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ABSTRACT. We discuss the asymptotic behaviour of the genus and the number
of rational places in towers of function fields over a finite field.

Subject classification. 11G, 11R, 14H

1. INTRODUCTION

The theory of equations over finite fields is a basic topic in classical number
theory. Its foundations were laid (among others) by Fermat, Euler, Lagrange,
Gauss and Galois. The object of the first investigations in this theory were
congruences of the special form

y*> = f(x) (modulo a prime number),

where f(x) is a rational function with integer coefficients. Assuming an analogue
of Riemann’s hypothesis for the zeta function that he introduced, E. Artin con-
jectured an upper bound for the number of solutions for such congruences. The
general solution of that conjecture was given by A. Weil (the elliptic case being
settled before by H. Hasse), and it can be stated as follows: Let F' be a func-
tion field over the finite field F, with ¢ elements, let N(F') denote its number of
F,-rational places and g(F’) denote its genus. Then the celebrated theorem of A.
Weil [23] states that the following inequality holds

N(F)<q+1+29(F)-\/3q.

Thara [13] noticed that one has a strict inequality above if g(F') > \/q(\/g—1)/2.
Setting

Ny(g9) = max{N(F) | F is a function field over F, with g(F') = g}

and
A(q) = limsup N¢(g)/9,

g—0o0
one has the following result on the asymptotic behaviour of the number of F,-
rational places (the so-called Drinfeld-Vladut bound [2]):
Alg) < Vq—1.

For tables describing the behaviour of N,(g) for small values of ¢ and g we refer
to [10]. Using class field theory, J.-P. Serre [17] showed that A(q) > 0, for any
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prime power ¢ (see also [15]). Using modular curves, Thara [13] (see also [20])
showed that
A(¢®) =q—1, for any q.

Using the above equality (for ¢ > 7), Tsfasman-Vladut-Zink [20] observed that
one can then construct an infinite sequence of algebraic geometric codes with limit
parameters above the so-called Gilbert-Varshamov bound. In order to construct
explicitly such an infinite sequence of codes, one needs an infinite sequence of
algebraic function fields (F});>o over F,2 that is given by explicit equations and
satisfies lim; .o, N(F})/g(F;) = q — 1, see [6], [7] and [3].

The subject of this paper is an analysis of the asymptotic behaviour of the
number of Fg-rational places in tame towers of function fields over F,. Section
2 gives basic definitions and results on towers over I, and it points out that

tame towers are specially interesting if they have the following two properties
(see Theorem 2.24):

- The tower is of finite ramification type.
- The tower is completely splitting over [F,.

In Section 3 we investigate those two properties for towers of Fermat type (see
Definition 3.3), and in Section 4 we investigate them for towers of quadratic
extensions. In Section 5 we show that the tower over F2 (p an odd prime number)
defined recursively by the following equation
, T2+1

¥y =57
attains the Drinfeld-Vladut bound. This tower is related to the modular tower
Xo(2") whose recursive defining equation was given by Elkies [3] (see Remarks
5.9 and 5.10). Our proof is more elementary and also describes explicitly the set
(2 of F 2-rational places that are splitting completely in the tower. It has also led
to two new properties of Deuring’s polynomial H(X) € F,[X] (see Definition 5.4)
whose roots describe the supersingular elliptic curves in Legendre form. These
two properties are

1) The roots of H(X) are fourth powers in F,2.

2) HXY) =X H ((X;; 1>2> :

The proof of Property 1) is due to H. G. Riick; it is given in an appendix of this
paper. It was noticed by M. Zieve that Property 1) also follows from Property 2)
and the fact that the roots of H(X) are in Fe.

2. TOWERS OVER F,

In this section we discuss some general properties of towers of function fields
that are independent of the specific representation of the tower.

Definition 2.1. A tower over F, is an extension field 7 O F, having the follow-
ing properties:
i) The transcendence degree of 7 /F, is one.
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ii) The field F, is algebraically closed in 7.
iii) The field extension 7 /F, is not finitely generated.

The notation F' < 7 will always mean a function field ' with F, C F' C T;
i.e., F/F, is a finitely generated field extension of F, (with transcendence degree
one) contained in the tower 7.

Any tower 7 over [, can be described as follows: Choose a function field
F < T. Then there is an infinite sequence of function fields F; < 7 such that

F=RCFHCFKRC.. and T=|]JF,.
i=0
We say that 7 is represented by the sequence (Fy, Fi, Fy,...). Note that the
degrees [F; i1 : F;] are finite, since the extensions Fjy;/F; are finitely generated
and algebraic.

Definition 2.2. A tower 7 over I, is said to be separable if there exists a function
field F' < 7 such that the (infinite) extension 7 /F' is separable.

It is clear that a tower can be represented by various sequences of function
fields. In order to compare two sequences (Fy, Fy, Fy,...) and (Ey, F1, Fa,...)
representing the same tower 7, the following simple observation is often useful:
For each ¢ > 0 there is some j = j(i) > 0 such that F; C E;. As an example how
to use this reasoning, we state the following lemma.

Lemma 2.3. For a tower T /F,, the following conditions are equivalent:

i) The tower T is separable.

ii) There exists an element x € T \ F, such that the extension T /F,(z) is
separable.

iii) There exists a sequence (Fy, Fy, Fy,...) representing T such that the exten-
sions Fi.1/F; are separable for almost all i > 0 (i.e., except for finitely
many).

iv) For each sequence (Fy, Fy,Fy,...) representing T, almost all extensions
Fi11/F; are separable.

Proof. Obvious. O

Let 7 be any tower over F, and let (Fp, Fi, F5, . . .) be any sequence representing
the tower 7. The extensions F),/F, can be splitted in two subextensions Fy C
E, C F,, where I,/ Fy is separable and F),/ E,, is purely inseparable. The field E,,
is uniquely determined by these conditions and it can be obtained as follows: Let
p = char(FF,) and let p be the degree of inseparability of the extension F,/Fy,
then

E, = Fr".
Setting S := {J;~, Ei, we see that S/ Fy is separable and 7 /S is purely inseparable.
Moreover the field F,, is isomorphic to F;,, for each n > 0. For this reason we will
only consider separable towers over F,,.

