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Abstract

In this work we propose a Cauchy-like method for solving smooth
unconstrained vector optimization problems. When the partial order
under consideration is the one induced by the nonnegative orthant,
we regain the steepest descent method for multicriteria optimization
recently proposed by J. Fliege and B.F. Svaiter. We prove that every
accumulation point of the generated sequence satisfies a certain first
order necessary condition for optimality, which extends to the vector
case the well known “gradient equal zero” condition for real-valued
minimization. Finally, under some reasonable additional hypotheses,
we prove (global) convergence to a weak unconstrained minimizer.

As a by-product, we show that the problem of finding a weak con-
strained minimizer can be viewed as a particular case of the Abstract
Equilibrium Problem.
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1 Introduction

In multicriteria optimization, several objective functions have to be mini-
mized simultaneously. Usually, no single point will minimize all given objec-
tive functions at once, and so the concept of optimality has to be replaced
by the concept of Pareto-optimality or efficiency. A point is called Pareto-
optimal or efficient, if there does not exist a different point with smaller than
or equal objective function values, such that there is a decrease in at least one
objective function value. Applications for this type of problem can be found
in engineering design [10] (mainly truss optimization [6]), location science [3],
statistics [4], management science [11] (specially portfolio analysis [18]), etc.

The main solution strategy for multicriteria optimization problems is the
scalarization approach due to Geoffrion [13]. Here, one or several parame-
terized single-objective (i.e., classical) optimization problems are solved. A
feature of this approach is that the choice of the parameters is not known
in advance, leaving the modeler and the decision-maker with the burden of
choosing them; moreover, bad choices of these parameters can lead to un-
bounded scalar problems. This method computes only proper Pareto-optimal
points. Other scalarization techniques are parameter-free [5, 6], but try to
compute a discrete approximation to the whole set of Pareto-optimal points.

Parameter-free multicriteria optimization techniques use in general an
ordering of the different criteria, i.e., an ordering of importance of the com-
ponents of the objective function vector. In this case, the ordering has to
be specified. Moreover, the optimization process is usually augmented by an
interactive procedure [16], adding an additional burden to the task of the
decision maker.

In a recent paper, Fliege and Svaiter [12] proposed a parameter-free opti-
mization method for computing a point satisfying first-order necessary condi-
tions for multicriteria optimization. Neither ordering information nor weight-
ing factors for the different objective functions is assumed to be known in
this new method, which may be interpreted as a “steepest descent method”
for multicriteria optimization.

We recall that the steepest descent method (also known as gradient or
Cauchy’s method) is one of the oldest and more basic minimization schemes
for scalar unconstrained optimization. Despite its computational shortcom-
ings, like, for instance, “hemstitching” phenomena, the Cauchy’s method
can be considered among the most important procedures for minimization of
real-valued functions defined on R", since it is the departure point for many



other more sophisticated and efficient algorithms. For instance, it is par-
tially used in some “globally convergent” modifications of Newton’s method
for unconstrained optimization. Here, “globally convergent” means that all
sequences produced by the method have decreasing objective function values,
and that all accumulation points of these sequences are critical points. We
refer the reader to [7], where the “double dog-leg” method is discussed. The
simple idea of decreasing the value of the objective function is also used in
many other modifications of Newton method. We refer the reader again to
[7] for a very clear exposition. It remains an open question how to extend
more efficient procedures, as Newton’s method, to vector optimization.

The purpose of this paper is to take a step further on the direction of
Fliege and Svaiter’s work [12]. Based on their ideas, we present a Cauchy-
like method for smooth vector optimization, under the partial order induced
by a general closed convex pointed cone K, with nonempty interior in a
finite dimensional space; as their procedure, ours is a parameter-free method.
When the cone is the nonnegative orthant, our procedure turns out to be the
very same proposed by them. Our convergence results extend theirs and,
furthermore, under some additional (and quite reasonable) hypotheses, we
also show that all sequences produced by the method converge, no matter
how poor is the initial guess.

The outline of this work is as follows. In Section 2 we introduce the
unconstrained K-minimization problem and discuss a necessary (but in gen-
eral nonsufficient) first order optimality condition, called K-criticality. This
condition extends to vector optimization the classical “gradient equal zero”
condition for scalar minimization. The notion of K criticality allows us to
derive a generic K-descent scheme. We discuss an Armijo-like strategy for
choosing the stepsizes. In Section 3 we characterize the negative cone and
its interior in terms of a convex function. This function is used to define the
steepest descent direction, as well its approximations. We present the com-
plete steepest descent method for vector optimization, with approximations
of the steepest descent direction, and show its welldefinedness. In Section
sec:gc we discuss the convergence of the method. We prove that all the clus-
ter points of any sequence generated by the algorithm are K-critical. In
Section 5 we discuss the relationship between vector steepest descent direc-
tion and the scalarization approach. In Section 6, assuming K-convexity of
the objective function and a certain very reasonable condition on the objec-
tive, we prove, based upon the notion of quasi-Fejér convergence, that, with
the pure steepest descent direction choice or even with other more general



directions, called s-compatibles, the method is globally convergent to a weak
unconstrained K-minimizer. In Section 7, using the scalar function defined
in Section 3, we show that the problem of finding a weak constrained K-
minimizer of a vector-valued function can be viewed as a particular case of
the well known abstract equilibrium problem. Finally, in Section 8 we make
some final remarks about our work.

