Complete hypersurfaces in Euclidean spaces with vanishing r-mean curvatures

Manfredo do Carmo and Maria Fernanda Elbert

Abstract

Hypersurfaces in euclidean spaces with vanishing r-mean curvatures are natural generalizations of minimal hypersurfaces. When they are complete and have finite total curvature, we prove that their topological structure is similar to that of minimal hypersurfaces. We apply this result to prove a theorem on stability, a gap theorem on the total curvature, and a non-existence theorem for one-ended hypersurfaces with even dimensions.

1 Introduction

Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be a hypersurface of the Euclidean space \mathbb{R}^{n+1}. Consider the elementary symmetric functions $S_{r}, r=0,1, \ldots, n$, of the principal curvatures k_{1}, \ldots, k_{n} of x :

$$
S_{0}=1, \quad S_{r}=\sum_{i_{1}<\cdots<i_{r}} k_{i_{1}} \ldots k_{i_{r}}, \quad i_{1}, \ldots, i_{r}=1, \ldots, n,
$$

and their associated r-mean curvatures H_{r} given by

$$
H_{r}=\binom{n}{r}^{-1} S_{r}
$$

Hypersurfaces with $H_{r}=0$ generalize minimal hypersurfaces $\left(H_{1}=0\right)$. The relation is even deeper, since minimal hypersurfaces are critical points of the functional $A_{0}=\int_{M} H_{0} d M$ for compactly supported variations of M whereas hypersurfaces with $H_{r+1}=0$ are critical points of the functional $A_{r}=\int_{M} H_{r} d M$ again for compactly supported variations [12]. A breakthrough in the study of such hypersurfaces was made when Hounie and Leite [8] proved that the equation $H_{r+1}=0, r \neq 0, n-1$, is elliptic provided that $H_{n} \neq 0$ everywhere (actually they proved that a weaker condition suffices but that

[^0]is the one we want to use). In the case $r=0$, no such condition is necessary, since the equation of a minimal hypersurface is automatically elliptic.

From now on, we assume that $M^{n}=M$ is orientable and fix an orientation on M. Let $g: M \rightarrow S_{1}^{n} \subset \mathbb{R}^{n+1}$ be the Gauss map in the given orientation, where S_{1}^{n} is the unit n-sphere. Recall that the linear operator $A: T_{p} M \rightarrow T_{p} M, p \in M$, associated to the second fundamental form is given by

$$
\langle A(X), Y\rangle=-\left\langle\bar{\nabla}_{X} N, Y\right\rangle, \quad X, Y \in T_{p} M,
$$

where $\bar{\nabla}$ is the covariant derivative of the ambient space and N is the unit normal vector in the given orientation. The map $A=-d g$ is self-adjoint and its eigenvalues are the principal curvatures $k_{1}, k_{2}, \ldots, k_{n}$.

Assume now that the immersion is complete. We will say that the total curvature of the immersion is finite if $\int_{M}|A|^{n} d M<\infty$. Here $|A|=\left(\sum_{i} k_{i}^{2}\right)^{1 / 2}$.

Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be a complete minimal hypersurface with finite total curvature. Then M is (equivalent to) a compact manifold \bar{M} minus finitely many points and the Gauss map extends to the punctures. This was proved by Osserman [11] for $n=2$ (the equivalence here is conformal and the Gauss map extends to a (anti) holomorphic map $\bar{g}: \bar{M}^{2} \rightarrow S_{1}^{2}$). For an arbitrary n, this was proved by Anderson [1] (here the equivalence is a diffeomorphism and the Gauss map extends smoothly).

In this paper, we want to show that a similar topological structure holds for the case $H_{r}=0, r=1, \ldots, n-1, n \geq 3$. For various reasons (including ellipticity, but not only for that), we want the additional condition $H_{n} \neq 0$ to hold everywhere. Furthermore we also want $H_{j} \geq 0, j=1, \ldots, r-1$. More precisely, we prove

Theorem 1.1. Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$, $n \geq 3$, be an orientable complete hypersurface with $H_{r}=0, r=1, \ldots, n-1, H_{j} \geq 0, j=1, \ldots, r-1$, and $H_{n} \neq 0$ everywhere. Assume that the total curvature of the hypersurface is finite in the sense that $\int_{M}|A|^{n} d M<\infty$. Then:
i) M is diffeomorphic to a compact manifold \bar{M} minus a finite number of points q_{1}, \ldots, q_{k}.
ii) The Gauss map $g: M^{n} \rightarrow S_{1}^{n}$ extends continuously to the punctures.
iii) The extended Gauss map $\bar{g}: \bar{M}-S_{1}^{n}$ is a homeomorphism.

We want to observe that the condition $H_{j} \geq 0, j=1, \ldots, r-1$ in Theorem 1.1 is automatically satisfied for the minimal case $\left(H_{1}=0\right)$ and for the case of zero scalar curvature $\left(H_{2}=0\right)$. For $H_{1}=0$, this is obvious, and for $H_{2}=0$, see Remark 4.1 in Section 4.

It follows that Theorem 1.1 applies to minimal hypersurfaces $(n \geq 3)$ with $H_{n} \neq 0$ everywhere and finite total curvature. We do not know, however, whether the extension \bar{g} can be made differentiable in our case.

We further remark that the condition $H_{j} \geq 0, j=1, \ldots, r-1$, appears naturally in the statement of the Maximum Principle for hypersurfaces with vanishing H_{r} as described by Hounie and Leite in [9] (Lemma 1.2 and Theorem 1.3).

We want to apply Theorem 1.1 to a question on stability of complete hypersurfaces with $H_{r}=0$. In [2], a definition of stability (see Section 4) was given for such hypersurfaces and the following conjecture was proposed: There exists no complete, orientable, stable hypersurface $x: M^{3} \rightarrow \mathbb{R}^{4}$ with $H_{2}=0$ and $H_{3} \neq 0$ everywhere. Here we show that with additional conditions a more general conjecture is true. Namely, we prove

Theorem 1.2. There exists no complete orientable, stable hypersurface $x: M^{n} \rightarrow \mathbb{R}^{n+1}$, $n \geq 3$, with $H_{n-1}=0, H_{j} \geq 0, j=1, \ldots, n-2, H_{n} \neq 0$ everywhere and finite total curvature.

The paper is organized as follows. In Section 2, we discuss (Proposition 2.3) the rate of decay at infinity of the second fundamental form of a hypersurface in the hypothesis of Theorem 1.1. In Section 3, we show that each end of such a hypersurface has a unique "tangent plane at infinity" (see the definition before Lemma 3.4) and prove Theorem 1.1. In Section 4, we prove a lemma that yields domains in the unit n-sphere with n as first eigenvalue of the Laplacian (Lemma 4.3) and use it together with Theorem 1.1 to prove Theorem 1.2. In Section 5, we present further applications of Theorem 1.1 and discuss some related questions.

We thank Elon Lima, Barbara Nelli, Harold Rosenberg and Walcy Santos for conversations related to this paper.

