contract for the past and the future, respectively,
at rate e−t/2.

4.1.1 Angle cone variation for the Anosov flow with many subbundles

Let us calculate the proper invariance of the cones in the case of the geodesic flow of
the compact locally symmetric Riemannian manifold of nonconstant negative sectional
curvature.

We use the following family of trajectories for the system:

q(t, u) = π ◦ φt(z(u)),

q(t, u), |u| < ε.
The Jacobi field is given by

ξ =
dq

du
|u=0, η =

Dv

du
|u=0 =

D

du
|u=0

dq

dt
.

So the following equations hold:

Dξ

dt
= η,

Dη

dt
= −R(v, ξ)v.
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The quantity (1), which in this case is

g(PrA(ξ + η), P rA(ξ + η))

g(ξ, ξ) + g(η, η)
,

indicates twice the square of the cosine of the angle between the vector (ξ, η) ∈ T(x,v)SM
and its projection to P u

A(x, v). The cone in this case is

C(v, P u
A(x, v), δ) = {(ξ, η) ∈ T(x,v)SM :

ĝ(PrPuA(v)(ξ, η), P rPuA(v)(ξ, η))

ĝ((ξ, η), (ξ, η))
≥ c},

where ĝ is the Sasaki metric and c = 2 cos2 δ. So, it is the same to prove that the cone
fields are properly invariant or to prove that the cosine of this angle increases under the
action of the derivative of the geodesic flow, for vector in the boundary of the cone fields,
or (ξ, η) ∈ TθSM such that

g(PrA(ξ + η), P rA(ξ + η))

g(ξ, ξ) + g(η, η)
= c ∈ (1, 2).

Remember that if (M, g) is locally symmetric then:

d

dt
g(u, v) = g

(
Du

dt
, v

)
+ g

(
u,
Dv

dt

)
,

D

dt
PrAξ = PrA

D

dt
ξ.

Let us call, to simplify the equations,

ξA := PrAξ, ξB := PrBξ,

ξ′A = PrA
D

dt
ξ, ξ′B = PrB

D

dt
ξ,

and remember that ξ = ξA + ξB. Then, for

g(ξA + ηA, ξA + ηA)

g(ξ, ξ) + g(η, η)
= c ∈ (1, 2),

the following holds:

d

dt

g(ξA + ηA, ξA + ηA)

g(ξ, ξ) + g(η, η)
= 2

g(ξA + ηA, ηA − (R(v, ξ)v)A)

g(ξ, ξ) + g(η, η)

− 2
g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2
(g(ξ, η)−R(v, ξ, v, η)).

But for the locally symmetric metric of negative curvature, the following holds:
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R(v, ξ)v = −1

4
ξB − ξA.

So, we have:

d

dt

g(ξA + ηA, ξA + ηA)

g(ξ, ξ) + g(η, η)
= 2

g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2
(g(ξ, ξ) + g(η, η)− g(ξ, η)−

g(ξA, ηA)− 1

4
g(ξB, ηB)) = 2

g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2
(g(ξA, ξA) + g(ξB, ξB) + g(ηA, ηA) +

+g(ηB, ηB)− g(ξA, ηA)− g(ξB, ηB)− g(ξA, ηA)− 1

4
g(ξB, ηB)) = 2

g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2

(g(ξA, ξA)− 2g(ξA, ηA) + g(ηA, ηA) + g(ξB, ξB)− 5

4
g(ξB, ηB) + g(ηB, ηB)) =

2
g(ξA + ηA, ξA + ηA)

(g(ξ, ξ) + g(η, η))2
(g(ξA − ηA, ξA − ηA) + g(ξB −

5

8
ηB, ξB −

5

8
ηB) +

39

64
g(ηB, ηB)).

Since the derivative is the same if (ξ, η) is multiplied by a scalar, we consider (ξ, η) such
that g(ξ, ξ) + g(η, η) = 1, and such that they are in the boundary of the cones of the
cone field of opening c. This is a compact set and the derivative for this values of (ξ, η)
is far away from zero. This means that the cones are properly invariant under the action
of the derivative of the geodesic flow.

To get the exponential growth, we need to calculate:

d

dt
g(ξA + ηA, ξA + ηA) = 2g(ξA + ηA, ηA − (R(v, ξ)v)A)

= 2g(ξA + ηA, ξA + ηA).

This implies that the vectors inside the cone grow at the rate of et.

4.1.2 Orientability of A and B

Recall that a Kahler manifold is a triple (M,J, ω), such that J : TM → TM is a integrable
complex map with J2 = −IdTM , and ω is a J-compactible symplectic form. In the case
of negative holomorphic curvature −1, A(x, v) = R · Jv and B(x, v) has a basis of the
form (e1, Je1, . . . , ek, Jek). If γ is a closed geodesic then the parallel transport along γ
sends Jv to Jv and sends (e1, Je1, . . . , ek, Jek) to (ẽ1, Jẽ1, . . . , ẽk, Jẽk), which have the
same orientation.

In the Kahler quaternionic case, instead of one map J , there are three maps I, J ,
K, such that I2 = J2 = K2 = −IdTM , IJ = −JI, K = IJ [Be], [Wo]. In this case,
A(x, v) has as its basis (Iv, Jv,Kv). The three maps are not parallel, but the orthogonal
projection to A is parallel. Also, Q(v) = Iv∧Jv∧Kv is parallel, so along closed geodesics
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the orientation of A(x, v) is preserved [Gr]. For the same reason, Q being parallel, B(x, v)
has its orientation preserved along closed geodesics.

We need orientability to ensure that we can define normal coordinates along closed
geodesics as we do in next section.

5 The partially hyperbolic non-Anosov example

In the first subsection we give a more detailed strategy for the deformation of the metric
introduced in the previous section.

In the second subsection we give some definitions and we introduce the deformation
of the original metric whose geodesic flow is partially hyperbolic and non-Anosov.

In the subsections 5.3.3, 5.3.4, 5.3.5 we show that the new geodesic flow preserves
a strong stable and a strong unstable cone fields. We first show that along the closed
geodesic γ the strong stable and strong unstable cones are properly invariant under the
action of the derivative of the deformed geodesic flow. Then, we show that for geodesics
which are close to (v0, 0, 0, . . . , 0) the strong stable and strong unstable cones are properly
invariant too (subsections 5.3.3 and 5.3.4). Then we show that for geodesics that cross
the neighborhood of the deformation of the compact locally symmetric metric the strong
stable and strong unsable cones are not properly invariant, but we manage to control
the lack of this property in such a way that, after crossing the neighborhood, and inside
the region where the metric remains the same, proper invariance is obtained (subsection
5.3.5). Then we prove that there is expansion for the vectors in the strong unstable cones,
and contraction for the vectors in the strong stable cones (subsection 5.3.7).

In subsection 5.4 we state the main theorem and some of its corollaries.

Remark 5.1. We only need to show the strong unstable cone is properly invariant, because
this garantees that we have one unstable subbundle Eu invariant under the flow. For the
same reasons there is a properly invariant unstable subbundle for the inverse of the flow,
which is the stable subbundle, since geodesic flows are reversible flows.