2 Basic Definitions

Let K be a closed pointed convex cone of R™, with nonempty interior. The
partial order in R™ induced by K, <k , is defined by:

u=<gvifv—ueK.
Consider also the partial order induced by int(K) in R™, <g:
u <k vif v —u € int(K).

Given a continuously differentiable function F' : R* — R™, we consider
the problem of finding an unconstrained K-minimizer of F, i.e. a point x* €
R™ such that there exists no other x € R" with F(z) < F(z*) and F(z) #
F(z*). In other words, we are seeking unconstrained Pareto minimizers for
F' in the partial order induced by the cone K. We denote this problem as

min g F(z). (1)

A necessary, but, in general, non sufficient, condition for K-optimality of
a point x € R” is
—int(K) N Image(JF(z)) =0, (2)

where JF(x) stands for the Jacobian of F' at z (see, for instance, [15]).
Observe that (2) generalizes to vector optimization the classical condition
“gradient equal zero” for the real-valued case.

A point z is K-critical if it satisfies (2). Therefore, if a point z is not
K -critical, there exists a direction v € R” satisfying

JF(z)v € —int(K), (3)

that is to say JF (z)v <k 0. It is a well known fact that such v is a K-descent
direction for the objective F'. Actually, it holds that (see [15]), if v satisfies
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(3), there exists ¢ > 0 such that
F(z + tv) <k F(z), for all t € (0,%]. (4)

If v is a K-descent direction at z, we say that ¢ > 0 satisfies the “Armijo-
like” rule for g € (0,1) if

F(z+tv) 2k F(z) + StJF(z)v.

As in the scalar case, given a “descent” direction, the Armijo rule is
satisfied for some ¢’s.

Proposition 2.1 Let 8 € (0,1). If JF(z)v < 0, then there exists ¢ > 0
such that
F(z +tv) <k F(z) + ptJF(z)v,

for all t € (0,%].
Proof. Since F is differentiable, we have
F(zx +tv) = F(z) + t(JF(z)v + R(t)) , (5)

with lim; o R(t) = 0. We are assuming that JF(z)v € —int(K). Since
B €(0,1), (1—p)JF(z)v € —int(K). Hence, there exist ¢ > 0 such that, for
all t € (0,¢], |R(t)|| is small enough, so that

R(t)+ (1 - B)JF(zx)v € —int(K).
Equivalently,
R(t) <k —(1 = B)JF(z)v, for all t € (0,¢].

Combining this K-inequality with (5) the conclusion follows. 0
Proposition 2.1 opens the way for defining a generic K-descent method
using the Armijo-like rule.

Algorithm 1 (Generic K-descent method)
1. Take 8 € (0,1), 2° € R*. Set k := 0.
2. If 2* is K-critical sToP. Otherwise,

3. Find v* o K-descent direction at z*.



4. Find ty, > 0 such that

F(2® + t40%) <k F(aF) + BtpJ F(a*)0F .
5. Set %1 =2k + 0% k= k + 1 and coTO 2.

Only very general properties can be proved for this algorithm.

Proposition 2.2 Let {z*} be an infinite sequence generated by Algorithm 1.
If T is an accumulation point of {x*} then

F(z) 2k F(z%)

for all k and limy,_,, F(z*) = F(Z). In particular, F is constant in the set
of accumulations points of {z*}.

Proof. We are supposing that an infinite sequence {z*} was generated
by Algorithm 1. Therefore, all z¥ are non K-critical and {F(z*)} is K-
decreasing. By assumption, there is a subsequence {z*} converging to z.
Take any k£ € N. For j large enough k; > k and

F(z%) < F(2%).

Taking limit for j — oo we get F\(z) <x F(z*). Let & be another accumu-
lation point of {z*}. Then there exist a subsequence {z*»} converging to .
Since

F(z) 2x F(a"),

letting p — oo we get F'(T) <x F(&). By the same reasoning, F(Z) <x F(Z).
Since K is pointed, these two K -inequalities imply that F(z) = F(z). O

Regarding the choice of the stepsizes ti, if they are taken too small, the
generated sequence {z*} may converge to a non K-critical point. In order
to choose a suitable steplength at iteration k, we prescribe the usual back-
tracking procedure:

3a Sett:=1

3b If F(z* + tv*) <k F(a*) + BtJF(z*)v* then
tk = t, END (of backtracking)

else



3c Set t:=1/2, coTO 3b.