2 The rate of decay of the second fundamental form

In the rest of this paper, we will be using the following notation for an immersion $x: M^{n} \rightarrow \mathbb{R}^{n+1}$:

$$
\begin{aligned}
& \rho=\text { intrinsic distance in } M . \\
& d=\text { distance in } \mathbb{R}^{n+1} ; 0=\text { origin of } \mathbb{R}^{n+1} . \\
& D_{p}(R)=\{x \in M ; \rho(x, p)<R\} ; L_{p}(R)=\partial D_{p}(R) . \\
& D_{p}(R, S)=\{x \in M ; R<\rho(x, p)<S\} . \\
& B(R)=\left\{x \in \mathbb{R}^{n+1} ; d(x, 0)<R\right\} ; S(R)=\partial B(R) . \\
& A(R, S)=\left\{x \in \mathbb{R}^{n+1} ; R<d(x, 0)<S\right\} .
\end{aligned}
$$

The following proposition will be used repeatedly in this and the next section.
Proposition 2.1. (The C^{2}-Compactness Theorem). Let $D \subset \mathbb{R}^{n+1}$ be a bounded domain with smooth boundary ∂D. Let $\left(M_{i}\right)$ be a sequence of connected hypersurfaces in \mathbb{R}^{n+1} with $\left(H_{r}\right)_{i}=0,\left(H_{n}\right)_{i} \neq 0$ and $\left(H_{j}\right)_{i} \geq 0$, for $j=1, \ldots, r-1$, everywhere, and such that $\partial M_{i} \cap D=\emptyset$. Assume that there exists a constant $C>0$ such that $\sup _{x \in M_{i}}\left|A_{i}(x)\right|^{2}<C$ and that there exists a sequence of points $\left(x_{i}\right), x_{i} \in M_{i}$, with a limit point $x_{0} \in D$. Then a subsequence of $\left(M_{i}\right)$ converges C^{2} to a hypersurface $M_{\infty} \subset D$ and $\left(H_{r}\right)_{\infty}=0$.

Proof. From the uniform bound of the curvature $\left|A_{i}\right|^{2}$, we conclude the existence of a number $\delta>0$ such that near each $p_{i} \in M_{i}, M_{i}$ can be graphed by a function $f_{i}^{p_{i}}$ over a disk $U_{\delta}\left(p_{i}\right) \subset T_{p_{i}} M$, of radius δ and center p_{i} in the tangent space $T_{p_{i}} M_{i}$, and that such functions have a uniform C^{1} bound (independent of p_{i} and i). Notice that the normal curvature of the graph of $f_{i}^{p_{i}}$ at a point q in the direction $v, v \in T_{q}\left(M_{i}\right),|v|=1$, is given by

$$
k_{v}^{2}=\left[\left(f_{i}^{p_{i}}\right)^{\prime \prime}\right]^{2} /\left(1+\left[\left(f_{i}^{p_{i}}\right)^{\prime}\right]^{2}\right)^{3} .
$$

Here the primes denote derivatives at $t=0$ of the restriction $f_{i}^{p_{i}}(c(t))$, and $c(t)$ is a curve on the graph parametrized by arc length with $c(0)=q, c^{\prime}(0)=v$. Since $\left[\left(f_{i}^{p_{i}}\right)^{\prime}\right]^{2}$ and k_{v}^{2} are uniformly bounded, we obtain a uniform bound for the second derivative in any direction. By a standard procedure (see e.g. [5] p. 280), this implies a uniform C^{2}-bound on $f_{i}^{p_{i}}$.

Now, consider the sequence $\left(x_{i}\right)$ with a limit point x_{0}, and let τ_{i} be the translation that takes x_{i} to x_{0}. The unit normals of $\tau_{i}\left(M_{i}\right)$ at x_{0} have a convergent subsequence, hence a subsequence of the tangent planes $T_{x_{0}}\left(\tau_{i} M_{i}\right)$ converges to a plane π containing x_{0}. For i large, the parts of M_{i} that were graphs over $D_{\delta}\left(x_{i}\right)$ are now graphs over $D_{\delta / 2}\left(x_{0}\right) \subset \pi$; we will denote the corresponding functions by $g_{i}^{x_{0}}$.

We need the following lemma.
Lemma 2.2. A subsequence of $\left(g_{i}^{x_{0}}\right)$ converges C^{2} to a function $g_{\infty}^{x_{0}}$.
Proof. By the bounds on the derivatives that we have obtained, the functions $g_{i}^{x_{0}}$ and their first and second derivatives are uniformly bounded, say, $\left|g_{i}^{x_{0}}\right|_{2 ; D_{\delta / 2}\left(x_{0}\right)}<C_{1}$.

For each i, consider the parallel hypersurface of the graph of $g_{i}^{x_{0}}$ obtained by displacing by t this graph along its normal. For t small, we obtain a graph over $D_{\delta / 4}\left(x_{0}\right) \subset \pi$ whose r-mean curvature is easily computed to be

$$
\left(H_{r}(t)\right)_{i}=\frac{1}{\binom{n}{r}}\left[\frac{t\binom{r+1}{r}\left(S_{r+1}\right)_{i}+t^{2}\binom{r+2}{r}\left(S_{r+2}\right)_{i}+\cdots+t^{n-r}\binom{n}{r}\left(S_{n}\right)_{i}}{\prod_{j=1}^{n}\left(1+t\left(k_{j}\right)_{i}\right)}\right]
$$

where we have used that $S_{r}=0$. Let us denote the function corresponding to the parallel graph by $g_{i}^{x_{0}}(t)$. Since $\left(H_{n}\right)_{i} \neq 0$, we have that $\left(S_{r+1}\right)_{i} \neq 0$ ([9], Lemma 1.2), and by taking t small enough (positive or negative as the case may be), we obtain that $\left(H_{r}(t)\right)_{i}>0$.

By construction, for small t, the function $g_{i}^{x_{0}}(t)$ and its derivatives are close to $g_{i}^{x_{0}}$ and its derivatives. So given i, there exists t_{i} such that

$$
\left|g_{i}^{x_{0}}\left(t_{i}\right)-g_{i}^{x_{0}}\right|_{2 ; \Omega}<1 / i
$$

where $\Omega=D_{\delta / 4}\left(x_{0}\right)$. Consider the sequence $\left(g_{i}^{x_{0}}\left(t_{i}\right)\right)$. Since $g_{i}^{x_{0}}$ is uniformly C^{2}-bounded, so is $\left(g_{i}^{x_{0}}\left(t_{i}\right)\right)$, say

$$
\left|g_{i}^{x_{0}}\left(t_{i}\right)\right|_{2 ; \Omega}<C_{2}
$$

Now set $\psi_{i}=\left(H_{r}\left(t_{i}\right)\right)_{i}$. Then, for each $i, g_{i}^{x_{0}}\left(t_{i}\right)$ satisfies the following fully nonlinear elliptic equation of second order:

