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Abstract

Over all non-prime finite fields, we construct some recursive towers of function fields with
many rational places. Thus we obtain a substantial improvement on all known lower bounds
for Ihara’s quantity A(`), for ` = pn with p prime and n > 3 odd. A modular interpretation
of the towers is given as well.

1 Introduction

Investigating the number of points on an algebraic curve over a finite field is a classical subject
in Number Theory and Algebraic Geometry. The origins go back to Fermat, Euler and Gauss,
among many others. The basic result is A. Weil’s theorem which is equivalent to the validity of
Riemann’s Hypothesis in this context. New impulses came from Goppa’s construction of good
codes from curves with many rational points, and also from applications to cryptography. For
information, we refer to [9, 21].

One of the main open problems in this area of research is the determination of Ihara’s quantity
A(`) for non-square finite fields; i.e., for cardinalities ` = pn with p prime and n odd. This quan-
tity controls the asymptotic behaviour of the number of F`-rational points (places) on algebraic
curves (function fields) as the genus increases. This is the topic of our paper.

Let F be an algebraic function field of one variable over F`, with the field F` being algebraically
closed in F . We denote

N(F ) = number of F`-rational places of F, and g(F ) = genus of F.

The Hasse–Weil upper bound states that

N(F ) ≤ 1 + `+ 2
√
` · g(F ).

This upper bound was improved by Serre [23] who showed that the factor 2
√
` can be replaced

above by its integer part b2
√
`c.

Ihara [16] was the first to realize that the Hasse–Weil upper bound becomes weak when the genus
g(F ) is large with respect to the size ` of the ground field F`. He introduced the quantity

A(`) = lim sup
g(F )→∞

N(F )
g(F )

, (1)
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where the limit is taken over all function fields F/F` of genus g(F ) > 0. By Hasse–Weil it holds
that A(`) ≤ 2

√
`, and Ihara showed that A(`) <

√
2`.

The best upper bound known is due to Drinfeld–Vlăduţ [2]. It states that

A(`) ≤
√
`− 1, for any prime power `. (2)

If ` is a square, the opposite inequality A(`) ≥
√
`− 1 had been shown earlier by Ihara using the

theory of modular curves (see [15]). Hence

A(`) =
√
`− 1 , when ` is a square. (3)

For all other cases when the cardinality ` is a non-square, the exact value of the quantity A(`) is
not known. Tsfasman–Vlăduţ–Zink [25] used Equation (3) to prove the existence of long linear
codes with relative parameters above the Gilbert–Varshamov bound, for finite fields of square
cardinality ` = q2 with q ≥ 7. They also gave a proof of Equation (3) in the cases ` = p2 or
` = p4 with p a prime number.

To investigate A(`) one introduces the notion of (infinite) towers of F`-function fields:

F = (F1 ⊆ F2 ⊆ F3 ⊆ . . . ⊆ Fi ⊆ . . .),

where all Fi are function fields over F`, with F` algebraically closed in Fi, and g(Fi) → ∞ as
i→∞. Without loss of generality one can assume that all extensions Fi+1/Fi are separable. As
follows from Hurwitz’ genus formula, the limit below exists (see [6]) and it is called the limit of
the tower F :

λ(F) := lim
i→∞

N(Fi)
g(Fi)

.

Clearly, the limit of any tower F over F` provides a lower bound for A(`); i.e.,

0 ≤ λ(F) ≤ A(`), for any F`-tower F .

So one looks for towers with big limits in order to get good lower bounds for Ihara’s quantity.
Serre [23] used Hilbert classfield towers to show that for all prime powers `,

A(`) > c · log2(`) , with an absolute constant c > 0 . (4)

One can take c = 1/96, see [21, Theorem 5.2.9]. When ` = q3 is a cubic power, one has the lower
bound

A(q3) ≥ 2(q2 − 1)
q + 2

, for any prime power q. (5)

When q = p is a prime number, this bound was obtained by Zink [26] using degenerations of
modular surfaces. The proof of Equation (5) for general q was given by Bezerra, Garcia and
Stichtenoth [1] using recursive towers of function fields; i.e., towers which are given in a recursive
way by explicit polynomial equations. The concept of recursive towers turned out to be very
fruitful for constructing towers with a large limit.

An F`-tower F = (F1 ⊆ F2 ⊆ F3 ⊆ . . .) is recursively defined by f(X,Y ) ∈ F`[X,Y ] when

(i) F1 = F`(x1) is the rational function field, and

(ii) Fi+1 = Fi(xi+1) with f(xi, xi+1) = 0, for all i ≥ 1.
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For instance, when ` = q2 is a square, the polynomial (see [6])

f(X,Y ) = (1 +Xq−1)(Y q + Y )−Xq ∈ Fq2 [X,Y ]

defines a recursive tower over Fq2 whose limit λ(F) = q − 1 attains the Drinfeld–Vlăduţ bound.

When ` = q3 is a cubic power one can choose the polynomial (see [1])

f(X,Y ) = Y q(Xq +X − 1)−X(1− Y ) ∈ Fq3 [X,Y ] (6)

to obtain a recursive tower over Fq3 with limit λ(F) ≥ 2(q2 − 1)/(q + 2) ; this is the proof of
Equation (5) above. The case q = 2 of Equation (6) is due to van der Geer–van der Vlugt [11].

In the particular case of a prime field, no explicit or modular tower with positive limit is known;
only variations of Serre’s classfield tower method have been successful in this case, see [3, 21].

All known lower bounds for A(pn), with a prime number p and an odd exponent n > 3, are
rather weak, see [18, 21]. For example, one has for q odd and n ≥ 3 prime (see [19])

A(qn) ≥ 4q + 4

b 3+b2
√

2q+2c
n−2 c+ b2

√
2q + 3c

. (7)

The main contribution of this paper is a new lower bound on A(pn) that gives a substantial
improvement over all known lower bounds, for any prime p and any odd n > 3. For large n and
small p, this new bound is rather close to the Drinfeld–Vlăduţ upper bound for A(pn). Moreover,
it is obtained through a recursive tower with an explicit polynomial f(X,Y ) ∈ Fp[X,Y ].

Our lower bound is:

Theorem 1.1 Let p be a prime number and n = 2m+ 1 ≥ 3 an odd integer. Then

A(pn) ≥ 2(pm+1 − 1)
p+ 1 + ε

with ε =
p− 1
pm − 1

.

In particular A(p2m+1) > pm− 1, which shows that a conjecture by Manin [10, 20] is false for all
odd integers n = 2m+ 1 ≥ 3.

The bound of Drinfeld–Vlădu̧t can be written as

A(p2m+1) ≤ pm · √p− 1 .

Fixing the prime number p, we get

our lower bound
Drinfeld–Vlăduţ bound

→
2
√
p

p+ 1
, as m→∞ .

For p = 2 we have 2
√
p/(p + 1) ≈ 0.9428 . . ., hence our lower bound is only around 6 % below

the Drinfeld–Vlăduţ upper bound, for large odd-degree extensions of the binary field F2.

From the asymptotic result of Tsfasman–Vlăduţ–Zink based on Goppa’s construction of linear
codes, one obtains long codes over F` with parameters above the Gilbert–Varshamov bound, if
the following condition holds (see [21, p. 154]):

A(`) · (log`(2`− 1)− 1) > 1 .
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Our lower bound in Theorem 1.1 implies therefore the existence of such codes over F` with ` = pn

and n = 2m+ 1 ≥ 3, when

2(pm − 1) · (log`(2`− 1)− 1) > p+ 1 + ε , with ε =
p− 1
pm − 1

.

This inequality holds for all values of ` as above except for ` = 8, 27 , 32 and 125. Since the case
of square cardinality ` = q2 is known, we get

Corollary 1.2 For all non-primes ` ≥ 49 except possibly for ` = 125, there exist arbitrarily long
linear codes over F` with parameters above the Gilbert–Varshamov bound.