Observe that the above backtracking procedure has always finite termination,
thanks to Proposition 2.1. Moreover

ty = max{277 | j € N, F(2F + 2790%) <x F(aF) + B277 JF (z*)v*}.

The main problem now is the choice of v*. For classical optimization, we
have m =1, K = R, . In this case, the natural choice is the steepest descent
direction v¥ = —V F(2*), which happens to be the solution of

min (v, VF(z*)) + (1/2)|]v]]?>, v € R". (6)

For multiobjective optimization ( m > 1), where K is the positive orthant
R, Fliege and Svaiter [12] proposed to take v* as the solution of

min max (v, VF;(z")) + (1/2)[]]*, veR", (7)

where F(z) = (Fi(z),..., Fn(x)). Observe that (6) is a particular case of
(7) when m = 1.

In the following section we will extend the notion of steepest descent di-
rection for the partial order <g and propose the K-steepest descent method.

3 K-Steepest Descent Method

The positive polar cone of A C R™ is the set
A* ={w e R™ | (y,w) >0, Yy € A}.
Since K is a closed convex cone (see [17, Theorem 14.1]) K = K**,
-K={yeR" | (y,w) <0, Vw € K"},

and
—int(K) ={y € R" | (y,w) <0, Yw € K*\ {0}}.

The convex hull of A C R™ will be denoted by conv(A), and the cone gener-

ated by A will be denoted by cone(A)
From now on, we assume that we have a compact set C' C R™ such that:

0¢C, (8)
cone(conv C) = K*. 9)
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As int(K) # 0 and C C K*\ {0}, it follows that 0 ¢ conv(C). Therefore

-K = {ueR"|(u,w) <0, Yw € C}, (10)

—int(K) = {ueR"|{u,w) <0, Vwe C} (11)

In classical optimization, K = R; and we may take C' = {1}. For
multiobjective optimization, K and K* are the positive orthant of R™ and
we may take C' as the canonical basis of R™. If K is a polyhedral cone, C'

may be taken as a finite set of extremal rays of K*. For a generic K (closed
pointed convex cone with nonempty interior), the set

C={weK"[|w],=1}
(where ||w||; = |w1| + - - - + |wy,|) will satisfy conditions (8), (9).
Define now ¢ : R™" — R

o(y) == zgg(y,w)- (12)

In view of (10)-(11) and the compacity of C, the function ¢ gives a “scalar”
characterization of —K and —int(K):

—K ={y e R™: ¢(y) <0}, (13)

and
—int(K) ={y € R™ : p(y) < 0}. (14)

In the following lemma we establish some elementary properties of function
¢ which will be used on the sequel.

Lemma 3.1

i) Let y,y' € R™, then o(y + ') < o(y) + ¢(y) and ¢(y) — o) <
ey —y').
i) Lety,y' € R™, if y <k y' (y 2k y'), then o(y) < o) (p(y) < @(y')).
iit) The function ¢ : R* — R is Lipschitz continuous.

Proof. Ttem (i): the first inequality holds trivially and the second follows
from the first. Item (ii): The fact that y — 3y € —int(K) (y — ¢y’ € —K)
is equivalent to p(y —y') < 0 (p(y — y') < 0), according to (14) and (13).
Hence, the result follows from (i).



Item (iii): By virtue of what was established in (i), o(y)—¢(¥') < o(y—v')
and ¢(y') — ¢(y) < (¥’ — y). Hence

lo(y) — o(y)| < sup{o(y — '), 0(y —¥)}-

Therefore, from (12) and Cauchy-Schwartz inequality

o(y) — () < Llly - ¥l (15)

where, L := sup{||w|| | w € C}, and the result follows. 0
Define now for z €¢ R*, f, : R* = R as

£0) = pIF@)) )

= SUPuec(w, JF(z)v).

From (14) it follows that that v is a K-descent direction at z if and only if
fz(v) < 0. Therefore, x is K critical if and only if f,(v) > 0 for all v € R".

We can now extend the notion of steepest descent direction to the vec-
tor case (with K an arbitrary cone satisfying the conditions stated at the
beginning of Section 2).

Definition 3.2 Given z € R", the K-steepest descent direction (for F) at
x, denoted by v, is the solution of

min f,(v) + (1/2)|]v]|?>, v € R". (17)
The optimal value of this problem will be denoted by .

Remark 1 1. In the scalar minimization case, where F : R™ — R and
K =Ry, taking C = {1}, the K-steepest descent direction it’s exactly the
classical steepest descent direction, i.e., v, = —VF(x).

2. For multicriteria optimization, where K = RT, with C' given by the
canonical basis of R™, we retrieve the steepest descent direction proposed in

[12].

Since v — f;(v) is a real valued closed convex function, v, and «a, are well
defined. Furthermore, as F' is continuously differentiable and ¢ is Lipschitz
continuous, the application (z,v) — f;(v) is also continuous.

