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ABSTRACT

Error bounds (estimates for the distance to the solution set of a given problem) are key
to analyzing convergence rates of computational methods for solving the problem in ques-
tion, or sometimes even to justifying convergence itself. That said, for the generalized Nash
equilibrium problems (GNEP), the theory of error bounds had not been developed in depth
comparable to the fields of optimization and variational problems. In this paper, we provide
a systematic approach which should be useful for verifying error bounds for both specific
instances of GNEPs and for classes of GNEPs. These error bounds for GNEPs are based on
more general results for constraints that involve complementarity relations (of independent
interest) and cover those (few) GNEP error bounds that existed previously, and go beyond. In
addition, they readily imply a Lipschitzian stability result for solutions of GNEPs, a subject
where again very little had been known. As a specific application of error bounds, we dis-
cuss Newtonian methods for solving GNEPs. While we do not propose any significantly new
methods in this respect, some new insights into applicability to GNEPs of various approaches
and into their convergence properties are presented.

Dedicated to Professor Masao Fukushima, on the occasion of his 65th birthday.

Key words: generalized Nash equilibrium problem, error bound, upper Lipschitz stability, Newton-
type methods.
AMS subject classifications. 90C33, 91A10, 49M05, 49M15.

∗ Research of the first author is supported by the Russian Foundation for Basic Research Grant
10-01-00251. The second author is supported in part by CNPq Grant 302637/2011-7, by PRONEX–
Optimization, and by FAPERJ.
† VMK Faculty, OR Department, Moscow State University, MSU, Uchebniy Korpus 2, Leninskiye
Gory, 119991 Moscow, Russia.
Email: izmaf@ccas.ru
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1 Introduction

For simplicity of presentation, we shall consider the generalized Nash equilibrium problem
(GNEP) with two players and shared constraints only:

minimizex1 f1(x1, x2)
subject to g(x1, x2) ≤ 0,

minimizex2 f2(x1, x2)
subject to g(x1, x2) ≤ 0,

(1.1)

where the players’ objective functions f1 : IRn1 × IRn2 → IR and f2 : IRn1 × IRn2 → IR and
the constraint mapping g : IRn1 × IRn2 → IRm are smooth. This simplified setting requires
lighter notation, while being sufficient to state and explain our results. Extentions of all the
statements to the case of more than two players, and/or to the case when individual (not
shared) constraints are present, are straightforward. GNEP setting goes back to [35]; for a
modern survey, see [14]. Some other relevant references on theory and numerical methods for
GNEP are [20, 19, 11, 12, 13, 26, 32, 8, 21, 27].

As is well known, error bounds (i.e., estimates for the distance to the solution set of
a given problem) are important for a great variety of reasons, among which are analysis
and design of computational algorithms, stability/sensitivity, etc. For general references
on error bounds, conditions required for them to hold, and their roles in optimization and
variational problems, see, e.g., [33, 36] and [15, Ch. 6]. As commented in [12, Sections 3.3,
4.3] and [14, Section 5.6], error bounds for GNEP are not as well developed yet. This paper
suggests a simple and natural way to deriving error bounds for GNEP under reasonable
assumptions. Our approach is based on a more general result for constraint systems that
involve complementarity relations, which is of independent interest. The obtained error
bounds are further applied to the analysis of some Newton-type methods for GNEP.

One approach to (1.1) is to solve, simultaneously, the Karush–Kuhn–Tucker (KKT) op-
timality systems for the two optimization problems in (1.1); see [14]. I.e., the task is to solve
the following system in the primal-dual space:

∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0,

µ1 ≥ 0, 〈µ1, g(x1, x2)〉 = 0, µ2 ≥ 0, 〈µ2, g(x1, x2)〉 = 0, g(x1, x2) ≤ 0,
(1.2)

where Lj : IRn1 × IRn2 × IRm → IR is the Lagrangian of the corresponding optimization
problem in (1.1), i.e.,

Lj(x
1, x2, µj) = fj(x

1, x2) + 〈µj , g(x1, x2)〉, j = 1, 2.

(Here, and throughout the rest of the paper, we use the notation ∂
∂xj

for the the partial

derivative with respect to xj . For instance, ∂g
∂x1

(x1, x2) is the Jacobian of the mapping
g(·, x2) at x1.)

The following relations between the (primal) solutions of GNEP (1.1) and (primal-dual)
solutions of system (1.2) are well-known [14, Theorem 4.6]. If (x̄1, x̄2) ∈ IRn1 × IRn2 is
an equilibrium, and the constraints of the first problem in (1.1) with x2 = x̄2 satisfy an
appropriate constraint qualification (CQ) [36] at x̄1, while the constraints of the second
problem in (1.1) with x1 = x̄1 satisfy a CQ at x̄2, then there exists (µ̄1, µ̄2) ∈ IRm × IRm
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such that (x̄1, x̄2, µ̄1, µ̄2) solves (1.2). Conversely, if f1(·, x2) and the components of g(·, x2)
are convex for each x2 ∈ IRn2 , while f2(x1, ·) and the components of g(x1, ·) are convex for
each x1 ∈ IRn1 , then for every solution (x̄1, x̄2, µ̄1, µ̄2) of (1.2) it holds that (x̄1, x̄2) is an
equilibrium. In particular, under the appropriate assumptions, by estimating the distance to
the solution set of (1.2) one also estimates the distance to the solution set of GNEP (1.1).

If at a primal solution x̄ of (1.2) we have coinciding Lagrange multipliers µ̄1 = µ̄2, this
solution is called variational equilibrium. This is a simpler but important case, which indeed
occurs in various practical models [14]; see also [28] for an example. Observe that impos-
ing µ1 = µ2, (1.2) becomes an instance of the mixed complementarity problem [15] whose
solutions can be expected to be isolated. In this situation, the error bounds and methods
developed for this problem class (e.g., in [24, 17, 23, 2, 4, 5, 6]) are readily adaptable. We
shall not deal with this case here, even though some details of such an adaptation should be
of interest. In this paper, we consider the general case when the multipliers need not coincide.

The rest of the paper is organized as follows. In Section 2 we provide an error bound result
for general constraint systems that involve complementarity relations, showing in particular
that piecewise error bounds imply the error bound for the full system in terms of its natural
residual. In Section 2, we first put in evidence that the weakest general CQ that is currently
known to imply an error bound for “generic” (without special structure) systems – the relaxed
constant positive linear dependence condition [1] – cannot be expected to hold for the KKT
systems associated to GNEP. Thus, a special analysis is needed. Using the result for systems
with general complementarities, we then show that for the GNEP KKT systems, an error
bound holds under some very reasonable assumptions (in particular, not involving strict
complementarity). The obtained error bound further implies upper Lipschitz stability of
solutions of GNEP KKT systems under smooth perturbations. In Section 4 we discuss
some consequences of our error bound results for the convergence of Newtonian methods for
GNEP. Among other things, we show applicability to GNEP of the algorithms for nonsmooth
constrained equations with nonisolated solutions recently developed in [9, 10].