Now we give the defining equations for the several recursive towers F that we consider in this
paper. Let F` be a non-prime field and write ` = qn with n ≥ 2. Here the integer n can be even
or odd. For every partition of n in relatively prime parts,

n = j + k with j ≥ 1, k ≥ 1 and gcd(j, k) = 1 , (8)

we consider the recursive tower F over F` that is given by the equation

Trj

(
Y

Xqk

)
+ Trk

(
Y q

j

X

)
= 1 , (9)

where
Tra(T ) := T + T q + T q

2
+ · · ·+ T q

a−1
for any a ∈ N .

Theorem 1.3 Equation (9) defines a recursive tower F over F` whose limit satisfies

λ(F) ≥ 2
(

1
qj − 1

+
1

qk − 1

)−1

;

i.e., the harmonic mean of qj − 1 and qk − 1 is a lower bound for λ(F).

The very special case n = 2 and k = j = 1 of Equation (9) gives a recursive representation of the
first explicit tower attaining the Drinfeld–Vlăduţ bound, see [5]. This particular case was our
inspiration to consider Equation (9).

For a fixed finite field F` with non-prime `, Theorem 1.3 may give several towers over F` with
distinct limits; this comes from two sources: the chosen representation ` = qn with n ≥ 2 (i.e.,
the choice of q), and the chosen partition n = j + k. For a cardinality ` that is neither a prime
nor a square, the best lower bound comes from

representing ` as ` = pn (i.e., choose q = p);

writing n ≥ 3 as n = 2m+ 1, choose the partition with j = m and k = m+ 1.

The lower bound in Theorem 1.3 in this case reads as

λ(F) ≥ 2
(

1
pm − 1

+
1

pm+1 − 1

)−1

=
2(pm+1 − 1)
p+ 1 + ε

, with ε =
p− 1
pm − 1

.

This is the tower that proves Theorem 1.1, our main result.
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Furthermore, we show that the points on the curves in the tower parametrize certain Fq[T ]-
Drinfeld modules of characteristic T − 1 and rank n ≥ 2 together with some additional varying
structure.

This paper is organized as follows. In Section 2 we investigate the ‘basic function field’ of the
tower F . This is defined as F = F`(x, y) where x, y satisfy Equation (9). In particular, the
ramification structure of the extensions F/F`(x) and F/F`(y) is discussed in detail. Section 3 is
the core of our paper. Here we study the tower F = (F1 ⊆ F2 ⊆ · · · ) and prove Theorem 1.3.
The principal difficulty is to show that the genus g(Fi) grows ‘rather slowly’ as i→∞. Finally,
in Section 4 we show that our tower F occurs quite naturally when studying Drinfeld modules
of rank n, thus providing a modular interpretation of the tower.

We hope that this paper will lead to further developments in the theories of explicit towers and
of modular towers, and their relations.

2 The basic function field

First we introduce some notation.
p is a prime number, q is a power of p, and ` = qn with n ≥ 2,
F` is the finite field of cardinality `, and F` is the algebraic closure of F`.
For simplicity we also denote K = F` or F`.
For an integer a ≥ 1, we set Tra(T ) := T + T q + · · ·+ T q

a−1 ∈ K[T ].

Remark 2.1 (i) Let a, b ≥ 1. Then (Tra ◦ Trb)(T ) = (Trb ◦ Tra)(T ).

(ii) Let Ω ⊇ Fq be a field. The evaluation map Tra : Ω→ Ω is Fq-linear; its kernel is contained
in the subfield Fqa ∩ Ω ⊆ Ω.

(iii) Let a, b ≥ 1 and gcd(a, b) = 1. Then K(s) = K(Tra(s),Trb(s)) for any s ∈ Ω.

Proof. Item (ii) is clear and the proof of (i) is straightforward. Item (iii) follows by induction
from the equation

Trc(T ) = Trr(T ) + (Trd(T ))q
r

,

which holds whenever c = d+ r > d.

We also fix a partition of n into relatively prime integers; i.e., we write

n = j + k, with integers j, k ≥ 1 and gcd(j, k) = 1. (10)

Without loss of generality we can assume that

p does not divide j. (11)

In this section we study the function field F = K(x, y), where x, y satisfy the equation

Trj
( y

xqk

)
+ Trk

(
yq
j

x

)
= 1. (12)

This ‘basic function field’ F is the first step in the tower F that will be considered in Section 3.
We abbreviate

R :=
y

xqk
, S :=

yq
j

x
and α := j−1 ∈ Fp. (13)
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Proposition 2.2 There exists a unique element u ∈ F such that

R = Trk(u) + α and S = −Trj(u). (14)

Moreover it holds that K(u) = K(R,S) and F = K(x, y) = K(x, u) = K(u, y).

Proof. Let Ω ⊇ F be an algebraically closed field. Choose u0 ∈ Ω such that Trk(u0) = R − α.
Set

M := {µ ∈ Ω |Trk(µ) = 0} and uµ := u0 + µ, for µ ∈M.

Then Trk(uµ) = R− α for all µ ∈M, and by Equation (12)

1 = Trj(R) + Trk(S) = Trj(Trk(uµ) + α) + Trk(S)
= Trk(Trj(uµ)) + jα+ Trk(S) = Trk(S + Trj(uµ)) + 1.

Hence S + Trj(uµ) ∈ M. The map µ 7→ S + Trj(uµ) from M to itself is injective. To see this,
assume that S+Trj(u0+µ) = S+Trj(u0+µ′) with µ, µ′ ∈M. Then Trj(µ−µ′) = 0 = Trk(µ−µ′),
hence µ− µ′ ∈ Fqj ∩ Fqk = Fq and 0 = Trj(µ− µ′) = j(µ− µ′). As j is relatively prime to p, it
follows that µ = µ′.

Since M is a finite set and 0 ∈ M, there exists some µ0 ∈ M such that S + Trj(uµ0) = 0, and
then the element u := uµ0 satisfies Equation (14). From item (iii) of Remark 2.1, we conclude
that K(u) = K(R,S) ⊆ F . In particular, the element u belongs to F .

To prove uniqueness, assume that ũ ∈ Ω is another element which satisfies Equation (14). Then
Trk(ũ) = Trk(u) and Trj(ũ) = Trj(u); hence ũ−u ∈ Fqk∩Fqj = Fq and 0 = Trj(ũ−u) = j(ũ−u).
This implies ũ = u.

The inclusion K(x, u) ⊆ K(x, y) is clear. Conversely, we have y = Rxq
k ∈ K(x, u) by Equa-

tion (14), hence K(x, y) ⊆ K(x, u). The equality K(x, y) = K(u, y) is shown similarly.

Proposition 2.3 The extension F/K(u) is a cyclic extension of degree [F : K(u)] = qn − 1.
The elements x and y are Kummer generators for F/K(u), and they satisfy the equations

xq
n−1 =

−Trj(u)
(Trk(u) + α)qj

and yq
n−1 =

−(Trj(u))q
k

Trk(u) + α
.

The field K is the full constant field of F ; i.e., K is algebraically closed in F .

Proof. By Equation (13),
Sx = yq

j

= (Rxq
k

)q
j

= Rq
j

xq
n

.

Hence, using Equation (14), we obtain

xq
n−1 =

S

Rqj
=

−Trj(u)
(Trk(u) + α)qj

.

The equation for yq
n−1 is proved in the same way. The element

−Trj(u)
(Trk(u) + α)qj

∈ K(u)

has a simple zero at u = 0; this place is therefore totally ramified in F = K(x, u) over K(u),
with ramification index e = qn − 1. Hence [F : K(u)] = qn − 1, and K is algebraically closed in
F . As the field K contains all (qn − 1)-th roots of unity, the extension F/K(u) is cyclic.
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Figure 1: Subextensions of F and their degrees

Corollary 2.4 Set w := −xqn−1 and z := −yqn−1. Then one has a diagram of subfields of F as
in Figure 1. The extensions K(x)/K(w), K(y)/K(z) and F/K(u) are all cyclic of degree qn−1;
the extensions F/K(x), F/K(y), K(u)/K(w) and K(u)/K(z) are all of degree qn−1.

