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Abstract

This paper analyzes traveling wave profiles possessing an internal resonance point for
a class of systems of partial differential equations describing oxidation and vaporization of
liquid fuel in a porous medium when an oxidizer (air) is injected. It is shown that the
resonance is characterized by a saddle point of an associated vector field defined on a folded
surface in state space. We prove existence and uniqueness of this singularity for an open set of
parameters. The singularity yields an extra restriction on wave parameters. This restriction
is found explicitly in the physically relevant case of a small ratio of reaction/vaporization
rates. We find the general large time asymptotic solutions of the problem as a sequence of
waves, and show that resonance waves play a key role in determining these solutions. A
numerical example is presented.

1 Introduction

The mathematical theory of combustion [25] is an exciting area of applied mathematics en-
compassing a vast number of problems, techniques and phenomena. Problems of combustion
in one-dimensional space are of special interest. They allow a detailed analytical study of the
combustion process; filtration combustion in a porous medium is a good example, e.g., [21, 4].
Sustained combustion is the simplest combustion mode that one is able to describe analytically,
providing the basis for studying more complicated (periodic or chaotic) types of solutions, e.g.,
[16, 2]. These solutions form an important contribution to understanding reactive transport
processes in porous media with applications to groundwater flow and enhanced oil recovery. .

This paper presents a nonlinear wave solution originating from the problem of combustion
of a liquid fuel filtrating in one-dimensional porous medium when an oxidizer (air) is injected.
Such a combustion process can be found in low-temperature oxidation (LTO) of low-viscosity
oil, a prospective technique for enhanced oil recovery [24], or as one aspect the high-pressure air
injection [8]. The mathematical model is given by a system of multi-phase flow equations with
additional terms describing reaction and vaporization rates, and an energy balance equation.

Despite similarities to problems in multi-phase flows [20, 10, 3], filtration combustion [18, 21],
drying theory [22] etc., the problem provides a novel type of nonlinear waves with interesting
structure properties. On the one hand, the analysis of the internal wave structure (the reaction
zone) is necessary in order to obtain macroscopic parameters of the wave. On the other hand,
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the determining equations appear to be independent of the particular form of the rate terms,
as soon as one of the processes is much faster (in our applications, vaporization is usually much
faster than combustion). The resulting combustion wave is characterized by a singularity of the
wave profile, which can be described and analyzed as a saddle of a vector field defined on a
folded surface in the state space. This singularity is related to a resonance in which the wave
speed coincides with a characteristic speed at an isolated internal point of the wave profile. The
resulting wave solution can be characterized as a nonclassical traveling wave [12, 15], with a
singular internal structure. Traveling waves profiles with a similar singularity were encountered
in detonation problems, see [23, 6, 19, 11]. The novelty of our paper are rigorous results on the
traveling waves, as well as on existence and uniqueness of the wave sequence solutions, obtained
by the usage of the large vaporization rate limit.

The paper is organized as follows. Section 2 describes the physical model and presents the
dimensionless equations. Section 3 provides the equations to be solved for the combustion wave
profile. In Section 4, we first consider a simple choice of parameters, for which the wave profile
can be readily analyzed yielding existence and uniqueness theorems. Then these results are
extended to the general case. The relevance of resonance is explained in Section 4.5. Section 5
describes waves sequence solutions appearing in the long time asymptotic regime. Section 6
provides a numerical example. We summarize the results in the Conclusion section.

2 Model

We consider flows possessing a combustion front when a gaseous oxidizer (air) is injected into
a porous medium, a rock cylinder thermally insulated preventing lateral heat losses, filled with
liquid fuel. We consider hydrocarbon fuels such as gasoline or light oil. When oxygen reacts with
hydrocarbons at low temperatures, a series of reactions occur that convert a part of hydrocarbons
into oxygenated hydrocarbons (ketones, alcohols, aldehydes, etc.) and gaseous products (H2O,
CO2, etc.). This low temperature oxidation (LTO) reaction is modelled as

(hydrocarbons) + O2 → (oxygenated hydrocarbons) + νg (gaseous products), (2.1)

i.e., one mole of oxygen reacts with a certain amount of hydrocarbons generating oxygenated
hydrocarbons together with νg moles of gaseous products. The LTO reaction, in principle, could
occur in both liquid and gaseous phases. In our applications the porous rock has small pores,
which reduces the free radical concentration in the gas phase, leading to negligible gas reaction
rates, see [14] for more details. We neglect water that may by present initially or condenses
from steam in the reaction products.

LTO leads to a combination of products, such as gaseous combustion products, small hydro-
carbons and oxygenated hydrocarbons, which have a somewhat higher boiling point than the
original hydrocarbons. To avoid complex modeling we assume that the combustion products
have added oxygen atoms to the original hydrocarbon, but retain the same other properties
(density, viscosity etc.) In other words, we disregard the difference in physical properties be-
tween oxygenated and original hydrocarbons and consider a single liquid fuel pseudo-component.
In the case of oil this assumption implies, in particular, that so little heavy hydrocarbons will
be in the original oil that they will evaporate before high temperature oxidation can occur [13].

We study motion in one space direction x. The porous volume contains liquid fuel and
gas moving in the positive x-direction. The fuel acts as a single pseudo-component liquid with
molar weight M [kg/mole] and saturation (i.e., the occupied fractions of pore volume) s. In
our notations, we will use no subscript for quantities related to the liquid fuel phase, and the
subscript g for quantities in the gaseous phase. The saturation of gas is, therefore, equal to
sg = 1 − s. In the gaseous phase, we distinguish between the molar fraction of gaseous fuel X
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and of oxygen Y . The remaining components with fraction Z = 1 −X − Y consist of reaction
products and inert components of the injected gas.

Neglecting parabolic terms originating from gas mass diffusion and capillarity effects, the
mass balance equations for liquid fuel, total gas, and gas components (gaseous fuel and oxygen)
are

∂

∂t
ϕρs+

∂

∂x
ρuf = −Wv, (2.2)

∂

∂t
ϕρgsg +

∂

∂x
ρgufg = (νg − 1)Wr +Wv, (2.3)

∂

∂t
ϕρgXsg +

∂

∂x
ρguXfg = Wv, (2.4)

∂

∂t
ϕρgY sg +

∂

∂x
ρguY fg = −Wr. (2.5)

The balance law for the gaseous components included in the fraction Z = 1 − X − Y can
be recovered by subtracting (2.4), (2.5) from (2.3). In the equations, Wv [mole/m3s] is the
vaporization rate of liquid fuel andWr [mole/m3s] is the consumption rate of oxygen in the LTO
reaction; according to (2.1) νgWr is the generation rate of gaseous products from the oxidation.
Also, ϕ is the rock porosity, ρ [mole/m3] is the molar density of liquid fuel (the conventional
mass density [kg/m3] is, therefore, Mρ), u [m/s] is the total seepage (Darcy) velocity, and we
use the ideal gas law to define

ρg = Ptot/RT, (2.6)

the molar density of gas at the prevailing pressure Ptot [Pa] and temperature T [K]. The pressure
drop due to flow is assumed to be small compared to the prevailing pressure, so we take Ptot =
const in (2.6). The fuel and gas fractional flow functions depend on s and T and have the form

f =
k/µ

k/µ+ kg/µg
, fg = 1− f, (2.7)

with viscosities µ(T ), µg(T ) [kg/m s] of the liquid fuel and gas, and with relative permeability
functions k(s), kg(s).