We now describe some of our notation and recall some CQs that will be of relevance
for subsequent discussions. Given a vector z ∈ IRs and an index set I ⊂ {1, . . . , s}, by
zI ∈ IR|I| we mean the vector comprised by the components of z indexed by I, where |I| is
the cardinality of I. Similarly, for a matrix M with s rows, MI stands for the matrix given
by the rows of M indexed by I.

Consider the constraint system

a(u) = 0, b(u) ≤ 0,

where a : IRp → IRq and b : IRp → IRs are sufficiently smooth, and let D be its solution
set. For any ū ∈ D, define the set I(ū) = {i = 1, . . . , s | bi(ū) = 0} of active inequality
constraints. The Mangasarian–Fromovitz CQ (MFCQ) [30] holds at ū if the system

(a′(ū))Tη + (b′I(ū)(ū))Tζ̃ = 0, ζ̃ ≥ 0,

in the variables (η, ζ̃) ∈ IRq × IR|I(ū)| has only the zero solution (this is the dual form of
MFCQ). (Here, and throughout the paper, prime denotes the Jacobian of the mapping in
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question.) Clearly, MFCQ is implied by the linear independence CQ (LICQ), which consists
of saying that the set {a′j(ū) | j = 1, . . . , q} ∪ {b′i(ū) | i ∈ I(ū)} is linearly independent.

Let J ⊂ {1, . . . , q} be such that {a′j(ū) | j ∈ J} is a basis (any basis) in the linear
subspace spanned by {a′j(ū) | j = 1, . . . , q}. The relaxed constant positive linear dependence
constraint qualification (RCPLD) [1] holds at ū ∈ D if there exists a neighborhood U of ū
such that:

1. It holds that rank a′(u) is constant for all u ∈ U .

2. For every I ⊂ I(ū), if there exist η̃ ∈ IR|J | and ζ̃ ∈ IR|I|, not all equal to zero and such
that

(a′J(ū))Tη̃ + (b′I(ū))Tζ̃ = 0, ζ̃ ≥ 0, (1.3)

then
{a′j(u) | j ∈ J} ∪ {b′i(u) | i ∈ I} is linearly dependent ∀u ∈ U. (1.4)

This condition is a relaxed version of the constant positive linear dependence CQ (CPLD)
[34], which consists of saying that there exists a neighborhood U of ū such that for any
J ⊂ {1, . . . , q} and I ⊂ I(ū), if there exist η̃ ∈ IR|J | and ζ̃ ∈ IR|I| not all equal to zero and
such that (1.3) holds, then (1.4) holds as well. It is easy to see that MFCQ implies CPLD
and, hence, RCPLD. Also, CPLD (and thus RCPLD) is implied by the well-known constant
rank CQ (CRCQ) [22], and even by the relaxed constant rank CQ (RCRCQ) [31].

Note that RCPLD guarantees [1] that under twice differentiability of a and b near ū, the
following error bound holds:

dist(u, D) = O(‖a(u)‖+ ‖max{0, b(u)}‖)

as u→ ū, where the max-operation is understood componentwise.

2 An error bound for constraint systems with complementar-
ities

We start with a lemma concerned with error bounds for general constraint systems invloving
complementarity relations:

F (u) = 0, g(u) ≤ 0, G(u) ≥ 0, H(u) ≥ 0, 〈G(u), H(u)〉 = 0, (2.1)

where F : IRn → IRl, g : IRn → IRm, G : IRn → IRs and H : IRn → IRs. In particular, the
feasible set here is as in mathematical programs with complementarity constraints (MPCC)
[29]. Clearly, (1.2) is a special case of (2.1).

Lemma 2.1 below shows that piecewise error bounds for the branches of the set D given
by (2.1) imply an error bound for D in terms of the natural residual of its constraints. This
appears to be a rather natural observation, but we could not find it stated in MPCC literature.
Below, it will be applied to derive error bounds for GNEP KKT systems (1.2). We note that
it is also of an independent interest, as it should be useful for MPCC itself. As MPCC is not
the subject of this paper, we mention only one example – Proposition 2.1 below – on exact
penalization for MPCC.
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Lemma 2.1 Let F : IRn → IRl, g : IRn → IRm, G : IRn → IRs and H : IRn → IRs be
continuous at ū ∈ IRn satisfying the complementarity constraint system (2.1), and let D
stand for the solution set of this system. Set

IG = IG(ū) = {i = 1, . . . , s | Gi(ū) = 0}, IH = IH(ū) = {i = 1, . . . , s | Hi(ū) = 0}, (2.2)

I0 = IG ∩ IH . (2.3)

Assume that for each partition (I1, I2) of I0 (i.e., I1 ∪ I2 = I0, I1 ∩ I2 = ∅) the error bound

dist(u, D) = O
(
‖F (u)‖+ ‖max{0, g(u)}‖+ ‖GIG\IH (u)‖+ ‖HIH\IG(u)‖

+ ‖GI1(u)‖+ ‖HI2(u)‖+ ‖min{0, GI2(u)}‖+ ‖min{0, HI1(u)}‖
)

(2.4)

holds as u→ ū.
Then the error bound

dist(u, D) = O(‖F (u)‖+ ‖max{0, g(u)}‖+ ‖min{G(u), H(u)}‖) (2.5)

holds as u→ ū.

Proof. Observe first that if u ∈ IRn is close enough to ū, then (by the continuity of the

functions involved) it holds that

Gi(u) = min{Gi(u), Hi(u)} ∀ i ∈ IG \ IH , Hi(u) = min{Gi(u), Hi(u)} ∀ i ∈ IH \ IG.
(2.6)

Moreover, for any u ∈ IRn it evidently holds that

|min{0, Gi(u)}| ≤ |min{Gi(u), Hi(u)}|, |min{0, Hi(u)}| ≤ |min{Gi(u), Hi(u)}|
∀ i = 1, . . . , s.

(2.7)

Considering any u ∈ IRn, we now define the corresponding partition (I1, I2) of I0 as
follows: we assign i ∈ I0 to I1 if Gi(u) ≤ Hi(u), and to I2 otherwise. Then

Gi(u) = min{Gi(u), Hi(u)} ∀ i ∈ I1, Hi(u) = min{Gi(u), Hi(u)} ∀ i ∈ I2. (2.8)

The claimed error bound (2.5) now follows from the error bounds (2.4) by (2.6)–(2.8),
and by the fact that the number of different partitions of I0 is finite.