Proof. This follows directly from Proposition 2.3, since

w = −xq
n−1 =

Trj(u)
(Trk(u) + α)qj

and z = −yq
n−1 =

(Trj(u))q
k

Trk(u) + α
. (15)

Our next goal is to describe ramification and splitting of places in the various field extensions in
Figure 1. Denote by F×` the multiplicative group of F`. We need some more notation:

(i) Let E be a function field over K and 0 6= t ∈ E. Then the divisors

div(t), div0(t) and div∞(t)

are the principal divisor, zero divisor and pole divisor of t in E. Similarly, the divisor of a
nonzero differential ω of E is denoted by div(ω).

(ii) Let K(t) be a rational function field over K. Then the places

[t =∞] and [t = β]

are the pole of t and the zero of t− β in K(t), for any β ∈ K.

(iii) Let E/H be a finite separable extension of function fields over K. Let P be a place of H
and P ′ a place of E lying above P . Then e(P ′|P ) is the ramification index, and d(P ′|P ) is
the different exponent of P ′ over P .
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Proposition 2.5 For all β ∈ F×` , the place [x = β] splits completely in F ; i.e., there are qn−1

distinct places of F above [x = β], all of degree one. For all places P of F above [x = β], the
restriction of P to K(y) is a place [y = β′] with some β′ ∈ F×` .

Proof. Upon multiplication by xq
k−1

, Equation (12) is the minimal polynomial of y over K(x).
Substituting x = β into this equation we obtain

Trn

(
y

βqk

)
= 1,

which has qn−1 simple roots, all belonging to F×` .

Next we describe ramification in subextensions of F . As ramification indices and different ex-
ponents do not change under constant field extensions, we will assume until the end of Section 2
that K = F`. Hence all places of F will have degree one. Recall that α ∈ Fp and jα = 1. The
following sets will be important:

Γ := {γ ∈ K |Trj(γ) = 0} (16)

and
∆ := {δ ∈ K |Trk(δ) + α = 0} . (17)

Clearly #Γ = qj−1, #∆ = qk−1 and Γ ∩∆ = ∅.

Proposition 2.6 Ramification in F/K(u) is as follows:

(i) The places [u = γ] with γ ∈ Γ and [u = δ] with δ ∈ ∆ are totally ramified in F/K(u). We
denote by Pγ (resp. Qδ) the unique place of F lying above [u = γ] (resp. above [u = δ]).

(ii) There are exactly q − 1 places of F above [u =∞]; we denote them by V1, . . . , Vq−1. Their
ramification indices are e(Vi|[u =∞]) = (qn − 1)/(q − 1).

(iii) All other places of K(u) are unramified in F .

Proof. Follows from Hasse’s theory of Kummer extensions, see [24, Proposition 3.7.3]

Corollary 2.7 The genus of F is

g(F ) =
1
2
(
(qn − 2)(qj−1 + qk−1 − 2) + (qn − q)

)
.

Proof. Apply Hurwitz’ genus formula [24, Theorem 3.4.13] to the extension F/K(u). Observe
that all ramifications in this extension are tame.

The next proposition will play an essential role in Section 3. For abbreviation we set

Nr :=
qr − 1
q − 1

, for every integer r ≥ 1. (18)

Proposition 2.8 Ramification indices and different exponents of the places Pγ , Qδ and Vi in
the various subextensions of F are as shown in Figures 2, 3 and 4. All other places in these
subextensions are unramified.
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Figure 2: Ramification and different exponents for Pγ , γ ∈ Γ.
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Figure 3: Ramification and different exponents for Qδ, δ ∈ ∆.
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Figure 4: Ramification and different exponents for Vi, 1 ≤ i ≤ q.

Proof. We work out the behaviour of the places Vi in Figure 4; the other cases are done in a
similar way. So we consider a place V = Vi of F lying above the place [u =∞]. It follows from
Equation (15) that V is a zero of x and w, and a pole of y and z. Hence the restrictions of V to
the subfields K(x), K(w), K(y) and K(z) are the places [x = 0], [w = 0], [y =∞] and [z =∞].

Next we investigate ramification of [u =∞] over [w = 0]. From Equation (15), the zero and pole
divisor of w in K(u) are as follows:

div0(w) =
∑
γ∈Γ

[u = γ] + (qn−1 − qj−1) [u =∞] (19)

and
div∞(w) = qj

∑
δ∈∆

[u = δ]. (20)

Equation (19) shows that e([u = ∞]|[w = 0]) = qn−1 − qj−1 = qj−1(qk − 1). The divisor of the
differential dw in K(u) is

div(dw) = −2 div∞(w) + Diff(K(u)/K(w)), (21)

where Diff(K(u)/K(w)) is the different of the extension K(u)/K(w), see [24, p.178, Equa-
tion (4.37)]. Differentiating the equation

Trj(u) = (Trk(u) + α)q
j

· w

gives
du = (Trk(u) + α)q

j

· dw
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and hence

div(dw) = div(du)− qj · div(Trk(u) + α)

= −2 [u =∞]− qj
∑
δ∈∆

[u = δ] + qj · qk−1 [u =∞]

= (qn−1 − 2) [u =∞]− qj
∑
δ∈∆

[u = δ]. (22)

We substitute (22) and (20) into Equation (21) and obtain

Diff(K(u)/K(w)) = (qn−1 − 2) [u =∞] + qj
∑
δ∈∆

[u = δ],

hence the different exponent of the place [u =∞] over [w = 0] is

d([u =∞]|[w = 0]) = qn−1 − 2.

The place extensions V |[u = ∞] and [x = 0]|[w = 0] are tamely ramified, with ramification
indices given by e(V |[u =∞]) = Nn and e([x = 0]|[w = 0]) = qn − 1. We see easily that

e(V |[x = 0]) = qj−1Nk,

and transitivity of different exponents gives (see [24, Corollary 3.4.12])

d(V |[x = 0]) = (qj−1 − 1)Nn + (qj−1Nk − 1).

We have thus proved the left hand side of Figure 4. The proof of the right hand side is analogous.

We will also need the following lemma.

Lemma 2.9 We have K(u) = K(z, w).

Proof. The field L := K(z, w) is clearly contained in K(u) (see Figure 1). As F = L(x, y) and
xq

n−1, yq
n−1 ∈ L, it follows that [F : L] divides (qn − 1)2, and therefore [K(u) : L] is relatively

prime to p. But [K(u) : L] divides the degree [K(u) : K(w)] = qn−1, hence [K(u) : L] = 1.

For the convenience of the reader, we state Abhyankar’s lemma and Hensel’s lemma; they will
be used frequently in Section 3.

Proposition 2.10 (Abhyankar’s lemma) [24, Theorem 3.9.1] Let H be a field with a discrete
valuation ν : H → Z ∪ {∞} having a perfect residue class field. Let H ′/H be a finite separable
field extension of H and suppose that H ′ = H1 ·H2 is the composite of two intermediate fields
H ⊆ H1, H2 ⊆ H ′. Let ν′ be an extension of ν to H ′ and νi the restriction of ν′ to Hi, for
i = 1, 2. Assume that at least one of the extensions ν1|ν or ν2|ν is tame (i.e., the ramification
index e(νi|ν) is relatively prime to the characteristic of the residue class field of ν). Then one
has e(ν′|ν) = lcm{e(ν1|ν), e(ν2|ν)}, where lcm means the least common multiple.

Proposition 2.11 (Hensel’s lemma) [17, p. 230] Let H be a field which is complete with
respect to a discrete valuation ν : H → Z ∪ {∞}. Let O be the valuation ring of ν and m its
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maximal ideal. Denote by H∗ = O/m the residue class field of ν and by a 7→ a∗ the canonical ho-
momorpism of O onto H∗. Suppose that the polynomial ϕ(T ) ∈ O[T ] has the following property:
its reduction ϕ∗(T ) ∈ H∗[T ] factorizes as ϕ∗(T ) = η1(T ) · η2(T ) with

η1(T ), η2(T ) ∈ H∗[T ], gcd(η1(T ), η2(T )) = 1, and η1(T ) is monic.