Lemma 3.3



1. If ¢ is K critical then v, =0, o, = 0.
2. If x 1s not K critical then vy # 0, ay <0,
folvs) < =(1/2)[|wall* < 0
and vy 18 a K-descent direction.
3. The applications x — v, T — ay are continuous.

Proof. Ttem 1: If x is K-critical, then f, > 0. Since f,(0) = 0, the
conclusion follows.

Item 2: If z is not K-critical, then, for some v € R, f,(v) < 0. Observe
that f,(-) is positive homogeneous of degree 1. Taking

t=—fo()/Ilvl* o=t

we get
fo@) + @287 = tfo(v) + (1/2)E]0]?
= —f:()*/|v]* <0.
Hence a, < 0. The other statements of item 2 follow now trivially.
Item 3: Take 2° € R* and € > 0. Define

S = {veR"[|lvgo — 0] = e}

Note that vgo is optimal for (17) with z = 2% As the objective function of
(17) is strongly convex, modulus 1/2, it follows that

Foo (0) + (/21”2 fao(vs0) + (1/2)|[vpol|” + (1/2)€?, Vv € S.

Since the application (z,v) — fz(v) is continuous, and S is compact, using
this equation we conclude that there exist § > 0 such that, if ||z — 2°|| < 4,
then

fo@) + /2)|0]* > falva) + (1/2)||val?, Yo € S.

Take now z € R*, ||z — 2°|] < 4. As v — f.(v) + (1/2)||v]|* is convex, we
conclude from the above inequality that v,, the minimizer of f,(-)+(1/2)]|-||
is not in the region ||v — v,o|| > €, hence ||v, — v40|| < €. Continuity of «,
follows now trivially. 0
A possible choice for v in Algorithm 1 is v, i.e., the K-steepest descent
direction at z*. Since the computation of v, requires the solution of (17), it
would be interesting to work with approximated solutions of this problem.
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Definition 3.4 Let o € [0,1). We say that v is a o-approzimate K -steepest
descent direction at x € R if

fo(v) + 1/2)|I0[I* < (1 - 0)a,

or equivalently

Folo) + (1/2) 0l = (Flve) + (1/2)][0a]?) < ol

Observe that the (exact) K-steepest descent direction at z is always a
o-approximate K-steepest descent direction, because we assume o € [0,1).
The ezact K-stepest descent direction at x is the unique ¢ = 0-approximate
K-stepest descent direction.

Lemma 3.5 Let o € [0,1). If v is a o-approzimate K -steepest descent at x,
then
[vz = v[|* < 20]ey).

Proof. The function
v fa(v) + (1/2) [0l

is strongly convex with modulus 1/2. Since v, is the minimizer of this func-
tion,

Foo) + (/)] = (folwa) + (1/2)0al?) > (/2] = ol

Using Definition 3.4, the conclusion follows. O

Let o € [0,1) be a prespecified tolerance. From Lemma 3.3, it follows that
v = 0 is a o-approximate K-steepest descent direction at z if, and only if, =
is K-critical. Note also that, if x is not K-critical and v is a g-approximate
K-steepest descent direction at x, then v is a K-descent direction, and in
particular v # 0.

Now we formally state the K steepest descent method (with K Armijo
rule, implemented with backtracking). This algorithm is a a particular case
of Algorithm 1.

Algorithm 2 (K-steepest descent method)

1. Choose B € (0,1), 0 €[0,1), 2° € R*. Set k := 0.
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2. If ¥ is K-critical (i.e. if fu(v) >0 for all v € R*) sTOP. Otherwise,
3. Compute v*, a o-approrimate K -steepest descent direction at x*.
4. Compute the steplength ty, € (0, 1] in the following way:

ty ;= max{277 | j € N, p(F(z* +2770*)— F(2*) - 277 JF (z*)v*) < 0.}
5. Set 2%t = 2% + 0%, k =k + 1 and coTo 2.

Observe that if z* is not K-critical, then v* obtained in step 3 is a K-
descent direction and ?; in step 4 is well defined. Moreover, such #; may
be obtained by a backtracking procedure, as discussed previously. Further-
more, £F1 will satisfy F(z*™!) <), F(z*). So, the objective values sequence
{F(z*)} is K-nonincreasing.

We finish this section with a generalization of Proposition 2.1, which is a
simple consequence of the fact that F' is continuously differentiable.

Proposition 3.6 Let § € (0,1), z and v such that JF(x)v <x 0. Then
there exist t,06,6' > 0 such that,

v' is a K-descent direction at x,
F(&'+t') <k F(z') + BtJF (z")v'
forany t € [O,f), z' € B(z;9), v' € B(v;d').

Proof. By assumption, JF(z)v € —int(K). So, there exist € > 0 such
that

JE(z)v+y € —int(K), VyeR™ |y <e.