The following comments are useful for clarifying the nature of this development, and its
possible other applications. Observe that in the right-hand side of (2.4) we have the residual
of the constraints

F (u) = 0, g(u) ≤ 0, G(IG\IH)∪I1(u) = 0, HI1(u) ≥ 0, GI2(u) ≥ 0, H(IH\IG)∪I2(u) = 0,
(2.9)
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which define the branch D(I1, I2) of the solution set D of system (2.1). Specifically, locally
(near ū) the set D coincides with the union of such branches over all partitions of I0. It then
follows that any CQ [36] which guarantees the error bound

dist
(
u, D(I1, I2)

)
= O

(
‖F (u)‖+ ‖max{0, g(u)}‖+ ‖GIG\IH (u)‖+ ‖HIH\IG(u)‖

+ ‖GI1(u)‖+ ‖HI2(u)‖+ ‖min{0, GI2(u)}‖+ ‖min{0, HI1(u)}‖
)

(2.10)

for each of the branches (i.e., “piecewise CQ”) implies the needed error bound (2.5). For
instance, according to this argument, the so-called MPCC-linear independence constraint
qualification implies (2.5), since it implies LICQ for each branch. However, it is important
to emphasize that various much weaker conditions do the job as well. For example, it is
sufficient to assume the piecewise MFCQ, or piecewise (R)CRCQ, or piecewise (R)CPLD;
i.e, MFCQ or (R)CRCQ or (R)CPLD for the constraints defining each branch of (2.1) at a
feasible ū ∈ IRn. Out of all the CQs mentioned, RCPLD of [1] is the weakest, and thus could
in principle be assumed for each branch to yield the sharpest condition for the error bound.
However, it is still appealing to leave the possibility of different CQs holding for different
branches. The reason is that although in the current state-of-the-art on the subject RCPLD
is weaker than the other relevant conditions (MFCQ, RCRCQ, ...) this might change in the
future if new CQs are developed. To support this line of thought, it is enough to mention
that RCPLD is a new condition which did not exist at the time when [36] was written, for
example; and within CQs that give error bounds and are covered in that reference some are
independent (neither one implies the other). In principle, it is possible that such a situation
may emerge again in the future, and then assuming different CQs for different branches would
be useful.

The possibility that complementarity constraints may satisfy some piecewise CQ (weaker
than the strongest MPCC-LICQ) is perhaps “geometrically” clear, but specific examples for
illustration can also be constructed explicitly as follows. Consider the constraint system

F (u) = 0, h(u) = 0, g(u) ≤ 0 (2.11)

with some F : IRn → IRl, h : IRn → IRs and g : IRn → IRm. Suppose that this system
satisfies some specific CQ (any of the mentioned above, for example) at its feasible point ū.
Define G : IRn → IRs and H : IRn → IRs as follows: G ≡ (1, . . . , 1), H = h. Then for the
complementarity constraints in (2.1) the point ū is feasible, and it gives rise to the single
valid branch given by the constraint system in (2.11), with this branch satisfying the needed
CQ.

As an immediate application of Lemma 2.1 to MPCC, we mention the following exact
penalization result. It can be readily justified following the classical exact penalization prin-
ciple; see, e.g., [29] or other related statements such as [3, Proposition 3.111]. However, just
like the error bound of Lemma 2.1 itself, we could not find the statement of Proposition 2.1
on exact penalization in MPCC literature (i.e., this statement under these assumptions; but
there are a number of somewhat related results, of course).
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Proposition 2.1 In addition to the assumptions of Lemma 2.1, let f : IRn → IR be locally
Lipschitz-continuous at ū, and assume that ū is a (strict) local solution of the problem

minimize f(u)
subject to u ∈ D,

where D is the set defined by (2.1).
Then for any c > 0 large enough, ū is a (strict) local solution of the problem

minimize f(u) + c(‖F (u)‖+ ‖max{0, g(u)}‖+ ‖min{G(u), H(u)}‖)
subject to u ∈ IRn.

3 Error bounds and upper Lipschitz stability for GNEP

We now turn our attention to the GNEP joint KKT systems (1.2). For a given solution
(x̄1, x̄2, µ̄1, µ̄2) ∈ IRn1 × IRn2 × IRm × IRm of (1.2), define the index sets

A = A(x̄1, x̄2) = {i = 1, . . . , m | gi(x̄1, x̄2) = 0}, N = N(x̄1, x̄2) = {1, . . . , m} \A,

Aj+ = Aj+(x̄1, x̄2, µ̄j) = {i ∈ A | µ̄j > 0}, Aj0 = Aj0(x̄1, x̄2, µ̄j) = A \Aj+, j = 1, 2,

A+ = A+(x̄1, x̄2, µ̄1, µ̄2) = A1
+ ∪A2

+, A0 = A0(x̄1, x̄2, µ̄1, µ̄2) = A1
0 ∩A2

0.

The first issue to settle is whether some general CQs that imply an error bound can be
expected to hold for the GNEP KKT systems (1.2). As discussed above, the weakest CQ
giving the error bound that is currently known is RCPLD. Note also that there is no a priori
reason that may allow one to claim that RCPLD is not a useful condition for (1.2). However,
we next exhibit that RCPLD for (1.2) is an atypical property (see also the model Example 3.1
below, where RCPLD does not hold).

The Jacobian of the equalities in (1.2) has the form

∂2L1

∂x1∂x1
(x1, x2, µ1)

∂2L1

∂x1∂x2
(x1, x2, µ1)

(
∂g

∂x1
(x1, x2)

)T

0

∂2L2

∂x1∂x2
(x1, x2, µ2)

∂2L2

∂x2∂x2
(x1, x2, µ2) 0

(
∂g

∂x2
(x1, x2)

)T

(
∂g

∂x1
(x1, x2)

)T

µ1

(
∂g

∂x2
(x1, x2)

)T

µ1 g(x1, x2) 0(
∂g

∂x1
(x1, x2)

)T

µ1

(
∂g

∂x2
(x1, x2)

)T

µ1 0 g(x1, x2)


,

(3.1)
where all the vectors in the last two rows of this (n1 + n2 + 1 + 1) × (n1 + n2 + m + m)
matrix are considered as row vectors. If any of these last two rows at the solution belongs
to the subspace spanned by its first n1 + n2 rows, then there is no reason to expect that this
matrix has constant rank near the solution. Suppose neither of the last two rows of (3.1) at
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the solution belongs to the subspace spanned by the first n1 +n2 rows, and assume that, e.g.,
the next-to-the-last row( (

∂gA1
+

∂x1
(x̄1, x̄2)

)T

µ̄1
A1

+

(
∂gA1

+

∂x2
(x̄1, x̄2)

)T

µ̄1
A1

+
g(x̄1, x̄2) 0

)
(3.2)

in (3.1) computed at the solution enters some linearly independent system of rows spanning
the subspace spanned by all rows, and that either A1