5.1 The strategy to construct the example

The strategy of the construction of the example of theorem 1.1 is done following the next
steps:

1. It is chosen a metric whose geodesic flow is Anosov and whose hyperbolic invariant
splitting is of the form T (SM) = Ess ⊕ Es⊕ < X > ⊕Eu ⊕ Euu (section 4);

2. we take a closed geodesic γ without self-intersections (section 5.2);

3. we change the metric in a tubular neighborhood of γ in M , such that along γ
the strong subbundles (Ess and Euu) remain invariant and the weak subbundles
disapear, becoming a central subbundle with no hyperbolic behavior (section 5.3):
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3.1. to accomplish the non-hyperbolicity we change the metric in such a way that the
directions of small curvature become directions of zero curvature (section 5.3);

3.2. to obtain that the strong subbundles remain the same along γ0 we change it in a
way that the directions of larger curvature (Ess and Euu) remain (section 5.3);

4. outside the tubular neighborhood of γ, the dynamics remains hyperbolic;

5. we show that for the geodesics that intersect the tubular neighborhood the cones
associated to the extremal subbundles (Ess and Euu) are preserved (sections 5.3.3,
5.3.4, 5.3.5. 5.3.6):

5.1. first, we verify that for orbits of the geodesic flow which are close to γ0 (’parallel’
region) the cones associated with the extremal subbundles are preserved (sections
5.3.3, 5.3.4);

5.2. second, we verify that for orbits of the geodesic flow which are ’transversal’ to γ0

(’transversal’ region) we can control the angle cone variation for the cones associated
with the extremal subbundles with its own axis under the action of the derivative
of the geodesic flow (section 5.3.5);

5.3. then, we prove that the time spent in the ’transversal’ region is as small as we need
in comparison to the time spent outside it (section 5.3.5);

6. we prove that for vectors in the unstable cones there is expansion, and for vectors
inside the stable cones there is contraction, under the action of the derivative of the
new geodesic flow (section 5.3.7).

5.2 The new metric g∗ and its properties

Let us call (Mn, g) a compact locally symmetric space of nonconstant negative curvature
of dimension n, introduced in section 4.

Let us fix a closed prime geodesic γ : [0, T ]→Mn, with γ(0) = γ(T ) and γ′(0) = γ′(T ),
without self-intersections. This is the closed geodesic which we use to construct the
tubular neighborhood where we change the metric g. There is always a geodesic with
these properties in a compact Riemannian manifold [Kl].

Definition 5.2. Let us call B(γ, ε) = Ψ(U(ε)) a tubular neighborhood of the geodesic γ
constructed as follows:

We introduce normal coordinates along this geodesic. Take an orthonormal basis of
vector fields {e0(t) := γ′(t), e1(t), . . . , en−1(t)} in Tγ(t)M , such that {e1(t), . . . , er(t)} is
a basis for A(γ(t), γ′(t)), and {er+1(t), . . . , en−1(t)} is a basis for B(γ(t), γ′(t)). This is
possible because the parallel transport preserves orientation and M is orientable. Ψ :
[0, T ]× (−ε0, ε0)2n−1 →M : (t, x)→ expγ(t)(x1e1(t) + x2e2(t) + . . .+ xn−1en−1(t)) with ε0
less than the injectivity radius, so Ψ|U is a diffeomorphism, with U = [0, T ]×(−ε0, ε0)n−1.
We define U(ε) := [0, T ]× (−ε0, ε0)n−1.
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Definition 5.3. The set of vectors {(x, v) ∈ SM : x ∈ B(γ, ε), |vi| < θ, i = 1, . . . , n − 1}
is called the set of θ-parallel vectors to γ, the set {(x, v) ∈ SM : x ∈ B(γ, ε), |vi| ≥
θ, for some i = 1, . . . , n−1} is called the set of θ-transversal vectors to γ. If (x, v) ∈ SM
belongs to the set of θ-parallel vectors for all θ, then we call it a parallel vector to γ.
Notice that {(x, v) is θ-parallel to γ} ∪ {(x, v) is θ-transversal to γ} = B(γ, ε).

Let gij(t, x) denote the components of the metric in this tubular neighborhood of γ
where Ψ is defined. We define a new Riemannian metric g∗ as:

g∗00(t, x) := g00(t, x) + α(t, x),

α(t, x) :=
n−1∑
i,j=1

Φij(t, x)xixj,

g∗ij(t, x) := gij(t, x), (i, j) 6= (0, 0),

with Φij : [0, T ] × (−ε0, ε0)n−1 → R, where each Φij is a bump function. This kind of
deformation allows us to change the curvature (change the second derivative), as γ and
the parallel transport along γ (the metric up to its first derivative) remain the same.
This becomes clear if we look to the formulas of the metric, the parallel transport and
the curvature with respect to a coordinate system.

For this new metric g∗, the coordinates along γ are:

g∗ij(t, 0) = gij(t, 0), 0 ≤ i, j ≤ n− 1,

g∗ij(t, 0) = gij(t, 0), 0 ≤ i, j ≤ n− 1,

∂kg
∗ij(t, 0) = ∂kg

ij(t, 0), 0 ≤ i, j, k ≤ n− 1,

∂kg
∗
ij(t, 0) = ∂kgij(t, 0), 0 ≤ i, j, k ≤ n− 1.

These equalities imply that the closed geodesic γ still is a closed geodesic for g∗. We are
going to use the following deformation:

α(t, x) =
n−1∑
k=r+1

x2
kΦk(x),

The first property we need for the function α : U → R is that Φk(t, 0) = −1
4
. The

Φk are going to be products of bump functions define on a tubular neighborhood of γ of
radius ε < ε0. We need to change ε along the proof, so we can say that this functions
Φk are going to be ε-parameter families of functions. For some ε small enough the new
metric g∗ is going to be partially hyperbolic.
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Now we are going to state other properties that are going to help us prove the proper
invariance of the cones under the action of the derivative of the geodesic flow.

First, to simplify the problem, we try to perturb the curvature only in the direction
of the subspace generated by ∂

∂xk
, k = r + 1, . . . , n− 1, at least for some geodesics. This

is impossible, but we can construct a bump function such that, as ε → 0, only the term
∂2
xkxk

, k = r + 1, . . . , n− 1 perturbs the curvature.
Second, let us construct

Φk(t, x) =
1

4
φk,1(x1)φk,2(x2)φk,3(x3) . . . φk,2n−1(x2n−1),

φi bump functions themselves. So, the second property is that Φk does not depend on t.
Third, let us define φk,1, . . . φk,n−1, except φk,k, with support on [−ε, ε], such that

φk,i(0) = 1, φk,i(±ε) = 0, with ε < ε0, and φk,k with support on [−ε2, ε2], φk,k(0) = −1
and φk,k(±ε2) = 0. This ensures that the only second order partial derivative of α that
does not goes to 0 as ε→ 0 is ∂2

k,kα. Moreover, α is C1-close to the constant zero function.

Since x2
k is of order ε4, we can say that α is of order ε4, dα is of order ε2 and d2α is of

order 1, so that d2α is limited, with limitation independent of ε.

Lemma 5.4. For α : U → R : (t, x)→
∑n−1

k=r+1 x
2
kΦk(t, x), the following inequalities are

satisfied:

i. |α(t, x)| ≤M0ε
4,

ii. |∂xjα(t, x)| ≤M0ε
2,

iii. |∂2
xixj

α(t, x)| ≤M0ε, if i 6= j, or if i ≤ r, or j ≤ r,

iv. |∂2
xkxk

α(t, x)| ≤M0, M0 independent of ε, k = r + 1, . . . , n− 1.