Assuming that the temperature of solid rock, fuel and gas are equal, neglecting transversal
heat losses and longitudinal heat conduction, we write the heat transport equation as

∂

∂t
(Cm + ϕcρs+ ϕcgρgsg)∆T +

∂

∂x
(cρf + cgρgfg)u∆T = QrWr −QvWv. (2.8)

Here ∆T = T−Tres with reservoir temperature Tres, Cm [J/m3K] is the (constant) heat capacity
of the porous rock, c [J/moleK] is the heat capacity of liquid fuel per mole assumed to be
a constant, and cg ≈ 3.5R [J/moleK] is the gas heat capacity, ignoring small variations of
heat capacity among different gas components. Taking the heat capacities constant is a good
approximation that facilitates the analysis. The positive heats (enthalpies) Qr [J/mole of O2]
and Qv [J/mole of fuel] correspond to LTO reaction and vaporization of fuel evaluated at the
reservoir temperature Tres.

The reaction rate Wr depends on T , s, Y . It is positive, but vanishes for s = 0 (no fuel)
or Y = 0 (no oxygen). The vaporization rate Wv depends on T , s, X. It vanishes when the
liquid fuel is in thermodynamic equilibrium with the gaseous phase, i.e., either when X = Xeq,
or when s = 0 with X ≤ Xeq. When s > 0, the derivative ∂Wv/∂X < 0, so that Wv > 0 for
X < Xeq. The equilibrium fraction of gaseous fuel is given by the Clausius-Clapeyron relation

Xeq =
Patm
Ptot

exp

(
−Qv
R

(
1

T
− 1

Tn

))
, (2.9)

3



where Tn [K] is the boiling point for fuel at atmospheric pressure Patm. Taking Xeq = 1 in (2.9),
one recovers the actual boiling temperature T = Tb at pressure Ptot.

The LTO reaction at the temperatures under consideration is relatively slow, leading to
large typical spatial scales. Such scales justify our assumptions of neglecting longitudinal heat
conduction, diffusion and capillary effects, which are described by second-order derivative terms
with respect to x. Also, the vaporization process is much faster than the LTO reaction. In this
case, as we will see later, the specific forms of the reaction and vaporization rates Wr and Wv

are not important for determining macroscopic solution parameters; they affect only the width
of the LTO wave and its internal structure.

The five equations (2.2)–(2.5), (2.8) constitute a system with dependent variables (s, u,X, Y, T ).
They are non-dimensionalized by introducing dimensionless dependent and independent vari-
ables as ratios of dimensional quantities and reference quantities denoted by an asterisk:

t̃ =
u∗t

ϕx∗
, x̃ =

x

x∗
, θ̃ =

T − Tres
T ∗ , ũ =

u

u∗
, (2.10)

where

x∗ =
Yinjρ

∗
gu

∗

W ∗
r

, ρ∗g =
Ptot
RTres

, T ∗ = Tb − Tres. (2.11)

Also W ∗
r is the reference value of the reaction rate, and u∗ is the reference seepage velocity

specified later. The dimensionless quantities θ̃ and ũ describe the temperature (measured from
the reservoir condition) and seepage velocity, respectively. The length scale x∗ in (2.11) is the
ratio between rate of oxygen injection and rate of oxygen consumption in the LTO reaction. It
is a reference length of the LTO reaction region. The dimensionless reaction and vaporization
rates are wr = YinjWr/W

∗
r , wv = Wv/W

∗
v with corresponding characteristic rates W ∗

r , W
∗
v (as

has been already mentioned, we will not need to specify these rates in detail).
The dimensionless equations are obtained by using (2.6), (2.10), (2.11) in equations (2.8),

(2.2)–(2.5), (2.9) and then omitting the tildes. Constant dimensionless parameters are intro-
duced as

α =
ϕcρ

Cm
, αg =

ϕcgρ
∗
g

Cm
, β =

ρ∗g
ρ
, γ =

ϕρ∗gQr

CmT ∗ , σ =
Qv
Qr

,

θv =
Qv
RT ∗ , θ0 =

Tres
T ∗ , ε =

YinjW
∗
v

W ∗
r

.

(2.12)

Note that the dimensionless parameters are independent of the characteristic velocity u∗. Thus,
every solution of our system generates a family of solutions with dimensional variables x and u
scaled proportionally to u∗, see (2.10), (2.11).
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2.1 Governing system of equations in dimensionless form

The governing system of equations for the energy, fuel, total gas, gaseous fuel and oxygen in
dimensionless form (after dropping tildes) is

∂

∂t
(1 + αs+ αgSg) θ +

∂

∂x
(αf + αgFg)uθ = γwr −

σγwv
ε

, (2.13)

∂s

∂t
+

∂

∂x
uf = −βwv

ε
, (2.14)

∂Sg
∂t

+
∂

∂x
uFg = (νg − 1)wr +

wv
ε
, (2.15)

∂

∂t
XSg +

∂

∂x
uXFg =

wv
ε
, (2.16)

∂

∂t
Y Sg +

∂

∂x
uY Fg = −wr, (2.17)

with temperature-corrected gas saturation and flow function

Sg(s, θ) =
1− s

1 + θ/θ0
, Fg(s, θ) =

1− f

1 + θ/θ0
. (2.18)

The dependent variables in system (2.13)–(2.17) are s, X, Y (defined in the interval [0, 1]), θ,
and u. Properties of the functions f(s, θ), wr(s, Y, θ) and wv(s,X, θ) are specified later.

As it is common in applied problems, some of the equations can be rewritten as conservation
laws, see, e.g., [9]. Indeed, using wr and wv from (2.16), (2.17), the equations (2.13)–(2.15) are
written as

∂

∂t
[(1 + αs+ αgSg) θ + γ(Y + σX)Sg] +

∂

∂x
[(αf + αgFg)uθ + γ(Y + σX)uFg] = 0, (2.19)

∂

∂t
(s+ βXSg) +

∂

∂x
(uf + βXuFg) = 0, (2.20)

∂

∂t
(1−X + (νg − 1)Y )Sg +

∂

∂x
(1−X + (νg − 1)Y )uFg = 0. (2.21)

For the equilibrium fraction of gaseous fuel, we have

Xeq(θ) = exp

(
θv

θ0 + 1
− θv
θ0 + θ

)
. (2.22)

The liquid fuel and gas viscosities satisfy

dµ

dθ
< 0,

dµg
dθ

> 0. (2.23)

Under physically reasonable hypotheses on k and kg, we can assume that f(s, θ) in (2.7) is a
smooth function satisfying the conditions

f =
∂f

∂s
= 0 when s = 0; fg =

∂fg
∂s

= 0 when s = 1; (2.24)

∂f

∂θ
> 0,

∂f

∂s
> 0 when 0 < s < 1; (2.25)

∂2f/∂s2 > 0 for 0 < s < sI ; ∂2f/∂s2 < 0 for sI < s < 1; (2.26)

where sI(θ) is the single inflection point of f(s, θ) as a function of s.
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The reaction and vaporization rates wr(s, Y, θ), wv(s,X, θ) are smooth functions satisfying
the conditions

wr = 0 if s = 0 or Y = 0; otherwise wr > 0; (2.27)

wv = 0 if X = Xeq(θ); wv = 0 if both s = 0 and X ≤ Xeq(θ);

∂wv/∂X < 0 if s > 0.
(2.28)

Conditions (2.28) imply that

wv > 0 for s > 0, X < Xeq(θ); wv < 0 for s > 0, X > Xeq(θ). (2.29)

We also assume

0 < ∂wr/∂s <∞, 0 < ∂wv/∂s <∞ for s = 0, X = 0, Y > 0, (2.30)

which implies the regular (linear) decrease of the rates wr → 0 and wv → 0 as s tends to zero.