$$
H_{r}^{1 / k}=\psi_{i}^{1 / k}
$$

Set $\Gamma=$ connected component in \mathbb{R}^{n}, containing $a=(1, \ldots, 1)$, of the set of principal curvatures vectors $\left(k_{1}, \ldots, k_{n}\right)$ for which $H_{r}>0$. The conditions $\left(H_{r}\right)_{i}=0$ and $\left(H_{j}\right)_{i} \geq 0, j=1, \ldots, r-1$, guarantee that $\left(\left(k_{1}\right)_{i}, \ldots,\left(k_{n}\right)_{i}\right) \in \partial \Gamma$ (see [9], Lemma 1.2; notice that the notation for Γ in [9] is C). Thus, since $\left(H_{r}\left(t_{i}\right)\right)_{i}>0$, we have that $\left(\left(k_{1}\left(t_{i}\right)\right)_{i}, \ldots,\left(k_{n}\left(t_{i}\right)\right)_{i}\right) \in \Gamma$. Because $H_{r}^{1 / r}$ is concave in Γ (see [15], Example 2), we can apply the known Hölder estimates for fully nonlinear elliptic equations ([7], Theorem 17.14, p. 461) to obtain

$$
\left[D^{2} g_{i}^{x_{0}}\left(t_{i}\right)\right]_{\alpha ; \Omega^{\prime}}<K
$$

where $\Omega^{\prime} \subset B_{\delta / 4}\left(x_{0}\right), x_{0} \in \Omega^{\prime}$, and K is a constant that depends essentially on Ω^{\prime} and C_{2}. It follows that $g_{i}^{x_{0}}\left(t_{i}\right)$ and its first and second derivative are uniformly bounded and equicontinuous. By the Theorem of Arzelá-Ascoli, a subsequence of $\left(g_{i}^{x_{0}}\left(t_{i}\right)\right)$ converges C^{2} to a function $g_{\infty}^{x_{0}}$. By construction, the corresponding subsequence $\left(g_{i}^{x_{0}}\right)$ converges C^{2} to $g_{\infty}^{x_{0}}$ and this completes the proof of the lemma.

Notice that we have obtained a subsequence of $\left(M_{i}\right)$ with the property that those parts of M_{i} that are graphs around the points x_{i}, converge to a hypersurface passing through x_{0}. We will express this fact by saying that $\left(M_{i}\right)$ has a subsequence that converges locally at x_{0}.

To complete the proof of Proposition 2.1, we need a covering argument that runs as follows.

Let L be the set of all limit points of sequences of the form $\left(p_{i}\right)$, where $p_{i} \in M_{i}$, and let N be a connected component of L. Let q_{1}, q_{2}, \ldots be a sequence of points in N that is dense in N. Let $\left(q_{1}^{i}\right), q_{1}^{i} \in M_{i}$, be a sequence that converges to q_{1}. As we did before, we can obtain a subsequence $\left(M_{i}^{1}\right)$ of $\left(M_{i}\right)$ that converges locally at q_{1}. From this sequence, we can extract a subsequence $\left(M_{i}^{2}\right)$ that converges locally at q_{1} and q_{2}. By induction, we can find sequences $\left(M_{i}^{n}\right)$ that converge locally to $\bigcup_{i} q_{i}, i=1, \ldots, n$. By using the Cantor diagonal process, we obtain a sequence $M_{1}^{1}, M_{2}^{2}, \ldots$ that converges C^{2} to a hypersurface M_{∞} that contains N. Clearly M_{∞} satisfies $H_{r}=0$. This completes the proof of Proposition 2.2.

Remark. Lemma 2.2 in the proof of the C^{2}-compactness theorem is the only reason why we need the condition $H_{j} \geq 0, j=1, \ldots, r$ in Theorem 1.1. This comes from the fact that, in contrast to the minimal case, where the elliptic partial differential equation involved is quasi-linear, the case $H_{r}=0$ involves a fully nonlinear equation on f of the type $F\left(D f, D^{2} f\right)=0$. For such equations, the available theorems that yields Hölder $C^{2+\alpha}$ bounds for f in terms of C^{2} bounds require the function $F\left(D f, D^{2} f\right)$ to be concave in the second argument. Since H_{r} is not a concave function, we approximated our graphs by using the function $\left(H_{r}\right)^{1 / r}$ which is concave in Γ. Thus we must require our curvature vectors to be in $\partial \Gamma$, and this is equivalent to requiring $H_{j} \geq 0, j=1, \ldots, r-1$.

The proof of the following Proposition is similar to that of [1], Proposition 2.2; for completeness, we present it here. We assume that the immersion passes through $0 \in \mathbb{R}^{n+1}$.

Proposition 2.3. Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be a complete immersion with $H_{r}=0, H_{j} \geq 0$, $j=1, \ldots, r-1$, and $H_{n} \neq 0$ everywhere. Assume that x has finite total curvature. Then, given $\varepsilon>0$ there exists $R_{0}>0$ such that, for $R>R_{0}$,

$$
R^{2} \sup _{x \in M-D_{0}(R)}|A|^{2}(x)<\varepsilon .
$$

The proof of Proposition 2.3 depends on Lemmas 2.4 and 2.5 below. For these lemmas we use the following notation. We denote by $h: X^{n} \rightarrow \mathbb{R}^{n+1}$ an immersion into \mathbb{R}^{n+1} of an n-manifold $X^{n}=X$ with boundary ∂X and such that $H_{r}=0, H_{j} \geq 0, j=1, \ldots, r-1$, $H_{n} \neq 0$ everywhere and that there exists a point $x \in X$ with $D_{x}(1) \cap \partial X=\emptyset$.

Lemma 2.4. There exists $\delta>0$ such that for any $h: X^{n} \rightarrow \mathbb{R}^{n+1}$ as above, if

$$
\int_{D_{x}(1)}\left|A_{h}\right|^{n} d X<\delta
$$

then

$$
\sup _{t \in[0,1]}\left[t^{2} \sup _{D_{x}(1-t)}\left|A_{h}\right|^{2}\right] \leq 4
$$

Here A_{h} is the linear map associated to the second fundamental of h.
Proof. Suppose the lemma is false. Then there exist a sequence $h_{i}: X_{i} \rightarrow \mathbb{R}^{n+1}$ and points $x_{i} \in X_{i}$ with $D_{x_{i}}(1) \cap \partial X_{i}=\emptyset,\left(H_{r}\right)_{i}=0, H_{j} \geq 0, j=1, \ldots, r-1$, and $\left(H_{n}\right)_{i} \neq 0$, such that

$$
\int_{D_{x_{i}}(1)}\left|A_{i}\right|^{n} d X_{i} \rightarrow 0
$$

but

$$
\sup _{t \in[0,1]}\left[t^{2} \sup _{D_{x_{i}}(1-t)}\left|A_{i}\right|^{2}\right]>4
$$

for all i, where $A_{i}=A_{h_{i}}$.
Choose $t_{i} \in[0,1]$ so that

$$
t_{i}^{2} \sup _{D_{x_{i}}\left(1-t_{i}\right)}\left|A_{i}\right|^{2}=\sup _{t \in[0,1]}\left[t^{2} \sup _{D_{x_{i}}(1-t)}\left|A_{i}\right|^{2}\right]
$$

and choose $y_{i} \in D_{x_{i}}\left(1-t_{i}\right)$ so that

$$
\left|A_{i}\right|^{2}\left(y_{i}\right)=\sup _{D_{x_{i}}\left(1-t_{i}\right)}\left|A_{i}\right|^{2}
$$