Let g(F') denote the genus of a function field F/F,,.
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Proposition 2.4. Let 7 be a separable tower over IF,.
i) For any sequence (Fy, Fy, Fy,...) representing T, the sequence of rational
numbers (g(F;)/[F; : Fol)iso s convergent in R U {oo}.
i) Given two sequences (Fy, Fi, Fy,...) and (Ey, Ev, Es,...) that represent T,
with Ey = Fy, then

. g(Fy) . g(E)

lim ———— = lim ———~—
Proof. 1) If g(F;) < 1 for all @ > 0, then lim; .o.(g(F;)/[F; : Fo]) = 0. Hence
we can assume that g(F,) > 2 for some n € N. Moreover we can assume that

F; 1/ F; is separable for all ¢ > n, by Lemma 2.3. For ¢ > n we then have by
Hurwitz’ genus formula:

9(Fi) =1 =[Fipa: B (9(F) — 1) 4 5 deg Diff (F;1 / F)

> el ey - ),

where deg Diff (E/F') denotes the degree of the different divisor. The sequence of
rational numbers ((g(F;) — 1)/[F; : Fo])i>n is therefore non-decreasing, hence the
limit
F; . F)—1
i 9D g(E)

= lim
1—00 [E : Fo] i—00 [E . Fo]

exists in R U {oc0}.

ii) The case g(F;) < 1 for all i > 0 is trivial, so we consider the case where
g(F,) > 2 and T/F, is separable, for some n > 0. Let H; = F; - F; be the
compositum of F; and FE;. For each ¢ > 0, there exists some j > ¢ such that
F; C H; C F}, and as in the proof of item i), we see that the inequalities below
hold (for all i > n):

g(Fy) =1 _ g(H:) =1 _ g(F;) —1
[Fi: ko] = [Hi: ko] T [F: Fo
Since Fy = Ey, it follows that
o oF) ) ()

1m = 11m

O

Definition 2.5. Let 7 be a separable tower over F, and let F' be a function field
contained in 7. Choose a sequence (Fy, Fy, Fy, ... ) representing 7 with Fy = F.
The we call

the F-genus of the tower T.
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Note that yg(7) is well-defined as follows from Proposition 2.4, and moreover
0 <vp(7) < oo. It is obvious from the proof of Proposition 2.4 that

v(T)=0«&g(F) <1 foreach F<T.

The F-genus vr(7) depends not only on the tower 7 but also on the function
field F'. The next lemma explains this dependence on the function field:

Lemma 2.6. Let 7T be a separable tower over F, and let E, F' < T be two func-
tion fields contained in T. Let H < T be such that E C H and FF' C H. Then

[H : F]-p(T) = [H : E]-ys(T).

Proof. Choose a sequence (H, Hy, Hy,...) representing 7; then the sequences
(F,H,Hy,Hs,...) and (E, H, H,, Hy,...) represent 7 as well. It follows from
the definitions that

. g(H;) 1 . g(H,) 1

) =t m = My e

and similarly v5(7") = yu(7)/[H : E]. Hence

ve(T) - [H : F]=u(T) =ve(T) - [H : E].

O

As a consequence of Lemma 2.6 we see that the property “yr(7) < oo” depends
only on the tower 7 i.e., it is independent of the particular function field F' < 7
chosen.

Definition 2.7. Let S and 7 be two towers over F,. We say that S is a subtower
of T if we have S C 7.

Lemma 2.8. Let S € T be two towers over Fy. Assume that the tower S is
separable and that the extension T /S is also separable. Then T is a separable
tower and, for each function field F' < S, one has

Yr(S) < vr(T).

Proof. We can assume that F' < S is a function field such that S/F is separable.
Then there exist two sequences (F' = Fy, Fy, Fy,...) resp. (F = Ey, By, Fs,...)
that represent S resp. 7, with F; C E; for all ¢ > 0. The lemma follows easily
by considering these two sequences (cf. the proof of Proposition 2.4 1)). O

Proposition 2.9. Let S C T be two separable towers over F, such that the
extension T /S is finite and separable. Then, for any function field F' < S, we
have:

#(S) < 00 & 7R(T) < o0,

Proof. <=: This implication follows from Lemma 2.8.

=-: Since 7 /S is finite and separable, there exists an element z € 7 such that
7 = S(z). Choose a sequence (F' = Fy, Fy, Fy,...) which represents S and let
E; = F;(z). Then the sequence (Ey, Ey, Es,...) represents the tower 7. The
minimal polynomial of z over § has coefficients in F;, for some n > 0. Hence for
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all i > n we have [E; : F}] = [E, : F,,] = [T : S]. By Castelnuovo’s inequality [19,
I11.10.3] we have the estimate (for all i > n):

9(E:) < [Ei - En] - g(Ey) + [T - S]-g(F5) + ([Ei : En] = 1) - ([T : S] = 1).
Setting H := F},, we obtain

g9(E:) 9(En) g9(F)
B =B, R

Hence vy (7) < vu(S) + g(E,)/[E, : H] 4+ 1, and we have then shown that
11(S) < 00 = 1(T) < co.

Now the result follows from Lemma 2.6. O

Remark 2.10. i) The proof of Proposition 2.9 shows: The extension 7 /S is of
finite degree if and only if there is some function field £ < 7 such that 7 = E-S.
This means that if S is represented by the sequence (Fy, Fy, Fy,...) then 7 is
represented by the sequence of composita (£ - Fy, E - F, E - Fy,...).

ii) Under certain hypotheses one can prove a formula relating the F-genera vp(S)
and yp(7 ), which is similar to the Hurwitz genus formula [9, Theorem 3.6].

Given a function field F'in a tower 7', we will say that a property holds for each
E/F (resp. for some E/F) if it holds for each (resp. for some) field £ contained
in the tower 7 and with a finite degree over the field F.

Definition 2.11. Let 7 be a separable tower over F,.
i) The tower 7 is called totally ramified if there exist a function field F' < T
and a place P of I’ which is totally ramified in each E/F.
ii) The tower 7 is called tame if there exists a function field F' < 7T such that
the extension F/F is tame for each F/F (i.e., all ramification indices are
relatively prime to the characteristic). Otherwise, the tower 7 is said to be

wild.

In this paper we will be dealing with tame towers. As for some interesting wild
towers we refer to [6] and [7].

Definition 2.12. Let 7 be a separable tower over F, and let F* < 7. The
F-ramification locus of T is defined to be

Vi(T) :={P € Pp | P ramifies in F, for some FE/F},
where Pr denotes the set of places of the function field F'.

Note that in a purely inseparable extension of function fields over [F,, all places
are totally ramified. Hence the F-ramification locus is infinite if 7 /F is not
separable.

Lemma 2.13. Let T be a separable tower over Fy and let E, F < T be function
fields such that T /F and T /E are both separable extensions. Then one has:

Vi(T) is finite < Vg(T) is finite.
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Proof. We can assume that ' C £ < 7 where E/F is a finite separable extension
(otherwise, we replace E by the compositum H = E - F). As only finitely many
places are ramified in F/F', the assertion

Vr(7T) is finite < Vg(7) is finite
is now obvious. U

Definition 2.14. A separable tower 7 over I, is said to be of finite ramification
type if there exists a function field F' < 7 such that Vr(7) is a finite set.

Proposition 2.15. If T is a tame tower over F, of finite ramification type, then
vu(T) < oo for each H < T. More precisely: if F' < T is a function field in T
such that E/F is tame, for each E/F, then we have:

5§—2

vr(T) < g(F) + —

5= Z deg P.