Remark. In many applications, such as petroleum engineering, the function f = 0 for
0 ≤ s ≤ sirr with the irreducible saturation sirr, while conditions analogous to (2.24)–(2.26)
are satisfied in the interval sirr ≤ s ≤ 1. Also, the derivative ∂wv/∂X can be discontinuous at
X = Xeq(θ), and the limiting behavior of the rates for small s can be different from (2.30). In
our analysis, we consider the case sirr = 0 and smooth wv. However, with some modifications
of the proofs, the results of the current work can be extended to the general case.

All parameters defined in (2.12) are constant. The ratio between reaction rate and evapora-
tion rate is assumed to be small, i.e.,

ε� 1 (2.31)

(a typical value of ε is extremely small, e.g., 10−5). For simplicity, we assume that

β < 1. (2.32)

This condition is always satisfied in practical applications, since the gas density ρ∗g is smaller
than the liquid fuel density ρ, see (2.12).

3 Traveling wave equations for the LTO wave

The subject of our study is the LTO wave, where oxygen reacts with fuel. We look for the
solution in the form of waves traveling with constant speed v > 0. All the variables in these
waves depend on a single traveling coordinate ξ = x − vt. The equations for these waves are
obtained by replacing ∂/∂x by d/dξ and ∂/∂t by −vd/dξ in (2.19)–(2.21), (2.16), (2.17). This
procedure yields

d

dξ
[(−v + αψ + αgψg) θ + γψY + σγψgX] = 0, (3.1)

d

dξ
(ψ + βψgX) = 0, (3.2)

d

dξ
[(1−X)ψg + (νg − 1)ψY ] = 0, (3.3)

d

dξ
Xψg =

wv
ε
, (3.4)

dψY
dξ

= −wr, (3.5)
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where we introduced notations for the fluxes of fuel, total gas and oxygen in the moving coor-
dinate frame parameterized by ξ as

ψ = uf − vs, ψg = uFg − vSg, ψY = Y (uFg − vSg). (3.6)

These fluxes are functions of the dependent variables (s,X, Y, θ, u). Using (3.6), (2.18), fg = 1−f
and sg = 1− s one can show that

ψg =
u− v − uf + vs

1 + θ/θ0
. (3.7)

We will look for a traveling wave solution, such that the temperature decreases from some
value θ− upstream (ξ → −∞) of the wave to the reservoir temperature θ = 0 downstream
(ξ → +∞). Also, because the rates wr and wv must vanish at the limiting states, we are led to
the conditions at ξ = ±∞ that s = 0 and X ≤ Xeq(θ) or, if s > 0, to the conditions Y = 0 and
X = Xeq(θ), see (2.27), (2.28).

We expect that the region upstream of the LTO wave contains only injected gas with a
nonzero oxygen fraction, Y > 0. Therefore, in this region, s = 0. Also X = 0, since there is
no gaseous fuel in the injected gas. Recall that dimensionless parameters are independent of
u∗, so we can set its value arbitrarily. In the expression (3.6) for ψg, the dimensionless Darcy
speed u is inversely proportional to u∗, see (2.10), (2.11); by analogy, the same is true for the
dimensionless wave speed v. Thus, it is possible to choose u∗ such that the gas flux is ψg = 1
in the upstream region. In summary, the following conditions for the dependent variables and
fluxes must be satisfied at the limiting (−) constant state

ξ → −∞ : s− = 0, X− = 0, Y − > 0, θ− > 0,

ψ− = 0, ψ−
g = 1, ψ−

Y = Y −,
(3.8)

where the value of ψ−
Y = (Y ψg)

− = Y − coincides with the oxygen fraction in the injected gas;
the value of u− is not specified.

Downstream of the LTO wave there is liquid fuel, s > 0, and, hence, Y = 0 and X = Xeq(θ).
Thus, a limiting (+) constant state is characterized by the conditions for the dependent variables
and fluxes of the form

ξ → +∞ : s+ > 0, X+ = Xeq(0), Y + = 0, θ+ = 0,

ψ+
Y = 0,

(3.9)

and the value of u+ is not specified. Having motivated (3.8) and (3.9), we will assume these
boundary conditions from now on.

Algebraic equations for the wave profile can be found by integrating equations (3.1)–(3.3)
from −∞ to ξ, which yields

(−v + αψ + αgψg)θ + γψY + σγψgX = (−v + αg)θ
− + γY −, (3.10)

ψ + βψgX = 0, (3.11)

ψg(1−X) + (νg − 1)ψY = 1 + (νg − 1)Y −, (3.12)

where the constants on the right-hand sides are determined using conditions (3.8) at the limiting
(−) state. Substituting ψ expressed from (3.11) into (3.10) yields

v(θ− − θ)− αg(θ
− − ψgθ)− γ(Y − − ψY ) + (σγ − αβθ)ψgX = 0. (3.13)
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Using conditions (3.9) at the constant (+) state in (3.11)–(3.13) yields

ψ+ + βψ+
g X

+ = 0, (3.14)

ψ+
g (1−X+) = 1 + (νg − 1)Y −, (3.15)

σγψ+
g X

+ = (αg − v)θ− + γY −, (3.16)

where ψ+ and ψ+
g denote the values computed at the (+) state.

Equations (3.14)–(3.16) are analogous to Rankine–Hugoniot relationships for shocks in con-
servation law theory. Given the limiting (−) state satisfying (3.8) and the wave speed v, equa-
tions (3.14)–(3.16) determine candidates for limiting (+) states satisfying (3.9). We have found
the traveling wave profile once there exists a solution of equations (3.4), (3.5), (3.11)–(3.13) that
connects the states (−) and (+). Such existence is the subject of the following section.

4 Traveling wave solutions

We will start the analysis by considering the case

νg = 1, α = αg = σ = 0. (4.1)

Typical nondimensional parameters for LTO belong to a neighborhood of these values. The
value νg = 1 corresponds to the reaction when one molecular of oxygen produces one molecular
of gaseous products. According to (2.1), this can be done by taking νg = 1. Since the fuel
evaporation heat Qv, the liquid fuel and gas sensible heats cT ∗ and cgT

∗ are all much smaller
than the combustion heat Qr, we have σ � 1, αg � γ and αβ � γ, see (2.12). Taking
α = αg = σ = 0, we neglect the corresponding terms in (3.13) compared to the term γ(Y −−ψY ),
which is large unless ψY ≈ Y −. The model with parameters (4.1) will be called a simplified
model.

4.1 Folded surface of wave states

For the simplified model (4.1), condition (3.16) takes the form

θ− = γY −/v. (4.2)

It follows from (3.12) that X 6= 1 for parameters (4.1). Then, equations (3.11)–(3.13) become

f =
vs

u
− βX

u(1−X)
, (4.3)

ψg = 1/(1−X), (4.4)

θ = γψY /v, (4.5)

where we used (3.6) for ψ and (4.4) to obtain (4.3), and also (4.2) to obtain the last equation.
Recall that the functions ψg(s, θ, u), ψY (s, Y, θ, u) are determined in (3.6), (2.18) and the function
f(s, θ) has properties (2.24)–(2.26). Using (4.3), (4.4) in (3.7), we obtain

u = v + β +
1− β + θ/θ0

1−X
, with θ from (4.5). (4.6)

All three terms in the right-hand side of (4.6) are positive, because v > 0, θ ≥ 0, 0 ≤ X < 1 and
0 < β < 1, see (2.32). Therefore, u is positive and (4.6) implies

0 < v/u < 1. (4.7)
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Figure 1: (a) Solutions of equation (4.3) forming a folded surface in the space (X,ψY , s). The
equilibrium curve X = Xeq defined in (2.22), (4.5) determines an eq-curve on the surface. (b)
Solutions of equation (4.3) for fixed X and ψY . The left-hand side of (4.3) is represented by f
in terms of s. The right-hand side as a function of s determines a straight line, whose possible
positions relative to f are shown. Each point of the fold curve in figure (a) corresponds to a
tangency point in (b).