Then there are polynomials ϕ1(T ), ϕ2(T ) ∈ O[T ] such that ϕ(T ) = ϕ1(T ) · ϕ2(T ) with

ϕ1(T ) is monic, degϕ1(T ) = deg η1(T ), ϕ∗1(T ) = η1(T ) and ϕ∗2(T ) = η2(T ).

3 The tower

We keep all notation as before. In this section we consider a sequence of function fields,

F = (F1 ⊆ F2 ⊆ F3 ⊆ . . . ),

where F1 = K(x1) is the rational function field, and for all i ≥ 1, Fi+1 = Fi(xi+1) with

Trj

(
xi+1

xq
k

i

)
+ Trk

(
xq

j

i+1

xi

)
= 1 . (23)

A convenient way to investigate such a sequence is to consider the corresponding ‘pyramid’ of
field extensions as shown in Figure 5. Note that the fields K(xi, xi+1) are isomorphic to the
‘basic function field’ F = K(x, y) that was studied in Section 2.

Fi+1 = K(x1, . . . , xi+1)

??
??

??
??

?

K(x2, . . . , xi+1)

��
��

��
��

��
��

K(xi, xi+1)

??
??

??
??

?

K(xi+1)

Fi = K(x1, . . . , xi)

??
??

??
??

??
??

���������

�����������

K(xi)

���������

F3 = K(x1, x2, x3)

??
??

??
??

?

K(x2, x3)

??
??

??
??

?

K(x3)

F2 = K(x1, x2)

���������

??
??

??
??

?

K(x2)

���������
F1 = K(x1)

���������

Figure 5: The pyramid corresponding to F .
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Proposition 3.1 The sequence F is a tower of function fields over K; i.e., for all i ≥ 1 the
following hold:

(i) K is the full constant field of Fi,

(ii) Fi+1/Fi is a separable extension of degree [Fi+1 : Fi] > 1,

(iii) g(Fi)→∞ as i→∞.

Proof. Equation (23) is a separable equation for xi+1 over Fi, hence Fi+1/Fi is separable. Let P
be a place of Fi+1 which lies above the place [x1 =∞] of F1. From Figure 3 we have ramification
indices and different exponents in the pyramid as shown in Figure 6.

P

e=1
??

??

??
??

??

e=qj

d=qn+qj−2

��
��

��
��

��

e=qj
��

��
�

��
��

�

e=1
??

??
?

??
??

?

e=1
??

??
??

??
?e=qj

��
��

�

��
�

[xi+1 =∞]

e=1
??

??
??

??
??

??

e=1
??

??
?

???

[xi =∞]

e=1
??

??
??

??
??

??

e=qj

d=qn+qj−2

��
��

��
��

��
�

e=qj

d=qn+qj−2
��

��
��

��
�

e=1
??

??
??

??
?

e=qj

d=qn+qj−2

��
��

��
��

��

[x2 =∞][x1 =∞]

Figure 6: Ramification over [x1 =∞].

As the ramification index of P over Fi is e = qj > 1, it follows that Fi $ Fi+1. Let β ∈ F×` . We
show by induction that the rational place [x1 = β] splits completely in Fi/F1, for all i ≥ 2. For
i = 2 this holds by Proposition 2.5. Assume that the claim holds for Fi, and let Pi be a place of
Fi lying above [x1 = β]. Again by Proposition 2.5, the restriction of Pi to K(xi) is of the form
[xi = β′] with some β′ ∈ F×` , and the place [xi = β′] splits completely in K(xi, xi+1)/K(xi).
Hence Pi splits completely in Fi+1/Fi, see [24, Proposition 3.9.6].

We conclude that Fi has places with residue class field K, so K is the full constant field of Fi.
Thus we have shown items (i) and (ii). By Corollary 2.7, the genus of F2 = K(x1, x2) satisfies
g(F2) ≥ 1. Since there is some ramified place in every extension Fi+1/Fi, it follows from Hurwitz’
genus formula that g(Fi)→∞ as i→∞.
As a consequence of the proof above we get:

Corollary 3.2 All places [x1 = β] with β ∈ F×` split completely in Fi/F1. In particular in the
case K = F`, the number N(Fi) of rational places of Fi/F` satisfies the inequality

N(Fi) ≥ (`− 1) · [Fi : F1].
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In order to prove Theorem 1.3, one needs an estimate for the genus g(Fi), as i → ∞. Since
ramification indices, different exponents and genera are invariant under constant field extensions,
we will assume from now on that

K = F` is algebraically closed.

Then all places of Fi/K are rational.

Definition 3.3 (i) Let E/H be a separable extension of function fields over K, P a place of H
and b ∈ R+. We say that P is b-bounded in E if for any place P ′ of E above P , the different
exponent d(P ′|P ) satisfies

d(P ′|P ) ≤ b · (e(P ′|P )− 1).

(ii) Let H = (H1, H2, . . . ) be a tower of function fields over K, P a place of H1 and b ∈ R+. We
say that P is b-bounded in H, if it is b-bounded in all extensions Hi/H1.

Proposition 3.4 Let H = (H1, H2, . . . ) be a tower of function fields over K, with g(H1) = 0.
Assume that P1, . . . , Pr are places of H1 and b1, . . . , br ∈ R+ are positive real numbers such that
the following hold:

(i) Ps is bs-bounded in H, for 1 ≤ s ≤ r.

(ii) All places of H1, except for P1, . . . , Pr, are unramified in Hi/H1.

Then the genus g(Hi) is bounded by

g(Hi)− 1 ≤

(
−1 +

1
2

r∑
s=1

bs

)
· [Hi : H1].

Proof. This is an immediate consequence of Hurwitz’ genus formula, see also [8].

We want to apply Proposition 3.4 to the tower F . By Proposition 2.6, only the places [x1 = 0]
and [x1 =∞] of F1 = K(x1) are ramified in F (see Figures 2, 3 and 4). From Figure 6 and the
transitivity of different exponents, the place [x1 =∞] is b∞-bounded with

b∞ :=
qn − 1
qj − 1

+ 1. (24)

Main Claim The place [x1 = 0] is b0-bounded with

b0 :=
qn − 1
qk − 1

+ 1. (25)

Assuming this claim, Proposition 3.4 yields the estimate

g(Fi)− 1 ≤
(
−1 +

1
2
(
b0 + b∞

))
[Fi : F1] =

[Fi : F1]
2

(
qn − 1
qk − 1

+
qn − 1
qj − 1

)
. (26)

For the tower F over the field K = F`, we combine Equation (26) with Corollary 3.2 and then
we obtain for all i ≥ 2,

N(Fi)
g(Fi)− 1

≥ 2
(

1
qj − 1

+
1

qk − 1

)−1

.
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Letting i→∞, this gives a lower bound for the limit λ(F) = limi→∞N(Fi)/g(Fi),

λ(F) ≥ 2
(

1
qj − 1

+
1

qk − 1

)−1

,

and thus proves Theorem 1.3.

So it remains to prove the Main Claim, which means: for every i ≥ 1 and every place P̃ of Fi+1

lying above the place [x1 = 0], we have to estimate the different exponent d(P̃ |[x1 = 0]).

The restriction of P̃ to the rational subfield K(xi+1) is either the place [xi+1 = 0] or [xi+1 =∞],
as follows from Figures 2, 3 and 4. In the case [xi+1 = 0], the place P̃ is a zero of all xh with
1 ≤ h ≤ i + 1, and we see from Figure 2 that P̃ is unramified over [x1 = 0]; hence we have
0 = d(P̃ |[x1 = 0]) ≤ b · (e(P̃ |[x1 = 0])− 1) for every b ∈ R+.

The non-trivial case is when P̃ is a pole of xi+1. Then there exists a unique m ∈ {1, . . . , i}
such that P̃ is a zero of xm and a pole of xm+1. The situation is shown in Figure 7. The
question marks indicate that one cannot read off the ramification index and different exponent
from ramification data in the basic function field, since both ‘lower’ ramifications are wild and
therefore Abhyankar’s lemma does not apply.

