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Abstract. Semi-regular 4–8 meshes are refinabletriangulated quadrangulations. They provide a powerful
hierarchical structure for multiresolution applications. In this paper, we show how to decompose the Doo-
Sabin and Catmull-Clark subdivision schemes using 4–8 refinement. The proposed technique makes it
possible to use these classical subdivision surfaces with semi-regular 4–8 meshes.
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1. INTRODUCTION

Subdivision surfaces are becoming the standard representation for surface modeling
in Computer Graphics. This framework models a continuous surface as the limit of
repeated application of a subdivision scheme to a control polyhedron.

The main reason for the popularity of subdivision surfaces is the fact that they
bridge the gap between continuous and discrete models. This is the key for simple
and efficient recursive algorithms, as well as, for hierarchical structures.

Currently, there are three commonly used subdivision schemes [Catmull and Clark
1978; Doo and Sabin 1978; Loop 1987]. The Catmull-Clark and Doo-Sabin schemes
are based on generalizations of quadrilateral tessellations, while the Loop scheme is
based on triangular tessellations.
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In this paper, we show how to implement Catmull-Clark and Doo-Sabin subdivi-
sion, using 4–8 meshes. The 4–8 mesh is a hierarchical structure for subdivision
surfaces that has powerful capabilities [Velho and Gomes 2000]:

� 4–8 meshes are refinable triangulated quadrangulations, thus they combine struc-
tural properties of triangle and quadrilateral meshes;

� 4–8 meshes are based on[4:82] tilings, and as a consequence, they possess a rich
set of symmetries;

� 4–8 meshes support uniform as well as non-uniform refinement, making possible
the generation of adapted multiresolution tessellations;

� Refinement of 4–8 meshes is composed of two binary subdivision steps, allowing
for the factorization of subdivision schemes;

� 4–8 meshes are constructed using bisections, which is simple to implement and
produces gradual transitions of resolution;

� 4–8 meshes can be used to implement both primal and dual refinement.

In a separate work we introduced the notion of semi-regular 4–8 meshes and devel-
oped a new subdivision scheme for them [Velho 2000; Velho and Zorin 2000]. Here
we decompose the Catmull-Clark and Doo-Sabin subdivision schemes into rules that
are compatible with the underlying 4–8 mesh structure. Our motivation for developing
such methods was to incorporate the power of 4–8 meshes into the above mentioned
classical subdivision surfaces.

2. 4–8 MESHES

The mesh structures traditionally used in conjunction with subdivision surfaces are
derived from regular triangular or quadrilateral tilings [Schr¨oder 1998]. In contrast,
the 4–8 mesh is based on the Laves tilings of type[4:82], which is atriangulated
quadrangulation. Thus, it combines the advantages of these two basic tilings (See
[Grünbaum and Shephard 1987]).

Figure 1 shows a regular 4–8 mesh. It has the structure of a four-directional grid,
generated by the set of vectors,fe1; e2; e1 + e2; e1�e2g, with e1 = (1; 0) and
e2 = (0; 1).

Fig. 1. 4–8 Mesh



L. Velho � 3

The 4–8 mesh structure has many desirable properties, such as, refinability and rich
symmetry. What distinguishes this mesh from other regular tilings is that it supports
spatially-varying non-uniform multiresolution [Velho and Gomes 2000]

The hierarchical 4–8 mesh has the structure of a triangulated restricted quadtree [Herzen
and Barr 1987]. It incorporates an underlying mechanism that propagates refinement
dependencies across different levels of the tessellation, Thus it ensures a gradual tran-
sition between resolutions. Figure 2 shows an example of this constrained resolution
propagation.

Fig. 2. Transition between resolution levels.

The refinement of 4–8 meshes is composed of two binary subdivision steps. In
the first step, the mesh is refined in the horizontal and vertical directions, while in
the second step, the mesh is refined in the two diagonal directions. This process is
illustrated in Figure 3.