Proof. Item i. |α(x)| ≤ 1
4
ε4. Item ii.: |∂xjα(x)| ≤ 1

4
ε42ε−2. Item iii.: |∂2

xjxi
α(x)| ≤ n

4
ε44ε−2

if j 6= i. Item iv.: |∂2
xkxk

α| ≤ 1
4
ε43ε−4 ≤ 1.

Lemma 5.5. For every δ > 0 there is a bump function φ, such that its minimum value is
at x = 0, φ(±ε2) = 0, and F (φ)(x) := x2φ′′(x)+4xφ′(x)+2φ(x) ∈ [(−2−δ)F (φ)(0), (2+
δ)F (φ)(0)].

Proof. To prove the lemma, first we construct a C2 function φ such that the property
stated in the lemma holds for δ

2
. Then, there will be a C∞ function φ such that it holds for

δ. To construct this C2 function is easy. We define the following function ϕτ , continuous
and piecewise-C1 in (0, 1

2
) and (1

2
, 1):

. ϕτ (0) = ϕτ (1) = ϕ(1
2
) = 0,

. ϕ′τ (x) = hτ
τ

, if x ∈ (0, τ) ∪ (1− τ, 1),

. ϕ′τ (x) = −hτ
τ

, if x ∈ (1
2
− τ, 1

2
+ τ),
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. ϕτ (x) = hτ for x ∈ (τ, 1
2
− τ), ϕτ (x) = −hτ , for x ∈ (1

2
− τ, 1− τ).

Then we define φτ such that φτ (1) = 0, φ′τ (0) = φ′τ (1) = 0 and φ′′τ = ϕτ . Then φτ is
C2 and φτ (0) = −hτ

4
(1− 2τ). We use the fact that it holds for τ = 0 and then show that

it holds for τ small enough.
For τ = 0, φ0 is not C2 but this is not a problem. For φ0, we have that F (φ0)(x) =

(−1
2

+ 6x2)h0 for x ∈ (0, 1
2
) and F (φ0)(x) = (−1 + 6x + 6x2)h0 for x ∈ (1

2
, 1). Then it is

simple to see that F (φ)(0) = −h0
2

and F (φ0)(x) ∈ [−h0, h0]. Then, for φ0 we have that
F (φ0)(x) ∈ [−2F (φ)(0), 2F (φ)(0)]. So, why does it holds for φτ , with τ small enough?

First, we notice that the first term of F (φτ ) is the only one that does not varies
continuosly as τ varies. The other two do vary continuosly because φτ is C1-close
to φ0. So we have to analyse only x2φ′′τ (x). But φ′′τ (x) ∈ [−hτ , hτ ], which implies
φ′′τ (x) ∈ [− 1

1−2τ
h0,

1
1−2τ

h0]. Then x2φ′′τ (x) ∈ [− 1
1−2τ

x2h0,
1

1−2τ
x2h0]. This, in turn, im-

plies that F (φτ )(x) ∈ [− 2
1−2τ

F (φ0)(0) − δ′(τ), 2
1−2τ

F (φ)(0) + δ′(τ)] = [−2F (φτ )(0) −
δ′(τ), 2F (φτ )(0) + δ′(τ)]. Then, for τ small enough, the lemma holds for a C2 φ. This
implies it holds for a C∞ φ.

Our bump functions are defined in an interval of lenght ε2, so let us notice that if the
lemma holds for φ with support in [0, 1], then it holds for φλ such that φλ(x) := φ(λx).
It holds also if φ is multiplied by a constant.

Remark 5.6. Previous lemma says that if the curvature is changed by 1
4

along the closed

geodesic γ, then the curvature is deformed by ±1
2

in the weak directions of the splitting
of the geodesic flow, so the curvature for the strong directions is still greater than in the
other directions. This explains in a rough way why the geodesic flow still preserves the
strong directions.

5.3 Partial hyperbolicity of the geodesic flow of g∗

To prove that the geodesic flow of the new metric g∗ is partially hyperbolic we are going
to define the strong stable and strong unstable cones of the geodesic flow of g∗.

Definition 5.7. The strong unstable and strong stable cone fields for g∗ are:

Cu(v, c) :=

{
(ξ, η) ∈ S(x, v) :

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
≥ c

}
,

Cs(v, c) :=

{
(ξ, η) ∈ S(x, v) :

g∗(ξA − ηA, ξA − ηA)

g∗(ξ, ξ) + g∗(η, η)
≥ c

}
.

for a real number c ∈ (1, 2), and v ∈ TxM , g∗x(v, v) = 1.

Remark 5.8. Notice that the cone field defined above coincides with the cone field asso-
ciated with g outside the region of the deformation of the metric g.
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Remark 5.9. Remember that

ξA := PrAξ, ξB := PrBξ,

ξ′A = PrA
D

dt
ξ, ξ′B = PrB

D

dt
ξ.

We also define

ξA′ =

(
D

dt
PrA

)
ξ, ξB′ =

(
D

dt
PrB

)
ξ,

because for g∗ the subspaces A and B are not parallel.

Proposition 5.10. The geodesic flow of g∗ preserves the strong unstable cone field
Cu(v, c) and the strong stable cone field Cs(v, c).

We only prove proper invariance of the strong unstable cone (see remark 5.1). We
divide the proof in several steps, but first, in the next subsection, we prove that along
the geodesic γ, the geodesic flow of g∗ is partially hyperbolic but not hyperbolic.

5.3.1 Along γ the geodesic flow of g∗ is not hyperbolic

By a corollary from Eberlein’s article [E1]:

Corollary 3.4 [E1]. If the geodesic flow is Anosov, then the following holds: Let any γ
be a unit speed geodesic, and E(t) any non-zero perpendicular parallel vector field along
γ, then the sectional curvature K(γ′, E)(t) < 0 for some real number t.

For the geodesic flow of the new metric g∗, E(t) is a non-zero perpendicular parallel
vector field along γ, and K(γ′, E)(t) = 0, then the geodesic flow of the metric g∗ is not
Anosov.

Lemma 5.11. If Φk(t, 0) = −1
4

then, following Eberlein’s criterion, the geodesic flow of
g∗ is not Anosov.

Proof. The coordinates of the curvature tensor in this neighborhood are:

Rijkl = −1

2
(∂2
ikgjl + ∂2

jlgik − ∂2
ilgjk − ∂2

jkgil)− ΓTikg
−1Γjl + ΓTilg

−1Γjk, (4)

where Γik := [Γj,ik]j and Γj,ik := 1
2
(∂igjk + ∂kgij − ∂jgik).

So, at γ, the curvature tensor is:

R∗ijkl(t, 0) = Rijkl(t, 0) − 1

2
(δj+l,0∂

2
ikα(t, 0) + δi+k,0∂

2
jlα(t, 0)

− δj+k,0∂
2
ilα(t, 0)− δi+l,0∂2

jkα(t, 0)),

and
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R∗0j0l(t, 0) = R0j0l(t, 0)− 1

2
(∂2
jlα(t, 0)).