Additionally, from (3.6) and (4.4), we have

Y = ψY /ψg = (1−X)ψY . (4.8)

The original state space in our problem consists of the five dependent variables (s,X, Y, θ, u),
and these variables are related by equations (4.3), (4.5), (4.6). Additionally, we have the wave
speed v as a parameter, which is still undetermined. Now we introduce a new state space
(X,ψY , s). Any point in this space determines uniquely a point in (s,X, Y, θ, u) by means of
(4.8), (4.6), (4.5). In the analysis that follows, we consider (X,ψY , s) as a new set of variables,
which depend on the traveling coordinate ξ, constant problem parameters β, θ0, etc., as well as
on the wave speed v still to be determined. As we will see below, the remaining equation (4.3)
determines a two-dimensional surface in the space (X,ψY , s), where θ, u, Y are expressed in
terms of X, ψY using (4.5), (4.6), (4.8). The structure of the surface is described in the following
proposition.

Proposition 1 Equation (4.3) for fixed v > 0, with the function f(s, θ) satisfying (2.24)–(2.26),
and θ, u expressed by (4.5), (4.6) determines a folded surface in the domain 0 ≤ X ≤ 1, ψY ≥ 0,
0 ≤ s ≤ 1, see Fig. 1(a). In the lower part of the surface v > u∂f/∂s, while in the upper part
v < u∂f/∂s. The fold curve X = Xf (ψY ; v), s = sf (ψY ; v) is determined by the equation

v = u ∂f/∂s, (4.9)

and satisfies the inequality
∂Xf/∂ψY < 0. (4.10)

For any fixed ψY , the dependence of the fold line on the parameter v is described by

∂Xf/∂v > 0, lim
v→0

Xf = 0, lim
v→∞

Xf = 1. (4.11)

Proof First, let us consider an arbitrary but fixed value of ψY ≥ 0. Depending on X,
equation (4.3) has a different number of solutions for s, as shown in Fig. 1(b). Here the shape
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of the graph of f is determined by conditions (2.24)–(2.26), where θ is given by (4.5) for fixed
ψY . Each dashed line is the graph of the right-hand side in (4.3) as a function of s, where
u is expressed by (4.6). Three lines corresponding to different parameter values are shown in
Fig. 1(b). The intersection of these lines with the vertical axis s = 0 decreases monotonically
when X increases; the intersection is at the origin for X = 0. The slope v/u of the dashed lines
satisfies (4.7); it decreases when X increases and v/u → 0 for X → 1, as follows from (4.6).
Using these properties, one can see that, when X is small, equation (4.3) has two solutions
for s. There exists a unique X = Xf (ψY ; v) leading to tangency, where (4.9) is satisfied, see
Fig. 1(b). This tangency determines a fold shown in Fig. 1(a). For larger X, equation (4.3) has
no solutions. Negative and positive signs of the quantity v − u ∂f/∂s for the upper and lower
parts of the folded surface are recovered by inspecting the derivatives ∂f/∂s and line slopes v/u
at the intersection points of the f -curve and the upper dashed line in Fig. 1(b).

Let us write (4.3) as
uf − vs+ βX/(1−X) = 0. (4.12)

With u and θ expressed using (4.6), (4.5), equation (4.12) determines a surface in the space
(X,ψY , s). The normal vector (NX , NψY

, Ns) to this surface is found as the gradient of the
left-hand side of (4.12) as

NX =
f + fθ/θ0 + βfg

(1−X)2
, NψY

=

(
u
∂f

∂θ
+

f/θ0
1−X

)
γ

v
, Ns = u

∂f

∂s
− v, (4.13)

where fg = 1− f ≥ 0. Similarly, the derivative of the left-hand side of (4.12) with respect to v
is

Nv = −
(
u
∂f

∂θ
+

f/θ0
1−X

)
γY −

v2
+ f − s. (4.14)

According to (2.25), we have ∂f/∂θ > 0. Also, from (4.3), (4.7), we have f < s. These facts
imply

NX > 0, NψY
> 0, Nv < 0. (4.15)

Let us define the fold curve by two functions, X = Xf (ψY ; v) and s = sf (ψY ; v). Since
Ns = 0 at the fold due to (4.9), we obtain

NX
dXf

dψY
+NψY

= 0, (4.16)

The inequality (4.10) follows from (4.16) and (4.15). Similarly, using (4.12)–(4.14) with Ns = 0,
we find an expression for ∂Xf/∂v as

NX
∂Xf

∂v
+Nv = 0. (4.17)

It follows from (4.17) and (4.15) that ∂Xf/∂v > 0.
Since u > β in (4.6), we have v/u = 0 in the limit v → 0. In this limit equation (4.3)

is satisfied only if all terms vanish, i.e., f = X = s = 0. As v → ∞, we have the limit
Xf → 1. Otherwise, (4.6) yields v/u → 1 and equations (4.3), (4.9) take the limiting form
f = s, ∂f/∂s = 1. But these equations have no solutions for the function f satisfying conditions
(2.24)–(2.26), see Fig. 1(b). �

Note that, for the simplified model (4.1), conditions (3.14), (3.15) provide two equations for
the (+) state and equation (3.15) yields a condition for the (−) state. Thus, the (+) states turn
out to be independent of the (−) state. Proposition 1 can be used to describe (+) states of the
form (3.9). There are two, one or no (+) states depending on the position of the folded surface
at ψY = 0 relatively to the vertical X+ line, see Fig. 1(a). A single (+) state is found at the
fold curve when X+ = Xf (0; v). Using properties (4.11), we obtain
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Corollary 1 There exists a value v0 > 0 such that: there are no (+) states for v < v0, and
there are two states (+)A and (+)B for v > v0 with s+A < s+B. For v = v0, there is a single (+)
state, which lies on the fold curve.

Thus, the case v < v0 is of no interest for the study of traveling LTO waves. We assume
v ≥ v0 from now on.

4.2 Vector field on the folded surface

We have studied equations (3.1)–(3.3) and determined the folded surface in the space (X,ψY , s).
Now, equations (3.4), (3.5) with ψg from (4.4) are written as

dX

dξ
= (1−X)2

wv
ε
,

dψY
dξ

= −wr. (4.18)

For given ε > 0, these equations define a vector field on the folded surface in Fig. 1(a). This
surface can be parameterized by two coordinates (ψY , s) varying in the domain

ψY ≥ 0, 0 ≤ s ≤ s0(ψY ), (4.19)

where s0(ψY ) corresponds to the upper intersection of the surface with the plane X = 0 in
Fig. 1(a). We notice that the variable X(ψY , s) can be expressed explicitly using (4.12) with u
from (4.6) and θ from (4.5) as

X =
v(s− f)− (1 + θ/θ0)f

v(s− f) + βfg
. (4.20)

The fold curve is defined by the condition ∂X/∂s = 0.
Let us find the third component of the vector field ds/dξ. Taking the derivative of (4.12)

with respect to ξ and using (4.5), (4.6), (4.18) yields(
u
∂f

∂s
− v

)
ds

dξ
=

(
f/θ0
1−X

+ u
∂f

∂θ

)
γwr
v

− (f + fθ/θ0 + βfg)
wv
ε
. (4.21)

Notice that the coefficient of the left-hand side vanishes on the fold curve (4.9), giving rise to a
singularity. This singularity is blown up by introducing a new coordinate τ related to ξ by the
equation (a similar transformation was used in [23])

dξ

dτ
= v − u

∂f

∂s
. (4.22)

Using (4.22) in the second equation in (4.18) and (4.21), we obtain the following system, which
replaces (4.18):

dψY
dτ

=

(
u
∂f

∂s
− v

)
wr, (4.23)

ds

dτ
= −

(
f/θ0
1−X

+ u
∂f

∂θ

)
γwr
v

+ (f + fθ/θ0 + βfg)
wv
ε
. (4.24)

The expressions for this system contain the functions f(s, θ), wr(s, Y, θ), wv(s,X, θ). Using the
relationships (4.20), (4.8), (4.6), (4.5), we can express the variables X, Y , u, θ and, therefore,
the right-hand sides of (4.23), (4.24), as functions of the two variables ψY and s.
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Figure 2: (a) Orbit structure of system (4.23), (4.24) for v > v0 and small ε > 0. There is a
single orbit B corresponding to a (resonant) traveling wave with the (+)B limiting state, and
a family of orbits A corresponding to traveling waves with the (+)A limiting states. Arrows
directions correspond to increasing τ . For increasing ξ, the arrows must be reversed in the
upper (white) domain. (b) Singular limit ε→ 0.

