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Abstract

A new optimality condition for minimization with general con-
straints is introduced. Unlike the KKT conditions, this condition is
satisfied by local minimizers of nonlinear programming problems, in-
dependently of constraint qualifications. The new condition implies,
and is strictly stronger than, Fritz-John optimality conditions. Suffi-
ciency for convex programming is proved.

Keywords. Optimality conditions, Karush-Kuhn-Tucker, minimiza-
tion algorithms, constrained optimization.

AMS: 90C30

1 Introduction

In the global convergence theory of most nonlinear programming algorithms
it is proved that some limit point (perhaps all the limit points) of the gener-
ated sequence satisfies a necessary condition for constrained minimization.
Usually, the necessary condition says that the Karush-Kuhn-Tucker condi-
tions are satisfied if the limit point satisfies some constraint qualification.
When the constraint qualification is the one introduced by Mangasarian and
Fromovitz [16], we say that the Fritz-John optimality condition is satisfied.
Separation techniques are, perhaps, the most powerful tools for proving opti-
mality conditions. See [5, 7, 11, 15, 12]. Therefore, according to that “model

*Department of Applied Mathematics, IMECC-UNICAMP, University of Camp-
inas, CP 6065, 13081-970 Campinas SP, Brazil. @ This author was supported by
PRONEX, FAPESP (Grant 90-3724-6), CNPq and FAEP-UNICAMP. E-Mail: mar-
tinezQime.unicamp.br

Institute of Pure and Applied Mathematics (IMPA), CNPq, Estrada Dona Casto-
rina 110, Rio de Janeiro, Brazil. This author was partially supported by CNPq Grant
301200/93-9(RN) and by PRONEX-Optimization. E-mail: benar@Qimpa.br



global theorem”, the algorithmic sequence might converge to points where
the constraint qualification is not satisfied. This means that a potential fail-
ure of the nonlinear programming algorithm could be due to the presence
of “nonregular” feasible attraction points that are not local minimizers.

However, convergence of good algorithms to nonregular feasible points
that are not local minimizers is not frequent. This is not surprising, since
algorithms are designed taking into account, at every iteration, the necessity
of minimizing an objective function. So, convergence to points at which the
objective function has no special properties should be unusual, at least for
well designed methods.

On the other hand, convergence to local minimizers can be guaranteed
only under restrictive second-order properties of the constraints (see [4]) or
convexity-like assumptions.

Therefore, both practical experience and common sense indicates that
the set of feasible limit points of good algorithms for constrained optimiza-
tion, although being larger than the set of local minimizers, does not include
the set of all “nonregular” feasible points. For example, 0 is a nonregular
point of the problem of minimizing = subject to —1 < 2% < 0 but no rea-
sonable minimization algorithm will converge to it.

The observations above lead us to seek optimality conditions that fit
better the behavior of practical methods. Another motivation for discover-
ing “sharper than Fritz-John” optimality conditions comes from considering
mathematical programming with equilibrium constraints (MPEC) problems.
See [8, 9, 25] and references therein. In standard formulations of MPEC, no
feasible point satisfies the Mangasarian-Fromovitz constraint qualification
and, thus, all the feasible points satisfy the Fritz-John optimality condition.
So, it is necessary to study optimality conditions that approximate more
accurately the minimizers of the problem than Fritz-John conditions.

In this paper, we introduce an optimality condition that, roughly formu-
lated, says that “an approximate gradient projection tends to zero”. For this
reason, we call it the Approximate Gradient Projection (AGP) property. We
prove that the AGP property is satisfied by local minimizers of constrained
optimization problems independently of constraint qualifications and using
only first-order differentiability. Therefore, the AGP property is a genuine
necessary optimality condition that does not use constraint qualifications at
all. Moreover, we show that the set of “AGP points” is contained, and can
be strictly contained in the set of Fritz-John points.

The reputation of KKT conditions lies, not only in being necessary op-
timality conditions under constraint qualifications, but also in the fact that
they are sufficient optimality conditions if the nonlinear program is convex.
We prove that, essentially, this is also true for the AGP property.