Since JF' is continuous, there exist d;,d2 > 0 such that if ||z’ — z|| < 6y,
[v" — v|| < s, then
|JF (2" — JF(z)v] <¢/2,

and so
JF(z')v' < 0.
Continuity of JF' also implies that
F(z+tu) = F(z) + tJF(2)u + tR(z, tu),

with lim;_,¢ || R(2, tu)|| = 0 uniformly for z and u in compact sets.Therefore,
there exist £ > 0 such that, for ¢ € (0,%], |[2' — z|| < 61, |[v/ — v|| < b,

IR, )| < /[2(1 = B)].
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Combining all these facts, we conclude that for ¢t € (0,], ||2' — =] < 41,
[v" = ]| < b,

Fi@'+t') = F@')+tJF(@ )W + R, ')
= F(@)+tBJF ()W +t[(1— B)JF(z')v' + R(z', tv")]
= F(a')+tBJF(z" v +
+t(1 — B)[JF(z)v + (JF(z')W — JF(z)v) +1/(1 — B)R(z', tv")]
F(z') +tBJF (2")v.

4 Convergence Analysis: the General Case

From now on, {z*},{v*}, {#;} are sequences generated by Algorithm 2. If
the algorithm terminates after a finite number of iterations, it terminates at
a K-critical point. In this section we suppose that an infinite sequence {z*}
is generated. So, in view of Lemma 3.3 and Definition 3.4, for all £

Qe < 0,

Far (0F) 4+ (1/2)[|0F])? < (1 — o) <0,

F(2Fh) <k F(2%) + Bty JF (aF)o* <k F(2*).
In particular the sequence {F(z¥)} is K-decreasing.

Using the above K-inequality, Lemma 3.1 and the positive homogeneity
of ¢, it follows that for all £,

o(F(2*h)) < @(F(z*) + Bty J F(z")v*)
F(2%)) + o(BtyJ F (2*)o*)

(")
("))
F(a")) + ﬁtkso(JF(fr’“)v’“)
("))
("))

IN

¥

F(a* +ﬁtk((1—a>amk—(1/2)||v’“||2). (18)

As a consequence of this scalar inequality we obtain the following lemma.

Lemma 4.1 If {F(z*)} is K-bounded from bellow, (i.e., if there exist y such
that §j <x F(a*) for all k) then

D tkloge] < oo, Y k0P| < oo
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Proof. Adding inequality (18) from k& = 0 to n we get
p(F@™) < o(F()+ 3 8t((1 = oo — (1/2)I04])
k=0

= @(F() = Atn((1 = o)lawel + (1/2)l10*?).

If j <k F(zF) for all k, then () <k ©(F(2*)) for all k£ and the conclusion
follows. 0
Now we are in conditions of studing the convergence properties of Algorithm
2.

Theorem 4.2 All accumulation points of {z*} are K-critical.

Proof. Let 7 be an accumulation point of {z*¥}. Then there exists a
subsequence {z*i} converging to 7,

lim z"i
Jj—o0

=1x.

Note that {v_; } and {a; } are bounded because they converge to vz and
az respectively. Therefore, using Lemma 3.5 we conclude that {v¥i} is also
bounded. So (refining the original sequence if necessary), we may also assume
that {v¥i} converges to some 7,

For all k, fue(v®") + (1/2)]|[v™*||> < (1 — 0)ays. Taking limits along k = k;
for 7 — oo we get
fo(0) + (1/2)|]9])* < (1 = o)z (19)
Recall that Algorithm 2 is a particular case of Algorithm 1, so by Propo-
sition 2.2, F(z) is a K-lower bound for {F(z*)}. Now we may apply Lemma
4.1 to conclude that

lim ¢4, 0 =0, (20)
j—o0
lim t, [[v*]] = 0. (21)
j—o0
We claim that
v=0 (22)



Suppose, for contradictory purposes, that o # 0. As az < 0, using (19) we
get fz(0) < 0. Using Proposition 3.6 we conclude that there exist ¢ > 0 such
that, for 7 large enough

F(z% 4 ki) < F(abi) + tJF (z*)oki, vt € [0,4).

So, (for j large enough)
2ty,, > min{1,1},

The assumption v # 0 also imply, by (21), that lim; , %, = 0, which
contradiction the last inequality.

To end the proof, use (19) and (22) to obtain oz > 0. Since o, < 0 for
any z, we conclude that oz = 0 and 7 is K-critical. O

5 Scalarization and Algorithm 2

A most useful method for solving problem (1) is the so called scalarization
procedure. The method is quite elegant; it consists of minimizing a certain
scalar function, as explained in the sequel. Take some w € int(K*) and define
g:R" > R

g9(z) = (w, F(z)). (23)
Then, solutions of

ming(z), z€R"

are also solutions of (1). So, we only need to minimize a (smooth ) scalar
function, and for this problem there are many efficient algorithms. The choice
of w € int(K™) is of capital importance. Indeed, for very well behaved prob-
lems, many choices of w lead to unbounded scalar minimizations problems.
For example, in multiobjective optimization, let F': R — R?,

F(z) = (x, m> :

Note that F' is componentwise convex. In this context, K = K* = R% , and
y <k v means y; < yi, for i = 1,2. Hence, such F'is K-convex. If we take
w = (wq,wy) > 0, with w; > ws, then the scalarized problem is unbounded.
Of course, algorithms for choosing w are quite desirable.