Then, along γ:

R∗0i0j(t, 0) = R0i0j(t, 0), i 6= j, i, j = 2, . . . , n− 1,

R∗0k0k(t, 0) = R0k0k(t, 0)− 1

2
(∂2
kkα(t, 0))

= R0k0k(t, 0)− Φk(t, 0).

For the initial metric and k = r + 1, . . . , 2n− 1:

R0k0k(t, 0) = g00(t, 0)gkk(t, 0)K(γ′(t), ek(t)) = −1

4
.

So, if Φk(t, 0) = −1
4
, then R∗0k0k(t, 0) = 0. Then, Eberlein’s corollary applies, and the

geodesic flow of g∗ is not Anosov.

5.3.2 Along γ the geodesic flow of g∗ is partially hyperbolic

We are going to show that the strong unstable cone field of the geodesic flow of section
4 still works for the geodesic flow of the new metric g∗ along γ.

Lemma 5.12. For the new metric g∗ and along the geodesic γ there is an invariant
splitting S(t) = Ess ⊕ Ec ⊕ Euu, such that Ess = Ess

g , Ec = Es
g ⊕ Eu

g , Euu = Euu
g ,

where Eσ
g are the subbundles of the hyperbolic invariant splitting of the geodesic flow of

the original metric g, σ = uu, u, s, ss, and S(t) is the contact structure of S∗M along
(γ(t), γ′(t)).

Proof. The new metric g∗ has the same coordinates as g along the closed geodesic γ, and
observe that it has the same Christoffel symbols along γ. This implies that g∗ has the same
parallel transport as g along γ. So, if {E0(t) = γ′(t), E1(t), . . . , Er(t), Er+1(t), . . . , En−1(t)}
is a orthonormal basis of parallel vector fields in Tγ(t)M , ζ(t) =

∑2n−1
i=0 fi(t)Ei(t) are Ja-

cobi fields along γ if they are the solutions of the following equation:

0 = ζ ′′(t) +R∗(γ′(t), ζ(t))γ′(t)

=
2n−1∑
i,j=0

(f ′′i (t) +R∗(E0, Ej, E0, Ei)(t)fj(t))Ei(t)

⇒ 0 = f ′′i (t) +
2n−1∑
j=1

R∗(E0, Ej, E0, Ei)(t)fi(t), i = 0, . . . , 2n− 1
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⇒
[
f(t)
f ′(t)

]′
=

[
0 I

−K∗(t) 0

] [
f(t)
f ′(t)

]
,

K∗ij(t) := R∗(E0, Ej, E0, Ei)(t).

Along γ we have:

K∗(t) =

[
−Idr 0

0 0

]
.

The hyperbolic subbundles are Euu, spanned by (etei(t), e
tei(t)), i = 1, . . . , r and Ess,

spanned by (e−tei(t),−e−tei(t)), i = 1, . . . , r and Ess, the same as for the metric g.
And there is a central direction spanned by the Jacobi fields related to the curvature
K(γ′(t), Ek(t)), Ek(t) and tEk(t), for k = r+1, . . . , 2n−1. This implies we have a central
bundle Ec along the geodesic γ. Notice that {ek(t)}2n−1

k=r+1 and {Ek(t)}2n−1
k=r+1 generate the

same subspace of Tγ(t)M , invariant by parallel transport because it is orthogonal to γ′(t)
and A(γ(t), γ′(t)). Then Ec = Es

g ⊕ Eu
g .

5.3.3 Preservation of the cone field for parallel vectors

Now we do the same calculations of section 4 for the geodesic flow of the new metric g∗.
To prove the partial hyperbolicity of this new flow, we divided the set of vectors whose
geodesics cross the neighborhood where we change the original metric. First we verify
the proper invariance of the cone field for parallel vectors (see definition in the beginning
of section 5.3).

By the formula of the bump function Φk we have that, as ε goes to zero, the partial
derivatives of second order of α which do not involve the direction of ∂

∂xk
go to zero. The

only one that does not shrink is ∂2
k,kΦk.

So, the following holds:

R∗010k ≈ R010k, k = 2, . . . , n− 1,

R∗0k0k ≈ R0k0k −
1

2
∂2
k,kα

If v = (v0, 0, . . . , 0) then:

R∗vξvη ≈ Rvξvη −
1

2
∂2
ξηαv

2
0

≈ Rvξvη −
1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk.
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When we use the symbol ≈ we mean that the difference between the left side and the
right side is of order ε. It depends on the size of |α|, |∂α|, |∂2

ijα|, i 6= j, and the size of
supp(Φi), i = r + 1, . . . , n− 1.

Lemma 5.13. For parallel vectors the angle cone variation is positive (the cone closes).

Proof. We begin by approximating the angle cone variation at parallel vectors with re-
spect to the derivative of the geodesic flow by an expression that is better to work with.
This expression is equal to the one for the geodesic flow of g except for the term related
to the second derivative of α and ξk, ηk, k related to the central direction along γ:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
− 2

g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

(
5

8
g∗(ξ − η, ξ − η)

+
3

8
g∗(ξ, ξ)− 3

4
g∗(ξA, ηA) +

1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +

3

8
g∗(η, η)

)

= 2
g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

((
g∗(ξA + ηA, ξA′ + ηA′)

g(ξA + ηA, ξA + ηA)

)
(g∗(ξ, ξ)

+g∗(η, η))−
(
g∗(ξA + ηA, ξA +R∗(v, ξ)v)

g∗(ξA + ηA, ξA + ηA)

)
(g∗(ξ, ξ) + g∗(η, η)) +

1

4
g∗(ξ, η) +

3

4
g∗(ξA, ηA)− 1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +R∗(v, ξ, v, η)

)
.

We define as ξA′ the covariant derivative of the projection to A applied to ξ: (∇∗PrA)ξ.
If c is the opening of the cone and g∗(ξ, ξ) + g∗(η, η) = 1, because the derivative does not
depend on the norm of the (ξ, η), the equation above is:

= 2C(C−1(g∗(ξA + ηA, ξA′ + ηA′))− C−1(g∗(ξA + ηA, ξA +R∗(v, ξ)v))

+
1

4
g∗(ξ, η) +

3

4
g∗(ξA, ηA)− 1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +R∗(v, ξ, v, η)).

Then:

|g∗(ξA + ηA, ξA +R∗(v, ξ)v)| ≤ |g∗(ξA + ηA, R
∗(v, ξ)v −R(v, ξ)v)|

+ |g∗(ξA + ηA, ξA +R(v, ξ)v)| .

Since |g∗(ξA + ηA, ξA +R(v, ξ)v)| depends on |α|, and |g∗(ξA + ηA, R
∗(v, ξ)v −R(v, ξ)v)|

depends on |α|, |∂α|, and |∂2
jξα|, j = 1, . . . , r and these terms are limited by Mε, we can

say that, for some big enough M1 independent of ε:
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|g∗(ξA + ηA, ξA +R∗(v, ξ)v)| ≤ |g∗(ξA + ηA, R
∗(v, ξ)v −R(v, ξ)v)|+

|g∗(ξA + ηA, ξA +R(v, ξ)v)| ≤M1ε.

For the same reasons:

|g∗(ξA + ηA, ξA′ + ηA′)| ≤M0 ‖g∗ − g‖C1 (|ξ|∗ + |η|∗) ≤M1ε.