By using that $D_{y_{i}}\left(t_{i} / 2\right) \subset D_{x_{i}}\left(1-\left(t_{i} / 2\right)\right)$ and the choice of t_{i}, we obtain

$$
\sup _{D_{y_{i}}\left(t_{i} / 2\right)}\left|A_{i}\right|^{2} \leq \sup _{D_{x_{i}}\left(1-\left(t_{i} / 2\right)\right)}\left|A_{i}\right|^{2} \leq \frac{t_{i}^{2}}{t_{i}^{2} / 4} \sup _{D_{x_{i}}\left(1-t_{i}\right)}\left|A_{i}\right|^{2}
$$

hence, by the choice of y_{i}, we have

$$
\begin{equation*}
\sup _{D_{y_{i}}\left(t_{i} / 2\right)}\left|A_{i}\right|^{2} \leq 4\left|A_{i}\right|^{2}\left(y_{i}\right) \tag{2.1}
\end{equation*}
$$

We now rescale the metric defining $d \tilde{s}_{i}^{2}=\left|A_{i}\right|^{2}\left(y_{i}\right) d s_{i}^{2}$, that is, $d \tilde{s}_{i}^{2}$ is the metric on X_{i} induced by $\tilde{h}_{i}=d_{i} \circ h$, where d_{i} is the dilation of \mathbb{R}^{n+1} about $h_{i}\left(y_{i}\right)$ by the factor $\left|A_{i}\right|\left(y_{i}\right)$ (by translation, we may assume that $h_{i}\left(y_{i}\right)=0$). The symbol \sim will indicate quantities measured with respect to the new metric $d \tilde{s}_{i}^{2}$.

By assumption, $\left|A_{i}\right|^{2}\left(y_{i}\right)>4 / t_{i}^{2}$. Thus

$$
\tilde{D}_{y_{i}}(1)=D_{y_{i}}\left(\left[\left|A_{i}\right|\left(y_{i}\right)\right]^{-1}\right) \subset D_{y_{i}}\left(t_{i} / 2\right) \subset D_{x_{i}}\left(1-t_{i} / 2\right) \subset D_{x_{i}}(1)
$$

It follows that $\tilde{D}_{y_{i}}(1) \cap \partial X_{i}=\emptyset$. Now, use (2.1) and the fact that

$$
\left|\tilde{A}_{i}\right|(p)=\left[\left|A_{i}\right|\left(y_{i}\right)\right]^{-1}\left|A_{i}\right|(p)
$$

to obtain

$$
\sup _{\tilde{D}_{y_{i}}(1)}\left|\tilde{A}_{i}\right|^{2} \leq 4
$$

Therefore, the sequence $\tilde{h}_{i}=\tilde{D}_{y_{i}}(1) \rightarrow \mathbb{R}^{n+1}, \tilde{h}_{i}\left(y_{i}\right)=0$, is a sequence of immersions with $\left(H_{r}\right)_{i}=0, H_{j} \geq 0, j=1, \ldots, r-1,\left(H_{n}\right)_{i} \neq 0$, and uniformly bounded second fundamental form. By the C^{2}-Compactness Theorem, a subsequence converges C^{2} to an immersion

$$
\tilde{h}_{\infty}: \tilde{D}_{y_{\infty}}(1) \rightarrow \mathbb{R}^{n+1}
$$

Furthermore, since

$$
\int_{\tilde{D}_{y_{i}(1)}}\left|\tilde{A}_{i}\right|^{n} d \tilde{X}_{i} \leq \int_{D_{x_{i}}(1)}\left|A_{i}\right|^{n} d X_{i} \rightarrow 0
$$

$\tilde{h}_{\infty}\left(\tilde{D}_{y_{\infty}}(1)\right)$ is contained in an n-plane of \mathbb{R}^{n+1}. But $\left|\tilde{A}_{i}\right|\left(y_{i}\right)=1$, for all i, hence $\left|\tilde{A}_{\infty}\right|\left(y_{\infty}\right)=1$. This is a contradiction, and completes the proof of Lemma 2.4.

LEmma 2.5. Given $\varepsilon_{1}>0$, there exists $\delta>0$, such that, for any $h: X^{n} \rightarrow \mathbb{R}^{n+1}$ as above, if

$$
\int_{D_{x}(1)}\left|A_{h}\right|^{n} d X<\delta
$$

then

$$
\sup _{D_{x}(1 / 2)}\left|A_{h}\right|^{2}<\varepsilon_{1}
$$

Proof. Assume the lemma is false. Then there exists a sequence of immersions $h_{i}: X_{i} \rightarrow$ \mathbb{R}^{n+1} with $\left(H_{r}\right)_{i}=0,\left(H_{j}\right)_{i} \geq 0, j=1, \ldots, r-1,\left(H_{n}\right)_{i} \neq 0$, and $D_{x_{i}}(1) \cap \partial X_{i}=\emptyset$ (by translation, we can assume $h_{i}\left(x_{i}\right)=0$) such that

$$
\begin{equation*}
\int_{D_{x_{i}}(1)}\left|A_{i}\right|^{n} d X_{i} \rightarrow 0 \tag{2.2}
\end{equation*}
$$

but

$$
\begin{equation*}
\sup _{D_{x_{i}}(1 / 2)}\left|A_{i}\right|^{2} \geq C^{2} \tag{2.3}
\end{equation*}
$$

for some constant C.
By Lemma 2.4 (with $t=1 / 2$), we have, for i sufficiently large,

$$
\sup _{D_{x_{i}}(1 / 2)}\left|A_{i}\right|^{2} \leq 16
$$

By the C^{2}-Compactness Theorem and (2.2), a subsequence of $\left(h_{i}\right)$ converges smoothly to a domain in an n-plane in \mathbb{R}^{n+1}. This is a contradiction to (2.3) and proves Lemma 2.5.

Proof of Proposition 2.3. We first rescale the immersion x to $\tilde{x}=d_{2 / R} \circ x$, where $d_{2 / R}$ is the dilation by the factor $2 / R$. Thus the metric induced by \tilde{x} in M is $d \tilde{s}^{2}=\left(4 / R^{2}\right) d s^{2}$, where $d s^{2}$ is the metric induced by x. We will denote the quantities measured relative to the new metric by the superscript \sim. Notice that the second fundamental form \tilde{A} satisfies $|\tilde{A}|^{2}=\frac{R^{2}}{4}|A|^{2}$.