Once we have a very simple example in which the “wrong” choice of w
breaks down the method, a very natural question is how does the K-steepest
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descent method behave in this example. First of all, observe that, in this case,
the set of K-critical points is given by the halfline (—oo, 0]; furthermore, it
coincides with the K-optimal set. Let {z¥} be the generated sequence. If this
sequence is finite, then the last iterate is K-critical, and therefore optimal.
Suppose that the algorithm does not stop. Observe that, in this example,
for any 7 € R?, the set

{z eR* | F(z) < F(2)}

is bounded. As {F(z*)} is K-nonincreasing, it follows that {z*} is bounded.
So, it has accumulations points, all of which, by Theorem 4.2, are K-critical
(hence K-optimal). Furthermore, if Z, £ are accumulation points, then F(z) =
F(z). This readily implies (in this particular example) & = Z. So {z*} con-
verges to a solution.

It would be desirable to combine some ideas presented in the preceding
sections with the scalarization method. Indeed, they are connected. Observe
that, for g defined as in (23),

Vy(z) = JF(2)'w.

So, the steepest descent direction for g at z is —JF(z)'w. Take T € R*. We
claim that for a suitable w € (K*), the steepest descent direction for the
scalarized objective function ¢ at z coincides with the K-steepest descent
direction vz. To prove this claim, define

C = conv(C).

Obviously, C is a convex compact set and ¢(y) = sup,.5(w,y). The K-
steepest descent direction at Z is the solution of (17) with z = Z, which may
also be written as

min  max (<w, JF(z)v) + (1/2)||v||2). (24)

veER weC

The dual of this problem is

max  min ({w, JF(@)v) + (1/2)[0]]) (25)
Trivially,
argmin (w, JP(2)0) + (1/2)|[o]* = —TF(@)"w,
min  (w, JF(@)) + (1/2) o] = (~1/2) | TP (2)'w]>.
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Hence, problem (25) may be simplified to

max  —(1/2)||JF(z)"w]|? (26)
weC

or, equivalently,
min (1/2)||JF(z)'w|. (27)
wel

Since C is convex and compact, problem (25) has always a solution, say wz
(which may not be unique) and there is no duality gap. In particular, (vz, wz)
is a saddle point of (w, JF(Z)v) + (1/2)]|v||* in R* x C:

(w, JF(Z)va)+(1/2)[[vs]|* < (wa, JF()va)+(1/2)||val|* < (ws, JF(@)v)+(1/2)||v]
for all (v,w) € R* x C. So,

Vg = —JF(.'E')twi-, (28)
and w; € C C K*. Taking w = w; in (23) we get Vg(z) = JF(z)'w;, and
so —Vg¢(Z) = vz, as we claimed.

Since there is no duality gap in (24) - (26), using (28) we get

az = —(1/2)||val*,

where a; is the optimal value of Problem (17) for z = Z, so
P(JF (z)vz) = —|lval”

Now we will prove that approximate solutions of the dual problem (25) (or
(26), (27)) yield approximate solutions of (24), i.e., approximate K-steepest
descent directions at z.

Proposition 5.1 Let z € R" be non K-critical and 0 € (0,1). There exists
0 > 0 such that, if w € C and

(L/2)1TF ()" w])* — (1/2)|TF (@) wa|[* < 6,

then v = —JF (z)'w is a o-approzimate K -steepest descent direction at x.
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Proof. Define
£ = —00y.

As z is non K-critical, o, < 0, and so € > 0. Since the objective function on
(12) and JF are continuous, there exist 7 > 0 such that

lv—vall < = @(JF(2)v) + (1/2)[]0]]* < o(JF(z)va) + (1/2)]va]* + .

So, ||lv — vz]| < n implies that v is a c-approximate K-steepest descent
direction at x. B B
Optimality of w, for (27), convexity of C' and the hypothesis w € C imply

(JF(2)' (0 — wg), JF(z)'ws) > 0.
Hence, using the equalities o = —JF(z)'0, v, = —JF(x)‘w,,

ITE @) )" > TF (@) well” + | JF (2)" (@ — wa)|?
= JF@) wall® + 17 — vall*-

Therefore,
17— vell < VIJF (2)!0][2 — [[JF () w2
So, it is enough to take § = n?/2 > 0. 0
Let w € C be an approximate solution of (26) (or (27)). A question of
practical relevance is whether v = —JF(z)%0 is a o-approximate K-steepest

descent direction at z. In our next proposition we give a sufficient condition
for o-approximation.