∣∣∣∣∣14g∗(ξ, η) +
3

4
g∗(ξA, ηA)− 1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +R∗(v, ξ, v, η)

∣∣∣∣∣ ≤M1ε.

Suppose M1 sufficiently big to be the same in the three inequalities above. So we have:

∣∣∣∣ ddt g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
− 2

g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

(
5

8
g∗(ξ − η, ξ − η)+

3

8
g∗(ξ, ξ)− 3

4
g∗(ξA, ηA) +

1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +

3

8
g∗(η, η)

)∣∣∣∣∣
≤ 2c(3M1)ε = M2ε.

Let us analyse the following expression over the initial closed geodesic:(
3

8
g∗(ξ, ξ)− 3

4
g∗(ξA, ηA) +

1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +

3

8
g∗(η, η)

)
=

3

8
(ξ2

1 + ξ2
2 + . . .+ ξ2

n−1 + η2
1 + η2

2 + . . .+ η2
n−1 − 2

r∑
k=1

ξkηk +
4

3

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk).

The expression ξ2
1 +η2

1 +ξ2
2 +η2

2 +. . .+ξ2
n−1+η2

n−1−2ξ1η1−. . .−2ξrηr+
4
3

∑n−1
k=r+1 ∂

2
kkαv

2
0ξkηk

equals
∑r

i=1(ξi− ηi)2 +
∑n−1

i=r+1 ξ
2
i − 2

3
ξiηi + η2

i =
∑r

i=1(ξi− ηi)2 +
∑n−1

i=r+1(ξi− 1
3
ηi)

2 + 8
9
η2
i

which is positive in the border of the cone with opening c. This implies that along the
closed geodesic γ the cone is preserved, but that we already knew. We need to prove
the positivity of the derivative along the other geodesics of the flow. So, we need the
following:

infa∈[−1− δ
2
,1+ δ

2
]inf{

n−1∑
k=r+1

ξ2
k −

4a

3
ξkηk + η2

k} ≥ L(a, b) > 0,

for any (ξ, η) in the boundary of the cone with opening c ∈ [a, b] ⊂ (1, 2).
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Because g∗ is a C∞ metric, and its coordinates along γ are δij, if the neighborhood of
γ is sufficiently small, if ε is small enough, we can conclude:

infx∈supp(α)inf{(g∗(ξ, ξ)− 2g∗(ξA, ηA) +
4

3

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk + g∗(η, η))} ≥ 1

2
L(a, b) > 0.

So:

infx∈supp(α)inf{
3

8
g∗(ξ, ξ)− 3

4
g∗(ξA, ηA) +

1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +

3

8
g∗(η, η)} ≥

L′(a, b) =
3

16
L(a, b) > 0.

This implies that, if ε < 1
2M2

L′(a, b), for (ξ, η) in the boundary of the cone with opening

c ∈ [a, b] ⊂ (1, 2), and for v = (v0, 0, . . . , 0), then the derivative of equation (1) is positive.

5.3.4 Extension of the cone property to θ-parallel vectors

Now we are going to show that this derivative is positive not only for parallel vectors
(v = (v0, 0, . . . , 0)), but for θ-parallel vectors.

Lemma 5.14. For θ-parallel vectors the angle cone variation is positive (the cone closes)

Proof.

R∗(v, ξ, v, η)−R(v, ξ, v, η) ≈ −1

2

n−1∑
k=r+1

∂2
kkα(v2

kξ0η0 + v2
0ξkηk − v0vk(ξ0ηk + ξkη0)).

This is so because (4) implies the following relation:

R∗ijkl −Rijkl ≈ −
1

2
(∂2
ik∆gjl + ∂2

jl∆gik − ∂2
il∆gjk − ∂2

jk∆gil), (5)

where ≈ means that the rest of the equation depends on α and ∂α, and ∆gij := g∗ij − gij.
So we can say that:

∣∣∣∣∣R∗(v, ξ, v, η)−R(v, ξ, v, η) +
1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk

∣∣∣∣∣ ≤M1ε+M0|θ|(‖ξ‖∗‖η‖∗).

So, for the derivative we have:
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∣∣∣∣ ddt g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
− 2

g∗(ξA + ηA, ξA + ηA)

(g∗(ξ, ξ) + g∗(η, η))2

(
5

8
g∗(ξ − η, ξ − η)+

3

8
g∗(ξ, ξ)− 3

4
g∗(ξA, ηA) +

1

2

n−1∑
k=r+1

∂2
kkαv

2
0ξkηk +

3

8
g∗(η, η)

)∣∣∣∣∣
≤M2ε+M0|θ|(‖ξ‖∗‖η‖∗).

So, if we calculate for (ξ, η) in g∗(ξ, ξ) + g∗(η, η) = 1, we have that if |θ| < 1
4M0

L′(a, b)

and ε < 1
2M2

L′(a, b), then:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
≥ 1

2
L′(a, b) > 0

Then we conclude that, in the band {(x, v) is θ-parallel to γ} the cones are properly
invariant for the geodesic flow.

5.3.5 The control of the cones for θ-transversal vectors

For vectors that are not θ-close to (1, 0, . . . , 0), that are θ-transversal to γ, we do not
have preservation of the cones. But this is not at all a problem if we choose an ε small
enough such that the cone with openning b stays inside the cone with opening a. This
is possible because α is C1 close to zero, the second derivative of α is limited and this
limitation does not depend on ε. So:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
≥M

As ε goes to 0, the support of the deformation of the metric shrinks. As it shrinks, the
time that the geodesics take to cross this neighborhood of the geodesic γ goes to zero.
So, as we can control the time which these geodesics spend inside the neighborhood, we
choose an ε such that the cone with opening b stays inside the cone of openning a.

Let us be more precise:

Lemma 5.15. The time which θ-transversal geodesics cross the neighborhood of the de-
formation of the metric g is comparable to ε.

Proof. To see that the time spent is comparable to ε we need to express the geodesic
vector field in Fermi coordinates of the neighborhood. We can use Fermi coordinates now
because we don’t need the coordinates in the whole neighborhood of the closed geodesic
γ in this case. The maps dπ and K are:

dπξ = (ξ0, ξ1, . . . , ξ2n−1),



30

Kξ =

(
ξ2n+k +

2n−1∑
i,j=0

Γ∗kij viξj

)2n−1

k=0

.

So, the pre-image of (v, 0) by the map (dπ,K) is:(
v0, v1, . . . , v2n−1,−

2n−1∑
i,j=0

Γ∗0ij vivj,−
2n−1∑
i,j=0

Γ∗1ij vivj, . . . ,−
2n−1∑
i,j=0

Γ∗2n−1
ij vivj

)
.

Since g∗ is C∞ and along the geodesic γ, Γ∗kij = 0, then, if ε is sufficiently small, the
geodesic vector field is approximately (v0, v1, . . . , v2n−1, 0, 0, . . . , 0).

Since the second part of the geodesic vector field is small as ε is small, we can say
that geodesics such that |vi| ≥ θ for some i = 1, . . . , 2n− 1 cross the neighborhood in at
most ε

θ
, and they leave the neighborhood at least θ

2
far from (1, 0, . . . , 0), or, better said,

outside the set {v ∈ S∗M : |vi| < θ
2
, i = 1, 2, . . . , 2n− 1}.

