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Abstract

This paper presents a new scheme for subdivision surfaces based on four-directional
meshes. It combines geometry-sensitive refinement with convolution smoothing. The
scheme has a simple, efficient implementation and generates smooth well-shaped meshes.
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1 Introduction

In recent years subdivision surfaces have become one of the most important mathe-
matical tools for shape modeling in Computer Graphics and Computer-Aided Geo-
metric Design (CAGD). The main reason for their importance is due to the fact that
they overcome some limitations of classical tools, such as NURBS (non-uniform
rational B-splines).

Subdivision surfaces provide a natural generalization of spline surfaces with several
advantages: they can handle control meshes of arbitrary topology; they guarantee
global surface smoothness while making possible control of local features; they ef-
fectively bridge the gap between continuous models and discrete representations;
and, lastly, they are associated with efficient algorithms that are simple to imple-
ment.

The power of a subdivision surface model lies in the quality of the underlying limit
surface, as well as, in the applicability of the associated computational scheme.
The various types of subdivision surfaces offer different compromises between
these two aspects. In this paper, we present a new type of subdivision surface that
achieves a good balance of such features.
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1.1 Previous Work

Subdivision surfaces started as a generalization of uniform splines [7]. The very
idea of a subdivision scheme draws upon knot insertiontechniques [19], and have
its roots on the “De Boor” algorithm [3]. Therefore, tensor product B-splines and
Box splines can be viewed as a special case of subdivision surfaces on regular
meshes [6,5].

Nonetheless, the beginning of the field is identified with the development of the
first subdivision surfaces for irregular meshes. Catmull and Clark [4], and Doo and
Sabin [9], extended bicubic and biquadratic B-splines, respectively, to arbitrary
meshes that generalize quadrilateral meshes. Later, Loop [21], created a general-
ization of quartic 3-direction Box splines to arbitrary triangular meshes. Peters and
Reif [24], and Habib and Warren [14], independently introduced schemes that gen-
eralize quadratic 4-direction Box splines on irregular rectangular meshes.

All the schemes mentioned so far result in surfaces that approximate a mesh. Dyn,
Gregory and Levin [11], designed the “Butterfly” scheme for interpolating C1 sur-
faces based on triangular meshes. This scheme was subsequently improved by
Zorin, Schroeder and Sweldens [33]. Kobbelt [17] described a C1 interpolating
scheme for quadrilateral meshes with arbitrary topology.

Approximate subdivision schemes can be used to construct subdivision surfaces
that interpolate the vertices of a control polyhedron, The process replaces the origi-
nal control mesh by a new one that satisfies these interpolation constraints [23,15].
It is also possible to modify the subdivision scheme to interpolate a set of control
curves [20,29,22].

Further work investigates control of surface features, such as creases, corners and
normals. Hoppe, De Rose, et al. [16], proposed an extension of the Loop scheme for
piecewise C1 surfaces with feature control. Zorin, Biermann and Levin [2], intro-
duced modified rules for Catmull-Clark and Loop subdivision that allows normal
control. Prautzsch and Umlauf [26] improved the Butterfly and Catmull-Clark to
generate G1 and G2 surfaces respectively.

A rigorous study of the convergence of subdivision schemes based on the charac-
teristic map was proposed by Reif [27]. Another important theoretical contribution
was given by Zorin [32] . Earlier work on this problem can be found in Doo and
Sabin [10] and Ball and Storry [1] and Prautzsch [25] .

The stationary subdivision methods cited above still have a number of shortcom-
ings: they are too rigid, and may exhibit undesirable behavior near extraordinary
points. Variational subdivision schemes attempt to overcome such limitations. This
issue has been addressed by Kobbelt [18] and by Warren [31].
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1.2 Contribution

Convolution schemes that generalize Box splines employ carefully designed
smoothing rules which depend on the local neighborhood structure of a vertex.
Variational schemes on irregular meshes employ a smoothing energy functional
which depends on the global neighborhood structure and its geometry.