Proposition 5.2 Tuke o € [0,1), w € C and define v = —JF(z)'w. If
p(JF(z)v) < —(1—0/2)|v]?
then v 1s a o-approrimate K -steepest descent direction at x.

Proof. We already know that (17) (or (24)) and (26) are a primal-dual
pair of problems. Since w is dual feasible,

—(1/2)ITF ()" w|]* < 0.
Therefore, making the substitution v = —JF(z)w we get

(1=0)(=1/2)|l[I* < (1 - o). (29)
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Hence, if
p(JF(z)v) < —=(1=a/2)|]v]*,

from (29) it follows that v = —JF(x)'w is a o-approximate K-steepest de-
scent direction. O
In the following section we will show a theoretical advantage of using
descent directions as discussed in Propositions 5.1, 5.2. From now on, we
will say that v is scalarization compatible, or s-compatible if there exist some
w € C such that
v=—JF(z)'w =V (w, F(x)).

Note that v,, the eract K-steepest descent direction at z, is always s-
compatible.

6 Convergence analysis: the K-convex case

Throughout this section we will assume that F'is K-convex, i.e., that
FQz+ (1 —=MNz') ¢ AF(z) + (1 — \)F(2')

for all z, 2" € R™ and all A € [0,1]. Under this additional assumption we
have

F(z)+ JF(z)(z' — z) 2k F(2'),

for any z, 2’ € R" (see [15, Lemma 5.2]).

As in the general case, here also optimality implies K-criticality. A point
r* € R" is a weak unconstrained K-minimizer of F', or weak Pareto minimal
element for F' (see [15]), if there is no x € R™ with F(z) <x F(z*). Under
K-convexity assumption on the objective function F', K-criticality and weak
optimality are equivalent conditions.

If the algorithm has finite termination, the last iterate is K-critical and
hence a weak unconstrained K-minimizer of F. We will study the case in
which the algorithm does not have finite termination and therefore produces
infinite sequences {z*},{v*} and {t*}. Let us now establish the additional
assumptions under which we will prove full convergence of {z*} to a K-
critical point or, in view of the above discussion, to a weak unconstrained
K-minimizer of F'.

A1 Every K-decreasing sequence in the image of F

{y*} C{F(2) |z € R"}
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is K-bounded below by a point in the image of F'.

A2 All v*’s are scalarization compatible, i.e., there exist a sequence {w*} in
C such that
vF = —JF(2")'w* k=0,1,...

Some comments concerning the generality/restrictiveness of these as-
sumptions are in order. Regarding Assumption Al, in the case of classical
unconstrained (convex) optimization, this condition is equivalent to existence
of solutions of the optimization problem. Assumption A2, deals with the im-
plementation of the algorithm rather than with F'. This assumption holds if
each v¥ is the ezact K-steepest descent direction at % (see (28)). Of course,
Assumption A2 applies to the sequence of directions {v*} prescribed by the
algorithm, i.e., we are assuming that v* is an s-compatible o-approximate
K-steepst descent direction for all .

We will need the following technical lemma in order to prove that the
K-steepest descent method is convergent.

Lemma 6.1 Suppose that F is K-convex and that v* is scalarization com-
patible (at z*). If F(2) <k F(x%) then

12 = & 1? < l& — 2| + [l = 2®).
Proof. By assumption, there exist some w* € C such that
P = —JF(z*) k.

Using the K-convexity of F' we have F(z*)+ JF(2%)(2 —z*) <x F(Z). Since
F(z) <k F(z%), we get

JF(zF)(z — 2*) <k 0.
Taking in account that w* € K* and using the above results we get
— (W& = 2*) = (WP TF(2*) (2 — 2*) < 0.
Recall that z**! = 2% + t,0*, with ¢, > 0. Therefore

(xk _ xk_H)t(i _ wk) S 0’
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which implies the desired inequality, because
||i _ $k+1||2 — ||:f} _ kaQ + ||$k _ $k+1||2 + Q(xk _ xk+1)t(i _ :L'k).

0

Before stating our convergence result, we recall that a sequence {y*} C

R™ is quasi-Fejér convergent to a set U C R™ if for every u € U there exist
a sequence {e;} C R, ¢ > 0 such that

[y —ull” < lly* —ull” + &, forall k= 1,2,

with
o
Z € < 00.
k=1

We will also need the following result concerning quasi-Fejér convergent
sequences, whose proof can be found in [14, 2.

Theorem 6.2 If the sequence {y*} is quasi-Fejér convergent to a nonempty
set U C R™, then {y*} is bounded. If furthermore a cluster point y of {y*}
belongs to U, then limy_oy* = v.

In [2] it is proved that the steepest descent method for smooth (scalar)
convex minimization, with stepsize obtained using backtracking and Armijo
rule, is globally convergent to a solution (under the sole assumption of ex-
istence of optima). We will prove a weaker version of this result for the
K-steepest descent method, using the same techniques as in [2].

