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Abstract

The negative gradient direction to find local minimizers has been
associated with the classical steepest descent method which behaves
poorly except for very well conditioned problems. We stress out
that the poor behavior of the steepest descent methods is due to
the optimal Cauchy choice of steplength and not to the choice of
the search direction. We discuss over and under relaxation of the
optimal steplength. In fact, we study and extend recent nonmono-
tone choices of steplength that significantly enhance the behavior
of the method. For a new particular case (Cauchy-Barzilai-Borwein
method), we present a convergence analysis and encouraging numeri-
cal results to illustrate the advantages of using nonmonotone overre-
laxations of the gradient method.

Key Words: Steepest descent, gradient method with retards, Rayleigh
quotient, Barzilai-Borwein method.

*Dpto. de Computacién, Facultad de Ciencias, Universidad Central de Venezuela,
Ap. 47002, Caracas 1041-A, Venezuela (mraydan@reacciun.ve). This author was partially
supported by the Scientific Computing Center at UCV.

tInstituto de Matemética Pura e Aplicada, Estrada dona Castorina 110, Rio de Janeiro,
RJ CEP 22460-320, Brazil (benar@impa.br). This work was partially supported by CNPq
grant n. 301200/93-9(RN).



1 Introduction

The gradient direction has played an important role in the development of
optimization techniques. Unfortunately, for the unconstrained minimization
problem, it has also been associated with the classical and well-known steep-
est descent method [4]. This method has been frequently called the Cauchy
method or simply the gradient method, and has been widely accepted that
it converges rather slowly in most cases. The main goal of this work is to
establish that the poor behavior of the Cauchy method is due to the optimal
choice of steplength and not to the choice of the gradient direction.

In 1988, Barzilai and Borwein [2] presented a nonmonotone steplength as-
sociated with the gradient method that avoids the drawbacks of the Cauchy
method. Later, Raydan [9] established global convergence in the convex
quadratic case, and Dai and Liao [5] proved R-linear rate of convergence.
Recently, Friedlander et al. [6] extended these results and presented a new
family of nonmonotone gradient methods with retards. They establish con-
vergence and illustrate with different examples the good behavior of these
new methods.

We extend this line of research by studying the positive effects of using
(over and under) relaxed steplengths of the gradient method for quadratics.
In particular, we present an interesting member of the gradient method with
retards family for which Q-linear rate of convergence can be established in a
suitable norm. Each iteration of this version can be viewed as two consecutive
steepest descent iterations in which the steplenght is computed once and
used twice. As a consequence, the computational cost is similar to the one
associated with the Cauchy method.

Our numerical experiments suggest that for the quadratic minimization
problem, these new options clearly outperforms the classical Cauchy method
and the Barzilai-Borwein method.

The rest of the paper is organized as follows. In section 2 we introduce and
study the convergence of the relaxed Cauchy method. In section 3 we present
numerical experiments to illustrate the behavior of randomly relaxed Cauchy
methods when compared with the classical Cauchy method. In Section 4 the
new Cauchy-Barzilai-Borwein method is presented, and its convergence as
well as its computational cost are discussed. Finally, in Section 5 we present
additional numerical results.



2 Relaxed Cauchy method

Our quadratic model problem is
1
min f(z) = ixtQac — b'x, z € R" (1)

where () € R™ " is symmetric positive definite (SPD) and b € R™. This
problem is equivalent to solving the linear system:

Qx =0b.

Since we are supposing ) to be positive definite, problem (1) has a unique
solution given by z* = Q~'b.
The classical Cauchy method applied to problem (1) can be written as

Tht1 = Tk — ek,

where gy = Vf(xr) = Qzr — b and the optimal choice of steplength Ay is
given by
_ gltcgk
*7 9iQar

It is well known that for the optimal choice Ay the method possesses the
following g-linear rate of convergence

)\max - )\min
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where for any z € R", ||z||2Q = 2'Qz, and Amin and Amax represent the smallest
and the largest eigenvalues of () respectively. . This convergence rate result
is obtained as a worst-case analysis. Nevertheless, in pratice, the asimptotic
convergence rate is almost as bad as the one predicted by this analysis, mak-
ing steepest descent a very slow method even for mild-conditioned problems.
This phenomenon was explained by Akaike, in [1]. He proved that, unfortu-
nately, the sequence of normalized errors (zy — z.)/||zx — x.|| accumulates in
the two dimensional subspace generated by the two eigenvectors associated
with Apin and Apax.