PeVp (T)

where

Proof. Let E/F be a tame extension of finite degree. The degree of the different
of E/F is bounded by deg Diff(E/F) < s-[E : F], therefore

29(F) —2 < [E: F|(29(F)—2+s).
Dividing both sides of this inequality by 2 - [F' : F] and letting [F : F] — oo, we
obtain the desired result. O
For a function field F'/F, we denote by N(F) its number of F,-rational places.

Proposition 2.16. Let 7 be a tower over IF,,.

i) For any sequence (Fy, Fy, Fy,...) representing T, the sequence of rational
numbers (N (F;)/[F; : Fy))i>0 is non-increasing and, in particular, it is con-
vergent.

i) Given two sequences (Fy, Fi, Fy,...) and (Ey, Eq, Es,...) that represent T,
with Fy = Fy, then

N(F; . N(E;
lim (£:) = lim #
i—oo [F; 1 Fy|  imoo By Ey
Proof. 1) Follows from the fact that N(Fi1) < [Fit1: Fi] - N(F;).
ii) Similar to the proof of Proposition 2.4 ii).

We can now give the following definition:

Definition 2.17. For a tower 7 over F, and a function field F' < 7, we call

the F-splitting rate of the tower 7, where (Fy, [y, Fy, ... ) is any sequence repre-
senting 7 with Fy = F.
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It follows immediately that the F-splitting rate of 7 satisfies
0 < ve(T) < N(F).

As for the F-genus vp(7) (cf. Lemma 2.6) one shows the following lemma on the
splitting rate.

Lemma 2.18. Let T be a tower over F,, and let E, F,H < T be function fields
with E C H and F C H. Then we have:

[H:F|-vp(T)=1[H:E] vg(T).
Definition 2.19. A tower 7 over F, is said to be completely splitting if there exist

a function field /' < 7 and a Fj-rational place P of F' which splits completely in
each E/F.

The next lemma is trivial (observe Lemma 2.18).

Lemma 2.20. Let 7 /F, be a completely splitting tower. Then for each H < T
on has vg(T) > 0. More precisely, choose F' < T such that the integer

t:={P €Pr| degP =1 and P splits completely in E, for each E/F'}
15 strictly positive. Then we have

In what follows we will only consider separable towers 7 over F, whose F-
genus yg(7) is strictly positive for some (hence for all) F' < 7. Recall that this
condition holds if and only if there is a function field H < 7 with genus g(H) > 1.
From Lemmas 2.6 and 2.18 we have (for all £, F' < 7) the equality

ve(T) _ ve(T)
(7))  ve(T)

Hence we define:

Definition 2.21. For a separable tower 7 over F,, we call the real number
NT) == ve(T)/vr(T)

the limit of the tower T, with F' being any function field contained in 7.

In other words, for any sequence (Fy, Fy, Fy, ... ) representing 7 the limit A(7)
is given by
AT) = lim N(F)/g(F;).

Theorem 2.22. For any separable tower T over F, one has
0<N7T)<,q—-1

Proof. The assertion A\(7") > 0 is trivial; the upper bound A\(7) < /g — 1 is the
well-known Drinfeld-Vladut bound, cf. [2]. O

Definition 2.23. A separable tower 7 over I, is said to be asymptotically good
(resp. asymptotically bad, resp. asymptotically optimal) if N(T) > 0 (resp.
ANT)=0,resp. N(7T)=,/q—1).
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It is clear from Definition 2.21 that the tower 7 is asymptotically good if and
only if vp(7) > 0 and yr(7) < oo (for some F' < 7). The next theorem gives a
lower bound for the limit A\(7") which will often be used in the next sections, see
also [9].

Theorem 2.24. Let T be a tame tower over I, having the following properties:
1) The tower T is of finite ramification type.
2) The tower T is completely splitting.

Then the tower T is asymptotically good. More precisely, let F' <7 be a function
field such that T | F is tame and completely splitting. Then the limit \(T) satisfies
the inequality
NT) > ——2
(7) = 29(F) +s—2
where t is the number of F,-rational places of F' that split completely in T /F,
and s is the degree of the F-ramification locus Vi (T); i.e.,

Z deg P.

PEVF(T)
Proof. Follows from Proposition 2.15 and Lemma 2.20. O

Definition 2.25. A tower 7 over [, is said to be Galois if there is some function
field F' < T such that the (infinite) extension 7/ F is Galois.

Being Galois is a strong property of a tower. For instance, one can prove a
partial converse of Theorem 2.24 for Galois towers.

Theorem 2.26. Let 7 be an asymptotically good Galois tower over F,. Then
the tower T is completely splitting and it is of finite ramification type.

Proof. Choose a function field F' < 7 such that 7 /F is Galois, and assume
that the F-ramification locus Vp(7) is infinite. Then there exists an infinite
sequence of distinct places P, P,,... of F' and a sequence of Galois extensions
E;/F(i = 1,2,...) such that the sequence (F, F1, Es,...) represents the tower
7T, and moreover each of the places P, ... , P, is ramified in the extension £, /F.
For i = 1,... ,n let Q); be a place of FE, above P;, and denote by e; (resp. f;,
resp. d;) the ramification index (resp. the residue class degree, resp. the different
exponent) of @; over P;. Then the degree of the different of F,,/F satisfies

deg Dift(E,/F) >3 Bl g,

: i1
i=1

n

= [E,: F]- Z degP>E F]- Z

i=1

€ —

vV
|3
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The Hurwitz genus formula for the extension F,,/F now gives

29(E,) — 2> [En : F]- (29(F) — 2) + g (B, : F.

Dividing by [FE, : F] and letting n — oo, we obtain that vz(7) = oo, hence
M7T) =vp(T)/vr(T) = 0. This contradiction proves that the tower 7 is of finite
ramification type.

Now we want to show that the tower is completely splitting. Again we choose
a function field F' < 7 such that 7/F is Galois, and we choose a sequence
(F, Ey, Fs,...) which represents the tower 7 and has the property that all ex-
tensions £;/F are Galois. Let M denote the set of F -rational places of F. For
P € M and for each ¢ > 1, let a;(P) denote the number of F,-rational places of
E; lying above P, and set

p(P) = Jim [gji(fj;]‘

Then the F-splitting rate vp(7) is given by
(1) = 3 (P,
PeM

Since we have that vp(7) > 0 , we conclude that there is a F -rational place P
of F with u(P) > 0. This place P cannot be inert in any extension FE;/F, hence

7 P) = -
a(P) = =1
where e; is the ramification index of the place P in F;/F. Thus
1
0 < u(P)=lim —.
1—0Q 67,
It follows that there is some n > 0 such that e; = e, for each i > n, so the places
of E, lying above P are F,-rational, and they split completely in the tower. [

Remark 2.27. Let 7 be a Galois tower over [, with the property that for some
function field F' < 7 the infinite extension 7 /F is abelian. Then the tower is
asymptotically bad, see [5] and [4].