+ 6= ∅ (the case when µ̄1 = µ̄2 = 0 is
clearly very special), or A 6= ∅ and N 6= ∅. The gradients of active at the solution inequalities

gA1
+

(x1, x2) ≤ 0, −µ1
N ≤ 0

in (1.2) form the rows of the matrix ∂gA1
+

∂x1
(x1, x2)

∂gA1
+

∂x2
(x1, x2) 0 0

0 0 −IN 0

 , (3.3)

where, and from now on, I denotes the identity matrix of an appropriate size. Recalling that
µ̄1
A1

+
> 0, gA(x̄1, x̄2) = 0, gN (x̄1, x̄2) < 0, we conclude that the row in (3.2) can be expressed

as a linear combination of the rows in (3.3) computed at the solution, and with nonnegative
coefficients not all equal to zero. At the same time, if gA is not identically equal to zero
near (x̄1, x̄2) (which again would be a very special case), there is no reason why the next-to-
the-last row in (3.1) might belong to the subspace spanned by the rows in (3.3), except “by
accident”. Hence, RCPLD should not be expected hold for GNEP KKT systems, in general.
The model Example 3.1 below illustrates this fact on a specific problem.

Therefore, since we cannot invoke RCPLD, specific error bound analysis tailored to GNEP
is required, which is our next subject. Recall that the strict complementarity condition for
GNEP KKT systems (1.2) means that A1

0 = ∅ and A2
0 = ∅; see [12, Assumption 1]. In

Theorem 3.1 below, we do not make this assumption. Our result extends [12, Theorem 9],
where strict complementarity is imposed. Also, in Theorem 3.1 we assume, for simplicity,
linear independence of certain elements. However, according to the discussion following
Lemma 2.1, it can be easily seen that weaker or different types of assumptions are possible. In
particular, making a suitable change in the assumptions, we can easily recover [12, Theorem 8]
which deals with quadratic objective functions of the players and linear constraints; see
Remark 3.1 below. Moreover, there are still other possible assumptions; see again Remark 3.1.

Define the mapping F : IRn1 × IRn2 × IRm × IRm → IRn1 × IRn2 ,

F (u) =

 ∂L1

∂x1
(x1, x2, µ1)

∂L2

∂x2
(x1, x2, µ2)

 , (3.4)

where u = (x1, x2, µ1, µ2). Then the natural residual of GNEP KKT systems (1.2) is given
by Φ : IRn1 × IRn2 × IRm × IRm → (IRn1 × IRn2)× IRm × IRm,

Φ(u) =

 F (u)
min{µ1, −g(x1, x2)}
min{µ2, −g(x1, x2)}

 . (3.5)
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Theorem 3.1 Let f1, f2 and g be twice differentiable near (x̄1, x̄2) ∈ IRn1 × IRn2, with their
second derivatives being continuous at (x̄1, x̄2). Let ū = (x̄1, x̄2, µ̄1, µ̄2) be a solution of
system (1.2), and assume that the matrix

∂2L1

∂x1∂x1
(x̄1, x̄2, µ̄1)

∂2L1

∂x1∂x2
(x̄1, x̄2, µ̄1)

(
∂gA1

+

∂x1
(x̄1, x̄2)

)T

0

∂2L2

∂x1∂x2
(x̄1, x̄2, µ̄2)

∂2L2

∂x2∂x2
(x̄1, x̄2, µ̄2) 0

(
∂gA2

+

∂x2
(x̄1, x̄2)

)T

∂gA
∂x1

(x̄1, x̄2)
∂gA
∂x2

(x̄1, x̄2) 0 0


(3.6)

has the full row rank.
Then for the solution set Ū of system (1.2), the error bound

dist(u, Ū) = O(‖Φ(u)‖) (3.7)

holds as u = (x1, x2, µ1, µ2) ∈ IRn1 × IRn2 × IRm× IRm tends to ū, where Φ is given by (3.5).

Proof. Define the mappings G : IRn1 × IRn2 × IRm × IRm → IRm × IRm and H : IRn1 ×
IRn2 × IRm × IRm → IRm × IRm,

G(u) =

(
µ1

µ2

)
, H(u) =

(
−g(x1, x2)
−g(x1, x2)

)
.

Then (1.2) is equivalent to the complementarity constraint system

F (u) = 0, G(u) ≥ 0, H(u) ≥ 0, 〈G(u), H(u)〉 = 0,

with F given by (3.4).
Defining the sets IG, IH and I0 according to (2.2), (2.3), we obtain that each partition

(I1, I2) of I0 corresponds to the pair of partitions (I1
1 , I

1
2 ) of A1

0, and (I2
1 , I

2
2 ) of A2

0, and the
corresponding branch of the form (2.9) is given by

∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0, µ1

N = 0, µ2
N = 0,

µ1
I11

= 0, µ2
I21

= 0, gI11 (x1, x2) ≤ 0, gI21 (x1, x2) ≤ 0,

µ1
I12
≥ 0, µ2

I22
≥ 0, gI12 (x1, x2) = 0, gI22 (x1, x2) = 0,

gA+(x1, x2) = 0.

(3.8)

Simplifying these relations by removing the duplicated ones, as well as those inequalities that
are implied by the corresponding equalities, we obtain the system

∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0, µ1

N = 0, µ2
N = 0,

µ1
I11

= 0, µ2
I21

= 0, gA0\(I12∪I22 )(x
1, x2) ≤ 0,

µ1
I12
≥ 0, µ2

I22
≥ 0, g(I11∪I21 )∩A0

(x1, x2) = 0,

gA+(x1, x2) = 0.

(3.9)
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If the matrix in (3.6) has the full row rank, then LICQ holds for this constraint system at
(x̄1, x̄2, µ̄1, µ̄2), implying the error bound for this system. By the construction of (3.9), this
error bound evidently implies the error bound for the constraint system (3.8) (since the latter
system simply involves some extra constraints giving rise to extra terms in the right-hand side
of the error bound, while the set characterized by the two systems is the same). This error
bound for (3.8) is precisely (2.10) which, in turn, implies (2.4). Therefore, by Lemma 2.1,
the error bound (2.5) is valid. According to the definition of G and H, the latter is exactly
(3.7) with Φ defined in (3.5).

Remark 3.1 Observing that the full row rank of the matrix in (3.6) is just LICQ for all the
branches (i.e., for all systems of the form (3.9)), the discussion following Lemma 2.1 puts in
evidence that the nondegeneracy assumption of Theorem 3.1 can be weakened. Specifically,
it can be replaced by the weaker piecewise MFCQ, piecewise (R)CRCQ, or even piecewise
(R)CPLD. This immediately gives further generalizations of [12, Theorem 9] (in addition to
removing strict complementarity, already mentioned).

In particular, if f1 and f2 are quadratic functions, and g is an affine mapping, then the
constraints in (3.9) (in fact, already in (3.8)) are linear, and hence, automatically satisfy
CRCQ and thus the error bound holds. This modification of Theorem 3.1 recovers [12,
Theorem 8].