It is interesting to observe that, in all existing schemes, most of the effort was con-
centrated on the design of the smoothing operator. In fact, almost all of them adopt
the same standard refinement operators. One characteristic of these refinement op-
erators is that they do not depend on the geometry of the mesh.

In this paper we describe a new subdivision scheme that uses a geometry-sensitive
refinement operator in conjunction with a convolution smoothing operator. We call
this scheme Quasi 4–8 Subdivision, because it induces a quasi-stationary subdi-
vision process. Our scheme has a simple implementation and generates smooth
surfaces that approximate the initial control mesh.

The structure of the paper is as follows: Section 2 provides a background on 4–8
meshes and uniform refinement of four directional grids. Section 3 describes the
quasi-stationary 4–8 subdivision scheme proposed in this paper. Section 4 gives
some examples of subdivision surfaces generated using quasi 4–8 subdivision. Sec-
tion 5 concludes with a summary of our results and a discussion of future work.

2 Background

Before going into the details of our subdivision scheme and its operators, we pro-
vide some background on the 4–8 mesh structure,

2.1 4–8 Meshes

A 4–8 meshis a triangular mesh which has only vertices of valence 4 and 8. More
formally, a 4–8 mesh is a 2D simplicial complex K = (V;E; F ), where V , E
and F are respectively the sets of vertices, edges and faces of K. Moreover, V is
divided into two classes V = V4 [ V8, where V4 = fv; deg(v) = 4g, and V8 =

fv; deg(v) = 8g.

A regular 4–8 meshis a triangular mesh in which the 1-neighborhood of every
internal (i.e. non-boundary) vertex of valence 4 has only neighbors of valence 8,
and the 1-neighborhood of every internal vertex of valence 8 consists of a ring of
vertices with alternating valences 4 and 8. (See Figure 1).
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Fig. 1. Regular 4–8 mesh: Æ - valence 4; � - valence 8.

Note that in a regular 4–8 mesh, every internal face is formed by linking two ver-
tices of valence 8 with one of vertex valence 4, thus a 4–8 mesh corresponds to a
[4:82] Laves tiling [13].

2.2 Refinement of 4–8 Meshes

A refinement operatorfor a regular 4–8 mesh K = (V;E; F ) is defined by the
following procedure:

(1) Split all edges e = (v; w) 2 E by inserting a split vertexsvw 2 V 0, and
connecting it to the endpoints v; w 2 V of e. That is, e 7! fev; ewg, where
ev = (v; svw), ew = (svw; w), and ev; ew 2 E 0.

(2) Subdivide all faces f 2 F into four new faces by linking the vertex of
degree 4, u 2 V4, to the split point svw of the opposite edge, and link-
ing svw to the split points swu and suv of the remaining edges. That is,
f 7! ffw; fuw; fuv; fvg, where f = (u; v; w), fw = (w; swu; svw), fuw =

(u; svw; swu), fuv = (u; suv; svw), fv = (v; svw; suv), and fw; fuw; fuv; fv 2
F 0. We remark that, on a face (u; v; w) 2 F , by the regularity property, if
u 2 V4 then v; w 2 V8.

(3) Update the complex: K 0 7! K, where K 0
= (V [ V 0; E 0; F 0

).

The subdivision template corresponding to this procedure is illustrated in Figure 2.

u

v

w

vws
s

s

uv

wu

Fig. 2. Subdivision template for 4–8 mesh.
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An important property of this refinement operator is that it can be decomposed into
two interleaved refinement sequences. This will be useful for the development of
our quasi 4–8 refinement algorithm. The operator decomposition is as follows: The
quaternary subdivision performed in one refinement step is replaced by two nested
binary subdivisions performed in subsequent steps.

The interleaved refinement procedure is very similar to the normal one. The dif-
ference is that step 1 splits only edges connecting valence 8 vertices, and step 2
subdivides faces in two, accordingly. The regularity of the mesh guarantees that
just one edge bisects in each face.

Figure 3 compares the normal and interleaved refinement procedures.