3. TOWERS OF FERMAT TYPE

Many interesting towers 7 over F, can be defined recursively in the following
manner:

Definition 3.1. We say that the tower 7 is defined by the equation (y) = p(z)
if ¢(y) and ¢(z) are two rational functions over F, such that

T =F,(xo,x1,22,...) with ¢¥(z;11) = @(x;) forall ¢ >0.

Of course, setting F; = Fy(xo, ... ,x;) one has that the sequence (Fy, F, F5, .. .)
represents the tower 7.
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Remark 3.2. For arational function p(x) = f(x)/g(x), where f(z), g(x) € F,[x]
with (f(x),g(x)) = 1, we define its degree as
deg v = max{deg f,degg}.

We will always consider here towers over F, that are defined recursively by an
equation ¥ (y) = ¢(x) with balanced degrees (i.e., with deg ¢ = deg ). Otherwise
the tower is easily seen to be asymptotically bad (see [8]).

In this section we will consider towers F over F, which are defined by the
equation
y" =a(x +b)" +¢, with a,b,c€F, and (m,q) = 1. (%)

Definition 3.3. A tower F over F, defined by Equation (%) is said to be a tower
of Fermat type or a Fermat tower if the following Hypothesis (A) holds.

Hypothesis (A). For each ¢ > 0, the field F, is algebraically closed in F; and
we have [Fi, 1 : F}] = m.

We first give two results showing that Equation (%) defines a Fermat tower
under certain conditions.

Proposition 3.4. Let a,b,c € F; with
a-b"+c=0, where (m,q) = 1.

Then Equation (x) defines a tower of Fermat type; i.e., we have that Hypothesis
(A) does hold.

Proof. Consider the equation
y™ =a(x +b)" + ¢, with a,b,c € F; and ab™ + ¢ = 0.

We then see that x = 0 is a simple zero of the right hand side and hence it
ramifies totally in the function field extension Fy(z,y)/F,(z). The unique place
above x = 0 is then a simple zero for the function y. Since the tower is defined
recursively by Equation (), we then conclude that the place of Fy corresponding
to zp = 0 is totally ramified in F,,, for each n > 1. Now Hypothesis (A) follows
immediately. (|

In case a - b™ + ¢ # 0, the following result gives sufficient conditions for Hy-
pothesis (A) to hold. We denote by F, an algebraic closure of F,.

Proposition 3.5. Let a,b,c € F, with a - 0™ + ¢ # 0. Suppose that there exist
two elements o, 3 € Fq such that

a-(a+b)"+c=0 and a- (B+b)" +c=a™ ="
Then Equation (%) defines a Fermat tower; i.e., we have that Hypothesis (A) does
hold.

Proof. 1f follows from the assumptions that

1) We have v # 0,8 # 0 and « # (.
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2) There is a unique place P; of F; with zo(P;) = x1(P;) = ... = x;(P;) = (.

3) There is a unique place Q; of F; such that z¢(Q;) = z1(Q;) = ..
Ii71<Qi) = (3 and CCz(Qz) = Q.

4) The place Q; is a simple zero of a - (z; +b)™ + c.

By induction we then see that the place (); ramifies totally in the extension
F; 11/ F;, for each i > 0. Now Hypothesis (A) follows immediately. O

Remark 3.6. Equation (x) does not define recursively a tower if abc = 0. How-
ever it seems plausible that Hypothesis (A) does hold whenever one has that
abc # 0.

We give now a very simple condition which implies that many towers of Fermat
type are completely splitting.

Proposition 3.7. Suppose that Equation () defines a Fermat tower F over F,
and assume moreover that

q=1modm and a=aY, for somea; € F,.

Then the tower F is completely splitting; more precisely, the pole of xq in Fy
splits completely in the tower F.

Proof. Let @) be a pole of xg in F;, then () is also a pole of x;. We obtain from

Equation (x) that
() ()2

Modulo @ this yields the congruence
<$i+1> = a mod Q,

X

which has m distinct roots in [, as follows from the assumptions. Thus the place
@ splits completely in the extension F;,q/F;. [l

Now we investigate some Fermat towers which are of finite ramification type.

Proposition 3.8. Let [ be a power of the characteristic of F, and let ¢ = " with
r > 2. Assume that the equation

Yl /=1 — ¢ (x + b)(q_l)/(l_l) + ¢, with a,c € F] and b € F,

defines a Fermat tower F over F,. Then the tower F is of finite ramification
type; more precisely, one has that

Vi (F) ={P € Pg, | zo(P) = « for some a € F}.

Proof. We set for simplicity m := (¢ — 1)/(l — 1). Note that the map ~ — ™
(for v € F,) is the norm map from F, to ;. Consider a place P of Iy which is
ramified in the tower F. Then there exists an index n > 0 and a place @ of F},
lying above P which ramifies in the extension F,/F),. Since

o = alz, + 0"+
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the ramification theory of Kummer extensions (see [19, I11.7.]) shows that
a(z,(Q) +b)" +¢c=0.

Since a, ¢ € F;\ {0}, we conclude that (z,(Q)+b)"™ € F; and hence that z,,(Q) €
F,, since m is the norm exponent. In the same manner we obtain from the
equation

' =a(rn_1+b)"+c
that z,_1(Q) € F, and then, by induction, that z¢(Q) € F,. As the place Q lies
above P, we have then shown that zo(P) = 2¢(Q) = o € F,. O

Proposition 3.9. Let [ be a power of the characteristic of F, and let ¢ =" with
r > 1. Then the equation

Yyl = —(x+ )"+ 1, with b€ T},
defines a Fermat tower F over F,. Moreover this tower F is of finite ramification
type and we have that
Vi (F) ={P € Pr, | 2o(P) = «, for some o € F}.

Proof. The assertion that the equation defines a Fermat tower follows from Propo-
sition 3.4. The assertion about the ramification locus Vg, (F) follows with the
same reasonings used in the proof of Proposition 3.8. O

Combining the above results we obtain some asymptotically good towers of
Fermat type (see also [9]).

Theorem 3.10. Let [ be a power of the characteristic of F, and let ¢ = I" with
r > 2. Assume that the equation

y @ VD = g (4 b)Y e with a,c € F and b € I,

defines a Fermat tower F over F, (e.g., see Proposition 3.4). Then the tower F
is asymptotically good and its limit satisfies
2
MNF) > —.
q—2
Proof. Since m = (¢—1)/(l—1) is the norm exponent in the extension F,/IF; and
since a € [F;” we have
a = ay’, for some a; € F,.

The result now follows from Propositions 3.7 and 3.8. O
Theorem 3.11. Let | be a power of the characteristic of ¥, and let ¢ = 1" with

r > 1. Assume that
r=0mod 2 or [ =0 mod 2.

Then the equation
Yyl = —(x+ b7+ 1, with b€ Fy,
defines an asymptotically good Fermat tower F over F,, and its limit satisfies
2

A(F) > T—35
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Proof. The congruence r = 0 mod 2 (resp. | = 0 mod 2; i.e., the characteristic
is equal to 2) ensures that a = —1 is a (I — 1)-th power in F,. The result now
follows from Propositions 3.7 and 3.9. [l

We now give an example that illustrates the use of Proposition 3.5.

