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Abstract. Curves over finite fields (whose cardinality is a square) attaining the
Hasse-Weil upper bound for the number of rational points are called maximal
curves. Here we deal with three problems on maximal curves:

1. Determination of the possible genera of maximal curves.
2. Determination of explicit equations for maximal curves.
3. Classification of maximal curves having a fixed genus.

1. Introduction

The theory of equations over finite fields (or the theory of congruences) is in
the basis of classical number theory. Its foundations were laid, among others, by
mathematicians like Fermat, Euler, Lagrange, Gauss, and Galois (see Dickson’s
book [6]). Historically, the object of the first investigations in this theory were the
congruences of the special form

y2 ≡ f(x) (modulo a prime number) , (1)

where f(x) is a polynomial (or rational function) with integer coefficients. Such
congruences were used to get results such as the representability of integers as
sum of four squares, or the distribution of pairs of quadratic residues, or even the
estimation of the sum of Legendre’s quadratic residues symbols.

E. Artin constructed a quadratic extension of the field Fp(x), p a prime, by
adjoining the roots of the congruence (1) and he introduced a zeta-function for
this field, in analogy with Dedekind’s zeta-function for quadratic extensions of the
field of rational numbers. Assuming that Riemann’s hypothesis was valid for his
zeta-function , Artin conjectured an upper bound for the number of solutions of
congruences such as the one in (1) above. Artin’s conjecture was then proved by
Hasse for polynomials f(x) of degrees 3 and 4 over arbitrary finite fields, and widely
generalized by A. Weil (see [29]) as follows. Let X be a projective geometrically
irreducible nonsingular algebraic curve of genus g, defined over a finite field F`

with ` elements. Then,

|#X(F`)− (` + 1)| ≤ 2g
√

` , (2)
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where X(F`) denotes the set of F`-rational points of the curve X. Inequality (2) is
equivalent to the validity of Riemann’s hypothesis for the zeta-function associated
to the curve X. Bombieri [2] gave an elementary proof of Inequality (2) following
ideas of Stepanov, Postnikov and Manin that were used to treat the special case
of hyperelliptic curves; see Chapter 5 in [25].

The interest on curves over finite fields with many rational points was renewed
after Goppa’s construction of codes with good parameters from such curves, see
[15]. Number of solutions of congruences in two variables has other applications
such as estimates of exponential sums over finite fields (see [22]), finite geometries
(see [16]), correlations of shift register sequences (see [21]).

Here we will be interested in maximal curves over F` with ` = q2, that is, we
will consider curves X attaining Hasse-Weil’s upper bound:

#X(Fq2) = q2 + 1 + 2gq .

It is often the case that maximal curves are special (and interesting) from other
points of view. For example, it is often the case that they have large automorphism
groups, see [18] and [26]. Also, they are always nonclassical for the canonical linear
series if g ≥ q − 1, see Proposition 1.7 in [7].

We will consider here three important problems on maximal curves over Fq2 :
1. Determination of the possible genera of maximal curves over Fq2 .
2. Determination of explicit equations for maximal curves over Fq2 .
3. Classification of maximal curves over Fq2 of a given genus.
The methods used to deal with these three problems are: the action of the

Frobenius morphism on the Jacobian of a maximal curve (see the fundamental
equation (3) here), Weierstrass Point Theory (including Stöhr-Voloch theory of
Frobenius orders of a morphism), Castelnuovo’s genus bound for curves in projec-
tive spaces and Riemann-Hurwitz genus formula for separable coverings of alge-
braic curves. It is also crucial the fact that a subcovering of a maximal curve is
also a maximal curve.

2. The Genera of Maximal Curves

There are only finitely many possibilities for the genus g of a maximal curve X
over Fq2 , since Ihara [17] has shown that

g ≤ q(q − 1)/2 .

The proof of the inequality above uses the knowledge of the zeta-function
associated to a maximal curve and the following trivial observation:

#X(Fq4) ≥ #X(Fq2) .

Not every positive integer g with g ≤ q(q−1)/2 can be the genus of a maximal
curve over Fq2 . It was shown in [8] that the genus g of a maximal curve over Fq2

satisfies (see also [27]):

if g < q(q − 1)/2, then g ≤ (q − 1)2/4 .
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In other terms, the second largest genus g of a maximal curve over Fq2 is given by

g = [(q − 1)2/4], where the brackets mean the integer part .