(a) (b)

Fig. 3. Normal (a) and interleaved (b) 4–8 refinement.

A uniform 4–8 mesh is a planar embedding of a 4–8 mesh. Uniform 4–8 meshes are
also known as four-directional grids. These meshes are closely related with the 4
direction Box splines [34], that are generated from the set of four direction vectors
fe1; e2; e1 + e2; e1 � e2g, where e1 = (1; 0) and e2 = (0; 1).

Since a uniform 4–8 mesh is regular, it can be refined using the procedure described
above. On the other hand, the fact that a uniform mesh is embedded in R2 , makes it
possible to exploit a geometric component in the design of the refinement operator.
Note that the topological criteria for edge bisection can be replaced by a geometric
criteria. A uniform 4–8 mesh has edges of length 1 (horizontal and vertical), andp
2 (diagonals). Thus, in the case of uniform 4–8 meshes, it is easy to verify that an

interleaved refinement procedure which splits the longest edges would produce the
same results as the one using the topological criteria (i.e. edges with vertices of va-
lence 8). This observation will be crucial in the design of our quasi 4–8 refinement
operator.

3 The Quasi 4–8 Subdivision Scheme

In this section we describe the quasi 4–8 subdivision scheme, including the associ-
ated refinement and smoothing operators.
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3.1 Refinement

As we have seen 4–8 meshes posses very nice properties but, unfortunately they
cannot represent surfaces of arbitrary topology. This motivates us to look for a
generalization of 4–8 meshes that can be extended to arbitrary surfaces.

A quasi 4–8 mesh is a triangular mesh which has mostly vertices of valence 4 and 8,
except for isolated vertices with some other valence. These are extraordinary ver-
tices. Obviously, such characterization is only applicable to dense meshes. In fact,
the real interest is to find a method to generate dense meshes with these properties,
starting from coarse meshes.

A quasi 4–8 refinement operator is a transformation on simplicial complexes em-
bedded in Rn , such that its iterated application to an initial arbitrary (coarse) mesh
will produce a quasi 4–8 mesh.

We now present an algorithm that implements this operator.

Algorithm 1 : quasi 4–8 refinement (K)
sort edges (E) in list L
while L 6= ; do

get next e from L

if e not marked then
split (e)
mark cluster (e)

for all f 2 F do
subdiv (f )

The routine sort edges, sorts edges by decreasing length and radially around each
vertex. The routine mark cluster of edge e, marks e and the edges sharing a face
with e.The routine subdiv, performs a binary decomposition of a face by linking
the split point of its longest edge to the opposite vertex.

Note that, the longest side bisection gives the best aspect ratio of the triangles in a
binary subdivision [28]. Also, edge cluster marking ensures that, at most, one edge
in each face splits.

The above remarks indicate that algorithm 1 produces a mesh with compatible ge-
ometry. The refinement procedure is also quite stable in relation to small geometric
perturbations, as we demonstrate in subsection 4.1.
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3.2 Smoothing

After the application of the refinement operator to the complexK, the set of vertices
V of K, can be naturally divided into two classes: newly inserted vertices, v0 2 V 0,
which we will call new vertices, and vertices inherited from the previous mesh,
v 2 V , which we will call old vertices. The smoothing operator is a convolution
filter. It uses a different smoothing rule for each class of vertices.

The stencil for new vertices is depicted in Figure 4(a). Recall that the 1-
neighborhood of internal new vertices, by construction, consists of exactly 4 ver-
tices. The filter function is an average of the coordinate values of these 1-neighbors.

The stencil for old vertices is depicted in Figure 4(b). Observe that the filter ker-
nel extends beyond the first neighbors of the vertex. It correspond to a smoothing
filter based on 1-neighbors before the introduction of new vertices (dashed lines
in Figures 4 and 4 are newly created edges). Note also that this smoothing filter
produces less shrinking than a gaussian filter, because more weight is put on the
central vertex. The design of this filter was inspired by the non-shrinking Laplacian
smoothing of Taubin [30].
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Fig. 4. Filter masks for new vertex (a) and old vertex (b).