?

??
??

??
??

??
?

?

??
??

??
??

??
?

e=1
??

??
?

??
??

[xm+2=∞]

?

??
??

??
??

??
?

?

�����������

?

�����������

e=qk−1Nj

??
??

?

??
??

[xm+1=∞]

e=qj����

�����
e=qk
??

??
?

??
??

?

�����������

[xm=0]

e=qj−1Nk����

�����

[xm−1=0]

e=1����

�����

Figure 7: Ramification of P̃ over [x1 = 0]: the non-trivial case.

15



In order to analyze this situation, we introduce the ‘u-subtower’ of F . Let ui ∈ K(xi, xi+1) be
the unique element which satisfies the conditions (see Proposition 2.2)

Trk(ui) + α =
xi+1

xq
k

i

and Trj(ui) = −
xq

j

i+1

xi
.

We set zi := −xq
n−1
i and we then have for all i ≥ 1 the equations

zi+1 = −xq
n−1
i+1 =

Trj(ui+1)
(Trk(ui+1) + α)qj

=
Trj(ui)q

k

Trk(ui) + α
. (27)

Equation (27) defines a subtower E = (E1 ⊆ E2 ⊆ . . . ) of F (see Figure 8), where

Ei := K(u1, u2, . . . , ui) .

F4 = E3(x1)

??
??

??
??

?

E3 = K(u1, u2, u3)

??
??

??
??

?

K(u2, u3)

??
??

??
??

?

K(u3)

??
??

??
??

??
?

F3 = E2(x1)

??
??

??
??

?

���������

E2 = K(u1, u2)

���������

??
??

??
??

?

K(u2)

���������

??
??

??
??

?

K(z3)

���������

F2 = E1(x1)

??
??

??
??

?

���������

E1 = K(u1)

���������

??
??

??
??

?

K(z2)

���������

F1

���������

Figure 8: The subtower E = (E1 ⊆ E2 ⊆ . . . ).

By Proposition 2.2 we know that F2 = K(x1, x2) = K(x1, u1), and it follows by induction
that

Fi+1 = Ei(x1) for all i ≥ 1.

Let P̃ be a place of the field Fi+1 as in Figure 7 (the ‘non-trivial case’), and let P be the restriction
of P̃ to the subfield Ei. The restrictions of P to the subfields K(u1), . . . ,K(ui) are

[us = γs] with γs ∈ Γ for 1 ≤ s ≤ m− 1,
[um =∞] , and (28)
[us = δs] with δs ∈ ∆ for m+ 1 ≤ s ≤ i.
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The case m = 1.
We will see that this case already comprises most problems that occur in the general case. The
situation is shown in Figure 9, where ramifications come from Figures 3 and 4.

[u1=∞]

���������
[u2=δ2]

���������

?????????
[u3=δ3]

?????????

[z2=∞]

e=qk−1(qj−1)

d=qn−1−2??

??

e=d=qj���

���

[z3=∞]

e=d=qj���

���
e=1????

????

[z4=∞]

e=1????

????

Figure 9: The case m = 1.

Ramification indices and different exponents do not change under completion; we will therefore
replace the fields Fs, Es,K(us) etc. by their completions F̂s, Ês, K̂(us) etc. (of course, comple-
tions are understood at the restrictions of P̃ to the corresponding fields). As the field K is
assumed to be algebraically closed, the ramification indices are then equal to the degrees of the
corresponding field extensions. To simplify notation, we set

u := u1, z := z2, H := K̂(z), and E := Ê1 = K̂(u) = H(u). (29)

The next two propositions are of vital importance for the proof of the Main Claim.

Proposition 3.5 There exists an element t ∈ E such that

tq
j−1 = z−1. (30)

The extension H(t)/H is cyclic of degree [H(t) : H] = qj−1, and the extension E/H(t) is Galois
of degree [E : H(t)] = qk−1. The ramification indices and different exponents in the extensions
E ⊇ H(t) ⊇ H are as shown in Figure 10.

Proof. Notations as in Equation (29). The extension E/H of degree [E : H] = qk−1(qj − 1)
is totally ramified, z−1 is a prime element of H and u−1 is a prime element of E. Hence we have

z−1 = ε ·
(
u−1

)qk−1(qj−1)

with a unit ε ∈ E. As an easy consequence of Hensel’s lemma, we can write ε as

ε = εq
j−1

0 with a unit ε0 ∈ E.

Then the element t := ε0 ·
(
u−1

)qk−1

satisfies the equation tq
j−1 = z−1.

It is clear that H(t)/H is a cyclic extension of degree qj − 1, and hence the degree of the field
extension E/H(t) is [E : H(t)] = qk−1.

17



E = H(u)

e = qk−1

d = 2(qk−1 − 1) = 2(e− 1)
galois of

degree qk−1

H(t)

e = qj − 1
d = qj − 2

cyclic of
degree qj − 1

H

Figure 10: The intermediate field H(t).

Next we show that E/H(t) is Galois. From Equation (27) follows that u is a root of the polynomial

ϕ(T ) := z−1 · Trj(T )q
k

− (Trk(T ) + α) ∈ H[T ].

Its reduction ϕ∗(T ) modulo the valuation ideal of H is the polynomial

ϕ∗(T ) = − (Trk(T ) + α) ∈ K[T ].

We set η1(T ) := Trk(T ) + α and η2(T ) := −1, then Hensel’s lemma gives a factorization

ϕ(T ) = ϕ1(T ) · ϕ2(T ) with ϕ1(T ), ϕ2(T ) ∈ H[T ],

ϕ1(T ) is monic of degree qk−1 and with reduction ϕ∗1(T ) = Trk(T )+α. Again by Hensel’s lemma,
the polynomial ϕ1(T ) splits into linear factors over H. As u 6∈ H is a root of ϕ(T ), it follows
that ϕ2(u) = 0. The degree of the field extension E = H(u) over H is

[E : H] = qn−1 − qk−1 = degϕ2(T ),

and therefore the monic polynomial z · ϕ2(T ) ∈ H[T ] is the minimal polynomial of u over H.

We can construct some other roots of ϕ2(T ) in E as follows. By Hensel’s lemma, the polynomial

ψ(T ) := z−1 · Trj(T )q
k

− Trk(T ) ∈ H[T ]

has qk−1 distinct roots Θ ∈ H. For any such Θ we have

ϕ(u+ Θ) = z−1 · Trj(u+ Θ)q
k

− (Trk(u+ Θ) + α) = ϕ(u) + ψ(Θ) = 0.

Since u+Θ 6∈ H, we conclude that u+Θ is a root of ϕ2(T ); hence we obtain an automorphism of
the field E over H by setting u 7→ u+ Θ. For Θ 6= 0, this automorphism has order p = char(K).
As [H(t) : H] = qj − 1 is relatively prime to p, the restriction of this automorphism to H(t) is
the identity. We have thus constructed qk−1 distinct automorphisms of E over H(t). This proves
that the extension E/H(t) is Galois, since its degree is [E : H(t)] = qk−1.

The different exponent of E/H is qn−1 − 2, see Figure 9. Since H(t)/H is tamely ramified with
different exponent qj − 2, one obtains easily that E/H(t) has different exponent 2(qk−1 − 1), by
transitivity of the different.
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Note that we are still considering the case m = 1 with completions at the corresponding places.
We define now subfields Gs ⊆ Ês (see Figure 11) by setting:

G1 := H(t), and Gs+1 := Gs(us+1) for s ≥ 1.

Ramification indices and different exponents in Figure 11 can be read off from Figures 9 and 10.
From this it follows in particular that K̂(u2) = K̂(z3), ̂K(u2, u3) = K̂(u3) = K̂(z4), etc.
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?

e=1
??

??
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?
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?
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?

����������������

G2

�����������������

e=qj−1
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K̂(u2)

e=d=qj�������

��������

e=1
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??
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?
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K̂(z3)

e=d=qj�������

�������
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����������������
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����������������
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??

H=K̂(z2)

e=d=qj�������

�������

Figure 11: The subfields Gs.