5.3.6 Proof of proposition 5.10

Recall the statement of proposition 5.10:

Proposition 5.10. The geodesic flow of g∗ preserves the strong unstable cone field Cu(v, c)
and the strong stable cone field Cs(v, c), for some c ∈ (1, 2) and some ε small enough.

Proof. First, take an orbit of the geodesic flow of g∗. If it never crosses the region of the
deformation, where g∗ equals the original metric g, then the cone field is preserved. If it
crosses the region of deformation, then it takes some time T ′ inside this region. If it is
θ-parallel to the geodesic γ, then it preserves the cone field (lemma 5.14). If it turns, after
this time T ′, into a θ-transversal geodesic, then it spends T ′ + kε time inside this region
(lemma 5.15), and then it leaves it and spend some time outside it. As the set of the orbits
which leave this region is a compact set, the infimum is positive. Let us say they spend at
least Tε outside the neighborhood. As ε goes to zero, Tε does not goes to zero. If it did, we
could get a sequence of geodesics outside {v ∈ S∗M : |vi| < θ

2
, i = 1, 2, . . . , 2n− 1} which

would spend very little time outside the neighborhood of γ before enter it again. So, in
the limit, there would be a contradiction with the unicity of the solutions of the ordinary
differential equations of the geodesic flow. So the time spent outside the neighborhood
of γ is bounded from below - let us say it is bounded from below by T . This means that
we can choose ε so that the quotient between the time spent inside and the time spent
outside of the neighborhood of γ is as small as we want. As small as it is necessary for the
preservation of the strong unstable and strong stable cones. So, the orbit spends some
time kε where there is a little expansion of the angle of the cone field, then spends time
at least T in the region where there’s contraction of the angle of the cone field.

Outside the neighborhood of the deformation the following holds:
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d

dt

(g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)
=

d

dt

g(ξA + ηA, ξA + ηA)

g(ξ, ξ) + g(η, η)
≥ 3

8
c(2− c),

for (ξ, η) in the boundary of the cone of openning c. So, for cones with border in [a, b],
we have:

d

dt

g∗(ξA + ηA, ξA + ηA)

g∗(ξ, ξ) + g∗(η, η)∗
≥ 3

8
b(2− b).

So we choose a′ such that |a′ − b| < 3
16
b(2 − b)T . This ensures that outside the

neighborhood the geodesic flow sends the cone with opening a′ inside the cone with
opening B in time T

2
. For ε sufficiently small, with the inferior limit of the derivative not

depending on ε, the cone with opening b is not sent outside the cone with opening a′.
So, we have preservation of the cone field, although there is a region where the cone

field is not properly invariant, because the orbits of length T of the geodesic flow cross
this region in an interval of time as small as we want. So the preservation of the cone
field holds because after that it takes an interval of length T

2
for the cones to be properly

contained.
So, there is an invariant subbundle Eu. The same happens for the stable invariant

direction Es, because for a geodesic flow the ’past’ of the orbit of v ∈ S∗M is the future
of the orbit of −v.

5.3.7 Exponential growth of the Jacobi fields

So, the strong unstable cone is preserved by the new geodesic flow. By symmetry, or by
the reversibility of geodesic flows, the strong stable cone is preserved too. But preservation
of these cones only proves that there are invariant subbundles with domination. We have
to show that there is exponential growth along these strong directions.

Proposition 5.16. For the geodesic flow of g∗ there is exponential expansion of vectors
in Cu(v, c).

Proof. Outside the neighborhood of γ where we deform the metric, the following holds:

d

dt
g∗(ξA + ηA, ξA + ηA) =

d

dt
g(ξA + ηA, ξA + ηA)

= 2(g(ξA + ηA, ηA −R(v, ξ)v)

= 2g(ξA + ηA, ξA + ηA)

= 2g∗(ξA + ηA, ξA + ηA).

For vectors v ∈ {v ∈ S∗M : v θ-close to (1, 0, . . . , 0)}:
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d

dt
g∗(ξA + ηA, ξA + ηA) = 2g∗(ξA + ηA, ηA + ξA′ + ηA′ −R∗(v, ξ)v)

≥ 2g∗(ξA + ηA, ηA −R∗(v, ξ)v)− Lε(|ξ|∗ + |η|∗))
≥ 2(1− 2Lε)g∗(ξA + ηA, ξA + ηA).

So for ε sufficiently small we have exponential growth in this case. Now, in the case of v
’transversal’ to γ:

d

dt
g∗(ξA + ηA, ξA + ηA) = 2g∗(ξA + ηA, ηA + ξA′ + ηA′ −R∗(v, ξ)v)

≥ Kg∗(ξA + ηA, ξA + ηA),

for some K ∈ R which does not depend on ε.
So, if we take any geodesic c : [0, T ] → M , we have that it takes only ε inside the

neighborhood, and ’transversal’ to γ′. So, if we call f(t) := (g∗(ξ, Jv) + g∗(η, Jv))2, we
have that f ′(t) ≈ 2f(t) for time T−ε and f ′(t) ≥ Kf(t) for time ε, at most. This implies:

∫ T

0

(log f)′(s)ds ≥ 2(T − ε) +Kε = 2T + (K − 2)ε⇒

log f(T )− log f(0) ≥ 2T + (K − 2)ε⇒ f(T ) ≥ f(0)e(2T+(K−2)ε).

So for ε sufficiently small, we have that f grows exponentially for the (ξ, η) inside the
unstable cone we have exponential growth.

5.4 Conclusion

So, we proved the proper invariance of the unstable and stable cones. And we proved the
exponential expansion or contraction respectively, in the previous subsection. Then we
conclude:

Theorem 5.17. For (M, g) Kahler manifold of negative holomorphic curvature −1 or
quaternion Kahler locally symmetric space of negative curvature, there is a metric g∗ in
M such that its geodesic flow is partially hyperbolic but not Anosov.

Remark 5.18. A classical Mañé theorem [M3] says that if, for a geodesic flow of a Rie-
mannian manifold (M, g), there is an invariant Lagrangian subbundle of S(SM), then
this Riemannian manifold does not have conjugate points. The existence of a partially
hyperbolic non-Anosov geodesic flow implies that this theorem does not generalize to the
case of invariant isotropic subbundles.

Corollary 5.19. There is an open set U ′ of metrics in the set of metrics of (M, g) such
that for g∗ ∈ U , the geodesic flow of g∗ is partially hyperbolic but not Anosov. Moreover,
for all metrics g∗ in an open subset U ′ ⊂ U , (M, g∗) has conjugate points.
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Proof. We can make the closed geodesic γ, which is a geodesic for both metrics g and g∗,
a quasi-elliptic nondegenerate closed geodesic. The linearized Poincare map of a quasi-
elliptic nondegenerate orbit has eigenvalues on the unit circle but they are different than
one. We only need to multiply the bump function by a constant greater but sufficiently
close to 1 such that the geodesic flow remains partially hyperbolic. Since quasi-elliptic
nondegenerate closed geodesics are persistent, there is an open neighborhood U of g∗ in
the set of metrics of M such that all metrics in this open set are partially hyperbolic,
and are far away from the set of Anosov metrics. Also, the existence of a quasi-elliptic
closed geodesic implies that the metric has conjugate points, which is an open condition.
So, for g∗ ∈ U ′ ⊂ U the geodesic flow of g∗ is partially hyperbolic and g∗ has conjugate
points.