It is also instructive to consider the special case of A0 = ∅. Note that this is still weaker
than strict complementarity, as A0 = A1

0 ∩A2
0 = ∅ is possible even if A1

0 6= ∅ and A2
0 6= ∅. For

this case, we have the following.

Proposition 3.1 Let f1, f2 and g be twice differentiable near (x̄1, x̄2) ∈ IRn1 × IRn2, with
their second derivatives being continuous at (x̄1, x̄2). Let ū = (x̄1, x̄2, µ̄1, µ̄2) be a solution
of system (1.2) such that A0 = ∅, the matrix

∂2L1

∂x1∂x1
(x̄1, x̄2, µ̄1)

∂2L1

∂x1∂x2
(x̄1, x̄2, µ̄1)

(
∂gA
∂x1

(x̄1, x̄2)

)T

0

∂2L2

∂x1∂x2
(x̄1, x̄2, µ̄2)

∂2L2

∂x2∂x2
(x̄1, x̄2, µ̄2) 0

(
∂gA
∂x2

(x̄1, x̄2)

)T

∂gA
∂x1

(x̄1, x̄2)
∂gA
∂x2

(x̄1, x̄2) 0 0


(3.10)

has the full row rank, and there exists (ξ̄1, ξ̄2, ζ̄1, ζ̄2) ∈ IRn1 × IRn2 × IRm × IRm such that

∂2L1

∂x1∂x1
(x̄1, x̄2, µ̄1)ξ̄1 +

∂2L1

∂x1∂x2
(x̄1, x̄2, µ̄1)ξ̄2 +

(
∂g

∂x1
(x̄1, x̄2)

)T

ζ̄1 = 0,

∂2L2

∂x1∂x2
(x̄1, x̄2, µ̄2)ξ̄1 +

∂2L2

∂x2∂x2
(x̄1, x̄2, µ̄2)ξ̄2 +

(
∂g

∂x2
(x̄1, x̄2)

)T

ζ̄1 = 0,

ζ̄1
N = 0, ζ̄1

N = 0,
∂gA
∂x1

(x̄1, x̄2)ξ̄1 +
∂gA
∂x2

(x̄1, x̄2)ξ̄2 = 0,

and
ζ̄1
A1

0
> 0, ζ̄2

A2
0
> 0.
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Then the error bound (3.7) holds.

Proof. If A0 = ∅ then A+ = A, and systems (3.9) reduce to

∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0, µ1

N = 0, µ2
N = 0,

µ1
I11

= 0, µ2
I21

= 0, µ1
I12
≥ 0, µ2

I22
≥ 0, gA(x1, x2) = 0.

(3.11)

Observe that all branches given by these systems are contained in the maximal branch given
by

∂L1

∂x1
(x1, x2, µ1) = 0,

∂L2

∂x2
(x1, x2, µ2) = 0, µ1

N = 0, µ2
N = 0,

µ1
A1

0
≥ 0, µ2

A2
0
≥ 0, gA(x1, x2) = 0,

(3.12)

corresponding to I1
1 = I2

1 = ∅, I1
2 = I2

2 = {1, . . . , m}.
Under the stated assumptions, MFCQ holds for (3.12). Then the error bound (2.10) holds

for the specified branch (I1, I2), implying the error bound (2.4) for all branches given by
(3.11) (since (3.11) differs from (3.12) merely by some equalities replacing the corresponding
inequalities, which can only increase the estimating term in the right-hand-side of (2.4)).
Therefore, by Lemma 2.1, the error bound (3.7) is again valid in this case.

Further, it can be readily seen that the error bound (3.7) implies the upper Lipschitz
stability of the solutions of system (1.2) subject to canonical perturbations of the optimization
problems in (1.1), and hence, subject to any smooth perturbations. Note, however, that the
converse implication cannot be established as it is done for mixed complementarity problems
in [18, Theorem 2] (thus covering KKT systems associated to variational problems). We
conjecture that this converse implication is generally not valid for GNEP KKT systems.

Corollary 3.1 Under the assumptions of Theorem 3.1, the estimate

dist(u(σ), Ū) = O(‖σ‖)

holds as σ = (a1, a2, b) ∈ IRn1 × IRn2 × IRm tends to zero, for any solution u(σ) = (x1(σ),
x2(σ), µ1(σ), µ2(σ)) of the perturbed system

∂L1

∂x1
(x1, x2, µ1) = a1,

∂L2

∂x2
(x1, x2, µ2) = a2,

µ1 ≥ 0, 〈µ1, g(x1, x2)− b〉 = 0, µ2 ≥ 0, 〈µ2, g(x1, x2)− b〉 = 0, g(x1, x2) ≤ b,
(3.13)

close enough to ū.

Proof. By Theorem 3.1, dist(u(σ), Ū) = O(‖Φ(u(σ))‖) as u(σ) tends to ū, where Φ is given

by (3.5).
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Assuming now that u(σ) solves (3.13) for a given σ, first note that for the part F of Φ,
defined in (3.4), (3.13) implies that F (u(σ)) = (a1, a2). It thus remains to show that the
norm of the complementarity residuals

rj(σ) = min{µj(σ), −g(x1(σ), x2(σ))}, j = 1, 2,

is bounded above by ‖b‖. For any j = 1, 2 and any i = 1, . . . , m consider the two possible
cases: µji (σ) = 0 or µji (σ) > 0.

If µji (σ) = 0 and gi(x
1(σ), x2(σ)) ≤ 0 then rji (σ) = 0 ≤ |bi|, and if gi(x

1(σ), x2(σ)) > 0

then |rji (σ)| = gi(x
1(σ), x2(σ)) ≤ |bi| by (3.13).

If µji (σ) > 0 then gi(x
1(σ), x2(σ)) = bi. Then if rji (σ) = −gi(x1(σ), x2(σ)), evidently

|rji (σ)| = |bi|. And in the remaining case, 0 < rji (σ) = µji (σ) ≤ −gi(x1(σ), x2(σ)) = −bi,
again implying the needed property.

Remark 3.2 Again, according to the discussion following Lemma 2.1, the assumptions of
Corollary 3.1 can be weakened: LICQ for all branch problems can be replaced by piecewise
MFCQ, piecewise (R)CRCQ, or even piecewise (R)CPLD.

The assumptions of Theorem 3.1 (and thus also of Corollary 3.1) are rather natural, in
the sense that they hold in various examples used in GNEP literature. The following is [14,
Example 1.1], which is considered a model example containing the most important structural
features of GNEPs.

Example 3.1 Consider the GNEP

minimizex1 (x1 − 1)2

subject to x1 + x2 ≤ 1,
minimizex2 (x2 − 1/2)2

subject to x1 + x2 ≤ 1.