Therefore, Proposition 2.3 will be established once we prove that given $\varepsilon>0$ there exists R_{0} such that, for $R>R_{0}$,

$$
\sup _{x \in M-\tilde{D}_{0}(2)}|\tilde{A}|^{2}<\varepsilon / 4 .
$$

Given the above ε, set $\varepsilon_{1}=\varepsilon / 4$ and let $\delta>0$ be given by Lemma 2.5. Since M has finite total curvature, there exists R_{0} such that, for $R>R_{0}$,

$$
\delta>\int_{D_{0}(R / 2, \infty)}|A|^{n} d M=\int_{\tilde{D}_{0}(1, \infty)}|\tilde{A}|^{n} d \tilde{M}
$$

Now, take $x \in M-\tilde{D}_{0}(2)$. Then $\tilde{D}_{x}(1) \subset \tilde{D}_{0}(1, \infty)$. By Lemma 2.5, the above inequality implies that

$$
\sup _{\tilde{D}_{x}(1 / 2)}|\tilde{A}|^{2}<\varepsilon_{1}=\varepsilon / 4,
$$

hence

$$
\sup _{x \in M-\tilde{D}_{0}(2)}|\tilde{A}|^{2}<\varepsilon / 4 .
$$

This completes the proof of Proposition 2.3.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 depends on a series of lemmas to be presented now. In this section, $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ will always denote a complete hypersurface with $H_{r}=0, H_{j} \geq 0$, $j=1, \ldots, r-1, H_{n} \neq 0$ everywhere, and with finite total curvature.

The following lemma is similar to Lemma 2.4 in Anderson [1]. For completeness, we include its proof.

Lemma 3.1. Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be as above. Assume that $x\left(M^{n}\right)$ passes through the origin 0 of \mathbb{R}^{n+1}, and let $r(p)=d(p, 0)$, where $p \in M$ and d is the distance in \mathbb{R}^{n+1}. Then x is proper and the gradient ∇r of r in M satisfies

$$
\lim _{r \rightarrow \infty}|\nabla r|=1
$$

In particular, there exists r_{0} such that if $r>r_{0}, \nabla r \neq 0$, i.e., the function r has no critical points outside the ball $B\left(r_{0}\right)$.

Proof. Let $\gamma(s)$ be any minimizing geodesic issuing from $0 \in M$ (a ray) parametrized by the arc length, and set $T=\gamma^{\prime}(s)$. Let

$$
X=(1 / 2) \bar{\nabla} r^{2}=r \bar{\nabla} r,
$$

be the position vector field, where $\bar{\nabla} r$ is the gradient of r in \mathbb{R}^{n+1}. Since $\bar{\nabla}_{T} X=T$, we have

$$
T\langle X, T\rangle=\left\langle\bar{\nabla}_{T} X, T\right\rangle+\left\langle X, \bar{\nabla}_{T} T\right\rangle=1+\left\langle X, \bar{\nabla}_{T} T\right\rangle
$$

Since γ is a geodesic in M, the tangent component of $\bar{\nabla}_{T} T$ vanishes and

$$
\bar{\nabla}_{T} T=\left\langle\bar{\nabla}_{T} T, N\right\rangle N=-\left\langle\bar{\nabla}_{T} N, T\right\rangle N=\langle A(T), T\rangle N .
$$

It follows, by Cauchy-Schwary inequality, that

$$
\left|\left\langle X, \bar{\nabla}_{T} T\right\rangle\right| \leq|X||A(T) \| T| \leq|X||A|
$$

hence

$$
T\langle X, T\rangle \geq 1-|X||A| .
$$

By using Proposition 2.3 with $\varepsilon=1 / n^{2}$, and the fact that $r=|X(s)| \leq s$, we obtain

$$
\begin{equation*}
T\langle X, T\rangle(s) \geq 1-\frac{1}{n} \tag{3.1}
\end{equation*}
$$

for all $s>R_{0}$, where R_{0} is given by Proposition 2.3. Integration of (3.1) from R_{0} to s gives

$$
\begin{equation*}
\langle X, T\rangle(s) \geq\left(1-\frac{1}{n}\right)\left(s-R_{0}\right)+\langle X, T\rangle\left(R_{0}\right) . \tag{3.2}
\end{equation*}
$$

Since

$$
\langle X, T\rangle(s)=\langle r \bar{\nabla} r, T\rangle(s) \leq r|\nabla r|(s),
$$

we have

$$
\begin{equation*}
|\nabla r|(s) \geq \frac{\langle X, T\rangle(s)}{s} \geq\left(1-\frac{1}{n}\right)\left(\frac{s-R_{0}}{s}\right)+\frac{\langle X, T\rangle\left(R_{0}\right)}{s} \tag{3.3}
\end{equation*}
$$

Because $r(s)=|X(s)| \geq\langle X, T\rangle(s)$, we see from (3.2) that r goes to infinity with s; thus M is properly immersed. Furthermore, by taking the limit in (3.3) as $s \rightarrow \infty$, we obtain that $\lim _{s \rightarrow \infty}|\nabla r| \geq 1-(1 / n)$. Since n is arbitrary and $|\nabla r| \leq 1$, we obtain that $\lim _{r \rightarrow \infty}|\nabla r|=1$. This concludes the proof of Lemma 3.1.

Now, let r_{0} be chosen so that r has no critical points in $W=x(M)-\left(B\left(r_{0}\right) \cap x(M)\right)$. By Morse Theory, W is diffeomorphic to $\left[x(M) \cap S\left(r_{0}\right)\right] \times[0, \infty]$. Let V be a connected component of $x^{-1}(W)$, to be called an end of M. Since $B\left(r_{0}\right) \cap x(M)$ is compact, M has only a finite number of ends. In what follows, we identify V and $x(V)$.

Let $r>r_{0}$ and set

$$
\begin{aligned}
\Sigma_{r} & =\frac{1}{r}[V \cap S(r)] \subset S(1), \\
V_{r} & =\frac{1}{r}[V \cap B(r)] \subset B(1) .
\end{aligned}
$$

Denote by A_{r} the second fundamental form of V_{r}. Then

$$
\left|A_{r}\right|^{2}(x)=r^{2}|A|^{2}(r x) .
$$

Lemma 3.2. For $r>r_{0}, V \cap B(r)$ is connected.
Proof. Notice that $V=S \times[0, \infty)$ where S is a connected component $S_{\alpha_{i}}$ of $M \cap S\left(r_{0}\right)$. Consider the trajectories of ∇r in V. By the choice of r_{0}, these trajectories cover V simply (i.e., for each point of V there passes one and only one such trajectory).

Assume that $V \cap B(r)$ has two connected components, V_{1} and V_{2}. Since $\left(V_{1} \cup V_{2}\right) \cap$ $S\left(r_{0}\right)=S_{\alpha_{i}}$ is connected, either $V_{1} \cap S\left(r_{0}\right)$ or $V_{2} \cap S\left(R_{0}\right)$ is empty. Assume it is V_{2}.