Proposition 2 Consider equilibria of system (4.23), (4.24) in the domain (4.19) for small
ε > 0, see Fig 2. If v > v0, then the equilibria on the boundary of the domain (4.19) are the two
(+) states and all points with s = 0 corresponding to (−) states; there is a unique equilibrium
Oε in the interior of the domain (4.19). The upper (+)B state is an attractor, the lower (+)A
state is a repellor, each point of the line s = 0 is a limiting (repelling) point of its corresponding
orbit, and Oε is a saddle point lying on the fold curve, see Fig 2(a). As ε → 0, the point Oε

moves in the direction of smaller ψY and has the limit O0. The point O0 is the intersection of
the fold curve and the equilibrium curve marked by ”eq” in Fig. 2(b); its coordinate is denoted

by ψ
(0)
Y . The dependence of ψ

(0)
Y on the parameter v is characterized by

∂ψ
(0)
Y /∂v > 0, lim

v→v0
ψ
(0)
Y = 0, lim

v→∞
ψ
(0)
Y = ∞. (4.25)

In the limit v → v0 + 0, the (+)A, (+)B states and Oε coincide.

Proof The right-hand sides of (4.23), (4.24) vanish for s = 0, see (2.24), (2.27), (2.28),
(4.20), which also yield X = 0. Thus, all points with s = 0 are equilibria; they correspond to the
(−) limiting states (3.8). For small s, the wr term in (4.24) is much smaller than the positive wv
term, as follows from the properties (2.24), (2.29), (2.30) of the functions f , wr and wv. Also,
one can divide the right-hand sides of (4.23), (4.24) by s and obtain a vector field with regular
points at ψY > 0, s = 0, where wr = wv = 0. Thus, each point of the axis s = 0 is a limiting
(repelling) point of a single corresponding orbit.

On the line ψY = 0 we have Y = 0, θ = γψY /v = 0 and wr = 0. The latter condition
implies that the axis ψY = 0 is a union of orbits of our vector field. Since the coefficient of wv
in (4.24) is positive, equilibria are determined by the condition wv = 0. For s > 0 this implies
X = Xeq(0) = X+, determining the two (+) states for v > v0, see Corollary 1.

Consider the lower (+)A state with the coordinates ψY = 0 and s = s+A. In the neighborhood
of this point (4.23) yields dψY /dτ < 0, since wr > 0 and the coefficient in the parentheses is
negative below the fold, see Proposition 1. Thus, all orbits are attracted to the axis ψY = 0,
which itself is a union of orbits, see Fig. 2(a). On the axis ψY = 0, the sign of ds/dτ in (4.24) is
determined by wv. According to (2.29), this sign is positive for s < s+A (when X < Xeq = X+)
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and negative for s > s+A (when X > Xeq), see Fig. 1(a). Such an orbit structure for (+)A
corresponds to an attractor. Similarly, one can prove that the upper (+)B state is a repellor.

Now let us consider equilibria for nonzero ψY and s. In this case wr > 0 as it follows from
(2.27). The right-hand side of (4.23) vanishes under the condition (4.9). Therefore, equilibria
lie on the fold line. Equating the right-hand side of (4.24) to zero yields

wv = ε
γwr

v(1−X)

f/θ0 + u(1−X)∂f/∂θ

f + fθ/θ0 + βfg
. (4.26)

For ε = 0, the solutions of (4.26) are determined by the equation wv = 0. For s > 0,
this equation yields X = Xeq(θ), see (2.28), and determines the eq-curve shown in Fig. 1(a).
Together with the fold condition, we have X = Xf = Xeq. It follows from (2.22), (4.5) that Xeq

increases with ψY up to the value Xeq = 1 > Xf . By Proposition 1, Xf decreases with ψY and,
by Corollary 1, Xf > Xeq = X+ for ψY = 0 and v > v0. Therefore, there is a unique solution
with Xf = Xeq determining the point O0 in Figs. 1(a) and 2(b). Since this solution is regular,
it undergoes a small shift along the fold curve when ε varies from zero to a small positive value.
Since the right-hand side in (4.26) is positive, we have wv > 0 and (2.29) yields X < Xeq. One
can see from Fig. 1(a) that the inequality X < Xeq corresponds to the region on the right of
the eq-curve in Fig. 2(b). This means that the equilibrium point Oε is shifted to the positive
ψY -direction relative to O0.

Now let us study the type of the equilibrium given by equation (4.26) for ε > 0 and the
fold condition (4.9). At the fold we have ∂X/∂s = 0. This allows writing the Jacobian of the
right-hand side of system (4.23), (4.24) at the equilibrium as ∗ uwr

∂2f

∂s2
f + fθ/θ0 + βfg

ε

∂wv
∂θ

γ

v
+ ∗ ∗

 , (4.27)

where we used ∂θ/∂ψY = γ/v, which follows from (4.5); the stars denote terms which have
finite limit as ε → 0. The upper right component is positive, since ∂2f/∂s2 > 0 at the fold
corresponding to the tangency in Fig. 1(b). The derivative ∂wv/∂θ is positive, which can be
shown by differentiating the equality wv(s,Xeq(θ), θ) = 0 with ∂wv/∂X < 0 and ∂Xeq/∂θ > 0,
see (2.28), (2.22). Thus, the lower left component is positive. For sufficiently small ε, when
the 1/ε term is much larger than the other terms, the determinant of (4.27) is negative. Hence,
the equilibrium is a saddle with eigenvectors almost parallel to the s-axis, as one can check by
evaluating eigenvalues and eigenvectors of (4.27).

As we showed above, the coordinate ψ
(0)
Y (v) of the point O0 is determined by the equations

X = Xf (ψY ; v) = Xeq(θ), where θ = γψY /v. It is straightforward to show dψ
(0)
Y /dv > 0 by

differentiating the equation Xf = Xeq and using the inequalities ∂Xf/∂ψY < 0, ∂Xf/∂v > 0
and dXeq/dθ > 0, see (4.10), (4.11) and (2.22). In the limit v → ∞, we have Xeq = Xf → 1

according to (4.11), which implies θ → 1, see (2.22). Using (4.5), this yields ψ
(0)
Y → ∞ as

v → ∞. By Corollary 1, for v = v0, the (+)A and (+)B states coincide at the point where
X = Xf = Xeq, see Fig. 1(a). At this point, equation (4.26) is satisfied for any ε and, therefore,

all three equilibria (+)A, (+)B and Oε merge. In particular, we have ψ
(0)
Y (v0) = 0. �

For numerical aspects of finding the LTO wave parameters see Section 6.

4.3 Non-resonant and resonant waves

For fixed small ε > 0 and v > v0, the qualitative orbit structure is presented in Fig. 2(a). This
orbit structure is fully determined by the equilibria described in Proposition 2. Note that for
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ψY > 0 the orbit directions are characterized by dψY /dτ > 0 above the fold and dψY /dτ < 0
below the fold, see (4.23) and Proposition 1.