Example 3.12. Let p be a prime number satisfying
p=3,50r6 (mod 7),
and let ¢ = p” with r > 1. Then the equation
yp+1 — (1‘ + 1)p+1 )

defines a Fermat tower F over F,. If r = 0 mod 2, this tower F is asymptotically
good over F,.

Proof. The polynomials 2? + x 4+ 2 and z? — z + 2 are both irreducible over F,.
This follows easily from the assumption p = 3,5 or 6 mod 7, using quadratic
reciprocity. Choose a, 3 € Fj2 such that

A+a+2=3-p+2=0.

The trace (resp. norm) of « in the extension F,2 /I, is then given by o + o (resp.
a?), and since 2% + x + 2 is the minimal polynomial of o over F,, it follows that
a? +a = —1, a?*! = 2 and similarly that 37 + 3 = 1 and 87! = 2. We conclude
that

(a+ 1Pt —2=aP +a? +a+1-2=0, and

(ﬁ—i—l)pH—ZZﬁpH—l—ﬁp—l-ﬁ—i-l—Q:Q:apH:ﬁpH_

It now follows from Proposition 3.5 that F is indeed a Fermat tower. The
tower F is asymptotically good over F2 (i.e., for r = 2), since m = p + 1 is the
norm exponent in the extension [F2 /F), as follows from Theorem 3.10. Hence the
tower JF is also asymptotically good for any r > 1 with » = 0 mod 2. (Il

Variants of this proof show that the equation P! = (2 + 1)P*! — 2 defines a
Fermat tower for many other prime numbers p.

Remark 3.13. As the constants a, b, c € F} vary, the ramification structures of
the Fermat towers F given by the equations y™ = a(x + b)™ + ¢ may be quite
different: If a - ™ + ¢ = 0 then the tower is totally ramified, as follows from
Proposition 3.4. On the other hand it is easily seen that the tower is not totally
ramified in case a - b™ 4 ¢ # 0.

4. TOWERS OF QUADRATIC EXTENSIONS
As we have seen in Theorem 2.24, tame towers 7 are particularly interesting
if the following two properties hold:

1) The tower 7 is of finite ramification type.
2) The tower 7 is completely splitting.
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Here we will consider those two properties in towers of quadratic extensions;
i.e., towers 7 over F, which are defined recursively by a quadratic equation (see
Definition 3.1)

y* = p(x), with p(z) € Fy().
We will always assume that the characteristic satisfies p > 3, and hence towers
of quadratic extensions are tame. In this section we will give several explicit
examples of towers of quadratic extensions having finite ramification locus, and
for some of them we also show that they are completely splitting.

We start with a result which ensures in many cases that an equation of the
form y? = ¢(z) defines a tower over F,. This result will be used in the examples
of this section without mentioning it explicitly.

Proposition 4.1. Suppose that the characteristic satisfies p > 3. Let fi(x) and
fa(x) be polynomials over F, with deg f1(x) = 1+ deg fa(x). Then the equation

y* = fi(z)/ fo(2)
defines a tower T = Fy(x0, 21,29, ...) over By, where 27, = fi(x:)/ f2(x;) for all
i > 0. Setting F; = Fy(xo, ... ,x;) one has that [Fiq : F;] = 2. The place xy = 0o
is totally ramified in all extensions F;/ Fy.

Proof. Similar to the proof of Proposition 3.4. (I

Since we are mainly interested in the construction of asymptotically good tow-
ers, we will apply the above Proposition mostly in the case where deg fi(z) = 2
and deg fo(z) = 1 (see Remark 3.2).

Next we give a result ensuring completely splitting.

Proposition 4.2. Let p > 3 and let 3 € F, be such that %> # 1. Consider the
tower T over F, which is defined recursively by the equation

s a(z+ 5%
x4 1
Then the two places xo = £ are completely splitting in the tower T .

Proof. The assertion follows immediately from the equations below:

BB+ _ g A8+ 3)
B+1 -B+1

Notation: It will be convenient to introduce the following notations:
1) For a polynomial f(z) € Fy[z], let

3(f(2)) ={a € Fy | f(a) =0}
denote the set of zeros of f(x) in the algebraic closure F, of F,. B
2) For an irreducible polynomial h(x) € F,[z], we identify the set 3(h(z)) C F,
with the place P of the rational function field Fy = F,(x) that corresponds to
h(xo). In particular, we have that deg P = deg h(x) = #3(h(x)).
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Next we give an example of an asymptotically good tower of quadratic exten-
sions over the field Fy.

Example 4.3. Let p = 3 and consider the tower T over F, defined recursively
by the equation
,_ x(z—1)
x4+l
This tower is of finite ramification type, and we have that

5= Z deg P = 8.

PEVFO(T)
The limit \(T) over the field Fo with 9 elements satisfies N(T) > 2/3.

Proof. Suppose we have already shown that s = 8. Let § € Fy be such that
(3% = —1. It follows from Proposition 4.2 that the places zo = £ are completely
splitting in the tower 7 over Fy. It then follows from Theorem 2.24 that its limit

over gy satisfies
4 2

AT) 2 s—2 3
We show now that s = 8 and, in particular, that the tower 7 in Example 4.3
is of finite ramification type in characteristic 3. So let P € Pp  be a place with
7,(P)* = 1 that ramifies in F,,1/F,. If @ denotes the place of F,, ; below P
and setting o := x,, 1(Q) € F,, we must have:

ala—1)

= ——— hence o> —2a—1=0.
a+1

Again, if R denotes the restriction of @ to F, 5 and setting 3 := z,, 2(R) € F,,
we must have:

a2:w:2a+1, hence 3% — (2a +2)8 — (2a + 1) = 0.

B+1
Using that the characteristic is p = 3, we see that

0=03—2a+2)8—2a+1)= (8- (a+1))>

Again, if S denotes the restriction of the place R to the field F},_3 and setting
v = x,_3(5) € F,, we have:

-1
B =(a+1)?= =1 = —(2a+1), hence (y+ a)* = 0.
v+1
The computations above show that the Fy-ramification locus of the tower 7 is
given by
Vi (T) = {0,00,£1, o, £(a + 1)},

where a € F, is a root of the polynomial 22 — 2z — 1. This finishes the proof that
s =38. O
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Remark 4.4. i) It can be shown, in Example 4.3, that the limit A(7) is equal
to 2/3 (over Fy), and that A\(7") = 0 when ¢ is an odd power of 3.

ii) It seems that if the characteristic is p > 5, then the tower of Example 4.3 is
not of finite ramification type.