Let $p \in V_{2}$. Since the trajectories of ∇r cover V simply, there exists a trajectory $\varphi(t)$ with $\varphi(0) \in V_{1} \cap S\left(r_{0}\right)$ and $\varphi\left(t_{2}\right)=p$. Thus, there exist $t_{0}, t_{1} \in\left[0, t_{2}\right]$, such that a trajectory of ∇r satisfies $\left|\varphi\left(t_{0}\right)\right|=\left|\varphi\left(t_{1}\right)\right|=r$. We claim that this implies the existence of a critical point at some point of $\varphi(t)$.

Indeed, let $f(t)=r(\varphi(t), 0)$, where r is the distance in \mathbb{R}^{n+1} restricted to M. Then $f: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function with $f\left(t_{0}\right)=f\left(t_{1}\right)$. Thus, there exists $\bar{t} \in\left[t_{0}, t_{1}\right]$ with $f^{\prime}(\bar{t})$. But

$$
f^{\prime}(t)=d r\left(\frac{d \varphi}{d t}\right)=d r(\nabla r)=\langle\nabla r, \nabla r\rangle
$$

Therefore,

$$
0=f^{\prime}(\bar{t})=|\nabla r(\bar{t})|^{2}
$$

and this proves our claim.
Thus we have reached a contradiction and this proves the lemma.

Lemma 3.3. Let $0<\delta<1$ be given and fix a ring $A(\delta, 1) \subset B(1)$. Then, given $\varepsilon>0$, there exists r_{1} such that, for all $r>r_{1}$ and all $x \in A(\delta, 1)$, we have

$$
\left|A_{r}\right|^{2}(x)<\varepsilon .
$$

Proof. By Proposition 2.3, there exists r_{0} such that for $r>r_{0}$

$$
\begin{equation*}
r^{2} \sup _{x \in L_{0}(r)}|A|^{2}(x)<\delta^{2} \varepsilon \tag{3.4}
\end{equation*}
$$

Take $r_{1}=r_{0} / \delta$. Then, for $r>r_{1}$ and $x \in A(\delta, 1)$,

$$
r|x|>r \delta>r_{0}
$$

Thus, by (3.4),

$$
\begin{equation*}
r^{2}|x|^{2}\left[\sup _{y \in L_{0}(r|x|)}|A|^{2}(y)\right]<\delta^{2} \varepsilon \tag{3.5}
\end{equation*}
$$

Now, by using (3.5), we obtain that

$$
\left|A_{r}\right|^{2}(x)=r^{2}|A|^{2}(r x)<r^{2}\left[\sup _{y \in L_{0}(r|x|)}|A|^{2}(y)\right]<\frac{\delta^{2} \varepsilon}{|x|^{2}}<\varepsilon,
$$

and this proves Lemma 3.3.
By Lemma 3.3, we see that $\left|A_{r}\right|^{2} \rightarrow 0$ uniformly in the ring $A(\delta, 1)$. It follows from this and the fact that V_{r} is connected that we can apply the C^{2}-Compactness Theorem and conclude that a subsequence $V_{r_{i}}$ of V_{r} converges to a piece of an n-plane π in $A(\delta, 1)$. Since δ is arbitrary, $V_{r_{i}}$ converges to π in $B(1)-\{0\}$. Furthermore, since $\lim _{r \rightarrow \infty}|\nabla r|=1$, π passes through the origin. Thus, $\Sigma_{r_{i}}$ converges to an equatorial sphere $\Sigma_{\infty}=S^{n-1}(1) \subset$ $S^{n}(1)$, possibly with multiplicity $m \geq 1$. By a covering argument, it is easily seen that $m=1$, since S^{n-1} is simply-connected. Thus V is embedded.

The n-plane π spanned by Σ_{∞} is called the tangent plane at infinity of the end V associated to the sequence $\left\{r_{i}\right\}$. A crucial point in the proof of Theorem 1.1 is to show that this plane does not depend on the sequence $\left\{r_{i}\right\}$.

Lemma 3.4. Each end V of M has a unique tangent plane at infinity.
Proof. Suppose that $\left\{s_{i}\right\}$ and $\left\{r_{i}\right\}, i=1, \ldots, \infty$, are sequences of real numbers and that π_{1} and π_{2} are distinct tangent planes at infinity associated to $\left\{s_{i}\right\}$ and $\left\{r_{i}\right\}$, respectively. We can assume that the sequences satisfy

$$
s_{1}<r_{1}<s_{2}<r_{2}<\cdots<s_{i}<r_{i}<\ldots
$$

Let K be the closure of $B(3 / 4)-B(1 / 4)$ and let N_{1} be the normal to π_{1}, obtained as the limit of the normals to

$$
K \cap\left\{\frac{1}{s_{i}} V\right\}=\frac{1}{s_{i}}\left(V \cap s_{i} K\right)
$$

Similarly, let N_{2} be the normal to π_{2} obtained as the limit of the normals to $K \cap\left\{\left(1 / r_{i}\right) V\right\}$.
Now let U_{1} and U_{2} be neighborhoods in $S^{n}(1)$ of N_{1} and N_{2}, respectively, such that $U_{1} \cap U_{2}=\emptyset$. Thus, there exists an index i_{0} such that, for $i>i_{0}$, the normals to $K_{i}^{1}=\left(s_{i} K\right) \cap V$ are in U_{1} and the normals to $K_{i}^{2}=\left(r_{i} K\right) \cap V$ are in U_{2}. If $K_{i}^{1} \cap K_{i}^{2} \neq \emptyset$, for some $i>i_{0}$, this contradicts the fact that $U_{1} \cap U_{2}=\emptyset$, and the lemma is proved.

Thus we may assume that, for all $i>i_{0}, K_{i}^{1} \cap K_{i}^{2}=\emptyset$. In this case, we have $(1 / 4) r_{i}>(3 / 4) s_{i}$; here, and in what follows, we always assume $i>i_{0}$. Set

$$
W_{i}=V \cap\left(B\left(\frac{1}{4} r_{i}\right)-B\left(\frac{3}{4} s_{i}\right)\right)
$$

Since $H_{n} \neq 0$ everywhere, the Gauss map g is a local diffeomorphism, hence $g\left(\partial W_{i}\right) \supset$ $\partial\left(g\left(W_{i}\right)\right)$. Since

$$
\begin{aligned}
& g\left(S\left(\frac{1}{4} r_{i}\right) \cap V\right) \subset U_{2}, \\
& g\left(S\left(\frac{3}{4} s_{i}\right) \cap V\right) \subset U_{1},
\end{aligned}
$$

we have $g\left(\partial W_{i}\right) \subset U_{1} \cup U_{2}$. Thus

$$
\partial\left(g\left(W_{i}\right)\right) \subset g\left(\partial W_{i}\right) \subset U_{1} \cup U_{2}
$$

and, since $g\left(W_{i}\right)$ has nonvoid intersection with both U_{1} and U_{2}, we obtain

$$
\begin{equation*}
g\left(W_{i}\right) \supset S^{n}(1)-\left\{U_{1} \cup U_{2}\right\} . \tag{3.6}
\end{equation*}
$$

On the other hand, because

$$
\left(\Sigma k_{i}^{2}\right)^{n}>C k_{1}^{2} \ldots k_{n}^{2}
$$

for a constant $C=C(n)$, we have that

$$
\left|H_{n}\right|<\frac{1}{\sqrt{C}}|A|^{n}
$$

Furthermore, since the total curvature is finite,

$$
\int_{W_{i}}|A|^{n} d M \rightarrow 0, \quad i \rightarrow \infty
$$

Therefore, since

$$
\text { Area } g\left(W_{i}\right) \leq \int_{W_{i}}\left|H_{n}\right| d M<\left(\frac{1}{\sqrt{C}}\right) \int_{W_{i}}|A|^{n} d M
$$

we have that Area $g\left(W_{i}\right) \rightarrow 0$. This a contradiction to (3.6), and completes the proof of Lemma 3.4.