The smoothing operator can be implemented very efficiently using repeated con-
volution by a sequence of averaging operations. In a first pass, new vertices are
calculated as the average of their four neighbors. In a second pass, old vertices are
updated as the average of their current value and the average of the values of new
vertices in their 1-neighborhood. It is easy to verify that this procedure corresponds
to the stencils in Figure 4 (a) and (b). Note that, this cascade convolution makes it
possible to execute all the computations “in-place”.
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This smoothing algorithm is shown below

Algorithm 2 : quasi 4-8 smoothing (K)
for v0

i
2 V 0 do

pl+1
(v0

i
) =
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X

vj2N1(v
0

i
)
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for vi 2 V do
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0
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2N1(vi)\V 0
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j
)

where k is the number of new vertices in N1(vi).

4 Examples

In this section, we give some examples of surfaces generated with our subdivision
scheme.

4.1 N-Regular Neighborhoods

The following examples illustrate the behavior of the scheme for planar 2D neigh-
borhoods.

Figure 5 shows the subdivision of regular planar polygons with 3 to 6 sides. Note
that, for n = 3; 4 and 5, the central vertex after subdivision has valence 2n. Note
also that, except for boundary vertices, all other vertices are ordinary and struc-
tured according to a regular 4–8 pattern. For the regular hexagon in Figure 5(d)
the valence of the central vertex remained unchanged. Observe that the algorithm
constructed the same subdivision as in the triangle of Figure 5(a).

(a) (b) (c) (d)

Fig. 5. Subdivision of n-regular planar polygons.

8



Figure 6 reveals how the algorithm behaves in the case of a non-uniform initial
triangulation. The input mesh, shown in Figure 6(a) is the 6-regular triangulation
of Figure 5(d), but warped such that the horizontal internal edges have a 1:2 length
ratio. Note that, because the subdivision is based on geometry, the final triangula-
tion adapts nicely to the polygonal domain. Since one of the horizontal edges is
longer than the rest, it has split in the first subdivision step. The end result is that
the final mesh in Figure 6(b), gradually transitions from a 4-regular structure (on
the left hand side) to a 5-regular structure (on the right hand side).

Fig. 6. Warped hexagon.

A consequence of the adaptivity capability of the quasi 4-8 subdivision scheme is
that the connectivity of the subdivided mesh depends on geometry. This property
makes it more difficult to predict the exact valence of a particular vertex as the
mesh is refined. Nonetheless, the subdivision process is quite stable and robust to
perturbations of the local geometry. In order to test the sensitivity of the scheme
we added a radial random displacement to the initial vertices of a planar regular
hexagon. Figure 7 displays the result of this test. The magnitude of the perturbations
are uniformly distributed in the intervals [�0:1; 0:1] for Figure 7(a), and [�0:3; 0:3]

for Figure 7(b). The radius of the hexagon is 1:0. Note that the topology of the mesh
is the same in both figures (the central vertex has valence 8), but it is different from
the topology of the mesh in Figure 5(d) (where the central vertex has valence 6).
The regular hexagon is a limit case, since the initial mesh is composed of equilateral
triangles.

(a) (b)

Fig. 7. Perturbations to edge lengths.
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Figure 8 exemplifies the subdivision of n-regular planar polygons for which n > 6.
It contrasts the behavior of the algorithm when the valence n is even and odd.
Figure 8(a) shows the mesh for a 12-sided polygon after the first subdivision step.
Note the radial decomposition structure around the central vertex. The final mesh,
shown in Figure 8(b), has a quasi 4–8 symmetric structure. Figure 8(c) shows the
mesh for a 9-sided polygon after the first subdivision. The decomposition cannot
be completely radial, because n is odd. The final mesh, shown in Figure 8(d), has a
quasi 4–8 structure, but exhibits a slight asymmetry. Observe that in both cases, the
triangulations of Figures 8(b) and (d) are somewhat distorted near the boundaries.
This is, in part, due to the fact that boundary vertices are not allowed to move.