In the next example we will change slightly (just a change of sign) the tower
of Example 4.3 obtaining a tower of finite ramification type in any characteristic
p =3

Example 4.5. Over a finite field F, of characteristic p > 3, consider the tower
T defined recursively by the equation

y? = x(l - x)
r+1
Then this tower is of finite ramification type, and we have
5= deg P = 10.
PEVFO (T)

Proof. Similarly to the proof of Example 4.3 we get in this case:
Vi (T) = {0,00, 1} Us(z* + 1) Uz(z® — 22 — 1) U3(z* + 22 — 1).

This shows that s = 10 and, in particular, that the tower is of finite ramification
type in any characteristic p > 3. (I

Remark 4.6. Direct computations show that the tower 7 in Example 4.5, con-
sidered over the finite field Fg;, has ¢ = 8 rational places of F{ that are completely
splitting in the tower. Theorem 2.24 then gives that the limit A\(7") over Fg; sat-

isfies
2t

5—2
It can be shown that equality holds above.

=2.

AT) >

It seems to be hard to decide over which finite fields I, the tower of Example
4.5 is completely splitting. A necessary condition is ¢ = 1 mod 4.
Next we give an example of a tower of finite ramification type in characteristic

p=5.
Example 4.7. For characteristic p =5, the tower T defined by the equation
2 _ 3(x? + 3)
r+1
is of finite ramification type, and one has

5= Z deg P = 8.

PEVFO (T)

Proof. Similarly to the proof of Example 4.3 one shows that
Vi(T) = {0,00, £1, 42} U 3(2* + 3).
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It seems to be hard to decide whether the tower in Example 4.7 is completely
splitting for some finite fields of characteristic p = 5.

Our next example provides a tower over I, in characteristic p = 5 where both
properties (finite ramification type and completely splitting) are easily seen to
hold, if the cardinality ¢ of the finite field is a square.

Example 4.8. In characteristic p = 5, consider the tower T over F, defined
recursively by the equation
o z(r+2)
ox41
Then this tower is of finite ramification type, and we have

= Y degP=6.
PEVE, (T)
Its limit \(T') over the field Fos is N(T) =
Proof. Similar computations as in Example 4.3 show that
Vi, (7T) ={0,00, £1, £2}

and hence s = 6. It follows from Proposition 4.2 that if there exists an element
(€ F, with 3% = 2 (this is the case iff ¢ is an even power of 5), then the places

= 4/ are completely splitting in this tower. Denoting by A(7") the limit over
o5, it follows from Theorem 2.24 that

2-2
NT) > =1.
(7) 2 —
Direct computations show that we have equality above. [l

Example 4.9. In characteristic p = 3, consider the tower T over Fy that is
defined recursively by the equation
Yy’ = v

x—1
This tower is of finite ramification type, and we have

= )  degP=3.

PEVFO T)

The limit \(T) over the field Fy with 9 elements is N(T) = 2 = v/9 — 1, so the

tower is asymptotically optimal over Fy.

Proof. 1t is easily checked that Vi (7) = {o0,%1} and that the place o = 0
splits completely over Fg in the tower 7. Hence Theorem 2.24 gives that the
limit A(7") over Fy satisfies

2t 2
NT) > > ——=2=v9-1
( )_5—2_3—2 Vo
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Remark 4.10. Elkies showed in [3, Equation 45] that the modular curves
Xo(3-2") correspond to the tower 7 over F,» with defining equation

s 1(3+ 1)
-1

?

for all primes p > 5. It is easily checked that the ramification locus of this tower
7 in any characteristic p > 5 is given by:

Vi, (T) = {0, 00, +1, £3}.

JFrom the modular interpretation it follows that the tower is asymptotically
optimal over the field F 2, for any prime number p > 5 (see [20]).

Note that our Example 4.9 is given in characteristic p = 3 by the same defining
equation y? = z(3 +x)/(z — 1).

Remark 4.11. One can construct towers of finite ramification type that are
specific for certain characteristics p, as was the case in Example 4.3 for p = 3,
and in Examples 4.7 and 4.8 for p = 5. For example if p = 11, then the tower 7
defined by the equation
o 4z —2)
241
has ramification locus Vg, (7) = {0, 00, £2, 5} U 3(2* + 1).
In characteristic p = 13 if the equation
2 —4(z — 3)2
Yo
defines indeed a tower 7, then it has ramification locus Vg, (7)) = {0, 00, +1, £3}U
3(2? + 3).

5. AN ASYMPTOTICALLY OPTIMAL TOWER

Notation 5.1. Let [F, be a finite field of characteristic p > 3. Then we denote
by M the tower over I, that is defined recursively by the equation

, a?4+1
vy =—
T

Thus M is represented by the sequence of function fields (Mg, My, My, ... ), where
M, =F,(xg,z1,... ,7,) and x7., = (af + 1)/2z; holds for each i > 0.

Note that M is indeed a tower over F,, as follows from Proposition 4.1. We
now state the main result of this section:

Theorem 5.2. For all prime numbers p > 3, the tower M s asymptotically
optimal over the field F,» with p* elements; i.e., its limit A\(M) over F 2 satisfies

AM)=p—1.

The proof of this theorem will be given in several steps.
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Proposition 5.3. The tower M over F, is of finite ramification type. Its rami-
fication locus Vi (M) over the field My = F,(xq) is given by

Vg (M) = {0, 00, £1, &3}, where i € Fpe satisfies i* = —1.
Proof. Let P € Py, and let @ be a place of M, lying above P. Assume that @

is ramified in the extension M, 1/M,. ;From the equation z2_, = (22 + 1)/2x,
and from the theory of Kummer extensions, it follows that

2,(Q) € {0, 00, £i}.
If 2,(Q) = 0, then we obtain
2 xn—l(Q)z +1

0= JZW(Q) = m s hence [Eﬂ/_l(Q) = +1.
If 2,(Q) = oo, then we obtain
2
= % , hence z, 1(Q) € {0, 00}.
If z,(Q) = £i, then we obtain
. 2 xn71<Q)2 + 1 _
—1 = CL’n<Q) = m s hence ,Z'n_1<Q) = —1.

If z,,_1(Q) = £1, then we obtain

n— 241
1= xnfl(Q)Q _ % , hence z,, 5(Q) = 1.

By induction it follows that
zo(P) = 20(Q) € {0, 00, £1, %0}

Conversely, it can be shown that the places zo = 0, 9 = o0, x9 = +¢ and
rg9 = £1 are in fact ramified in the tower M. The places xy = 0, o = 0o and
xo = =1 are totally ramified in the tower and the place zyp = —1 is totally ramified
starting from the field M;. The ramification structure of the tower M above the
place o = 1 is more complicated. In this case one observes that the places () of
M, satisfying x3(Q) = 0 do lie above x5 = 1, and that those places @) are totally
ramified in M,, /My, for each n > 5. O

For the description of the set €2 of I »-rational places of My that are completely
splitting in the tower M, we need the following polynomial H(X) which was
introduced by Deuring [1] in order to classify supersingular elliptic curves, see
also [12], [14].