This paper is organized as follows. In Section 2 we state rigorously



the AGP property, we prove that it is satisfied by every local minimizer
of a nonlinear programming problem and that it implies Fritz-John. In
Section 3 we prove that the new condition is sufficient for convex problems.
Conclusions are given in Section 4.

2 The necessary condition
We consider the nonlinear programming problem
Minimize f(z) subject to z € , (1)
where
O={zeR" | g(x) <0, h(z) =0}, 2)

f:R" > IR, h:IR"— IR™ g: IR" — IRP and all the functions have
continuous first partial derivatives.

Let v € [—00,0]. For all z € IR™ we define (z,7) as the set of points
z € IR™ that satisfy:

gi(z) + gi(z)(z —x) <0 if v < gi(z) <0, (3)
gi(@)(z —x) <0 if gi(z) >0 (4)

and
b (z)(z —z) = 0. (5)

The set Q(z,7) (a closed and convex polyhedron) can be interpreted as
a linear approximation of the set of points z € IR™ that satisfy

h(z) = h(z), gi(2) < gi(z) if gi(x) > 0, gi(2) <0 if g;(x) € (7,0).

Observe that

Qz,0) ={z € R" | W(z)(z—z) =0, gi(z)(z—x) <0 if gi(z)>0,i=1,...

For all z € IR™, we define

d($’7) = PQ(m,’y) ('7" - Vf(.’[))) -, (6)

where Pc(y) denotes the orthogonal projection of y onto C for all y € IR",
C C IR" closed, convex. The vector d(z,7) will be called Approximated
Gradient Projection.

We will denote || - || = || - ||2 and

Ba,p) = {z € R | |z — o] < p}
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for all z € IR™, p > 0. As usual, for all v € R",v = (v1,...,v,), we denote
vy = (max{0,v1},...,max{0,v,}).

The main result of this section is proved below. It says that, if z* is a
local minimizer of (1)-(2), we can find points with arbitrary small approxi-
mate gradient projections that are arbitrarily close to z*. The technique of
this proof is similar to the one used by Bertsekas (Proposition 3.3.5 of [2])
to prove Fritz-John conditions.

Theorem 1. Assume that z* is a local minimizer of (1)-(2) and let vy €
[—00,0], €,0 > 0 be given. Then, there exists x € IR™ such that ||z —z*|| < §
and ||d(z,7)|| <e.

Proof. Let p € (0,6) be such that z* is a global minimizer of f(z) on
QN B(z*, p). Define, for all z € R™,

Clearly, «* is the unique global solution of
Minimize ¢(z) subject to z € QN B(z*, p). (7)

Define, for all z € R", u > 0,
7
®,(z) = p(z) + §[||h(37)||2 + llg() 4 11%)-

The External Penalty theory (see, for instance, [10]) guarantees that, for
u sufficiently large, there exists a solution of

Minimize ®,(z) subject to z € B(z*,p) (8)

that is as close as desired to the global minimizer of p(z) on Q N B(z*, p).
So, for p large enough, there exists a solution z, of (8) in the interior of
B(z*, p). Therefore,

V&, (z,) =0.

Thus (writing, for simplicity x = 37#)’ we obtain:

0=Vo,(x) = Vo(z) + p[b (@) h=) + > 6i(=)Va(@)).

gi(z)>0
So,
6 *
Vf(z)+ M[hl Z 9i(z)Vgi(z —(z —z%) =0. (9)
9i(z)>0 p
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Since z = z,, lies in the interior of the ball, we have that

l — ™| <p <

So, by (9),
IVF(z) +ph' (@) hz) + D gi(z) V()] <.
gi(z)>0
So,
[z — Vf(z)] — [z + p[h'(z) + Y gi(x)Vgi(a)]| <e.
9i(z)>0

This implies, taking projections onto Q(z, ), that

1Pag,y) (@ = V(@) = Pogy (@ +plh' (@) h(z) + Y gi(z) V(@) <e.
9i(z)>0
(10)
It remains to prove that

PQ(ac ) (z+ N[hl Z 9i(z)Vgi(z)]) = =.
9i(z)>0

To see that this is true, consider the convex quadratic subproblem

Minimize ,|jy — [z + p[k(z) + > gi(@) V(@)
gz( )>O

subject to y € Q(z,)

and observe that y = z satisfies the sufficient KKT optimality conditions
with the multipliers A = —ph(z) and v; = pg;(z) for g;(z) > 0, v; = 0 else.
So, by (10), || Poz,qy) (z — Vf(z)) — z|| < € as we wanted to prove. O

The following Corollary states the AGP property in a closer way to
the algorithmic framework: given a local minimizer, a sequence that sat-
isfies zF — z* and d(z*,7) — 0 necessarily exists. As we mentioned in
the Introduction, this property is naturally satisfied by many nonlinear pro-
gramming algorithms [10, 17, 18], being {z*} the algorithmic sequence in
that case.