Proposition 3.6 For all s ≥ 1, the extension Gs+1/Gs is Galois of degree qj. The ramification
index of Gs+1/Gs is e = qj, and the different exponent is d = 2(qj − 1) = 2(e− 1).

Proof. It is clear that [Gs+1 : Gs] = qj . From transitivity of the different, the different exponent
of Gs+1/Gs is d = 2(qj − 1). It remains to prove that the extension Gs+1/Gs is Galois. For
simplicity we write v := us+1, w := zs+1 and G := Gs. Then Gs+1 = G(v).

Denote by OG and mG the valuation ring of G and its maximal ideal. By Equation (27), the
element v is a root of the polynomial

Φ(T ) := (Trk(T ) + α)q
j

− w−1 · Trj(T ) ∈ OG[T ].

19



The reduction of Φ(T ) modulo mG decomposes in K[T ] as follows:

Φ∗(T ) := (Trk(T ) + α)q
j

=
∏
δ∈∆

ηδ(T ) with ηδ(T ) = T q
j

− δq
j

∈ K[T ]. (31)

The polynomials ηδ(T ) are relatively prime, for distinct δ ∈ ∆. By Hensel’s lemma we can lift
the decomposition of Φ∗(T ) to a decomposition of Φ(T ) as follows:

Φ(T ) =
∏
δ∈∆

Φδ(T ),

with monic polynomials Φδ(T ) ∈ OG[T ] of degree deg Φδ(T ) = qj , and

Φ∗δ(T ) = T q
j

− δq
j

for all δ ∈ ∆. (32)

As v is a root of Φ(T ) and [G(v) : G] = qj , we conclude that there is a unique ε ∈ ∆ such that

Φε(T ) is the minimal polynomial of v over G.

We will now show that the polynomial Φε(T ) has qj distinct roots in Gs+1 and hence that the
field extension Gs+1/Gs is Galois. To this end we consider

χ(T ) := Trj(T )− w · Trk(T )q
j

∈ G[T ].

From Figure 11 we see that w has a pole of order qj − 1 in G, and hence we can write

w =
(

1
w0

)qj−1

with some prime element w0 ∈ G.

Then

χ(T ) = Trj(T )−
(

1
w0

)qj−1

Trk(T )q
j

= w0

[
T

w0
−
(
T

w0

)qj
+ w0 · Λ

(
T

w0

)]
,

with Λ(Z) a polynomial in the ring OG[Z]. Again by Hensel’s lemma, there exist qj distinct
elements ξ ∈ OG such that

ξ − ξq
j

+ w0 · Λ(ξ) = 0,

and for these elements we have χ(w0ξ) = 0. Now it follows that

Φ(v + w0ξ) = (Trk(v + w0ξ) + α)q
j

− w−1Trj(v + w0ξ) = Φ(v)− w−1χ(w0ξ) = 0− 0 = 0.

For every δ ∈ ∆\{ε} we have Φ∗δ(v + w0ξ)∗ = Φ∗δ(v
∗) = εq

j − δqj , and therefore v + w0ξ cannot
be a root of the polynomial Φδ(T ). Hence the element v + w0ξ is a root of Φε(T ), which is the
minimal polynomial of v over G.

In the following we need the concept of weakly ramified extensions of valuations. For simplicity,
we consider only the case of complete fields.

Definition 3.7 Let L be a field which is complete with respect to a discrete valuation and has an
algebraically closed residue class field of characteristic p > 0. A finite separable extension L′/L
is said to be weakly ramified if the following hold:
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(i) There exists a chain of intermediate fields

L = L0 ⊆ L1 ⊆ L2 · · · ⊆ Lm = L′

such that all extensions Li+1/Li are Galois p-extensions.

(ii) The different exponent d(L′|L) satisfies

d(L′|L) = 2(e(L′|L)− 1),

where e(L′|L) denotes the ramification index of L′/L.

Proposition 3.8 Let L be a field, complete with respect to a discrete valuation, with an alge-
braically closed residue field of characteristic p > 0, and let L′/L be a finite separable extension.

(i) Let H be an intermediate field, L ⊆ H ⊆ L′. Then L′/L is weakly ramified if and only if
both extensions H/L and L′/H are weakly ramified.

(ii) Assume that L′ = H1 ·H2 is the composite field of two intermediate fields L ⊆ H1, H2 ⊆ L′.
If both extensions H1/L and H2/L are weakly ramified, then also L′/L is weakly ramified.

Proof. See [8].

By Propositions 3.5, 3.6 and item (i) of Proposition 3.8, the extensions Ê1/G1 and Gs/G1 are
weakly ramified. We conclude from item (ii) of Proposition 3.8 that

Ês/Ê1 is weakly ramified, for all s ≥ 1. (33)

Now we can calculate the different exponent of a place P̃ of Fi+1 over P1 := [x1 = 0] in the case
m = 1 (see Figures 8 and 11). As before, the place P is the restriction of P̃ to the field Ei,
and we denote by P2 the restriction of P̃ to the field F2 = E1(x1). The situation is represented
in Figure 12, where we set e0 := e(P2|P1) and e1 := e(P |[u1 = ∞]). By Equation (33), e1 is a
power of p, and d(P |[u1 =∞]) = 2(e1 − 1).

P̃

e=Nn

??

???e1

��
��

��
��

��
��

P

e1

��
��

��
��

��
��

P2

e=Nn

??

??
e0

��
��

��

[u1 =∞]P1 = [x1 = 0]

Figure 12: The place extension P̃ |P1 in the case m = 1.

By Proposition 2.6 the place P2 is tame over [u1 =∞] with ramification index

e(P2|[u1 =∞]) =
qn − 1
q − 1

.

21



From transitivity we obtain

d(P̃ |[u1 =∞]) = e1

(
qn − 1
q − 1

− 1
)

+ d(P̃ |P2) =
qn − 1
q − 1

· 2(e1 − 1) +
(
qn − 1
q − 1

− 1
)

;

hence

d(P̃ |P2) =
(
qn − 1
q − 1

+ 1
)

(e1 − 1) = (Nn + 1)(e1 − 1). (34)

By Figure 4,

e0 = e(P2|P1) = qj−1Nk and d(P2|P1) = (qj−1 − 1)Nn + (e0 − 1). (35)

Combining Equations (34) and (35) one gets

d(P̃ |P1) = e1

(
(qj−1 − 1)Nn + (e0 − 1)

)
+ (Nn + 1)(e1 − 1)

= Nn(e1q
j−1 − 1) + (e0e1 − 1) =

(
Nn
Nk

+ 1
)

(e0e1 − 1) +
Nn
Nk
−Nn

≤
(
qn − 1
qk − 1

+ 1
)

(e(P̃ |P1)− 1).

This inequality shows the Main Claim in case m = 1; i.e., the place extension P̃ |P1 satisfies

d(P̃ |P1) ≤
(
qn − 1
qk − 1

+ 1
)

(e(P̃ |P1)− 1) = b0 · (e(P̃ |P1)− 1).

It remains to prove the Main Claim for:

The case m ≥ 2.

Now we have a place P̃ of the field Fi+1 such that its restriction P to the field Ei = K(u1, . . . , ui)
satisfies the condition in Equation (28) for some integer m, with 2 ≤ m ≤ i. The restrictions of
P to the rational subfields K(u1), . . . ,K(um) and K(z2), . . . ,K(zm) are shown in Figure 13.

[u1 = γ1]

���������������
[u2 = γ2]

???????????????

· · · · · · [um−1 = γm−1]

���������������
[um =∞]

???????????????

[z2 = 0]

e = d = qk??????

??????
e = 1������

������

[zm = 0]

e = d = qk??????

??????
e = qj−1(qk − 1)
d = qn−1 − 2

����

����

Figure 13: The case m ≥ 2.

There is a strong analogy between Figures 9 and 13 that interchanges the roles of j and k. In fact,
after passing to the completions one proves that there is a field L1 with K̂(zm) ⊆ L1 ⊆ K̂(um)
such that:
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(i) L1/K̂(zm) is cyclic with ramification index e = qk − 1.