The primal-dual solution set of this problem has the form

Ū = {u = (x1, x2, µ1, µ2) | x1 = t, x2 = 1− t, µ1 = 2(1− t), µ2 = 2(t− 1/2), t ∈ [1/2, 1]}.

Consider first the case when t ∈ (1/2, 1). Then A1
0 = A2

0 = ∅, and the matrix in (3.6) has
the form  2 0 1 0

0 2 0 1
1 1 0 0

 .

This matrix has full row rank, and hence, Theorem 3.1 and Corollary 3.1 apply.
Now consider the case when t = 1, that is, consider the equilibrium (x̄1, x̄2) = (1, 0) with

the associated multipliers (µ̄1, µ̄2) = (0, 1). Then A2
0 = ∅, and the matrix in (3.6) has the

form  2 0 0
0 2 1
1 1 0

 .

This square matrix is nondegenerate, and hence, Theorem 3.1 and Corollary 3.1 apply again.
The case when t = 1/2 can be considered similarly to t = 1, and with the same conclusion.
Observe that RCPLD does not hold in this example: the Jacobian of equality constraints

in (1.2) does not have constant rank near any solution of this system.

11



4 Newton-type methods

In this section, we first comment briefly on the consequences of our error bound results for the
convergence of the smooth Levenberg–Marquardt and Gauss-Newton methods when applied
to the GNEP KKT systems (possibly modified). This part requires the strict complementarity
condition (to ensure local smoothness of the mapping). Our main contribution is for the
general case without strict complementarity, where we show that the recently proposed in
[9] (see also [10]) algorithms for constrained nonsmooth equations with nonisolated solutions
can be adapted to GNEP and have local quadratic convergence rate under our assumptions
(of Theorem 3.1).

First note that assuming the strict complementarity condition A1
0 = ∅ and A2

0 = ∅, the
mapping Φ defined in (3.5) is smooth near the solution ū = (x̄1, x̄2, µ̄1, µ̄2). Nevertheless,
even in this case, the standard Newton method is not applicable to the system

Φ(u) = 0,

because of its inherent degeneracy (not only at the solution in question, but in fact even in
its neighbourhood). Indeed, for any i ∈ A = A1

+ = A2
+ it holds that

min{µ1
i , −gi(x1, x2)} = min{µ2

i , −gi(x1, x2)} = −gi(x1, x2)

for all u = (x1, x2, µ1, µ2) ∈ IRn1×IRn2×IRm×IRm close enough to ū. Therefore, near ū, the
corresponding two components of Φ are identical, and hence, the Jacobian of Φ is degenerate
everywhere around ū.

However, the local convergence results in [37, 18, 16] for variants of the Levenberg–
Marquardt method can be applicable; see [12, Theorem 5]. Starting at a point uk, the
method computes the next iterate uk+1 as the solution of the equation

(Φ′(uk))TΦ(uk) + ((Φ′(uk))TΦ′(uk) + α(uk)I)(u− uk) = 0,

where α(uk) > 0 is the regularization parameter. Various variants of the method differ
essentially in the choices of regularization parameters. As pointed out in [12, Theorem 5], the
assumptions required for convergence of such methods are the strict complementarity and the
error bound. Hence, combining the corresponding results in [37, 18, 16] with Theorem 3.1,
we immediately conclude that these methods possess local quadratic convergence to some
point in Ū if the strict complementarity condition holds, and the matrix in (3.10) has the
full row rank. Observe that in Example 3.1, these assumptions are satisfied at any solution
corresponding to t ∈ (1/2, 1). Moreover, as highlighted in Remark 3.1, the full row rank of
(3.6) can in fact be replaced by much weaker conditions that still guarantee the error bound;
for example, piecewise RCPLD.

Furthermore, under the assumptions of strict complementarity and the full row rank of
(3.6), the following and different Newtonian approach is possible. To the best of our knowl-
edge, it had not been considered previously. For any starting point u0 = ((x1)0, (x2)0, (µ1)0,
(µ2)0) close enough to ū, and for any i = 1, . . . , m satisfying

(µ1
i )

0 ≥ −gi((x1)0, (x2)0), (µ2
i )

0 ≥ −gi((x1)0, (x2)0), (4.1)
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we remove from Φ any one of the corresponding components to construct the reduced mapping
Φ̃ : IRn1 × IRn2 × IRm × IRm → (IRn1 × IRn2)× IR|A| × IR|N | × IR|N |,

Φ̃(u) =


F (u)

−gA(x1, x2)
µ1
N

µ2
N


(observe that under the strict complementarity condition, the set of i satisfying (4.1) locally
coincides with A). We thus obtain the underdetermined system

Φ̃(u) = 0,

to which we apply the Gauss-Newton method: having a point uk, the next iterate uk+1 is the
solution of the equation

(Φ̃′(uk))TΦ̃(uk) + (Φ̃′(uk))TΦ̃′(uk)(u− uk) = 0.

If the matrix in (3.10) has the full row rank, then Φ̃′(ū) has the full row rank as well.
Therefore, if u0 is close enough to ū then the Gauss-Newton method thus constructed is
well-defined and converges superlinearly to some point in Ū [25, Theorem 2.4.2].

We now turn our attention to the case when strict complementarity can be violated, like
for those solutions in Example 3.1 that correspond to t = 1/2 and to t = 1. Recall that in
this case Φ is not differentiable at the solution, and the solution cannot be expected to be
isolated. An attractive approach to deal with this (difficult) situation is the recently proposed
linear-programming-Newton method of [9]; see also [10] for related constrained nonsmooth
Levenberg–Marquardt method, as well as inexact versions. Consider the constrained equation

Φ(u) = 0, u ∈ U, (4.2)

where Φ is a given mapping (not related to GNEP, for now) and U is some set (typically,
closed and convex, or even polyhedral). The method of [9] for solving (4.2) is as follows. For
the current iterate uk ∈ U , select J(uk) as an element in the suitable generalized derivative
of Φ at uk (the Jacobian Φ′(uk), if Φ is differentiable at uk). Compute the next iterate uk+1

as (part of) the solution (uk+1, tk+1) with some tk+1 ∈ IR of the subproblem

minimize(t, u) t

subject to ‖Φ(uk) + J(uk)(u− uk)‖ ≤ t‖Φ(uk)‖2,
‖u− uk‖ ≤ t‖Φ(uk)‖,
u ∈ U.

(4.3)

Note that if U is polyhedral and the ∞-norm is employed, then this is a linear programming
(LP) problem. It should be noted that writing the optimality conditions for (4.3), it can
be observed that it is equivalent to an iteration of the constrained Levenberg–Marquardt
method for (4.2), with a special choice of the regularization parameter.