A traveling wave is represented by an orbit of (4.23), (4.24) on the plane (ψY , s) starting at a
(−) state on the axis s = 0 and ending at a (+) state on the axis ψY = 0. The traveling coordinate
ξ must increase along the orbit from (−) to (+). It follows from (4.22) and Proposition 1 that
the coordinate τ must increase along the orbit below the fold (grey regions in Figs. 1, 2) and
decrease above the fold (white regions). Note that the fold states given by (4.9) are resonant
states, because u ∂f/∂s is the saturation characteristic speed. We will say that the wave is
resonant if it contains a resonance state, i.e., the corresponding orbit passes through the fold.

One can see that there exist two types of traveling waves in our problem. The first type
corresponds to the resonant wave. The resonant wave profile is represented by an orbit that
crosses the fold and is denoted by B in Fig. 2. This orbit connects the state (−) given by
ψY = Y −, s = 0 to the state (+)B given by ψY = 0, s = s+B, see (3.8), (3.9). Note that the orbit
must pass through the saddle equilibrium, since the condition of increasing ξ cannot be satisfied
at a regular point on the fold. (Recall that ξ increases with τ below the fold, and decreases with
τ above the fold.) Though τ → ∞ at the equilibrium, one can show that ξ remains finite, since
the right-hand side in (4.22) vanishes on the fold. One can see that the orbit B exists only for
the specific value of Y − = YB.

The second type corresponds to non-resonant waves. Their profiles are represented by orbits
that lie below the fold and are denoted by A in Fig. 2. Such orbits connect states (−) given by
ψY = Y −, s = 0 to the state (+)A, see Fig. 1(a). The orbits A exist for Y − ≤ YB, where YB
corresponds to the (−) state of the orbit B, see Fig. 2.

The structure of orbits of system (4.23), (4.24) in the limit ε → 0 is shown in Fig. 2(b).
Rescaling τ = ετ̃ and taking ε = 0 in this system yields dψY /dτ̃ = 0 and ds/dτ̃ = (f + fθ/θ0 +
βfg)wv. A set of equilibria of this system is determined by the condition wv = 0 and consists
of the line s = 0 and the eq-curve. Away from this set, all orbits are parallel to the s-axis.
The directions of these orbits are determined by the sign of wv according to (2.29). This sign is
negative for X > Xeq (on the left of the eq-curve), and positive for X < Xeq (on the right of the
eq-curve), see Fig. 1(a). The eq-curve represents a limit of two saddle orbits, see Fig. 2(a,b).

We see that the classification of traveling waves for a given speed v > v0 is determined by

the value of YB. In the limit ε→ 0, we have YB = ψ
(0)
Y , since the orbit B is parallel to the s-axis

below the equilibrium O0 with the abscissa ψ
(0)
Y , see Fig. 2(b). Hence, dYB/dv = dψ

(0)
Y /dv > 0,

see (4.25). For small positive ε, the difference between YB and ψ
(0)
Y is small and, thus, the

inequality dYB/dv > 0 remains valid. This allows associating a unique value v = vr for given
YB > 0 and small fixed ε > 0. In this case, the family of non-resonant traveling waves for given
Y − is characterized by speeds v ≥ vr (instead of Y − ≤ YB for given v).

The results we obtained can be summarized as follows.

Theorem 1 Consider system (2.13)–(2.17) for the simplified model with parameters (4.1),
small ε > 0, and oxygen fraction 0 ≤ Y − ≤ 1 in the injected gas. Then there exists a crit-
ical speed value vr > 0 such that:

1) For any v ≥ vr, there exists a non-resonant traveling wave with speed v and with limiting
states satisfying (3.8), (3.9), where θ− = γY −/v and s+ = s+A at (+)A in Fig. 2(a). At
the (+)A state, the inequality v > u∂f/∂s holds.

2) There exists a unique resonant traveling wave with limiting states satisfying (3.8), (3.9).
This wave has speed v = vr. The limiting values are θ− = γY −/vr and s+ = s+B at (+)B
in Fig. 2(a). At the (+)B state, the inequality v < u∂f/∂s holds.

3) If v < vr, then traveling waves with limiting states satisfying (3.8), (3.9) do not exist.
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Figure 3: Structure of non-resonant (a) and resonant (b) LTO waves for the simplified model
(4.1). Indicated are changes in temperature θ, liquid fuel saturation s, oxygen flux ψY and
fuel fraction X in the gas. One region is dominated by vaporization and the other by LTO
reaction (with slow condensation). In case (b), these regions are separated by the resonance
state corresponding to Oε in Fig. 2(a). The reaction region is much wider than the vaporization
region. The variations of θ and ψY in the vaporization region are small (of order ε) for parameters
(4.1).

In the limit ε → 0, the speed vr can be found by solving equations (4.3), (4.9) with respect to v
and s, where X = Xeq(θ), ψY = Y − and θ, u are taken from (4.5), (4.6).

In practical applications, ε is usually very small, and it is sufficient to use the approximation
with ε→ 0. According to Theorem 1, the classification of the LTO traveling waves in this limit
requires solving a system of two algebraic equations. These equations depend on the values of
the constant parameters Y −, γ, β, θ0, θv, as well as on the form of the function f(s, θ).

Fig. 3 shows profiles of non-resonant and resonant LTO waves corresponding to the orbits
A and the orbit B respectively in Fig. 2. One can distinguish two regions in the profile. In the
vaporization region upstream of the wave, the gaseous fuel fraction increases from X = 0 in the
injected air to its equilibrium profile Xeq(θ). Due to large vaporization rate (ε� 1), this region
is very thin so that the total amounts of reaction products are small. The second much wider
reaction region is where almost all of the LTO reaction occurs. In this region, the fraction X
remains very close to Xeq(θ). The decrease of X with ξ implies that condensation of gaseous fuel
occurs in the reaction region. This condensation is characterized by a much smaller vaporization
rate |wv| compared to the rate in the vaporization region. In the resonant wave, the subdivision
into vaporization and reaction regions may be attributed to the saddle equilibrium, as one can
conclude looking at the position of the orbit B and the eq-curve in Fig. 2(b). See also the profile
of the resonant LTO wave computed numerically in Section 6 and presented in Fig. 5(b), where
the thin vaporization region is shown as a discontinuity.

4.4 Generalization

The results obtained above correspond to the system (3.1)–(3.5) simplified by taking parameters
(4.1). As shown above, values of parameters corresponding to physical systems can be considered
as small perturbations of (4.1). In the general case, equations (3.11)–(3.13) with (3.16) and ψ
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from (3.6) yield

f =
vs

u
− βψgX

u
, (4.28)

ψg =
1 + (νg − 1)(Y − − ψY )

1−X
, (4.29)

θ =
γψY + σγ(ψgX − ψ+

g X
+)

v + (αβX − αg)ψg
. (4.30)

Using (4.28) in (3.7), we obtain

u = v + ψg(1− βX + θ/θ0). (4.31)

Equations (4.28)–(4.31) substitute (4.3)–(4.6). The first equation (4.28) with ψg, θ, u ex-
pressed from (4.29)–(4.31) defines a surface in the space (X,ψY , s). It is clear that, for param-
eters taken in a neighborhood of (4.1), this surface has the same folded structure described in
Proposition 1 and shown in Fig. 1(a). In particular, the fold condition takes the same form
(4.9), but with u given by (4.31). Traveling waves are described as orbits of the system induced
by equations (3.4), (3.5) on the folded surface.