Let us now modify the Cauchy method introducing over and under relax-
ation. Taking 6, as relaxation parameters between 0 and 2 we get

Tpt1 = Tk — O \pGr, (2)

where again g = V f(zx) = Qur — b and Ny = g—f%%. Notice that for 6, = 1
k

we obtain the classical steepest descent method, and also that for 6, = 2,
f(@ri1) = f(zx)-

For any integer k the functional ay(z) = 2'QFz will be frequently used
throughout this work. In particular, we now present some useful results
(see also Brezinski [3] for additional results concerning totally monotonic
sequences and Stieltjes moments).

Lemma 2.1 For any x € R", and for any k € Z, it holds

(1) The sequence {ag(z)/ax_1(x)} is monotonically increasing.

(i) ar—2(x) ax(z) — ag_y(z) > 0.

(é41) 1> ai_(2)/ (ar(2) ar—2(2)) 2 4AminAmaz/ (Amin + Amaa)?,

where A\pin and \pqe are the smallest and largest eigenvalues of @, respec-
tively.

Proof. Since ( is SPD and £ — 1 = g + %, we obtain using the Cauchy-

Schwarz inequality

ai_i(z) = (Q*?2)"(Q"2%2))* < |Q*x|3 1|Q* 2" 2][3 = ax(x) ax—s (),
which implies
ax(z)/ak-1(7) = ax-1(z)/ax—2(z).

Inequalities (i) and the first part of (4i7) follow directly from (7). The second
part of (iii) is obtained by applying Kantorovich inequality to the matrix @
with the vector y = /QF 1z (see [8]). O

The next theorem establishes convergence of the relaxed Cauchy method
under very mild assumptions on the relaxation parameters 6.

Theorem 2.1 If the sequence 0, has an accumulation point @ € (0,2) then
x* generated by the relazed Cauchy method converges to z*.

4



Proof. Observe that for any £,

or(0) = f(xk — O\ gk).

is a second degree convex polinomial wich attains global minimum on 6 = 1.
Hence by symmetry ¢(0) = ¢(2) and for any 6 € [0,2] ¢x(8) < #(0).
Therefore

F@* ) < f(a¥)

for all £. Since f is bounded below, then
lim f(z*) — f(«*1) = 0. (3)

There exist some § € (0,1) such that

B<lB<2-p
Consequently, there exist a subsequence 6, contained in 3,2 — ]. Using
again the properties of ¢ we get f(z"*!) = ¢ (0k;) < ¢, (8). Since ¢y
is convex, it follows that ¢, (3) < B(¢x;(1) — ¢x,(1)). By simple manipula-

tions we obtain ¢ (1) — ¢x(0) = (1/2)(9;.9x/9;,Q9x), wich combined with the
previous equations yields

. , (9k. 9x,)?

kiy _ kj+1 s b

f(&%) = f@¥7) > (8/2) ., Qo
> 5o (1)

Combining (3) and (4) we conclude that gi; goes to zero, and therefore z*i
converges to z*. Since f(x*) is nonincreasing, the whole sequence (of the
functional values) converges to f(z*), which in turn implies convergence of

zF toz*. O

3 Randomly Relaxed Cauchy method

Theorem 2.1 opens interesting questions, for instance: Is it worth using the
Cauchy method with relaxation? if yes, What are the good choices for the
relaxation parameters?



In some particular cases the Cauchy choice of steplenght is the best possi-
ble choice. For example, if the search direction is an eigenvector, then clearly
the Cauchy choice yields the global minimizer in one iteration. In those cases,
the introduction of relaxation will not help. However, in practice this opti-
mal situations happen very seldom, and relaxation might be a suitable tool
to accelerate the convergence of the Cauchy method.

To illustrate the behavior of the Cauchy method introducing relaxation,
we now present a numerical experiment where 6y, is chosen at random during
the process, with a uniform distribution on [0, 2]. We report in Figure 1 the
behavior of the Cauchy method and the random Cauchy method given by (2)
when f(z) = (1/2)z'Qx and the eigenvalues of ) are the positive integers
from 1 to 1000, i.e., when the Euclidean condition number x9(Q) = 1000.
Since the exact solution is given by the zero vector, we stop the process when
the 2-norm of the iterates (error) is less than 107'2. We observe that the
random Cauchy method clearly outperforms the classical Cauchy method.
We also observe that as predicted by Theorem 2.1 both methods converge
monotonically to the unique minimizer. We run the same experiment several
times with different random number generators obtaining similar results.
This numerical experiment reveals the unfortunate and serious drawback
that represents the use of the optimal Cauchy choice of steplength when
searching the gradient direction.

4 The Cauchy-Barzilai-Borwein method

Motivated by the numerical experiment presented in the previous section,
we go beyond in this section and discuss some gradient methods that use
steplengths that do not guarantee descent in the objective function. In par-
ticular, we will consider methods for which 6, > 2 at some iterations, and
the steplength is chosen by a prescribed formula.