Local quadratic convergence of the method described by (4.3) is established in [9] under
four assumptions, which therefore have to be verified in our context. (We note that the as-
sumptions for the extensions in [10] are the same.) This however is not all that straightfoward;
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moreover, simply applying the algorithm to the mapping Φ given by (3.5) is not practical
unless the constraints in (1.1) are affine. We proceed to discuss those issues in detail.

Assumption 4 in [9] formalizes the needed quality of approximation for Φ around uk

provided by the linearization using the substitute J(uk) of the derivative at uk. There is no
need to state it here formally; we shall just give the reasons why it holds in our case, referring
to the coresponding results in [9]. Assuming that f1, f2 and g are twice differentiable near
(x̄1, x̄2) with their second derivatives being locally Lipschitz-continuous at this point, the
mapping Φ in (3.5) is piecewise smooth near ū and appropriate substitutes for the derivative
of this mapping are the Jacobians of active smooth pieces. According to [9, Theorem 4,
Corollary 5], with this choice, Assumption 4 holds for the constrained equation (4.2) if the
set U is defined either by

U = {u = (x1, x2, µ1, µ2) | µ1 ≥ 0, µ2 ≥ 0, g(x1, x2) ≤ 0}

or by
U = {u = (x1, x2, µ1, µ2) | µ1 − g(x1, x2) ≥ 0, µ2 − g(x1, x2) ≥ 0}.

At this point, one might wonder why not solve (4.2) with U being the whole space, without
constraints, since the solution set of the unconstrained equation already gives all GNEP KKT
solutions. The reason is that the required Assumption 4 need not hold if the complementarity
relations are reformulated via the unconstrained min-operation as in the definition of Φ,
without the constraints as above added; see [9, Section 3.3 and Example 3].

Next note that unless g is affine, (4.3) with U defined in either of the ways stated above is
a nonlinearly-contrained problem, in general too expensive to solve at each iteration. Thus,
instead of solving the constrained equation (4.2), we propose the following construction (in
fact analogous to the one for variational KKT systems in [9]). We introduce an auxiliary
variable v ∈ IRm and define the mapping Ψ : (IRn1 × IRn2 × IRm × IRm) × IRm → (IRn1 ×
IRn2)× IRm × IRm × IRm,

Ψ(u, v) =


F (u)

g(x1, x2) + v
min{µ1, v}
min{µ2, v}

 , (4.4)

where F is given by (3.4), and consider the constrained equation

Ψ(u, v) = 0, (u, v) ∈ Ω, (4.5)

where the set Ω is given either by

Ω = {(u, v) = ((x1, x2, µ1, µ2), v) | µ1 ≥ 0, µ2 ≥ 0, v ≥ 0}

or by
Ω = {(u, v) = ((x1, x2, µ1, µ2), v) | µ1 − v ≥ 0, µ2 − v ≥ 0}.

It is evident that (ū, −g(x̄1, x̄2)) is a solution of (4.5).
To solve the GNEP KKT systems (1.2), the algorithm is now as follows. For the current

iterate (uk, vk) ∈ Ω, select J(uk, vk) as the Jacobian of any of the smooth pieces of Ψ active
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at (uk, vk). Compute the next iterate (uk+1, vk+1) as (part of) the solution (uk+1, vk+1, tk+1)
with some tk+1 ∈ IR of the subproblem

minimize(t, u, v) t

subject to ‖Ψ(uk, vk) + J(uk, vk)(u− uk, v − vk)‖ ≤ t‖Ψ(uk, vk)‖2,
‖(u− uk, v − vk)‖ ≤ t‖Ψ(uk, vk)‖,
(u, v) ∈ Ω.

(4.6)

Note that using the ∞-norm, this is always an LP, regardless of the problem data in (1.1).
We now have to come back to the four assumptions of [9].

By the same reasoning as above for Φ, Assumption 4 in [9] holds around the solution
(ū, v̄), with v̄ = −g(x̄1, x̄2), for Ψ and the specified choice of J .

Assumption 1 in [9] states that a constant times the distance to the solution set bounds
from above (unlike from below, like in the error bound property) the residual of the equation
mapping. This holds automatically here, since Ψ is locally Lipschitz-continuous, which in
turn is implied by the piecewise smoothness of Ψ.

Assumption 2 in [9] is the error bound property for (4.5), and it follows from our Theo-
rem 3.1, as we demonstrate next.

Corollary 4.1 Under the assumptions of Theorem 3.1, for the solution set Ω̄ of the equation

Ψ(u, v) = 0

with Ψ : (IRn1 × IRn2 × IRm× IRm)× IRm → (IRn1 × IRn2)× IRm× IRm× IRm defined in (4.4),
the error bound

dist((u, v), Ω̄) = O(‖Ψ(u, v)‖)

holds as u = (x1, x2, µ1, µ2) ∈ IRn1 × IRn2 × IRm × IRm tends to ū, and as v ∈ IRm tends to
−g(x̄1, x̄2).

Proof. Employing the Mean-Value Theorem, we obtain the existence of ` > 0 such that

dist((u, v), Ω̄) = inf
ũ=(x̃1, x̃2, µ̃1, µ̃2)∈Ū

‖(u, v)− (ũ, −g(x̃1, x̃2))‖

≤ inf
ũ=(x̃1, x̃2, µ̃1, µ̃2)∈Ū

(‖u− ũ‖+ ‖g(x1, x2)− g(x̃1, x̃2))‖) + ‖g(x1, x2) + v‖

≤ inf
ũ=(x̃1, x̃2, µ̃1, µ̃2)∈Ū

(‖u− ũ‖+ `‖(x1, x2)− (x̃1, x̃2)‖) + ‖g(x1, x2) + v‖

≤ (1 + `) inf
ũ∈Ū
‖u− ũ‖+ ‖g(x1, x2) + v‖

= (1 + `) dist(u, Ū) + ‖g(x1, x2) + v‖

for any u and v. Observe that according to (3.5) and (4.4)

‖Φ(u)‖ ≤ ‖Ψ(u, v)‖+ 2‖g(x1, x2) + v‖1,
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and therefore, employing (3.7), it holds that

dist((u, v), Ω̄) = O(‖Φ(u)‖) + ‖g(x1, x2) + v‖ = O(‖Ψ(u, v)‖)

as u→ ū and v → −g(x̄1, x̄2).

It remains to verify Assumption 3 in [9]. This assumption is rather technical, and it again
does not seem reasonable to state here in its original form. Instead, we shall mention that
[9, Corollary 3] shows that it is satisfied provided the error bound holds for the set defined
by the system of equations corresponding to each smooth piece of Ψ active at the solution.
It is the latter property that we establish next.