(ii) K̂(um)/L1 is a weakly ramified p-extension.

(iii) The extension L := Êm−1 · L1 is weakly ramified over L1.

The proof is exactly as in the case of m = 1; we leave the details to the reader. Note that L1

corresponds to the field G1 in Figure 11. From the case of m = 1, we know that the extension
Ĝ/K̂(um) with G = K(um, . . . , ui) is weakly ramified (see Equation (33)), and then it follows
from Proposition 3.8 that also Êi = Êm · Ĝ is weakly ramified over L. From item (i) above we
see that the extension L/Êm−1 has ramification index e = qk − 1. The extensions Êm−1/Ê1

and F̂2/F̂1 are unramified. Figure 14 represents the situation (in Figure 14, ‘w.r.’ means ‘weakly
ramified’). The degree of M := L · F̂2 over F̂2 follows from Abhyankar’s lemma.

F̂i+1

e = Nn
??

?

???
?

Êi

w.r.
??

??
??

??
??

?

??
??

??
??

??
?

Ĝ

Êm

w.r.����

����

w.r.
??

??
??

??
??

?

??
??

??
??

??

K̂(um)

w.r.����

�����

M = L · F̂2

ẽ , d̃
����������

����������

e = Nn
???

?

??
??

L

w.r.�����

����

w.r.
??

??
??

??
??

?

??
??

??
??

??
?

L1

w.r.�����

����

Êm−1

e = qk − 1
���

����

F̂2

e = Nk����������

����������

e = qn − 1
???

?

??
?

Ê1

e = 1����

����

F̂1

e = 1����

����

Figure 14: Ramification over F̂1 in case m ≥ 2.

Finally we consider the composite field F̂i+1 = Êi · F̂2 = Êi(x1) and determine ramification index
and different exponent of P̃ over P1 = [x1 = 0]. We have

e(P̃ |P1) =
qk − 1
q − 1

· ẽ , with ẽ a power of p.
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Denoting by d̃ the different of F̂i+1 over M ,

d̃+ ẽ · (Nn − 1) = (Nn − 1) +Nn · (2ẽ− 2), and hence d̃ = (Nn + 1)(ẽ− 1).

We finally obtain that

d(P̃ |P1) = d̃+ẽ·(Nk−1) =
(
qn − 1
qk − 1

+ 1
)

(e(P̃ |P1)−1)−
(
qn − 1
q − 1

− qn − 1
qk − 1

)
≤ b0 ·(e(P̃ |P1)−1).

This finishes the proof of the Main Claim and hence also the proof of Theorem 1.3.

Remark 3.9 The u-tower E = (E1 ⊆ E2 ⊆ . . .) is recursively defined by (see Equation (27))

Trj(Y )
(Trk(Y ) + α)qj

=
Trj(X)q

k

Trk(X) + α
. (36)

This equation has ‘separated variables’.

The x-tower F = (F1 ⊆ F2 ⊆ . . .) is recursively defined by Equation (23) which does not have
separated variables. Subtracting Equation (23) from its q-th power, one sees that the tower F
can also be defined by the equation

Y q
n − Y
Y qj

=
Xqn −X
Xqn−qk+1

. (37)

Equation (37) has separated variables but it is not irreducible. One can get from this equation a
very simple proof of Corollary 1.2.

The z-tower H = (H1 ⊆ H2 ⊆ · · · ) with zi as in Equation (27) and Hi := K(z1, . . . , zi) can be
defined recursively by the equation

(Y + 1)Nn

Y Nj
=

(X + 1)Nn

XqkNj
, (38)

which has separated variables and is reducible. Equation (38) can be deduced from Equation (37).

Since H is a subtower of E and E is a subtower of F , we have (see [6])

λ(H) ≥ λ(E) ≥ λ(F) ≥ 2
(

1
qj − 1

+
1

qk − 1

)−1

. (39)

It would be interesting to have a direct proof for the limit λ(H) just using Equation (38).

4 A modular interpretation of the towers F and H
In this section we give a modular interpretation for the tower F/F`. More precisely, we show
that curves in the tower parametrize certain Drinfeld modules of characteristic T − 1 and rank
n ≥ 2 together with some varying additional structure. For definitions and results about Drinfeld
modules, we refer to [14]. We will restrict to the case of Drinfeld Fq[T ]-modules of rank n and
characteristic T − 1.

It is well known, that Drinfeld modular curves which parametrize Drinfeld modules of rank two
together with some level structure, have many Fq2-rational points after suitable reductions. These
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rational points correspond to supersingular Drinfeld modules. In fact, it was shown in [13], that
curves obtained in this way are asymptotically optimal; i.e., they attain the Drinfeld–Vlăduţ
bound. More generally, after reduction, the variety parametrizing Drinfeld modules of rank
n (again with some additional structure) has points corresponding to supersingular Drinfeld
modules, which were shown to be Fqn -rational in [12]. This variety however, has dimension
n− 1. Hence we will consider one-dimensional subvarieties containing the supersingular points,
to obtain curves with many Fqn -rational points. We will consider a one-dimensional sub-locus
corresponding to particular Drinfeld modules (including all supersingular ones, in order to get
many rational points), together with particular isogenies leaving this sub-locus invariant (in order
to get recursive equations).

More precisely, let A = Fq[T ] be the polynomial ring over Fq. Let L be a field containing
Fq together with a fixed Fq-algebra homomorphism ι : A → L. The kernel of ι is called the
characteristic of L. We will always assume that the characteristic is the ideal generated by T −1.
Further denote by τ the q-Frobenius map and let L{τ} be the ring of additive polynomials over
L under operations of addition and composition (also called twisted polynomial ring or Ore
ring). Given f(τ) = a0 + a1τ + · · · + anτ

n ∈ L{τ}, we define D(f) := a0. Note that the map
D : L{τ} → L is a homomorphism of Fq-algebras.

A homomorphism of Fq-algebras φ : A → L{τ} (where one usually writes φa for the image of
a ∈ A under φ) is called a Drinfeld A-module φ of characteristic T − 1 over L, if D ◦ f = ι and
if there exists a ∈ A such that φa 6= ι(a). It is determined by the additive polynomial φT . If
φT = g0τ

n + g1τ
n−1 + · · · + gn−1τ + 1 ∈ L{τ}, with gi ∈ L and g0 6= 0, the Drinfeld module

is said to have rank n. A Drinfeld module φ given by φT = g0τ
n + g1τ

n−1 + · · ·+ gn−1τ + 1 is
called supersingular (in characteristic T − 1) if g1 = · · · = gn−1 = 0. Note that this corresponds
to the situation that the additive polynomial φT−1 is purely inseparable.

For Drinfeld modules φ and ψ as above, an isogeny λ : φ → ψ over L is an element λ ∈ L{τ}
satisfying

λ · φa = ψa · λ for all a ∈ A. (40)

We say that the kernel of the isogeny is annihilated by multiplication with P (T ) ∈ Fq[T ], if there
exists µ ∈ L{τ} such that

µ · λ = φP (T ).

Over the algebraically closed field L̄, Drinfeld modules φ and ψ are isomorphic, if they are related
by an invertible isogeny; i.e., if there exists λ ∈ L̄, such that Equation (40) holds.