The Barzilai-Borwein method, introduced in [2] for the unconstrained
minimization problem can be written as

t
Sp—15k—1
st (g —
k—1\9k — Gk—1

Tk41 = Tk — )gk,

where sp_1 = x, — x,_1. Notice that it requires, as well as the Cauchy
method, only O(n) floating point operations and one gradient evaluation per
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Figure 1: Cauchy Vs. random Cauchy when k5(Q) = 1000



iteration. The search direction is always the negative gradient direction but
no line searches are required during the process. This inexpensive method
greatly speeds up the convergence of gradient methods. See, for instance,
the experiment reported in Figure 2 where we compare the behavior of the
Barzilai-Borwein method and the random Cauchy method on the same ex-
periment described in Section 3.

For quadratics, the Barzilai-Borwein method reduces to

Tkl = Tk — Ne—10k;

where \;_; is the optimal choice (Cauchy choice) at the previous iteration.
Barzilai and Borwein [2] presented a convergence analysis for two dimen-
sional convex quadratic problems. They also established, for that case, r-
superlinear convergence. Later, Raydan [9] established global convergence
for convex quadratic functions with any number of variables (see also [5]).
Glunt, Hayden and Raydan [7] established a relationship with the shifted
power method that adds understanding to the performance of this choice of
steplength.

In this section, we propose a method which is in fact a modification of the
Barzilai-Borwein method. At every other iterations, a Cauchy steplenght is
evaluated once and used twice. So each pair of iterations can be done with
almost the same computational cost of one Cauchy iteration. We will call
this new nonmonotone method the Cauchy-Barzilai-Borwein (CBB) method,
which is described by the following algorithm:

Take xg in R™, and at every iteration k, do

9k = Vf(zx)
= ka - b7
hk = ng:

te = (g9x'9)/ (gk" ),

Yk = Tk — Lk Gk,

Thr1 = Yk — eV f(yk)
= yr — t(Qur — b).
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Note that

Qurk—b = Qmr —trgr) — b
= Qi —b—1:Qux
= gk — tihg.

Therefore
Tk+1 = Yk — te(gr — tehe) (5)
= T — thgk + tk2hk.

The computationally efficient version of the iterative step is given by:

9 = Qzr — b, hp = Qux,

tr = 9" gr/ (95" hi),
Thi1 = T — 2tkgs + te P

Convergence of the sequence {z;} to z* can be proved using the results
of Friedlander et al. [6], developed in a more general framework. One can
easly observe that the sequences {||zx — .||} and {f(zx) — f(2*)}, although
converging to zero, are non-monotonically decreasing. Nevertheless, exten-
sive numerical experiments show that algorithm CBB is much more efficient
than the classical Cauchy method.

Some observations are in order: The number of matrix vector multiplica-
tions per iteration in algorithm CBB is the same as in the Cauchy method,
i.e., 2. (one to evaluate g and one to evaluate h) Algorithm CBB performs
one more vector sum and one more inner product than the Cauchy method.

The comparison of our algorithm with the Barzilai-Borwein (BB) method
gives the folowing: If we count each iteration of algorithm CBB as two (eval-
uating y, and then z;,1) then the mean convergence rate of these methods
are roughly the same, and the computational work of CBB is almost one half
of the BB, because in each two cycles, g and h are evaluated only once.

If we count the iterations of CBB as in our definition, the mean conver-
gence of the algorithm CBB is twice the mean convergence of BB and the
computational cost per iteration is sligthly higher, (one more vector sum and
one more scalar vector multiplication per iteration)
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We will now prove that the sequence {zy} converges (Q-linearly) to z*
in the elliptic norm || - [|g-1 defined by

lzllg—1 = y#'Q7 'z

Although this norm is not suitable for practical purposes, it is suitable for
theoretical reasons. This norm is also induced by the inner-produt < -, - >¢-
defined by

<,y >q1= ' Q7 My,
and it satisfyes the Cauchy-Schwarz inequality:
(llzlle-1)*(lyllg-1)* =< 2,y >G-1 -

Theorem 4.1 The sequence {xy} generated by the CBB method (5) con-
verges Q-linearly in the norm ||-||Q_1 with convergence factor

)‘maw _)‘min
1-0=—7"1——.

)\maz

Proof. First observe that
Tpp — 2" = (I = 4,Q) (z), — ¥).
Therefore,
(lzrsr — 2"[lg1)" = (wr — 2")"(I - t:Q)*Q ™" (I — t4Q)” (wy — 27).
To simplify the calculations of the proof, define for x € R™, p € Z:
by(z) = (z - 27)'Q"(z — 27).