Corollary 1. If z* is a local minimizer of (1)-(2) and y € [—00,0], there
exists a sequence {z*} C IR"™ such that limz* = z* and limd(z*,v) = 0.



Remark. In general, d(z*,) = 0 does not hold at a local minimizer z*.
For example, in the problem of minimizing z subject to 2 < 0 we have that
d(z*,7) # 0 for all v < 0.

In the following, we prove that, for all v < 0 the AGP conditions are
equivalent. This property is not true for v = 0. In fact, consider the problem
of minimizing z subject to z > 0, with ¥ = 1/kV k = 0,1,2,... Clearly,
d(z*,~y) — 0 for all v < 0 but d(z*,0) does not tend to zero.

Property 1. Assume that g(z*) < 0,h(z*) = 0, ¥ — z* and, for some
v € [~0,0), d(zF,y) = 0. Then, d(z*,~") = 0 for all 4/ < 0.
Proof. Consider the problems

Minimize ||z* — V f(z*) — y||? (11)

subject to
gi(z")(y —2*) <0 if gi(«") >0, (12)
gi(z")(y — 2*) <0 if 0> gi(a*) 2, (13)
K (z*)(y —2*) =0 (14)

and

Minimize ||z* — V f(z*) — y||? (15)

subject to
gi(a")(y — =) <0 if gi(=*) >0, (16)
gi(z")(y —2*) <0 it 0> g;(a") >/, (17)
W' (a*)(y — 2*) = 0. (18)

Let y* be the solution of (11-14). By the hypothesis, we know that [jy* —
zF|| — 0. Therefore, y* — z*. Let us show that, for k large enough, y*
satisfies the constraints (16-18). In the case of (16) and (18) this is obvious.
Let us prove that the same is true for (17). We consider two cases: g;(z*) =0
and g;(zx) < 0.

If gi(z*) = 0 then, for k large enough, g;(z¥) > 7. Therefore, if, in
addition, g;(z*) < 0, the constraint (17) is satisfied.

If g;(z*) < 0, then, since ||y* —z*|| — 0, we have that, for k large enough,

gi(z*) + gi(a*) (y* — 2*) <. (19)

Therefore, the constraints (17) are also satisfied at y*.

But y* is a KKT point of the problem (11-14). To prove that it is also a
KKT point (and, thus, a solution) of (15-18) it only remains to prove that
the active constraints of (15-18) are necessarily constraints that occur in



(11-14). Again, this is obvious in the case of (16) and (18). By the analysis
performed above, an active constraint of type (17) can correspond only to
gi(z*) = 0 and g;(z*) < 0. In this case, g;(z*) > ~ for k large enough and,
thus, the constraint is present in the set (13). This completes the proof. O

We define now the Strong Approximate Gradient projection (SAPG)
dg(z,7v). The SAPG vector is the APG vector related to problem (1)-(2),
when each equality constraint h;(z) = 0 is transformed into two inequality
constraints in the obvious way. For all z € IR",~y € [—o0, 0], the set Qs(z,)
is defined as the set (z,) related to the two-inequality reformulation. For
example, Qg(z, —00) is the set of points that satisfy

gi(x)(z—z) < 0, ifgi(z)>0
9(z) + gi(z)(z —2) < 0, ifgi(z)<0
and
0 < hj(z) + hi(z)(z — ) < hj(z) if hj(z) >0
0 > hj(z) + hi(z)(z —x) > hj(z) if hi(z) <0
Accordingly,

ds(x,’)’) = PQS(CC,’)’) (.’L‘ - Vf(:E)) — .