The proof of this fact (i.e., that there are no genera of maximal curves over Fq2 in

the open interval
(

(q−1)2

4 , q(q−1)
2

)

) uses the Castelnuovo genus bound for curves
in projective spaces and the following “fundamental linear equivalence of divisors
on a maximal curve over Fq2”:

qP + FrP ∼ (q + 1)P0 , (3)

where P is any point on the curve, FrP is the image of P by the Fq2-Frobenius
morphism and P0 is any Fq2 -rational point on the curve.

It should be pointed out here that the exact value of the third largest genus
of a maximal curve is still unknown (see [5]).

It is a result of Serre (see [19]) that if X is maximal over Fq2 and Y is cov-
ered by X over Fq2 (i.e., there is a surjective morphism X → Y defined over Fq2),
then Y is also maximal over Fq2 . This leads one to the consideration of quotient
curves X/G of a maximal curve X over Fq2 under the action of subgroups G of
the automorphism group Aut(X) of X. One then may hope to get several gen-
era of maximal curves by applying the Riemann-Hurwitz formula to the covering
X � X/G in order to determine the genus of the curve X/G. These ideas were
systematically used in [11], where it is taken as the curve X the Hermitian curve;
i.e., the curve X given by the affine equation:

yq + y = xq+1 over Fq2 . (4)

This is a maximal curve over Fq2 with the biggest genus possible (i.e., with genus
given by g = q(q − 1)/2). The advantage in taking the Hermitian curve X is its
huge automorphism group (see [26] and [20])

|Aut(X)| = (q2 − 1) · q3 · (q3 + 1) .

Here it is worthy to mention that there is no example of a maximal curve for which
it is known that it cannot be covered by the Hermitian curve.

By a systematic use of subgroups of Aut(X), it is determined in [11] lots of
possible genera of maximal curves over Fq2 . In particular it is shown that for a
fixed integer g ≥ 1, there are maximal curves over Fq2 of genus g for infinitely
many values of q (see Remark 6.2 in [11]). Another interesting result of this paper
(writing q = pn and assuming that the characteristic p is odd) is the existence of
maximal curves over Fq2 with genus g given by:

g =
1
2
pn−v · (pn−w − 1) , (5)

for each 0 ≤ v ≤ n and for each 0 ≤ w ≤ (n− 1). The genera above are obtained
by considering p-subgroups G of Aut(X), where X denotes the Hermitian curve
(see also [13], [14]).
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3. Explicit Equations for Maximal Curves

For the applications to Coding Theory it is necessary that the curves are explicitly
given by equations. In Example 6.3 of [11] it is pointed out that (see also Example
6.4 in [11])

zn = t(t + 1)q−1, with n a divisor of (q2 − 1) , (6)
is the equation of a maximal curve over Fq2 with genus given by g = (n − δ)/2,
where δ = gcd(n, q − 1). It is with those maximal curves in equation (6) that it is
shown in [11] that, for a fixed integer g ≥ 1, there are maximal curves over Fq2 of
genus g for infinitely many values of q (see also [12]).

Another interesting instance of an explicit equation for a maximal curve over
Fq2 is given in Remark 4.4 of [10]. Denoting by ϕn(T ) the reduction modulo p of
the (normalized) Chebyshev polynomial (i.e., the (monic) polynomial expressing
cos nθ in terms of cos θ), it is shown in [10] that (see also Remark 5.2 in [10])

vq+1 = ϕn(u) + 2, with n odd , (7)

is the equation of a maximal curve over Fq2 . It is interesting to point out that
properties of Chebyshev polynomials were deduced from the fact that equation (7)
defines a maximal curve (see Section 6 of [10]).

We now mention a situation showing that sometimes it is hard to get such
explicit equations. In Theorem 5.1 of [11] it is shown that there are maximal curves
over Fq2 having genus g given by:

g =
s− 1

2
, for each divisor s of (q2 − q + 1) . (8)

This is shown by considering subgroups G of a certain cyclic subgroup of order
(q2−q+1) of the automorphism group of the Hermitian curve. The determination
of explicit equations for the maximal curves over Fq2 with genera as in formula (8)
above is not so easy (see [4]).