Remark 5.20. Ruggiero [R2] proved that the C2-interior of the set of metrics with no con-
jugate points is the set of metrics whose geodesic flow is Anosov. For partially hyperbolic
geodesic flows we have an C2-open set of metrics with conjugate points.

Corollary 5.21. There is an open set V of Hamiltonians in the set of Hamiltonians of
(TM,ω), near geodesic Hamiltonians, such that for h ∈ U , the Hamiltonian flow of h is
partially hyperbolic but not Anosov.

Proof. For the same reasons of the previous corollary there is an open set of Hamiltonians
with the same property, near geodesic Hamiltonians.

6 Symmetric spaces of nonpositive curvature

In this section we give a brief introdution of the subject of symmetric and locally symmet-
ric spaces [E2],[E3],[J], and prove that compact locally symmetric spaces of nonpositive
curvature are partially hyperbolic only if their sectional curvature takes values on the
whole interval [−1,−1

4
].

Definition 6.1. A simply connected Riemannian manifold is called symmetric if for every
x ∈M there is an isometry σx : M →M such that

σx(x) = x, dσx(x) = −idTxM .

The property of being symmetric is equivalent to:

• ∇R ≡ 0,

• if X(t), Y (t) and Z(t) are parallel vector fields along γ(t), then R(X(t), Y (t))Z(t)
is also a parallel vector field along γ(t).

Remark 6.2. A symmetric riemannian manifold is geodesically complete and every two
points can be connected by a geodesic.

Definition 6.3. A complete Riemannian manifold with∇R ≡ 0 is called locally symmetric.
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Each locally symmetric space N is the quotient of a simply connected symmetric space
M and a group Γ acting on M discretly, without fixed points, and isometrically, such
that N = M/Γ.

Proposition 6.4. Let N be a locally symmetric space, p ∈ N , v ∈ TpN , c geodesic such
that c(0) = p, c′(0) = v, there are v1, . . . , vn−1 an orthogonal basis of eigenvectors of Rc′(0)

orthogonal to v with eigenvalues ρ1, . . . , ρn−1, and parallel vector fields v1(t), . . . , vn−1(t)
along c such that vi(0) = vi. Then the Jacobi fields along c are linear combinations of the
following Jacobi fields

cρj(t)vj(t) and sρj(t)vj(t),

where
cρ(t) := cos

√
ρt, ρ > 0, cρ(t) := cosh

√
−ρt, ρ < 0, cρ(t) := 1, ρ = 0,

sρ(t) :=
1
√
ρ

sin
√
ρt, ρ > 0, sρ(t) :=

1√
−ρ

sinh
√
−ρt, ρ < 0, sρ(t) := t, ρ = 0.

The proof of the proposition relies on the two facts: Rv : TpN → TpN : w → R(v, w)v
is a self-adjoint map and the curvature tensor is parallel.

Definition 6.5. Let g be the algebra of Killing fields on the symmetric space M , p ∈ M .
Define

k := {X ∈ g : X(p) = 0},

p := {X ∈ g : ∇X(p) = 0}.

For these subspaces of g, k⊕ p = g and k ∩ p = {0}, and TpM identifies with p.

Definition 6.6. Given p ∈ M , we define the involution φp(g) : G → G : g → σp ◦ g ◦ σp.
Then, we obtain θp : dφp : g → g. Since θ2

p = id and θp preserves the lie brackets, the
properties of this subspaces of g are:

i. θp|k = id,

ii. θp|p = −id,

iii. [k, k] ⊂ k, [p, p] ⊂ k, [k, p] ⊂ p,

Proposition 6.7. With the identification TpM ∼= p the curvature tensor of M satisfies

R(X, Y )Z(p) = [X, [Y, Z]](p)

for all X, Y, Z ∈ p. In particular, R(X, Y )X(p) = −(adX)2(Y )(p).

Remark 6.8. We are going to consider only symmetric spaces with nonpositive sectional
curvature.
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Fix a maximal Abelian subspace a ⊂ p. Let Λ denote the set of roots determined by
a, and

g = g0 +
∑
α∈Λ

gα.

gα = {w ∈ g : (adX)w = α(X)w}, α : a→ R is a one-form.
Define a corresponding decomposition for each α ∈ Λ, kα = (id + θ)gα and pα =

(id− θ)gα. Then:

i. id+ θ : gα → kα and id− θ : gα → pα are isomorphisms,

ii. pα = p−α, kα = k−α, and pα ⊕ kα = gα ⊕ g−α,

iii. p = a +
∑

α∈Λ pα, k = k0 +
∑

α∈Λ kα, where k0 = g0 ∩ k.

For X ∈ a we have that, along the geodesic c in M with initial conditions c(0) = p,
c′(0) = X, the Jacobi fields are linear combinations of the following Jacobi fields:

c−α(X)2(t)vj(t) and s−α(X)2(t)vj(t).

So, we define for a vector X ∈ a, and for α such that α(X) 6= 0, the invariant subspaces
P u
α (X), P s

α(X) ⊂ T(p,X)SM such that

dφt(X)P u
α (X) = P u

α (φt(X)), dφt(X)P s
α(X) = P s

α(φt(X)),

P u
α (X) = {(w, |α(X)|w) ∈ p : w ∈ pα}, P s

α(X) = {(w,−|α(X)|w) ∈ p : w ∈ pα}.

Along the same lines of the proof that product metrics are not partially hyperbolic:

Theorem 6.9. If the geodesic flow of a compact locally symmetric space of nonpositive
curvature is partially hyperbolic, then is curvature takes values on the whole interval
[−1,−1

4
].

Proof. If the locally symmetric space N has a partially hyperbolic geodesic flow, then the
symmetric space M such that N = M/Γ has a partially hyperbolic geodesic flow.

Fix x ∈ M and consider v ∈ SxM . Let a be the maximal Abelian subspace of g in x
such that X ∈ a.

Suppose dim(a) ≥ 2. If the geodesic flow of the symmetric space M is partially
hyperbolic, then there is a splitting into invariant subbundles:

S(SM) = Es ⊕ Ec ⊕ Eu.

This decomposition and the curvature tensor formula imply that

Eu(x, v) = {(ξ, η) ∈ T(x,v)SM : (ξ, η) ∈ P u
αi

(v)},
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Es(x, v) = {(ξ, η) ∈ T(x,v)SM : (ξ, η) ∈ P s
αi

(v)},

i = 1, . . . , k, |α1| > |α2| > . . . > |αk|, such that if β 6= αi, ∀i = 1, . . . , k, then β(v) < αi(v),
∀i = 1, . . . , k.