We say that the Strong AGP property is fulfilled when, for some se-
quence, limdg(z*,v) = 0. In the following Lemma, we prove that the Strong
AGP property implies the AGP property.

Lemma 1. For all v € [~o0,0], if z¥ — z* and ds(z*,7) — 0 then
d(z*,v) = 0.

Proof. Observe that Q(z,v) C Qg(z,~) for all z € R", v € [—00,0]. Let us
call
wk = Pﬂs(mk,'y) (xk - vf($k))a

yk = PQ(Ika’Y) (.’Ek - Vf(.’L'k))

Since z*.y* € Q(z*,v) C Qg(z*,v), we have by the definition of projections
for all t € [0, 1],

lz* = V(&%) —wf|? < (2" — Vf(2") = (@* + 2y — )P

< |[t(z* = VF(@*) —y*) = A =) V)P < IV (")
So,

2
Sl —H? + b — RV h) < Dl - a2 4 ot - M)V ) < 0
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for all t € [0, 1].
Taking limits in the above inequalities and using that ||w* — z*|| — 0,
we obtain that, for all ¢ € [0, 1],

2
Flly* = 2*I” + (" — )TV i) = 0.

kli—>nolo 2 |
Therefore, for all ¢ € (0, 1],
Tim ¥~ H? + (F — MV F() =0 (20)
Since ||y* — z*|| is bounded, this implies that
(" — =TV [(*) =0.

Therefore, by (20) with ¢ = 1, we obtain that |y* — z*|| — 0, as we wanted
to prove. a

Since the SAGP comes from a reformulation of the constraints (5), The-
orem 1 can be applied and the following Corollary also holds.

Corollary 2. If z* is a local minimizer of (1)-(2) and v € [—00,0], there
exists a sequence {z¥} C IR"™ such that limz* = z* and limdg(z*,v) = 0.

We finish this section proving that the AGP condition implies the Fritz-
John optimality conditions. As in the case of Theorem 1, the technique
of proof is similar to the one of Proposition 3.3.5 of [2]. Let us recall the
equivalent formulation of the Mangasarian-Fromovitz constraint qualifica-
tion (see [23]).

Mangasarian-Fromovitz constraint Qualification (MF)
If e R™ and p € IRP, iy > 0 are such that

W(@)'A+g(@) =0 and p"g(z*)=0,
then A =0 and u = 0.

Theorem 2. Assume that ©* is a feasible point. Let v € [—00,0]. Suppose
that there exists a sequence x* — x* such that d(z*,v) — 0 or ds(z*,v) — 0.
Then, x* is a Fritz-John point of (1)-(2).

Proof. Recall that, by Lemma, 1, dg(z*,v) — 0 implies that d(z*,v) — 0,
so we only need to consider this case. Define y* = ) (z* — V£ (zF)).



So, y* solves
1
Minimize 3 ly — 2| + V£ (a*)7 (y — )

subject to y € Q(z*,7).
Therefore, there exist \¥ € R™, u* € IRP, u* > 0, such that
Vi@®) + (v — ) + 1 (@) + g (M) Tk =0, (21)
pilgi(a®) + gi(@") (" — 2*)] = 0 if v < gi(a*) <0,
uilgi(a®) (W — 2*)] = 0, if gi(z*) > 0,
pk =0 else.

Moreover, if g;(z*) < 0, we have that g;(z*) < 0 for k large enough and,
since |ly* — z*|| — 0, we also have that g;(z*) + ¢i(z*)(y* — z¥) < 0 in that
case. Therefore, we can assume that

p¥ =0 whenever g;(z*) <0. (22)

To prove Fritz-John is equivalent to prove that MF implies KKT. So, we
are going to assume from now on that z* satisfies the Mangasarian-Fromovitz
constraint qualification MF.

Suppose, by contradiction, that (A\*, 4*) is unbounded. Define, for each k,

My = (¥, %) lloo = max{[|X*[los, 11" [loo }-

Then limsup My = co. Refining the sequence (A\*, u*) and reindexing it we
may suppose M > 0 for all £ and

lilgan = +o0.

Now define R
No = (1MR)XF, k= (1/ M),

Observe that for all k, ||(A¥,i*)]c = 1. Hence, the sequence (\F,i¥) is
bounded and has a cluster point (A, /i) satisfying

A0, (A Al =1.
Dividing (21) by M), we obtain

(/M) [V f(zF) + (F — z5)] + 1 ()T A + ¢’ (%) Tk = 0.