(a) (b)

(c) (d)

Fig. 8. Subdivision of regular polygons with even (a,b) and odd (c,d) number of sides.

4.2 3D Objects

The following examples illustrate the application of the scheme to control meshes
in three dimensions.

The first example is a torus. The control mesh is shown in Figure 9(a). Polygonal
meshes after two and four subdivision steps are shown in Figures 9(b) and (c). Note
that these meshes are 4–8 regular (i.e. there are no extraordinary vertices). Note also
that the resulting surface gives a good piecewise linear approximation of the torus.
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(a) (b) (c)

Fig. 9. Polygonal surface generated from a coarse approximation of a torus.

The second example is the mannequin head. The control mesh is shown in Fig-
ure 10(a). Figure 10(b) shows the resulting subdivision surface after two subdi-
vision steps. Figure 10(c) shows a flat shaded rendering of the mesh after nine
subdivision steps. Note that the shape is very smooth and, yet the main features are
preserved.

(a) (b) (c)

Fig. 10. Mannequin head. Control mesh (a), two levels of subdivision (b), Flat shading after
nine levels of subdivision (c).

4.3 Feature Control

The final example demonstrates the result of incorporating control of shape features
in the subdivision scheme. It also shows the treatment of surfaces with boundary.

Boundary vertices are constrained to move along the surface normal direction. We
employ a tagged mesh for controlling features, as in other schemes [8,12]. Cur-
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rently, we have implemented only the simplest kind of control mechanism, in which
a tagged vertex or edge is not affected by smoothing. We plan to further investigate
this issue, and experiment with different types of context sensitive smoothing fil-
ters.

The example in Figure 11 is a surface with boundary. The control mesh, shown in
Figure 11(a), is a triangulated box shape with two open sides. The surface shown
in Figure 11(b) was constructed by tagging all boundary edges and vertices. Note
the smooth blend between the two open extremities. To produce the surface shown
in Figure 11(c), boundary edges were untagged and one internal longitudinal edge
was tagged. Note that, now, the boundary curves are smooth, except at the vertex
shared with the tagged edge.

(a) (b) (c)

Fig. 11. Control of shape features and boundary treatment: (a) initial mesh; (b) tagged
boundary edges; (c) tagged internal edge.

5 Conclusions

In this paper we presented a new scheme for subdivision surfaces. It is based on
quasi 4–8 regular meshes, and combines a geometry sensitive refinement operator
with a convolution smoothing operator.

5.1 Overview

Overall, the scheme integrates effectively the two main operations of refinement
and smoothing in order to exploit the adaptivity of the mesh structure. The imple-
mentation is simple and efficient.
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We have demonstrated the capabilities of the scheme through examples of different
surfaces: with and without boundary; of arbitrary topological type; as well as, from
shapes with variable level of complexity.

This scheme is an addition to the repertoire of modeling tools for subdivision sur-
faces. In the range of existing techniques, it lies halfway between stationary and
variational subdivision methods. Our scheme is somewhat more flexible than sta-
tionary subdivision, but it is slightly less efficient, and it does not have a closed form
description, as those methods. Compared with variational methods, our scheme is
more efficient but less powerful, particularly in relation to user-defined constraints.

5.2 Future Work

An important theoretical aspect that was not addressed in this paper is the con-
vergence analysis of the proposed subdivision scheme. In this respect, we have
conducted numerical experiments to investigate the eigenstructure of the associ-
ated subdivision matrices. Based on these experiments, we conjecture that our
scheme produces C1 surfaces. Nonetheless, a complete formal analysis is required
to demonstrate this conjecture in a conclusive way. Unfortunately, the analysis of
irregular subdivision is still an open problem. We are currently looking for a char-
acterization of the quasi 4–8 subdivision scheme with the intent to show that it is
quasi-stationary, i.e. that it is asymptotically equivalent to a convergent stationary
subdivision scheme.
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