Theorem 6.3 Suppose that F is K-convex and that Assumptions Al, A2
hold. Then {x*} converges to a K-critical point x*.

Proof. First of all, observe that all results of Section 4 are still valid
under the additional assumptions of this theorem. In particular, {F(z*)} is
a K-decreasing sequence, so, using Assumptions Al, there exist an £ € R”
such that

F(z) <k F(z*), Vk e N. (30)
Now observe that 0 < ¢, < 1 for all k. Hence
1
tillo(z")|? = t—\lxk“ — 2|2 > [J2*F — 2| (31)
k
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Therefore, from (30), (31) and Lemma 4.1 it follows that

1)
Zka —$k+1|‘2 < 00
k=1

Define
L:={z eR|F(z) <k F(z*),Vk € N}.

Note that x € L, so L is non-empty. Using Assumption A2 and Lemma 6.1
we conclude that for any z € L, (and k € N)

o — 2*H < o — F + 2t — 2

Since Y po, ||z* — zF*1{ 12 < 0o, we conclude that the seugence {z*} is quasi-
Fejér convergent to the set L. As L is nonempty, from Theorem 6.2 it follows
that {z*} has accumulation points. Let z* be one of them. By Proposition
2.2, z* € L. Then, once again by virtue of Theorem 6.2, it follows that the
whole sequence {z*} converges to z*. We finish the proof by observing that
Theorem 4.2 guarantees that z* is K-critical. 0

7 Vector Optimization and the Abstract Equi-
librium Problem

In this section we discuss the connection between the problem of seeking a
weak constrained K-minimizer and the Abstract Equilibrium Problem. We
will see that by means of function ¢, defined in (12), the first problem can
be viewed as a particular case of the second one.

The Weak Constrained K-Minimization Problem [15] is defined in the
following way:
Given closed convex pointed cones with nonempty interior K C R™, K; C
R™ ¢ =1,2,...,r, the corresponding induced orders: =z <y y if y —z €
int(K), u <g, v if v —u € K;, and

F:R*" - R™, K-convex and continuously differentiable,
G;:R" - R™  K;-convex, foralli =1,2,... r,

find z* € M = {z € R* | G;(z) =k, 0, for1 < i < r} such that there does
not exist any other x € M with, F(z) <x F(z*).
The Abstract Equilibrium Problem [1] can be stated in the following way:
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Given M, a nonempty closed convex set in a Hausdorff topological vector
space and
f:MxM-—R

such that
f(-,y) is upper semi continuous for all y € M,

f(z,-) is convex and lower semicontinuous for all x € M,
f(z,z) =0 for all x € M,
find x € M with the property that

f(z,y) >0, forally € M.

Taking
M ={z eR" | G(z) 2k, 0, for1 <i<r}

and

f(z,y) = (F(y) — F(x)),

where ¢ was defined in (12), we have that the solution set of this equi-
librium problem is exactly the same as the solution set of the weak con-
strained K-minimization problem. Observe that the weak unconstrained
K-minimization problem is a particular case of the constrained one and,
therefore, can also be solved by means of methods for solving the equilib-
rium problem. So we can find K-critical points for Problem (1) via the
equilibrium problem formulation.

8 Final Reamarks

In this work we proposed for vector unconstrainded minimization an exten-
sion of the standard steepest descent method. We showed that all cluster
points of the sequences produced by the method satisfy a certain first or-
der condition for K-optimality, known as K-criticality. Under K-convexity
of the objective function and assuming a very reasonable condition on the
objective function, we proved that we have full convergence of the method,
when performed, for example, with the exact K-steepest descent direction
at each iteration. In this situation, no matter how bad is our initializing
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point, the method will converge to a K-critical point, or, in other words,
to a weak unconstrained K-minimizer. As in the one-dimensional case, us-
ing the notion of quasi-Fejér convergence, we could prove convergence of the
method without assuming a Lipschitz condition on the objective’s Jacobian
and with no bounded level sets requirement. Incidentally, we showed that
every weak constrained K-minimization problem can be viwed as a particular
equilibrium problem.

It is worth mentioning that the compact set C' C K* used throughout
the whole work is essential for defining the K-steepest descent direction (or
approximations of it). So, somehow, C' palys the role of a sort of “gauge”.
Perhaps, it would have been better to define the “gauged” K-steepest descent
direction, or the K-steepest descent direction modulus C, instead of simply
the K-steepest descent direction. This would make the notation more clear
but certanly heavier.

We expect that, in spite of the possible drawbacks of the method, as in
the single-valued case, it will furnish a prototype for more sophisticated and
efficient algorithms for solving vector optimization problems. So we think
that a full understanding of the structure and convergence behavior of the
K-steepest descent method is indeed relevant.

The extension to vector optimization of more efficient algorithms, as, for
instance, Newton’s and quasi-Newton methods, and its convergence analysis
are left as open problems for future research.
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