Definition 5.4. For a prime number p > 3 let

=1/2 , 1 \2 '
H(X) = < ; > - X7 e F,X],
=0
and let

Q:={acF,| Ha") =0}
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We will need the following properties of the polynomial H(X):

Theorem 5.5.
i) The polynomial H(X) is a separable polynomial.
ii) All roots of the polynomial H(X) are fourth powers in F,2; equivalently, the
set ) is contained in F2. Its cardinality satisfies #Q = 2(p — 1).

Proof. Ttem 1) is well-known, see [1], [18]. Since H(0) # 0 and H(X) has degree
(p—1)/2, it follows immediately from item i) that # = 2(p — 1). The assertion
that €2 is contained in the field Fy. is deeper; it is shown by H. G. Riick in the
appendix. ([l

The next proposition shows that €2 is splitting completely in the tower M.

Proposition 5.6. Let o € Q and let § € ]Fp be an element such that (% =
(a? +1)/2a. Then 3 belongs also to €.

The proof of this proposition will be given below. Let us first show how The-
orem 5.2 now follows:

Let P, € Py, denote the zero of g — a, with a € Q2. By Theorem 5.5, P, is a
F,2-rational place of M. The equation 3* = (a® + 1)/2« has two distinct roots
B € Q C Iz, by Proposition 5.6, hence the place P, splits completely over I,z in
the extension M, /M. It follows by induction that P, splits completely over F
in all extensions M, /My. With notations as in Theorem 2.24 we thus have that

E>H#Q=2(p— 1)

and that s = 6 (by Proposition 5.3). Therefore the limit A(M) over the field F,2

satisfies:
2t 4(p—1)

AM) > >
(M) 2 29(Mg) +s5s—2~ 6-2
By the Drinfeld-Vladut bound one has A(M) < p— 1, hence equality holds. This
finishes the proof of Theorem 5.2. (Il

=p—1

We now turn to the proof of Proposition 5.6. So let a € 2 and 8 € F, be
such that 32 = (a? + 1)/2a holds. The assertion of Proposition 5.6 states that
H($*) = 0. In other words, we have to show that

H(a)=0 = H((O‘Q?Zl)Q) — 0.

This implication is an immediate consequence of the following polynomial iden-
tity in the polynomial ring [F,[X]:

Theorem 5.7. The polynomial of Deuring H(X) satisfies

HXYHY=Xxr".H ((X;; 1>2> :
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Proof. Expanding the right-hand side we obtain
9 2 (p—1)/2 _ 2 9 24
xrl. g X+ — xPr1. Z pTl NSk
2X J 2X

j=0
(p—1)/2
-3

-1

3

2
) ' 4i (X2 4 1) XTI

<

where the coefficient ¢, is given by
P2/ p1 N2 4 2
Cp = Z 2 : —j : k . p—1 .
= \J 4 Ty

Theorem 5.7 will thus follow from the two claims below:

CLAIM 1:
¢, =0 mod p, for koddand 0 <k <p-—1.

CLAIM 2:

2
Ck;<<p;/12)/2> mod p, for kevenand 0 <k <p—1.

For each natural number n > 0 we define

Sn;:(_1)w/.§<771_)j.<2]? >Q.<”2+jj>e@.

Since 4 is prime to the characteristic p, the rational number S,, can be thought
of as an element of the field F,,. After some computations one sees that

¢ =S, (inF,), foreach 0 <k <p-—1.
Claim 1 and Claim 2 will then follow from the lemma below. O

Lemma 5.8. For each natural numbern, let S, € Q be as above. Then we have:

i) S, =0, if n is odd.

. 1 n \* .,
ii) S”_4_n' < n/2) , if nis even.
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Clearly, Claim 1 follows directly from item i) of the lemma above. Claim 2
follows from item ii) of Lemma 5.8 using the following congruence modulo p (for
kevenand 0 <k <p-—1):

4k.<<p;/12>/2>25< 1;2) wod p.

The ideas in the following proof of Lemma 5.8 were communicated to us by Y.
Kohayakawa, and we are grateful to him for allowing us to use them here.

Proof of Lemma 5.8. We are going to use the Gaussian hypergeometric function
(see [11, Section 5.5]):

G(z) ;:Zﬁ. < 2: >2,Zn‘

n>0

This function G(z) satisfies the following differential equation (see [11, Equation

5.108)):

1
z(l—z)-y”+(1—2z)-y’—1~y20.

—4z
1—2)?

1
. From this one concludes that both G/(2%) and 7 -G < ( > are solutions
— 2z
for the next differential equation:
222 —1) -y + B2 —=1)-y +z-y=0.

It now follows that the identity below does hold:

6 =16 (=)

Now we come to a key step of the proof of Lemma 5.8 which is the following

identity:
n n 1 —4z
Z(_l) Oz _1—Z.G<(1— —z)2>

n>0

This identity comes from the fact that the coefficient of z"~* in (3.7 _, zm)ng
n+k

is equal to the binomial coefficient 9%

>. Alternatively, this identity also

follows from [11, Exercise 5.71].
Putting together the two identities above, we have:

Z(_l)n.g ZHZZL < 2n >2.Z2n
n 42n n :
n>0 n>0
This finishes the proofs of Lemma 5.8 and Theorem 5.7. (I
In the next remark we exhibit relations between three towers over [F,.. The
one denoted below by L corresponds to the modular curves Xy(2") as shown by
Elkies (see [3, Equations 16 and 17]).



24 ARNALDO GARCIA AND HENNING STICHTENOTH

Remark 5.9. We consider the following three towers over F,2, where the char-
acteristic p satisfies p > 3:

2
‘41
M =Fpe (o, 21, 29,...) with 27, = %2——’_, for i > 0.
Ty
i+ 1)
N =Fp2(yo. v1,Yy2,...) with ny = @ZLL), for ¢ > 0.
Yi
i +3)
L =TFy(z0,21,22,...) with 27 = %, for i > 0.

We now show that £ is a subtower of A and also that A is a subtower of M.
In fact to see that A/ € M one considers the following functions of the field M

2
T 1
Yp = me_l = g; , for each n >0,

and checks that those functions y, satisfy the recursive equation defining the
tower V.
To see that £ C N one considers the following functions of the field A/

2
1
=20 — 1= %, for each n > 0,

and checks that those functions z, satisfy the recursive equation defining the
tower L.

Viewing those three towers with the inclusions above, one has that the following
holds:

M :N]=2 and [NV : L] =2.
One can also check easily that

M = N(zg) and N' = L(yp).

Since the tower M is asymptotically optimal over F,2, we conclude that £ and
N are also asymptotically optimal over F2, see [7]. The explicit description of
the ramification locus and of the set Q(N) (resp. (L)) of rational places over
F,» that are splitting completely is given below:

Tower N: For the tower N we have (with Fy =F,2(y)):
Vi, (N) ={0,00,+1} and QN) = {a € F,2 | H(a?) = 0}.