We can now prove our main Theorem.
Proof of Theorem 1.1. We prove (i) and (ii) together. Following Anderson [1], we consider each end V_{i} and apply to V_{i} the inversion $I: \mathbb{R}^{n+1}-\{0\} \rightarrow \mathbb{R}^{n+1}-\{0\}$, $I(x)=x /|x|^{2}$. Thus $I\left(V_{i}\right) \subset B(1)-\{0\}$ and, by Lemma 3.4, for any sequence $q_{n} \in I\left(V_{i}\right)$ that converges to the origin 0 , the normals of q_{n} converge to a unique normal $p_{i} \in S^{n}(1)$ (namely, to the normal of the plane at infinity of V_{i}). It follows that each V_{i} can be compacfied with a point q_{i} together with a tangent plane at q_{i}. Doing this for each V_{i}, we obtain a compact C^{1}-manifold \bar{M} such that $\bar{M}-\left\{q_{1}, \ldots, q_{k}\right\}$ is diffeomorphic to M, and a continuous extension $\bar{g}: \bar{M} \rightarrow S^{n}(1)$ of g by setting $\bar{g}\left(q_{i}\right)=p_{i}$. This proves (i) and (ii).

We prove (iii). Let $\left\{r_{i}^{n_{i}}\right\} \in M, i=1, \ldots, k$ and n_{i} running in a set I_{i}, be the inverse image of p_{i} by $g: M^{n} \rightarrow S^{n}(1)$. Since g is a local diffeomorphism, either the set $\left\{r_{i}^{n_{i}}\right\}$ is finite or the image set $\left\{g\left(r_{i}^{n_{i}}\right)\right\}$ has p_{i} as the unique accumulation point. Clearly the map

$$
g: M-\bigcup_{i=1}^{k}\left\{r_{i}^{n_{i}}\right\} \rightarrow S^{n}(1)-\left\{p_{1}, \ldots, p_{k}\right\}
$$

is proper and its Jacobian never vanishes. In this situation, it is known that the map is surjective and a covering map ([17], Corollary 1). Since $n \geq 3, S^{n}(1)-\left\{p_{1}, \ldots, p_{k}\right\}$ is simply-connected. Thus g is a global diffeomorphism.

To complete the proof of (iii), we must show that: a) if $\bar{g}\left(q_{i}\right)=\bar{g}\left(r_{i}^{n_{i}}\right)$, then $q_{i}=r_{i}^{n_{i}}$ (this shows that the sets $\left\{r_{i}^{n_{i}}\right\}$ are actually empty), and b) if $\bar{g}\left(q_{i}\right)=\bar{g}\left(q_{j}\right)$, then $q_{i}=q_{j}$. Let us prove (a). Suppose that the contrary is true, that is, there exist q_{i} and r_{i}^{s} with $\bar{g}\left(q_{i}\right)=\bar{g}\left(r_{i}^{s}\right)=p_{i}$ and $q_{i} \neq r_{i}^{s}$. Let $W \subset S^{n}(1)$ be a neighborhood of p_{i}. By continuity, there exist disjoint neighborhoods U_{i} of q_{i} and U_{s} of r_{i}^{s} such that $\bar{g}\left(U_{i}\right) \subset W, \bar{g}\left(U_{s}\right) \subset W$. Choose $p \in \bar{g}\left(U_{i}\right) \cap \bar{g}\left(U_{s}\right), p \neq p_{i}$. Then, there exist $t_{i} \in U_{i}$ and $t_{s} \in U_{s}$ such that $g\left(t_{i}\right)=g\left(t_{s}\right)=p$. But this contradicts the fact that g is a diffeomorphism. This proves (a).

The proof of (b) is similar. This completes the proof of (iii) and of Theorem 1.1

4 Proof of Theorem 1.2

Before going into the proof of Theorem 1.2, we need to fix some notation and to recall some facts on stability. Further details can be found in [12], [13], [3] and [2].

Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an orientable hypersurface with $H_{r+1}=0$ and $H_{n} \neq 0$ everywhere. A regular domain $D \subset M$ is a domain with compact closure and piecewise smooth boundary. We say that D is stable if either $A_{r}^{\prime \prime}(0)>0$ for all variations with compact support in D or $A_{r}^{\prime \prime}(0)<0$, for all such variations. Details can be found in [2], Remark 2.6. If for some variation with compact support in D we have $A_{r}^{\prime \prime}(0)>0$, while for some other such variation, we have $A_{r}^{\prime \prime}(0)<0$, we say that D is unstable.

Following [12], we define a linear map P_{r} of $T_{p} M$ by

$$
P_{0}=I, \quad P_{r}=S_{r} I-A P_{r-1}
$$

where I is the identity matrix and A is the linear map defined in the Introduction. Next, we define a second order linear operator L_{r} by

$$
\begin{equation*}
L_{r} f=\operatorname{div}\left(P_{r} \nabla f\right), \tag{4.1}
\end{equation*}
$$

where ∇f is the gradient of f. We then write the Jacobi equation of the variational problem that defines the hypersurfaces with $H_{r+1}=0$:

$$
\begin{equation*}
T_{r} f=L_{r} f-(r+2) S_{r+2} f \tag{4.2}
\end{equation*}
$$

The Jacobi equation (4.2) is the linearization of the equation $H_{r+1}=0$. As we mentioned in the Introduction, $H_{n} \neq 0$ everywhere is a sufficient condition for (4.2) to be elliptic. By (4.1), this is equivalent to the fact that P_{r} has all its eigenvalues of the same sign. We denote by $\theta_{i}(r)$ the eigenvalues of $\sqrt{P_{r}} A$ when P_{r} is positive definite, and the eigenvalues of $\sqrt{-P_{r}} A$ when P_{r} is negative definite. We will assume for convenience that P_{r} is positive definite, leaving the details of the other case to the reader.
Remark 4.1. We can now justify the statement made in the Introduction that the condition $H_{1} \geq 0$ is not necessary for the case $H_{2}=0$ and $H_{n} \neq 0$. Indeed, since the operator L_{1} defined by (4.1) is elliptic, P_{1} has all its eigenvalues with the same sign. It is known that (see, e.g., [3], Lemma 2.1(b))

$$
\text { Trace } P_{r}=(n-r) S_{r}
$$

It follows that H_{1} has a fixed sign which, by a change of orientation, can be made positive, as we claimed.