We end up this section with the following explicit equation for a maximal
curve over Fq2k with k ≥ 2 (see [9]):

k−1
∑

j=0

yqj
= w · xqk+1, with wqk−1 = −1. (9)

This curve has genus g = qk(qk−1−1)/2 and, in particular, its genus appears among
those given in formula (5). It can be shown that this curve is Galois covered by
the Hermitian curve with a Galois group G of order q. In the particular case when
q = p, this curve also appears in Theorem 2.1 of [5].

4. Classification of Maximal Curves

Since it is not known whether all maximal curves are covered by the Hermitian
curve, one sees that the classification problem for maximal curves is a wide open
problem. General results on this problem have been obtained (so far) when the
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genus of the maximal curve is large compared with the cardinality of the finite
field.

The first result on the classification of maximal curves (see [23]) asserts that
the Hermitian curve over Fq2 given by equation (4) is the unique maximal curve
over Fq2 with genus g = q(q−1)/2. The main ingredient of the proof of this unique-
ness of the Hermitian curve is the fundamental linear equivalence in equation (3)
above.

Consider now the curve over Fq2 given by

yq + y = xm, m a divisor of (q + 1) . (10)

Since the curve in equation (10) is covered by the Hermitian curve, we have
that it is a maximal curve. Its genus g is given by g = (m− 1)(q− 1)/2. For q odd
and for m = (q + 1)/2, we get a maximal curve over Fq2 with the second largest
possible genus g = (q − 1)2/4. It was shown in [7] that this curve (equation (10)
with q odd and m = (q+1)/2) is the unique maximal curve over Fq2 with genus g =
(q−1)2/4. In Theorem 2.3 of [7] it is given a characterization of the maximal curves
in equation (10) above, but this characterization requires an extra-hypothesis on
Weierstrass nongaps at a rational point over Fq2 .

Write q = pt and consider the curve over Fq2 given by the affine equation:
t

∑

i=1

yq/pi
+ w · xq+1 = 0, with wq−1 = −1 . (11)

Equation (11) defines a maximal curve and its genus g is given by g = q(q−p)/2p.
In the case of characteristic p = 2, one gets the second largest genus possible and
this curve (i.e., equation (11) with p = 2) is characterized in [1] with a similar
extra-hypothesis on Weierstrass nongaps at a rational point. Also, equation (11)
appears in Theorem 2.1 of [5] where it is classified the Galois subcoverings of
prime degrees of the Hermitian curve. Besides the fundamental linear equivalence
in equation (3), the other main ingredient for the classification problem of maximal
curves over Fq2 of a given genus is the Stöhr-Voloch theory of Frobenius-orders (see
[28]). This theory is similar to Weierstrass Point Theory in prime characteristics
(see [24]) and provides also a proof of Weil’s theorem (i.e., a proof of Inequality
(2)). Roughly speaking, instead of counting rational points on the curve (i.e., the
fixed points for the Frobenius action on the curve) Stöhr-Voloch’s approach counts
the number of points such that the image under the Frobenius action of a point
lies on the osculating hyperplane to the curve at that point.

The first example of nonisomorphic maximal curves over Fq2 with the same
genus was given in [3]. For q ≡ 3(modulo 4), it is shown in [3] that the following
two curves of genus g = (q − 1)(q − 3)/8 are not isomorphic:

yq + y = x
q+1
4 and x

q+1
2 + y

q+1
2 = 1 . (12)

Both curves in equation (12) are maximal because they are Galois covered by
the Hermitian curve, the first one with a cyclic group G ' Z/4Z and the second
one with a group G ' Z/2Z× Z/2Z.
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We end up this paper by saying that the second curve in equation (12) above
was characterized in [3] as the unique maximal curve over Fq2 with genus given
by g = (q − 1)(q − 3)/8 that has a nonsingular plane model over Fq2 .

References
[1] M. Abdón and F. Torres, On maximal curves in characteristic two, Manuscripta

Math., 99 (1999), 39–53.
[2] E. Bombieri, Hilbert’s 8th problem: An analogue, Proc. Symp. Pure Math., 28 (1976),

269–274.
[3] A. Cossidente, J. W. P. Hirschfeld, G. Korchmáros and F. Torres, On plane maximal
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