(a) step 1 (b) step 2

Fig. 3. The two steps of 4–8 mesh refinement

One of the most remarkable features of the 4–8 mesh is that it produces, at the same
time, both primal and dual refinement of its (triangulated) quadrilateral blocks. At odd
subdivision levels, the process induces primal refinement, while at even subdivision
levels dual refinement is obtained.
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2.1 Primal Refinement

When the mesh is subdivided in the diagonal directions (even stepj), a new vertex
is inserted at the center of each quadrilateral block. When the mesh is subdivided in
the horizontal and vertical directions (odd stepj + 1), new vertices are inserted at the
midpoints of boundary edges of each quadrilateral block.

After this cycle of two steps, the original quadrilateral block is subdivided into four
sub-blocks. Figure 4 shows the primal refinement cycle of a 4–8 mesh, and compares
it with the normal primal refinement for quad meshes.

Quad Mesh

4–8 Mesh

level j � 1 level j level j + 1

Fig. 4. Primal 4–8 refinement cycle

2.2 Dual Refinement

When the mesh is subdivided in the horizontal/vertical directions (odd stepj+1), new
vertices are inserted at the boundary edges of quadrilateral blocks, creating four sub-
blocks. When the mesh is subdivided in the two diagonal directions, (even stepj+2),
new vertices are inserted at the centers of each sub-block. Every old quadrilateral
block will have one new vertex at the center of each of its four quadrants. These four
new vertices define a block of the dual mesh at the next level. The old vertices become
inactive.

Figure 5 shows the dual refinement cycle of a 4–8 mesh and compares it with dual
refinement for quad meshes.

In the dual refinement of quad meshes, old vertices are discarded. Note that, for
4–8 refinement, the old vertices are not discarded. They are kept, but don’t influence
the geometry of the mesh. This implies in a small space overhead. On the other hand,
it gives extra flexibility in the construction of subdivision schemes.
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Quad Mesh

4–8 Mesh

level j level j + 1 level j + 2

Fig. 5. Dual 4–8 refinement cycle

Also note that, the new dual mesh is only completely defined in the beginning of
the next cycle, after insertion of horizontal/vertical edges. See Figure 6.

Fig. 6. Completed dual 4–8 face block

3. THE CATMULL-CLARK SCHEME

In this section, we briefly review the traditional Catmull-Clark subdivision scheme,
which we callQuad Catmull-Clark subdivision, then we introduce the 4-8 decompo-
sition of the scheme.

3.1 Quad Catmull-Clark Subdivision

The Catmull-Clark subdivision scheme generalizes subdivision of bicubic tensor prod-
uct B-splines. It produces surfaces that areC

2 everywhere, except at extraordinary
vertices where they areC1.

This scheme uses primal refinement and it is composed of three rules: aface rule,
applied to new vertices at the center of current faces; anedge rule, applied to new
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vertices at edge midpoints of current faces; and acorner rule, for updating old vertices
at the corners of current faces.

The Quad Catmull-Clark subdivision rules for ordinary vertices (i.e. with valence
= 4) are shown in Figure 7.
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Fig. 7. Quad Catmull-Clark rules for ordinary vertices

Extraordinary vertices (i.e. with valence6= 4) occur only at the corners of existing
faces. Therefore, the rule for extraordinary vertices generalizes the corner rule. This is
shown in Figure 8. The parameters,� and� have a range of allowable values. Catmull
and Clark suggested,� = 3

2n
and� = 1

4n
, wheren is the valence of the corner vertex.
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Fig. 8. Quad Catmull-Clark rule for extraordinary vertices

3.2 4–8 Catmull-Clark Subdivision

The basic principle for decomposing the Catmull-Clark subdivision scheme using 4–8
meshes is to distribute the rules at the appropriate steps of 4–8 refinement in order to
exploit the structure of the mesh. A similar scheme was used by [Halstead et al. 1993]
in the context of quadrilateral meshes. According to this principle, we apply the face
and corner rules at even steps, and the edge rule at odd steps.
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At even steps, we first compute the 4–8 face rule. After subdivision, new vertices
at the center of each quadrilateral block are computed as the average of the four old
vertices in their 1-neighborhood. See Figure 9(a).
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Fig. 9. 4–8 Catmull-Clark rules for a valence 4 vertex: face (a), corner (b) and edge (c).