Proposition 4.1 Under the assumptions of Theorem 3.1, for any partitions I1 = (I1
1 , I

1
2 ) of

A1
0, and I2 = (I2

1 , I
2
2 ) of A2

0, for the solution set Ω̄I1, I2 of the system of equations

ΨI1, I2(u, v) = 0 (4.7)

with ΨI1, I2 : (IRn1 × IRn2 × IRm × IRm)× IRm → (IRn1 × IRn2)× IRm × IRm × IRm,

ΨI1, I2(u, v) =


F (u)

g(x1, x2) + v(
µ1
I11∪N

, vA1
+∪I12

)(
µ2
I21∪N

, vA2
+∪I22

)
 ,

the error bound
dist

(
(u, v), Ω̄I1, I2

)
= O

(
‖ΨI1, I2(u, v)‖

)
(4.8)

holds as u = (x1, x2, µ1, µ2) ∈ IRn1 × IRn2 × IRm × IRm tends to ū, and as v ∈ IRm tends to
−g(x̄1, x̄2).

Proof. System (4.7) may contain duplicated equations of the form vi = 0, i ∈ A1
+ ∩ A2

+ or

i ∈ I1
2 ∩ I2

2 . Removing the duplicated copies of these equations, we transform (4.7) into the
equivalent system

Ψ̃I1, I2(u, v) = 0

with Ψ̃I1, I2 : (IRn1 × IRn2 × IRm × IRm)× IRm → (IRn1 × IRn2)× IR|I
1
1∪N | × IR|I

2
1∪N | × IR|A|,

Ψ̃I1, I2(u, v) =


F (u)

g(x1, x2) + v
µ1
I11∪N
µ2
I21∪N

vA+∪((I12∪I22 )∩A0)

 .

The error bound
dist

(
(u, v), Ω̄I1, I2

)
= O

(
‖Ψ̃I1, I2(u, v)‖

)
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(evidently implying the needed error bound (4.8)) holds if the Jacobian Ψ̃′I1, I2(ū, −g(x̄1, x̄2))
has full row rank. It can be directly verified that the latter holds if the matrix

∂2L1

∂x1∂x1
(x̄1, x̄2, µ̄1)

∂2L1

∂x1∂x2
(x̄1, x̄2, µ̄1)

(
∂gA1

+∪I12
∂x1

(x̄1, x̄2)

)T

0

∂2L2

∂x1∂x2
(x̄1, x̄2, µ̄2)

∂2L2

∂x2∂x2
(x̄1, x̄2, µ̄2) 0

(
∂gA2

+∪I22
∂x2

(x̄1, x̄2)

)T

∂gA+

∂x1
(x̄1, x̄2)

∂gA+

∂x2
(x̄1, x̄2) 0 0

∂gI12∩A0

∂x1
(x̄1, x̄2)

∂gI12∩A0

∂x2
(x̄1, x̄2) 0 0

∂gI22∩A0

∂x1
(x̄1, x̄2)

∂gI22∩A0

∂x2
(x̄1, x̄2) 0 0


has full row rank. It remains to observe that the latter is automatic if the matrix in (3.6)
has full row rank.

Combining the properties verified above with [9, Theorem 1], we obtain local quadratic
convergence of the LP-Newton method described by (4.6) under the assumptions of our
Theorem 3.1.

Theorem 4.1 In addition to the assumptions of Theorem 3.1, assume that the second deriva-
tives of f1, f2 and g are locally Lipschitz-continuous at (x̄1, x̄2).

Then for any starting point (u0, v0) ∈ Ω close enough to (ū, −g(x̄1, x̄2)) the iterative
scheme (4.6) defines a sequence {(uk, vk)} which converges quadratically to (u∗, −g(x1

∗, x
2
∗))

with some u∗ ∈ Ū , where Ū is the solution set of system (1.2).

Remark 4.1 Since the extension in [10] requires the same four assumptions as [9], our con-
clusions apply to those methods as well. In particular, to the inexact nonsmooth constrained
Levenberg–Marquardt method.

Remark 4.2 Subsequently to the original version of this paper, there appeared an indepen-
dent technical report [7] concerned with similar issues, namely, primal-dual error bounds and
Newton-type methods for GNEP.

In our setting (joint constraints only) Assumption 1 in [7] required to obtain an error
bound consists of saying that there exists a partition (I1, I2) of A (i.e., I1∪I2 = A, I1∩I2 = ∅)
such that I1 ⊂ A1

+, I2 ⊂ A2
+, and the square matrix

∂2L1

∂x1∂x1
(x̄1, x̄2, µ̄1)

∂2L1

∂x1∂x2
(x̄1, x̄2, µ̄1)

(
∂gI1
∂x1

(x̄1, x̄2)

)T

0

∂2L2

∂x1∂x2
(x̄1, x̄2, µ̄2)

∂2L2

∂x2∂x2
(x̄1, x̄2, µ̄2) 0

(
∂gI2
∂x2

(x̄1, x̄2)

)T

∂gA
∂x1

(x̄1, x̄2)
∂gA
∂x2

(x̄1, x̄2) 0 0
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is nonsingular. This evidently implies the full rank condition in our Theorem 3.1. The con-
verse is not true, even assuming strict complementarity, as demonstrated by Example 4.1
below. Moreover, as mentioned in Remark 3.1, our line of analysis allows for further relax-
ations of this full rank assumption. Finally, the two error bounds are of different nature, as
explained next. The error bound in [7] is valid only on the set including all nonnegativity
conditions, and on this set the residual used in the error bound is smooth. Our residual is
nonsmooth, and the error bound is on the entire space.

As a consequence of nonsmoothness of our residual, application of the LP-Newton method,
developed in [9] specifically for nonsmooth constrained equations, is natural in our setting. In
[7], since the residual there is smooth, in principle the usual Levenberg–Marquardt methods
for smooth constrained equations could be used instead of the LP-Newton method. Also, the
methods in this paper and in [7] are different, and each may have some practical advantages
(as well as disadvantages, of course). For instance, our approach requires less auxiliary
variables: in our setting the dimension of v in (4.4) is that of the number of constraints,
while for the method in [7] it would be twice as much. And most importantly, as explained
above, our assumptions for local quadratic convergence of Newtonian methods are weaker
than those in [7].

Example 4.1 Consider the GNEP

minimizex1 −x1

subject to x1 + x2 ≤ 0,
minimizex2 −x2

subject to x1 + x2 ≤ 0.

The primal-dual solution set of this problem has the form

Ū = {u = (x1, x2, 1, 1) | x1 + x2 = 0}

(in particular, all the equilibria are in fact variational).
At any point of Ū , it holds that A1

0 = A2
0 = ∅, and the matrix in (3.6) has the form 0 0 1 0

0 0 0 1
1 1 0 0

 . (4.9)

This matrix has full row rank. Hence, Theorem 3.1, Corollary 3.1, and Theorem 4.1 apply.
A the same time, in this case Assumption 1 in [7] consists of saying that at least one

of the matrices obtained by eliminating one of the last two columns in (4.9) is nonsingular,
which is not the case.
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