In analogy to normalized Drinfeld modules in [4], for 1 ≤ j ≤ n, let Dn,j be the set of rank n
Drinfeld A-modules of characteristic T − 1 of the form φT = −τn + gτ j + 1. We will call such
Drinfeld modules normalized. As before, we assume that gcd(n, j) = 1 and write k = n−j. Note
that Dn,j contains the supersingular Drinfeld module φ with φT = −τn + 1. First we exhibit
certain isogenies for φ ∈ Dn,j and show that the isogenous Drinfeld module is again in Dn,j :

Proposition 4.1 Let φ ∈ Dn,j be a Drinfeld module defined by φT = −τn + gτ j + 1 and let λ
be an additive polynomial of the form λ = τk − a. Then there exists a Drinfeld module ψ such
that λ defines an isogeny from φ to ψ if and only if

1
a
gq
k

− 1
aqj

g − aq
n−1 + 1 = 0. (41)

Moreover ψ ∈ Dn,j and more precisely, ψT = −τn + hτ j + 1 with

h = −aq
n

+ a+ gq
k

. (42)
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Proof. The existence of a Drinfeld module ψ such that λ defines an isogeny from φ to ψ, is
equivalent to the existence of an additive polynomial ψT = h0τ

n + h1τ
n−1 + · · · + hn−1τ + hn

such that λ · φT = ψT · λ. Clearly one needs to choose h0 = −1 and hn = 1.
The equation λ · φ = ψ · λ implies that

−τn+k + (a+ gq
k

)τn − agτ j + τk − a =
n+k∑
i=k

hn−i+kτ
i −

n∑
i=0

hn−ia
qiτ i.

Consequently we have

(−aq
n

+ a+ gq
k

)τn − agτ j =
n+k−1∑
i=k+1

hn−i+kτ
i −

n−1∑
i=1

hn−ia
qiτ i. (43)

By comparing coefficients of τ i in Equation (43) for n + k − 1 ≤ i ≤ n + 1, we see that hi = 0
for all 1 ≤ i < k. By considering coefficients of τ i in Equation (43) for i 6≡ n (mod k), we then
conclude that hi = 0 for all i 6≡ 0 (mod k). We are left to determine the coefficients of the form
hi, with 1 ≤ i < n a multiple of k. Again by Equation (43) we conclude that for such i, hi = 0
if k < i < n. This leaves two equations in the coefficient hk, namely the ones in Equation (43)
relating the coefficients of τn and τ j :

−aq
n

+ a+ gq
k

= hk and − ag = −hkaq
j

.

The proposition now follows.

Now we determine all solutions of Equation (41):

Proposition 4.2 Let X ∈ L̄ be such that Xqk−1 = a. All solutions of Equation (41) are given
by

g =
Xqn−1 + c

Xqj−1
, with c ∈ Fqk . (44)

The corresponding h in Equation (42) is given by

h =
Xqn−1 + c

Xqn−qk . (45)

Proof. Multiplying both sides of Equation (41) with Xqn−1 and using that a = Xqk−1, we find
that

−X(qn−1)qk +Xqn−1 +X(qj−1)qkgq
k

−Xqj−1g = 0,

which can be rewritten as(
−Xqn−1 + gXqj−1

)qk
−
(
−Xqn−1 + gXqj−1

)
= 0.

The possible solutions for g now follow. Inserting these solutions in Equation (42), the formula
for h is obtained readily.

Note that in fact X corresponds to a choice of a nonzero element in the kernel of the isogeny
λ = τk − a. The kernel of λ is just FqkX. Exactly in the case that c = −1, the element X can
be chosen to be a T -torsion point of the Drinfeld module φ. We will assume from now on that
this is the case. The equations relating g, h and X then simplify to

g =
Xqn −X
Xqj

and h =
Xqn −X
Xqn−qk+1

. (46)
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Through this correspondence, we are parametrizing normalized rank n Drinfeld modules together
with an isogeny of the form λ = τk − a and a nonzero T -torsion point in its kernel. Iterating
this correspondence, we get the tower recursively defined by Equation (37).

In the particular case of n = 2 and k = 1, these are just normalized Drinfeld modules together
with T -isogenies (together with a T -torsion point in their kernel) as studied by Elkies in [4]. For
general n and k, not all of the kernel of λ will be annihilated by multiplication with T anymore,
but by multiplication with the polynomial (T −1)Nk− (−1)k (which is obviously relatively prime
to the characteristic T − 1):

Proposition 4.3 Let φ and ψ be two Drinfeld modules given by φT = −τn + gτ j + 1 and
ψT = −τn + hτ j + 1. Further let λ = τk −Xqk−1 be an isogeny from φ to ψ. Then the kernel
of λ is annihilated by the polynomial Pk(T ) = (T − 1)Nk − (−1)k.

Proof. Any additive polynomial of the form τ − (αX)q−1 with α ∈ F×
qk

is a right factor of

τk −Xqk−1. In total this gives Nk distinct right factors, since #{αq−1 |α ∈ F×
qk
} = Nk. Clearly

the kernel of such a right factor is a contained in the kernel of τk − Xqk−1. This gives rise to
Nk(q − 1) = qk − 1 nonzero elements of the kernel of τk − Xqk−1. Therefore the union of the
kernels of the right factors τ − (αX)q−1, with α ∈ F×

qk
/F×q , is equal to the kernel of τk −Xqk−1.

We claim that the kernel of τ − (αX)q−1 is annihilated by T − 1 +αq
j−1. Indeed, φT−1+αq

j−1 =
−τn + gτ j + αq

j−1 can be written as µ(τ − (αX)q−1) for some additive polynomial µ if and
only if −(αX)q

n−1 + g(αX)q
j−1 + αq

j−1 = 0. This equality is satisfied, as can be seen by using
Equation (46) and the fact that α ∈ F×

qk
.

Two right factors τ − (αX)q−1 and τ − (α′X)q−1 are equal if and only if αq−1 = α′q−1.
Therefore the proposition follows once we show that the product of T − 1 + αq

j−1 over all
α ∈ F×

qk
/F×q equals (T − 1)Nk − (−1)k. This is the case, since∏

β∈(F×
qk

)q−1(T − 1 + βNj ) =
∏
β∈(F×

qk
)q−1(T − 1 + β) = (−1)k

∏
β∈(F×

qk
)q−1(−T + 1− β)

= (−1)k
(
(−T + 1)Nk − 1

)
= (T − 1)Nk − (−1)k.

In the first equality we used that since gcd(j, k) = 1, the map from (F×
qk

)q−1 to itself given
by β 7→ βNj is a bijection. In the third equality we used that (F×

qk
)q−1 consists of exactly all

elements of F×
qk

of multiplicative order dividing Nk.

From the proof of Proposition 4.3 we also see that Pk(T ) is the lowest degree polynomial annihi-
lating the kernel of λ = τk −Xqk−1. For k = 1, we have P1(T ) = T , so the kernel of the isogeny
λ is annihilated by multiplication with T .

Alternatively, instead of studying normalized rank n Drinfeld modules, one can consider the
corresponding L̄-isomorphism classes. More precisely, we look at isomorphism classes of rank n
Drinfeld modules φ with φT = g0τ

n + g1τ
n−1 + · · ·+ gn−1τ + 1 such that

g1 = . . . = gj−1 = gj+1 = . . . = gn−1 = 0.

Clearly every such class contains a normalized Drinfeld module, and two normalized Drinfeld
modules φ, φ′ ∈ Dn,j , with φT = −τn + gτ j + 1 and φ′T = −τn + g′τ j + 1 are isomorphic over L̄
if and only if g′ = g · λqj−1 for some λ ∈ F×qn .
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Since gcd(n, j) = 1, the image of the map λ 7→ λq
j−1 is (F×qn)q−1. We see that φ and φ′ as

above are isomorphic if and only if
g′Nn = gNn .

We denote J(φ) = gNn , since it plays the analogous role of the j-invariant for normalized Drinfeld
modules (also compare with [22]). It is now easy to relate J(φ) and J(ψ) for Drinfeld modules
φ and ψ which are related by an isogeny of the form τk −Xqk−1. By Equation (46) we have

J(φ) = gNn =
(Xqn−1 − 1

Xqj−1

)Nn
=

(Xqn−1 − 1)Nn

(Xqn−1)Nj

and similarly

J(ψ) = hNn =
(Xqn−1 − 1)Nn

(Xqn−1)qkNj
.

Letting Z = −Xqn−1, we have

J(φ) = (−1)k
(Z + 1)Nn

ZNj
, J(ψ) = (−1)k

(Z + 1)Nn

Zq
kNj

.

Iterating this correspondence, we recover the tower given by Equation (38).

Clearly, there are various ways to generalize this construction and obtain further good (recursive
or non-recursive) towers over non-prime finite fields.
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