Next, we compute the 4–8 corner rule. Old vertices are updated using the informa-
tion gathered in the computation of face rules. Note that, the star of every old vertex
consists of an alternating sequence of new and old vertices. Moreover, at this stage,
new vertices are the averages of their four immediate neighbors. We compute the new
value of a corner vertex,a00, by taking a linear combination of three types of vertices
in the 1-neighborhood of the corner vertex, e.g. new verticesci, old verticesbi and the
corner vertex itself,a0. There are2n vertices in the star ofa0, and thus,i = 1; : : : ; n.
Figure 10(a) shows the vertex labeling.
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The 4–8 corner rule is given by equation 1

a
0

0 = e� a0 + e
�

nX
i=1

b2i�1 + e
 nX
i=1

ci (1)

The coefficientse� = (n�2)

n
, ande� = e
 = 1

n2
, take into account the fact that, as

mentioned before, new vertices have been computed as

ci =
a0 + b2i�1 + b2i + b2i+1

4
:

where indices are taken modulo2n. Substituting the value ofci into equation 1, gives

a
0

0 =
n� 2

n

a0 +
1

n
2

 
nX

i=1

b2i�1 +

nX
i=1

a0 + b2i�1 + b2i + b2i+1

4

!
(2)

Since verticesbi with odd indices appear once in the first sum and twice in the
second sum, they are weighted by a factor of2

3
. The verticesbi with even indices

appear only in the second sum and are weighted by a factor of1
4
. Vertexa0 appears

n times in the second sum and is weighted by a factor of1
4n

. It is easy to see that
this rule is exactly the Quad Catmull-Clark corner rule for, both, regular vertices of
valence4 and extraordinary vertices of valencen. The associated mask forn = 4 is
shown in Figure 9(b).

At odd steps, we compute the 4–8 edge rule. We adopt the same strategy used to
compute the corner rule. The values of new vertices are obtained from values of their
1-neighbors.

Note that, the star of a new vertex consists of exactly 4 vertices: two of them,
c0 and c1, correspond to the centers of quadrilateral blocks created in the previous
subdivision step. Therefore, they are the averages of respective corner vertices. The
two remaining vertices,b0 andb1 are corner vertices from two adjacent faces sharing
the subdivided edge, for which the rule is being computed. Thus,b0 andb1, are also
accounted for inc0 andc1. We have

c0 =
b0 + b1 + b2 + b3

4
; (3)

c1 =
b0 + b1 + b4 + b5

4
; (4)

whereb2, b3, andb4, b5, are respectively the opposite vertices of the two quadrilateral
blocks sharing the edgeb0b1. Figure 10(b) shows the vertex labeling.

Taking the linear combination of the neighbors gives the 4–8 edge rule for midpoint
d

d =
1

4
(b0 + b1 + c0 + c1) : (5)

Substituting (3) and (4) into (5) we get

d =
3

8
(b0 + b1) +

1

16
(b2 + b3 + b4 + b5) (6)
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which is exactly the Quad Catmull-Clark edge rule (shown in Figure 7(c)). Figure 9(c)
shows the mask corresponding to the 4–8 edge rule.

Note that the 4–8 edge rule is like a 4–8 face rule rotated by 45 degrees.

4. THE DOO-SABIN SCHEME

In this section we briefly describe the traditional Doo-Sabin scheme which we call
Quad Doo-Sabin subdivision, then we introduce the 4–8 decomposition for the scheme.

The Doo-Sabin scheme is a generalization of subdivision for biquadratic tensor
product B-splines. It producesC1 continuous surfaces.