Note that for p > 2, b,(z) can be evaluated without knowing z* or solving
linear systems with @, by means of V f(z):

by(z) = Vf(2)'Q" *Vf(z).

(We shall use b, insted of b,(z) when there is no doubt about the z.)
Observe that
|z — 2|41 = b_i (@),

11



and so
(k= 2"l g-1)* = b1 (z4).
Combining with (5) yields
b_1($k+1) = b_l(.’lik) — 4tkbo($k) -+ 6tk2b1($k) — 4tk3b2(l‘k) + tk4b3(.’13k).
To simplify the notation, let us set
bp = bp(xk)
Then, we obtain

boy(zpe1) = by — 4tyby + 6t,°by — 4t °by(zx) + ti b ()
b_y — t(4by — 6tyby + 4ty*by — 1,°b3)
= by — ty(4by — 6txby + 3t by + 15> (by — txbs)).

Note that

by = ba(zk) = gk' i,
and

by = bs(zx) = gi'hy-
Therefore

tk = b2/b3a

Using Lemma 2.1, we obtain that the term by — ¢;b3 vanishes and we get:

b_1($k+1) = b_l - tk 4b0 — Gtkbl + 3tk2b2)

(
= b_1 — tk(4b0 - 6tkbl (Z’k) + 3tk2b2)
b_y — tx(bo + 3by — 6tiby + 3tx>bo)
b_y — tx(bo + 3(bg — 2txby + t,°b2))

The second-degree polinomial by —2tb; +1%b, attains its minimum at t=b /ba.
At this point, its value is

bo — b2 /by = (boby — b2) /by.
Direct calculations give:
boby — b7 = [lzk — 27| P[|Q(zx — 27)|]* — (24 — 27)' Q(a — 27)

12



Therefore, directly from the Cauchy-Schwarz inequality we conclude that
b() - b%/bg = (bobg - b%)/bg 2 0
Expanding the above polinomial aroud  we get
bo — 2tby + t2by = (boby — b?) /by + by(t — ).

Hence

boby — b2 9
b,1($k+1) = b,1 — tk b() +3 T + bg(tk — Tg

= b,1 - tk(b() + 3((bob2 - b?)/bg + bg(bg/bg - b1/62)2),
and we conclude that
5—1(33k+1) = b—l(l - 016)’

where

Ok = boba/(b_1b3) + =25y (bob2 — B7)
2
+—(b:jlz%)3) (b1/by — ba/b3)?.

Finally, using (6), Lemma 2.1, and properties of the Rayleigh quotient, we
obtain

(6)

ok 2 b0b2/(b—1b3) 2 /\m'm/)\ma:c > 0:
and the result is established. O

5 Numerical Experiments

To illustrate the behavior of the CBB method, we compare in Figure 3 the
CBB with all previous methods on the same experiment described in Section
3. We observe that the CBB method outperforms the Barzilai-Borwein and
also the random Cauchy method. We run the same experiment several times
with different random number generators obtaining similar results.

In the same experiment we also report with red circles the iterations in
which the search direction gx is almost an eigenvector of the matrix ). To
do so we check if g; is almost parallel to Qgy, i.e., if

t
9, Q9
cos , = ——"—>1—F, 7
e PATRTTO PRI @)
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n Cauchy | random Cauchy | Barzilai-Borwein | CBB
50 813 315 108 79
500 8003 916 402 230
1000 | 17053 2003 517 392

Table 1: Average number of iterations on 5 random experiments

n Cauchy | random Cauchy | Barzilai-Borwein | CBB
50 0 2 3 5
500 0 5 6 14
1000 0 6 8 18

Table 2: Average number of iterations at which g, is almost an eigenvector
on 5 random experiments

where € > 0 is small. For our experiments we choose ¢ = 0.0005. This test is
checked until convergence.

We also observe from Figure 3 that the choice of steplength of the CBB
method tends to force gradient directions that approximates eigenvectors of
the Hessian matrix ). The same tendency is observed, but not as frequently,
in the Barzilai-Borwein method. The approximation of eigenvectors during
the process is a nice feature that explains the good behavior and the accel-
eration observed for these nonmonotone gradient methods (see [6] and [7]
for a relationship between the gradient methods with retards and the shifted
power method to approximate eigenvectors).

Finally, we report on tables 1 and 2 the average number of iterations for
convergence, and the average number of iterations at which g, is almost an
eigenvector (satisfies (7)) on 5 random experiments for which k9(Q) = n, for
different values of n. Once again we oberve the superiority of CBB over all
other methods, and we also observe the previously described tendency of the
nonmonotone methods to approximate eigenvectors during the process.
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