Tower L: For the tower L we have (with Fy = F2(2)):

Vi (L) = {oo,£1} and QL) ={a € Fp | H <a—2|—1> =0}.

The following remark was communicated to us by M. Zieve and H. Roskam.
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Remark 5.10. ;From the inclusion N’ C M above one can check that we have:
Fpe(x1,22,... ,2n) = Fp2(Y0, 1, ... ,Yn), for each n > 0.

Similarly, from the inclusion £ C A above one can check that we have:
Fpa(y1,y2, -+ sYn) = Fp2(20, 21,... , 2n), for each n > 0.

We then have the following isomorphisms of fields

Fpe(zo, 1, .., ¥n—2) 2 Fp2(yo,y1,- .. ,yn—1) = Fp2(20,21,...2,), for each n > 2.

This shows that all three fields above correspond to the modular curve Xo(2" ).

The next remark shifts the emphasis from the fields to the equations defining
those fields.

Remark 5.11. A crucial step in our proof of the optimality of the tower M is
the polynomial identity satisfied by the Deuring polynomial H(X):

HXY =Xt H ((X;; 1>2) :

Setting Y := X2 (see the inclusion N' C M) one gets

HY?) =Y  H <M> .
4Y

This puts in evidence that the explicit description of the set €2 of completely split-
ting places for the tower M required the knowledge that the roots of Deuring’s
polynomial are fourth powers in F,2, while for the tower A the knowledge that
the roots are squares would be enough.

The Deuring polynomial H(X) is just the reduction (mod p) of the Gaussian
hypergeometric series, as follows from the congruence relation just before the
proof of Lemma 5.8. Using this fact we obtain the following inversion formula:

(1+Y)-Y%-H<¥> :H<%).

Remark 5.12. As in Definition 5.4, we denote by €2 the set of all roots of the
polynomial H(X*). For a € Q, let Qg(a) := {a} and, for i > 0, let

2
+1
Qi) :={6] 5= VT for some v € Q;(a)}.
By Proposition 5.6 we know that €;(a) C € for all # > 0. Some computer
calculations gave us evidence for the question below:

Question: [s it true that the equality

Q=%

i>0
holds for each o € €)%

A positive answer to this question would mean that starting with any root of
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H(X) one gets all the other roots of the Deuring polynomial.
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APPENDIX
by Hans-Georg Riick !

In this appendix it is proven the following property of the roots of Deuring’s
polynomial H(X).

Theorem. Let p be a prime number, p > 3, and consider the polynomial

p—1)/2

H(X):(Z < pJ%l >2.XjeIFp[X].

=0
Then each root of H(X) is a fourth power in I .

Proof. 1f p =3, then H(X) = X + 1, and —1 is a fourth power in Fg. So we
may assume that p > 5.

Let A be a zero of H(X) in F,. We consider the elliptic curve Ej given by the
equation y? = z(z — 1)(x — \) over F,. Then E) is supersingular (cf. [18] V 4).
Since each supersingular elliptic curve can be defined over F2 (cf. [1] 10,2), there
exists an elliptic curve F} over F,2 which is (over FF,) isomorphic to Ej.

Furthermore there are three possibilities for the Frobenius endomorphism 7" of
EY over 2 (cf. [22] Theorems 4.1 and 4.2):

i)' €Z,ie., " ==+p.

ii) 7’ satisfies the equation (7')? £ pr’ +p* = 0, i.e., 7’ = pp, where p is a 6th root
of unity. The conductor of the endomorphism ring End(FE}) is relatively prime
to p. This case occurs only when p = 2 mod 3.

iii) 7/ satisfies the equation (7’)* + p? = 0, i.e., 7’ = ip, where 7 is a 4th root of
unity. Again the conductor of End(F}) is relatively prime to p. This case occurs
only when p = 3 mod 4.

We start with case ii): We see that the only possibility for the j-invariant is
J(E}) = j(E\) = 0. This yields (cf. [18] II1,1) that A satisfies A2 =X +1 =0, i.e.,
A is a 6th root of unity. Since the order #(IF};) is divisible by 8, we see that A is
a 4th power in [F 2.

Tnstitut fiir Experimentelle Mathematik, Ellernstr. 29, 45326 Essen, Germany



ON TAME TOWERS OVER FINITE FIELDS 27

In case iii) we get j(E}) = j(E\) = 123. Then \ is equal to —1,2 or 1/2 (cf.
[18] IIL1). Since #(F,)/#(F,) is divisible by 4 in this case, we see again that A
is a 4th power in F.

It remains to consider the general case i), where 7’ = +p. Since 7’ is an odd
integer, each 2-division point on FEY is fixed by 7’. Therefore the elliptic curve
Ey is also defined over ., and hence A € 2. So we can take E} = E) and
7= =*4p.

We consider the 2-division point ; = (0,0) on Ey. Let Q2 = (a,b) be a point
on Fy with 2- Q9 = @1, then 4 - Q5 = 0. Since 7 = £p = £1 mod 4, we get
7(Q2) = £Q2. This means that the first coordinate a of @), is an element of ..

Writing down 2 - Q3 = ()1 explicitly using the addition formulas on F), one
gets

(a®> = N\)? = 0. (1)

Hence A is a square in [Fp..
In the next step we choose a point Q3 = (¢, d) on Ey with 2 - Q3 = Q2. Here
this equation yields explicitly

(c—a)* +4c%(a—1)%a=0. (2)

If p = £1 mod 8, then the 8-division point ()3 satisfies 7(Q3) = £Q3. Hence
its first coordinate c lies in F2, and equation (2) shows that a is a square in F 2.
Hence we get (with (1)) that X is a 4th power in F..

If p= £3 mod 8, then 7(Q3) = £3 - Q3. Hence c lies in Fj4, and its conjugate

P is equal to the first coordinate of the point 3- Q3 = @1 — @3 which equals \/c.
Then (C' — ¢)(C — A/c) is an irreducible polynomial in F,2[C].
The other zeros of the equation (2) are the first coordinates of the points
Q3+ (1,0) and Q3+ (A, 0), which are equal to (c—\)/(c—1) and A(c—1)/(c— ).
Hence the polynomial (in the variable C') coming from equation (2) factors as

(C —a)* +4C?*(a—1)%a = (C* +eC + \)(C* + fO + \), (3)
with e, f € 2. Comparing coefficients yields the two equations
e+ f=—4a and ef = 4a® — 4a* + 4a. (4)
JFrom (4) we get the quadratic equation (in e)
e’ + dae + 4a* — 4a”® + 4a = 0. (5)
Since e is a solution of (5) in F,z2, the discriminant —4(a — 1)2a is a square in Fz.

Hence a is a square and A is a 4th power in [F ..

Remark. M. Zieve communicated to us that the theorem above (i.e., all roots
of H(X) are fourth powers in F2) is a simple consequence of Theorem 5.7 and
the fact that all roots of H(.X) are in F ..
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