Taking the limit along the appropriate subsequence, we conclude that
hl(.’IJ*)TS\ + g'(:v*)Tﬁ = 0.

Together with (22), this contradicts the constraint qualification MF.

Now, since in (21), A¥ and p* are bounded, extracting a convergent sub-
sequence, we have that \¥* — \* and p* — p* > 0. By (22), g(z*)Tu* =0
and, taking limits in (21) the KKT condition follows. a

The following corollary states that, under the Mangasarian-Fromovitz
constraint qualification, the AGP condition implies the standard KKT con-
ditions of nonlinear programming. It is a trivial consequence of Theorem 2.

Corollary 3. If the hypotheses of Theorem 2 hold and x* satisfies MF, then
the KKT necessary conditions are fulfilled at z*.

Remark. The set of Fritz-John points can be strictly larger than the set of
points that satisfy AGP. Consider the nonlinear program given by

Minimize z subject to z3 < 0.

Take z* = 0. Clearly, z* satisfies Fritz-John but, for any sequence {z*}
that converges to z*, d(z*,n) does not tend to zero. Of course, z* does not
satisfy the Mangasarian-Fromovitz constraint qualification.

3 Sufficiency in the convex case

As it is well known, in convex problems the KKT conditions imply optimal-
ity. In this section, we prove that, essentially, the same sufficiency property
is true for the AGP optimality condition.

Theorem 3. Suppose that, in the nonlinear program (1)-(2), f and g; are
convez, 1 = 1,...,p and h is an affine function. Let v € [—00,0]. Suppose
that z* € Q and {zF} C R™ are such that limz* = z*, h(zF) = 0 for all
k=0,1,2,... and limd(z*,v) = 0. Then, z* is a minimizer of (1)-(2).

Proof. Let us prove first that Q C Q(z*,v) for all ¥ € IR". Assume that
z € Q. 1f g;(2) < 0 and g;(z*) < 0, we have, by the convexity of g;, that

02> gi(2) 2 gi(z*) + gi(2*) (2 — ). (23)
Moreover, if g;(z) < 0 and g;(z*) > 0,

0> gi(2) 2 gi(2") + gi(a®)(z — 2*) 2 gi(a") (= — o). (24)
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Therefore, by (23) and (24), z € Q implies that z € Q(z*,7), so Q C
Q(z*,v). Note that (5) holds since h(z*) = h(z) = 0 and h is affine.

Let us define now y* = Poak ) (zF — Vf(z*)). Let z € Q be arbitrary.
Since z € Q(z*, y) and y* minimizes ||z¥ — V f(z*) — y||? on this set, we have
that

1 1
Vi) (2 = 2*) + Sz = a*|* > VT (" - 28) + Slly" - 2F).

Taking limits on both sides of the above inequality and using that |jy* —
z¥|| — 0, we obtain:

* * 1 *
Vi) (z —a7) + 5z -2 2 0.

Since 2 is convex the above inequality holds replacing z by z* + t(z — z*)
for all t € [0, 1], so:

1
tVf(a:*)T(z —z*) + t2§||z — :1:*||2 > 0.

Thus,
1
Vf(w*)T(z —z*) + t§||z — :13*||2 > 0.

for all t € (0,1]. Taking limits for t — 0 we obtain that V f(z*)T (z—2z*) > 0.
Since z € Q was arbitrary, convexity implies that z* is minimizer of (1)-(2).
a

Corollary 3. Assume that f and g;,1 = 1,...,p are as in Theorem 3 and
that there are no equality constraints at all. Suppose that limz* = z* and
d(z*,y) = 0. Then z* is a minimizer of (1)-(2).

It is easy to show that the strong AGP property is a sufficient condition
for minimizers of convex problems, without the requirement h(z*) = 0. This
is stated in the following theorem. Therefore, the strong AGP property is a
necessary and sufficient optimality condition for convex problems.