Now we pick (x, v′) such that α1(v′) = 0, for some i. Then:

Eu(x, v′) = {(ξ, η) ∈ T(x,v′)SM : (ξ, η) ∈ Pβj},

Es(x, v′) = {(ξ, η) ∈ T(x,v′)SM : (ξ, η) ∈ Pβj},

for some βj ∈ Λ, j = 1, . . . , k′, |β1| > |β2| > . . . > |βk′|. Notice that α1(v′) = 0 implies
βj 6= α1, ∀j = 1, . . . , k′. As in the proof of the product metric, there is no way to go
from one decomposition to the other continuously. So, there are no Abelian subspaces
with dimension greater than one, and the symmetric space of nonpositive curvature has
rank one. If dimension of the Abelian subspaces is one then the symmetric space has
negative curvature, which implies by the classification of Heintze [H] that it is a Kahler
hyperbolic space, or quaternionic hyperbolic space, or the hyperbolic space over the
Cayley numbers.

7 Further results and questions

This section is about the obstructions to have a partially hyperbolic geodesic flow and
some questions we hope to adress in our next works about the subject of partially hyper-
bolic geodesic flows.

There is an obstruction to partial hyperbolicity if one add the hypothesis of nonpositive
sectional curvature in the Riemannian manifold: the rank of the Riemannian manifold.

Definition 7.1. Let (M, g) be a Riemannian manifold of nonpositive sectional curvature.
Then, for v ∈ TxM , rank(v) := dimJ c(v), where J c(v) is the set of parallel Jacobi fields
along the geodesic γ, such that γ(0) = x, γ′(0) = v. The rank of M is rank(M) :=
infv∈TxMrank(v) [Ba1], [E2], [E3].

Theorem 7.2. If M is a compact Riemannian manifold with nonpositive curvature such
that its geodesic flow is partially hyperbolic, then M has rank one.

Proof. By theorem 3.3, M has to be irreducible. By the rank rigidity theorem of Ballmann
[Ba2] and Burns-Spatzier [BS], if M is irreducible, has nonpositive curvature, and rank
bigger than one, then it is a locally symmetric space of rank bigger than one. Then, by
theorem 6.9, its geodesic flow is not partially hyperbolic.

Another obstruction is the dimension of the Riemannian manifold, and also the di-
mension of the extremal subbundles of the partially hyperbolic splitting. We use the
following result in Steenrod’s classical book:
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Theorem 27.18 [St]. Let Sn be the n-dimensional sphere. Then, it does not admit a
continuous field of tangent k-planes if n is even or if n ≡ 1 mod 4 and 2 ≤ k ≤ n− 2.

So, we can state the following:

Theorem 7.3. If (Mn, g) is a Riemannian manifold with partially hyperbolic geodesic
flow then n is even, and if n ≡ 2 mod 4, then dimEs = 1, n− 2 or n− 1.

Proof. First, let Es ⊕Ec ⊕Eu be the splitting of S(SM), the contact structure on SM ,

and J̃ : T (TM)→ T (TM) the almost complex structure, which leaves S(SM) invariant.

The orthogonal projection of Es ⊕ J̃Es to the horizontal subbundle H has dimension
equal to dim(Es).Then, for a fixed x ∈M ,

X(v) := d(x,v)π · projH(x,v)(E
s(x, v)⊕ J̃Es(x, v))

is a continuous tangent field of (dimEs)-planes on SxM , which is a (n− 1)-dimensional
sphere. So we apply theorem 6 to conclude that n is even, and if n ≡ 2 mod 4, then
dimEs = 1, n − 2 or n − 1 (The last case, where dimEs = n − 1, is the case of trivial
central bundle).

Remark 7.4. The idea that partial hyperbolicity of the geodesic flow implies odd dimen-
sion of the Riemannian manifold is due to Gonzalo Contreras, who communicated an
idea of the proof of this fact to the second author of this article.

There are some questions that we hope to adress in the future:

Question 1. Is there a partially hyperbolic non-Anosov geodesic flow with nonpositive
sectional curvature?

We know that it does imply that the Riemannian manifold has rank one, and so
it is transitive. If there is not such an example, this would imply that we need some
positive curvature to get a partially hyperbolic geodesic flow which is not Anosov, as in
the example we built above.

Question 2. Is the example above which we constructed in section 5 transitive? Is it
ergodic?

It would be natural to ask this questions, from the dynamical systems point of view,
to know which systems have these properties, in the set of diffeomorphisms, flows and
geodesic flows.

Question 3. Is there an Riemannian manifold (M, g) with partially hyperbolic geodesic
flow such that one of the invariant subbundles Es and Eu contain Jacobi fields such that
J(t) = 0 to some t ∈ R? This would imply that there are conjugate points associated to
them.

Mañé’s theorem [M3], which says that an invariant Lagrangian subbundle implies lack
of conjugate points, does not hold if the hypothesis is changed to existence of an invariant
isotropic subbundle. But our result about obstructions for the dimensions of the manifold
(M, g) and the dimensions of the strong invariant subbundles Es and Eu does not prove
that there are no conjugate points associated with stable or unstable Jacobi fields of
partially hyperbolic geodesic flows.
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Pura e Aplicada, Rio de Janeiro (1988).

[CKO] Castro, H. M. A.; Kobayashi, M. H.; Oliva, W. M. Partially hyperbolic Σ-geodesic
flows. Special issue in celebration of Jack K. Hale’s 70th birthday, Part 3 (Atlanta,
GA/Lisbon, 1998). J. Differential Equations 169 (2001), no. 1, 142-168.

[Co1] Gonzalo Contreras, Partially hyperbolic geodesic flows are Anosov, C. R. Acad.
Sci. Paris, Ser. I 334 (2002) 585-590.

[Co2] Gonzalo Contreras, private communication.

[DoP] Victor Donnay and Charles Pugh, Finite horizon Riemann structures and ergod-
icity, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 89-106.

[E1] Patrick Eberlein, When is a geodesic flow of Anosov type? I, Journal of Differ-
ential Geometry, 8 (1973), 437-463.



39

[E2] Patrick Eberlein, Structure of manifolds of nonpositive curvature, Lecture Notes
in Mathematics , vol. 1156 , Springer Verlag , (1985) , 86-153.

[E3] Patrick Eberlein, Geometry of Nonpositively Curved Manifolds, Chicago Lectures
in Mathematics.

[G] William M. Goldman, Complex hyperbolic geometry, Claredon Press, Oxford,
1999.

[Gr] Alfred Gray, A note on manifolds whose holonomy group is a subgroup of
Sp(n).Sp(1), Michigan Mathematical Journal, vol.16, issue 2 (1969), 125-128.

[H] Ernst Heintze, On Homogeneous Manifolds of Negative Curvature, Mathematis-
che Annalen. Volume 211, Number 1, 23-34.

[He] Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure
and Applied Mathematics, Academic Press, New York-London (1978).

[HK] Boris Hasselblatt, Anatole Katok, Introduction to the modern theory of dynam-
ical systems, Cambridge University Press, Cambridge, 1995.

[HP] Boris Hasselblatt, Yakov Pesin, Partially Hyperbolic Dynamical Systems, Hand-
book of Dynamical Systems, vo. 1B, Elsevier, North-Holland (2006).

[J] Jurgen Jost, Riemannian Geometry and Geometric Analysis. Universitext.
Springer-Verlag

[Kl] W. Klingenberg, Lectures on closed geodesics, Springer-Verlag, 1978.

[KN] S. Kobayashi, K. Nomizu, Foundations of differential geometry, Vol. II, In-
terscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II Interscience
Publishers John Wiley and Sons, Inc., New York-London-Sydney 1969.
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