The structure of orbits again can be studied using the (ψY , s) projection of the folded surface.
Following the derivation of (4.22)–(4.24), one can check that the first two equations remain
unchanged in the general case. In the last equation, only the coefficients of wr and wv on the
right-hand side will change. Thus, for parameters taken in a neighborhood of (4.1), Proposition 2
can be proved as in the simplified case.

The following theorem provides an extension of Theorem 1.

Theorem 2 The traveling wave classification of Theorem 1 holds when the parameters νg, α,
αg, σ are taken in some neighborhood of (4.1). In the limit ε→ 0, the critical value v = vr can
be found by solving equations (4.3), (4.9), X = Xeq(θ) with respect to v, X, s, where ψY = Y −,
u is given by (4.6), and

θ− =
γY −

v − αg
− σγ(1 + (νg − 1)Y −)X+

(v − αg)(1−X+)
, θ =

(v − αg)(1−X)θ− + σγX

v(1−X)− αg + αβX
. (4.32)

Proof The proof of Theorem 1 was based on Propositions 1, 2, which are valid also in a
neighborhood of the parameters in (4.1). Thus, the classification of traveling waves in Theorem 1
remains valid. In the limit ε→ 0, the same conditions (4.9), X = Xeq(θ), ψY = Y − hold at the
resonance point. Substituting the latter into (4.28), (4.29), (4.31) yields equations (4.3), (4.4),
(4.6) at the resonance point. The first expression in (4.32) is obtained from (3.16), where ψ+

g

is expressed from (3.15). Then the second expression in (4.32) is derived from (3.13), where
ψY = Y − and ψg is expressed from (4.4). �

As described in Theorems 1 and 2, in the limit ε → 0, the speed vr of the resonant wave is
determined by the conditions X = Xeq(θ), ψY = Y − at the resonance point. Thus, the speed
vr becomes independent of the particular form of the reaction and vaporization rates wr, wv.
We also note that, in the general case, the temperature profile θ(ξ) will not be monotonic as in
Fig. 3, but will have a (usually small) increasing part in the vaporization region.

4.5 Equations structure and the resonance

Let us give some general remarks about the governing system (2.19)–(2.21), (2.16), (2.17), which
has the structure

∂H

∂t
+
∂F

∂x
= G, (4.33)
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where H,F,G ∈ R5 are smooth functions of the dependent variables U = (s,X, Y, θ, u). Limiting
states of the traveling wave must satisfy the condition G = 0.

For a traveling wave, equation (4.33) yields

D
∂U

∂ξ
= G, D = −v∂H

∂U
+
∂F

∂U
, (4.34)

where ξ = x−vt is the traveling coordinate and v is the wave speed. This is a system of implicit
ordinary differential equations. In the generic case, the state space U can be divided into a
set of open connected regions with boundaries. In the interior of each region, the matrix D is
nonsingular, so that (4.34) yields a differential equation for the wave profile as dU/dξ = D−1G.
The regions are separated by hypersurfaces with singular matrices D. Thus, when the limiting
states of the wave belong to different regions, the wave profile must contain an intermediate state
with singular matrix D. This state is resonant, since the equation detD = 0 for the matrix D
from (4.34) implies that v is a characteristic speed of system (4.33).

In our problem, (4.34) represents a system of five equations. The first three components of
G are identically zero, which allows integration of the first three equations. This yields explicit
expressions for θ and u, as well as a folded surface in the space (X,Y, s) or, after a simple
transformation, in the space (X,ψY , s). The remaining two equations of system (4.34) define the
vector field on the folded surface, where the fold corresponds to the boundary detD = 0 discussed
in the previous paragraph. We have seen that the orbit of the vector field (corresponding to a
traveling wave) can pass only through a singular point of the fold. Note that the singularity that
we encountered on the fold line can be seen as a typical folded saddle singularity of a system of
two implicit ordinary differential equations, see [1, 5].

We see that singularities of implicit ordinary differential equations are strongly related to the
problem of finding traveling wave profiles in systems of balance laws (4.33). It was mentioned in
[12] that, besides the Rankine-Hugoniot conditions relating (−) and (+) limiting states, analysis
of the singularity at the resonance point Oε provides extra determining conditions. Physical
examples of this phenomenon are encountered in detonation problems [23, 6, 11], where it is
called ”pathological detonation”. We identified and studied this singularity in our problem of
low temperature oxidation in porous medium, and showed that it joins the vaporization and
reaction regions. The novel part of our theory is related to the limit ε → 0, corresponding
to large vaporization rate. In this limit, the extra determining condition becomes independent
of the form of both the vaporization and reaction rates, i.e., of the function G in (4.33); only
the Clausius-Clapeyron relation (2.9) remains important. The limiting extra condition is found
explicitly; it determines the LTO wave speed for given injection conditions. We hope that our
approach can be used to yield rigorous results in the opposite case of large reaction rate, e.g.,
in the problem of detonation in slightly divergent flow [6].

5 Wave sequence solutions

The singular structure of the LTO wave has interesting consequences for a general solution. To
see this, let us return to the original system (2.13)–(2.17) and consider the large time asymptotic
behavior. At large spacial and temporal scales, the LTO wave can be treated as a discontinuity
between the limiting states (3.8), (3.9). In this case we can construct a general solution as a
sequence of waves, such that all waves are well separated in space and do not interact. For
simplicity, we will stick to the case (4.1).

Upstream of the LTO wave, there is no fuel and s = X = wr = we = 0. To model air
injection, we prescribe the boundary condition as

x = 0 : θ = s = X = 0, Y = Yinj , u = uinj , (5.1)
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where Yinj is the oxygen fraction in injected gas, and uinj describes the injection rate. The
far downstream state corresponds to the prescribed initial reservoir filled with liquid fuel with
saturation sres and gas with saturation 1 − sres. This gas contains fuel vapor and no oxygen.
Thus,

x→ ∞ : θ = 0, s = sres, X = Xeq(0), Y = 0. (5.2)

Let us study the behavior near the injection point. In this region, s = X = wr = we = 0
and Y ≡ Yinj . Hence, equations (2.14), (2.16) are trivially satisfied and (2.17) is equivalent to
(2.15). Using (2.18), the remaining equations (2.13), (2.15) reduce to

∂θ

∂t
= 0,

∂

∂t

1

1 + θ/θ0
+

∂

∂x

u

1 + θ/θ0
= 0. (5.3)

These equations have a shock wave solution (thermal wave) described as a discontinuity at
x = vT t between the injection state (5.1) and the LTO wave (−) state (3.8). Using the Rankine–
Hugoniot conditions on these states for (5.3) (see, e.g., [20]), we obtain

vT [θ] = 0,

[
u− vT
1 + θ/θ0

]
= 0, (5.4)

with the braces denoting the variation of the expression at the discontinuity. This yields

vT = 0, u− = (1 + θ−/θ0)uinj . (5.5)

Note that the vanishing speed is the result of (4.1); vT becomes positive for ag > 0 (for typical
parameters the thermal wave is much slower than the LTO wave). The thermal wave is the only
wave that can be found upstream of the LTO wave. This implies that

Y − = Yinj . (5.6)

First let us consider the resonant LTO wave as a discontinuity at x = vt between the limiting
states (3.8), (3.9). Equation (4.3) for the (+) state (3.9) has two solutions s+A and s+B, Fig. 4.
By Theorem 1, the resonant wave is characterized by the specific speed value v = vr and the
larger saturation s+B. Recall that the reference speed u∗ must be chosen so that ψ−

g = 1, see
(3.8). Expressing ψ−

g from (3.6), (2.18) and using (5.5), s− = f− = 0, and θ− from (4.2), we
obtain

uinj = 1 +
v2r

vr + γY −/θ0
. (5.7)

This formula can be used to find the relation vr/uinj between the LTO wave speed and the
injection speed.