Theorem 4. Assume that, in the nonlinear program (1)-(2), f and g; are
convez, t = 1,...,p and h is an affine function. Let v € [—00,0]. Suppose
that z* € Q and {z*} C IR™ are such that limz* = z*, and limds(z*,~) = 0.
Then, =* is a minimizer of (1)-(2).

Proof. As we mentioned in Section 2, the strong AGP direction is the AGP
direction for a reformulation of the problem that does not have equality

11



constraints. Therefore, the thesis follows from Corollary 3. O

Remarks. Theorem 3 is not true if we do not assume that h(z*) = 0 for
all k=0,1,2,... Consider the convex problem

Minimize z; subject to h(z1,z2) =0, g(z1,22) <0,

where
h(z1,z2) = x2

and

g(@1,22) = [\/ (22 — 1)? + 403 + o — 1]

The feasible set of this problem is [-1,1]x{0}. The sequence z* = (—1/k,1/k)
satisfies the AGP property but converges to the feasible point (0,0), which
is not the minimizer of the problem. However, the strong AGP property is
not satisfied by that sequence.

This fact has some algorithmic consequences: On one hand, for many
iterative algorithms, to assume that h(z*) = 0 for all k, when A is an affine
function, is not a serious restriction. In fact, for those methods, linear
constraints are naturally satisfied at every iteration, so that the sufficiency
property holds.

On the other hand, Theorem 3 and the counterexample above, seem to
indicate that, when we have an algorithm for (1)-(2) with the AGP property,
it is better to formulate the problem using a pair of inequalities replacing
each equality constraint. This has a practical interpretation: the approx-
imate projected gradient is associated to an (explicit or implicit) phase of
many nonlinear programming algorithms, where we try to improve the func-
tional value on an approximation of the feasible set. This is called “the
horizontal step” in many sequential quadratic programming algorithms [6]
and “optimality phase” in some inexact-restoration methods [17, 18]. The
two-inequality reformulation of hj(z) = 0 allows one to improve, not only
the functional value, but also the feasibility when performing that phase.
In fact, roughly speaking, the domain in which the functional value is im-
proved at iteration k has, up to second order, the feasibility of h;(z*) if we
use the equality formulation. But, using two inequalities, the feasibility of
the new point with respect to h; can be (with second order error) between
—h;(z¥) and h;(z*). Even truly feasible points can be included when, in
the approximate region, each equation is described by two inequalities.

Of course, there is a strong reason for not using the two-inequality refor-
mulation: subproblems are much more difficult than when we use equalities.
For example, in sequential quadratic programming algorithms with only
equality constraints, the linear algebra of each iteration can be reduced to
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one or two matrix factorizations, whereas the combinatorial aspect cannot
be avoided when using inequalities. See, for example [6].

4 Conclusions

The optimality condition introduced in this paper is oriented to the anal-
ysis of optimization algorithms. On one hand, there exist good nonlinear
programming methods satisfy the new condition. This is a question of sim-
ple verification in some cases. The condition is explicitly proved in inexact
restoration algorithms [17, 18] and it can be easily verified in augmented
Lagrangian methods. In other cases [22, 24] it could demand some detailed
research analysis.

We conjecture that all reliable algorithms for nonlinear programming
satisfy stronger theoretical properties than the one that says that feasible
accumulation points are Fritz-John. The set of AGP points is a sharper ap-
proximation to the set of local minimizers than the set of Fritz-John points
but, perhaps, there can be identified other sharp approximations to the
minimizers that can be linked to the convergence of good minimization al-
gorithms. This will be the subject of future research.

The mathematical programming problem with equilibrium constraints
(MPEC) is a good example of a problem where the new condition is useful.
In the usual formulation, the constraints take the form z;g; = 0, z; >
0, g; > 0 which implies that all the feasible points are Fritz-John. However,
it can be shown that few points satisfy the AGP condition. See [1] for an
analysis of the use of nonlinear algorithms for solving MPEC.

Further research is necessary in order to extend the new optimality con-
dition to nonsmooth optimization, variational inequality problems, bilevel
programming and vector optimization (see [3, 13, 14, 19, 20, 21]). As in
the smooth case analyzed in this paper, the guiding line comes from having
in mind what efficient algorithms for those problems do, what kind of con-
vergence results have already been proved for them and which “good and
obvious” practical behavior has been lost in those results.
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