4.1 Quad Doo-Sabin Subdivision

The Quad Doo-Sabin subdivision scheme is based on dual refinement and it uses a
single rule. For eachn-sided face, new smallern-sided faces are created by inserting
new vertices in the interior of current faces and connecting these vertices across the
edges of current faces.

The Quad Doo-Sabin subdivision rule for ann-sided face is shown below.

α
2

α

α
n−1

0
α

1

α
n−2

where the coefficients of the mask for an interior vertex are

�0 =
1

4
+

5

4n
(7)

�i =
3 + 2 cos(2�i=n)

4n
; for i = 1; : : : n� 1 (8)

This rule specializes for a quadrilateral face as

9
16
_

16
3_

16
3_

16
_1



10 � Using Semi-Regular 4–8 Meshes for Subdivision

4.2 4–8 Doo-Sabin Subdivision

The principle to decompose the Doo-Sabin subdivision scheme is based on the obser-
vation that, in a 4–8 mesh, all dual blocks have a central vertex which is linked to each
corner of the block.

At even steps, the edges of these blocks are subdivided. Their midpoints,si are
computed as the averages of the two corners,ai andai+1, linked by a new edge,
aiai+1.

At odd steps, the vertices of new blocks are created. Every such new vertex,a
0

0,
has four neighbors. One,c is the center of the dual block, other,a0 is the old vertex
corresponding to the new vertexa00. The remaining two vertices,s1 andsn�1, are the
midpoints of adjacent edges incident ina0.

Figure 11 shows the face, with the labels of all vertices.
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Fig. 11. Decomposed 4–8 Doo-Sabin mask.

The decomposed 4–8 subdivision rule uses the old vertexa0, and the midpoints,
fsigi=1;:::n, of the edges of the dual block. These midpoints are accessed through the
center vertexc, since they are all in the star ofc.

Froma0 andsi, i = 0; : : : ; n � 1, we get the values ofai, i = 1; : : : ; n � 1, by
successive elimination of the unknownsai.

Sincesi =
ai+ai+1

2
, the value ofai+1 is

ai+1 = 2si � ai (9)

Once that is done, we simply apply the Doo-Sabin rule using (7) and (8)

a
0

0 =
n�1X
i=0

�iai (10)
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We remark that the above method is general, and allows the computation of other
dual subdivision schemes, such as theC

1 four directional box spline [Peters and Reif
1997].

5. EXAMPLES AND REMARKS

In this section, we present some examples of surfaces generated using the decomposed
subdivision schemes developed in the previous sections.

The example in Figure 12 is a surface of genus 0. The control polyhedron is an
extruded pentagon. Figure 12(a) shows the polygonal surface generated after 3 steps
of Catmull-Clark subdivision. Figure 12(b) shows the corresponding surface produced
by the Doo-Sabin scheme.

(a) Catmull-Clark (b) Doo-Sabin

Fig. 12. Genus 0 Surface

The example in Figure 13 is the “Stanford Bunny”. The control polyhedron was
obtained from the original data set using simplification. Figure 13(a) shows the polyg-
onal surface generated after 3 steps of Catmull-Clark subdivision. Figure 13(b) shows
the corresponding surface produced by the Doo-Sabin scheme. Note that our imple-
mentation of the Doo-Sabin scheme does not include a rule for boundary edges. This
is apparent in the bottom of Figure 13(b).

In this paper we didn’t address boundary rules for the two subdivision schemes.
We note that, in this case, decomposition is not necessary, because the masks perform
averages along the boundary curves. Therefore, these rules can be implemented in the
same way as in the Catmull-Clark and Doo-Sabin schemes.

As a concluding remark, we would like to point out that the principles presented
in this paper can be employed to decompose other 1-ring subdivision schemes in the
context of semi-regular 4–8 meshes.
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(a) Catmull-Clark (b) Doo-Sabin

Fig. 13. Stanford Bunny
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