Consider now the region downstream of the LTO wave, where θ+ = Y + = w+
r = w+

v = 0
and X+ are constant, see (3.9). For θ = Y = wr = wv = 0, equations (2.13), (2.17) are trivially
satisfied, and equations (2.14)–(2.16) are equivalent to

∂s

∂t
+
∂F

∂x
= 0, (5.8)

where the flux function F (s) = u+f(s, 0) corresponds to the (+) state with u = u+ and θ+ = 0.
A self-similar weak solution (saturation wave) has the form s = s(ζ) with ζ = x/t. This solution
is constructed using the standard procedure, see, e.g., [17, 20]. Generally, it represents a shock
or rarefaction waves, possibly combined. The states s(ζ) in this solution are found by taking
the convex hull of the portion of graph of the function F (s) between the limiting points s+B and
sres with increasing slope ζ. The lower part of the convex hull is taken when s+B < sres, and the
upper part when s+B < sres. Examples of saturation wave solutions are shown in Fig. 4.
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Figure 4: Presented are the function F (s) = u+f(s, 0) and the straight line with slope vr and
intersection with the vertical axis at −βX+/(1−X+). The downstream fuel saturation s+B of the
resonant LTO wave corresponds to the upper intersection point. Downstream fuel saturations
of non-resonant LTO waves span the interval (0, s+A] below the lower intersection point. As
examples, two dark points determine the values of sres connected to s+B by a saturation wave. It
is a shock wave (dashed line) for the lower point denoted as s′res, and a rarefaction wave (bold
line) for the upper point denoted as s′′res.

We must have ζ ≥ vr in the saturation wave, since the saturation wave must be downstream
of the LTO wave. One can see from Fig. 4 that solutions s(ζ) satisfying this requirement exist
when sres ≥ s+A, where s

+
A is the lower intersection point.

When sres < s+A, solutions with a resonant LTO wave do not exist. In this case, the solutions
can be constructed with non-resonant LTO waves. According to Theorem 1, non-resonant waves
exist for v ≥ vr. With increasing v, the value of s+A decreases and vanishes in the limit v → ∞.
This can be seen from Fig. 1(b), taking into account that, for v → ∞, the line slope v/u+ tends
to 1 and the intersection point of the line with the vertical axis tends to the origin, see (4.3),
(4.6). Since non-resonant waves satisfy the condition v > u∂f/∂u, there cannot be a saturation
wave downstream. We summarize the results in

Theorem 3 Consider the system (2.13)–(2.17) with parameters (4.1), small ε > 0, and oxygen
fraction 0 < Y − ≤ 1 in the injected gas. Let s+A be the value at the (+)A limiting state (3.9)
computed for the speed v = vr according to Corollary 1 and Theorem 1. Then,

1) If sres ≥ s+A, there is a unique asymptotic solution as a sequence of thermal, resonant LTO
and saturation waves, separating the four regions with constant states (5.1), (3.8), (3.9),
(5.2). When sres = s+A, the LTO wave speed is equal to the speed of the saturation (shock)
wave.

2) If sres ≤ s+A, there is a unique asymptotic solution as a sequence of thermal and non-
resonant LTO waves separating the three regions with constant states (5.1), (3.8), (5.2).

The saturation wave in case 1 of Theorem 3 can be a rarefaction or a shock (possibly
combined) as explained in Fig. 4. Note the remarkable role of the resonant LTO wave, which
appears in the solution for a wide range of the initial fuel concentrations sres ≥ s+A.

6 Numerical example

Let us consider the simplified case (4.1) with other parameters and viscosity ratio given by

γ = 0.14, β = 0.05, θ0 = 2, θv = 25, µg/µ = 0.04(1 + 1.2 θ)
√
θ + 2.2, (6.1)
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Figure 5: (a) Fractional flow function f(s, θ) for different θ. (b) Resonant LTO wave profile in
the limit ε → 0 for Yinj = 0.21 and reaction rate (6.2). The vaporization region reduces to a
discontinuity of s and X at ξ = 0. The reaction region corresponds to ξ > 0.

typical for a light oil reservoir (Ptot = 10 atm, Tres = 50�, Tb = 200�, etc.). We will consider
the limit ε → 0, since ε is usually extremely small. The quadratic permeability Corey model
with k = s2, kg = s2g will be used. Graphs of the fractional flow function f(s, θ) determined in
(2.7) are presented in Fig. 5(a) for different values of θ.

Consider the injected oxygen fraction Y − = Yinj = 0.21. By Theorem 1, the resonant LTO
wave speed vr together with the fuel saturation s at the resonance point are found by solving
numerically equations (4.3), (4.9) with X = Xeq(θ) in (2.22), ψY = Y − and θ, u from (4.5),
(4.6). Solving these equations numerically, we find vr = 0.0743. Solving equation (4.3) for the
(+) state (3.9), we find the larger solution s+B = 0.4060 corresponding to the resonant LTO
wave, and the smaller solution s+A = 0.0107. Since s+A is very small, for almost all initial fuel
saturations (sres > s+A), the wave sequence solution contains a resonant LTO wave.

The wave profile of the resonant LTO wave consists of vaporization and reaction regions,
see Fig. 3(b). As ε → 0, the vaporization region reduces to a discontinuity in the upstream
part of the profile. In the reaction region, we can express θ, X = Xeq(θ), u, Y in terms
of ψY using (4.5), (4.6) and (4.8). Then s as a function of ψY is determined by the larger
solution of (4.3); it corresponds to the orbit B above the equilibrium O0 in Fig. 2(b). When the
expression for wr is known, one can use these relations for finding the spatial dependence ψY (ξ)
by integrating numerically the differential equation (3.5) with the initial condition ψY (0) = Yinj
at the equilibrium O0. Let us consider an LTO reaction rate of the form

wr = 109sY 0.5 exp

(
− 45

θ0 + θ

)
, (6.2)

which agrees with experimental data in [7]. For this case, the profile of the resonant LTO wave
is shown in Fig. 5(b).

Instead of (4.1), we also considered the parameters

νg = 0.5, α = 0.23, αg = 0.0016, σ = 0.08. (6.3)

In this case the resonant LTO wave speed vr = 0.0766 is computed numerically as described in
Theorem 2. The calculations show that the results for the cases (4.1) and (6.3) are very close.
Numerical computations confirmed the existence and uniqueness of the traveling wave profile
for the resonant LTO wave, as predicted by Theorem 2.
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7 Conclusion

We studied traveling waves in reactive multi-phase flow in porous medium described by a system
of conservation laws with two source terms corresponding to oxidation and vaporization. We
identified and studied traveling waves that contain resonance points, at which the wave speed
equals the saturation characteristic speed. The wave profile is determined as an orbit of a vector
field in state space. The resonance point is associated to a saddle singularity of this vector field
defined on a folded surface. This folded saddle singularity leads to an extra condition relating
the states upstream and downstream of the traveling wave. It is remarkable that this condition
does not depend on the form of reaction and vaporization rates, provided one of the processes
(in our case vaporization) is much faster than the other. In this limit, the extra determining
condition was found explicitly. We proved existence and uniqueness theorems for resonant waves,
and found general solutions of the problem in the form of wave sequence. We showed that the
wave sequence solution for physically relevant initial conditions contains the resonant traveling
wave.

Singularities at internal points of traveling wave profiles are shown to play important role
in filtration combustion problems, which motivates further study of such singularities. This
theory would be useful, e.g., when an extra liquid phase (such as water) is taken into account.
In our model we neglected parabolic terms, e.g., from heat conduction, whose effect onto the
qualitative structure of the traveling wave solution needs to be studied. All these problems are
important both for the mathematical theory of PDEs and for flow in porous media.

Acknowledgment. We thank the referee for suggesting that we write the explanation in
Section 4.5.
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