In the present case, we can rewrite the Jacobi operator T_{r} as ([2], p. 8)

$$
T_{r}=L_{r}+\left\|\sqrt{P_{r}} A\right\|^{2}
$$

where $\left\|\sqrt{P_{r}} A\right\|^{2}=\sum_{i} \theta_{i}^{2}(r)$.
Under the condition $H_{n-1}=0$, it can be shown that ([2], p. 4)

$$
\begin{equation*}
\left(\theta_{i}(n-2)\right)^{2}=-S_{n} \tag{4.3}
\end{equation*}
$$

Finally, we define the Morse index form I_{r} of our variational problem as

$$
I_{r}(f, g)=-\int_{M} f T_{r}(g) d M
$$

For future reference, we need to quote some of the results of [2] as Theorem A and B below.

THEOREM A (Theorem 1.1 of [2]). Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an orientable immersion with $H_{n-1}=0$ and $H_{n} \neq 0$ everywhere. Let $D \subset M$ be a regular domain and assume that the
first eigenvalue of $g(D) \subset S_{1}^{n}$ for the spherical Laplacian satisfies $\lambda_{1}(g(D))>n$. Then D is stable.

Theorem B (Corollary 1.6 of [2]). Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be as in Theorem A and $D \subset M$ be a regular domain. Assume that the Gauss map g restricted to \bar{D} is a covering map onto $g(\bar{D})$. If the first eigenvalue of $g(D)$ for the spherical Laplacian satisfies $\lambda_{1}(g(D))<n$, then D is unstable.

We also need a lemma which is proved in [2] (Lemma 2.7) and that will be quoted here as Lemma A. We use $C_{0}^{\infty}(D)$ to denote the space of differentiable functions that vanish in the boundary ∂D of a regular domain D, and $C_{c}^{\infty}(D)$ to denote those differentiable functions that have a (compact) support in D.

Lemma A ([2]; see also [16]). The following statements are equivalent:
i) $\exists f \in C_{c}^{\infty}(D)$ such that $I_{r}(f, f) \leq 0$.
ii) $\exists f \in C_{c}^{\infty}(D)$ such that $I_{r}(f, f)<0$.
iii) $\exists f \in C_{0}^{\infty}(D)$ such that $I_{r}(f, f)<0$.

We still need a definition. We say that the boundary ∂D of a regular domain D is a first conjugate boundary if there exists a Jacobi field that vanishes in ∂D and there exists no Jabobi field that vanishes in (the open set) D.

We observe that every domain properly contained in D is stable and every domain that contains D properly is unstable. In fact, if $D^{\prime} \varsubsetneqq D$ is not stable, there exists $f \in C_{c}^{\infty}\left(D^{\prime}\right)$ such that $I_{r}(f, f) \leq 0$. By Lemma A, there exists $f \in C_{0}^{\infty}\left(D^{\prime}\right)$ such that $I_{r}(f, f)<0$. By the Morse Index theorem, there exists $D^{\prime \prime} \subset D^{\prime}$ and a Jacobi field vanishing in $\partial D^{\prime \prime}$. This is a contradiction and proves the first part of the statement.

To prove the second part of the statement, let $D^{\prime \prime} \supsetneq D$. Since ∂D is a conjugate boundary, by the Morse Index Theorem there exists $f \in C_{0}^{\infty}\left(D^{\prime \prime}\right)$ with $I_{r}(f, f)<0$. By Lemma A, there exists $f \in C_{c}^{\infty}\left(D^{\prime \prime}\right)$ with $I_{r}(f, f)<0$, hence $D^{\prime \prime}$ is unstable.

Remark 4.2. Although we have no need of it, it is not hard to show that the two-part statement that we just proved is an equivalent definition of a first conjugate boundary.

The proof of Theorem 1.2 will depend on Lemmas 4.3, 4.4 and 4.6 below.
Lemma 4.3. Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be a hypersurface with $H_{n-1}=0$ and $H_{n} \neq 0$ everywhere. Assume that its Gauss map $g: M^{n} \rightarrow S^{n}$ is injective. Let $D \subset M$ be a regular domain such that ∂D is a first conjugate boundary. Then:
a) The first eigenvalue $\lambda_{1}(g(D))$ for the spherical Laplacian satisfies $\lambda_{1}(g(D))=n$.
b) Let $f: g(D) \rightarrow \mathbb{R}$ be the first eigenfunction of $g(D)$. Then $u=f \circ g$ satisfies the Jacobi equation, $u>0$ in D and $u=0$ in ∂D.

Proof. We will prove (a). Indeed, $\lambda_{1}(g(D))$ is not smaller than n. Otherwise, we could find a domain $D^{\prime} \subset D$ such that $\lambda_{1}\left(g\left(D^{\prime}\right)\right)<n$. Thus D^{\prime} is unstable by Theorem B and this contradicts the fact that every domain contained in D is stable (since ∂D is a first conjugate boundary). Also, it cannot occur that $\lambda_{1}(g(D))>n$. Otherwise, we could find a domain $D^{\prime \prime} \supset D$ such that $\lambda_{1}\left(g\left(D^{\prime \prime}\right)\right)>n$. By Theorem A, $D^{\prime \prime}$ is stable, and this is a contradiction. Thus $\lambda_{1}(g(D))=n$ and this proves (a).

We now prove (b).
Since the Gauss map is injective $\partial(g(D))=g(\partial D)$, and then

$$
\tilde{\Delta} u+n u=0, \quad u>0 \text { in } D, \quad u=0 \text { in } \partial D,
$$

where $\tilde{\Delta}$ is the Laplacian in the pullback metric $\langle\langle\rangle$,$\rangle on M$ by g (we recall that $H_{n} \neq 0$). By Stokes theorem,

$$
\begin{equation*}
0=\int_{D}\left(\|\tilde{\nabla} u\|^{2}-n u^{2}\right) d S=\int_{D}\left(\|\tilde{\nabla} u\|^{2}-n u^{2}\right)\left|S_{n}\right| d M, \tag{4.4}
\end{equation*}
$$

where $d M$ and $d S=\left|S_{n}\right| d M$ are the volume elements of the induced metric and the pullback metric, respectively.

For notational simplicity, we write $\left(\theta_{i}(n-2)\right)^{2}=\theta_{i}^{2}$. Since, by (4.3), $\theta_{i}^{2}=-S_{n}$, we have, assuming that P_{r} is positive definite,

$$
\frac{1}{n}\left\|\sqrt{P_{r}} A\right\|^{2}=\frac{1}{n} \sum_{j} \theta_{j}^{2}=\left|S_{n}\right| .
$$

Also, denoting by λ_{i} the eigenvalues of

$$
\frac{\sqrt{P_{r}} A}{\left\|\sqrt{P_{r}} A\right\|}
$$

we obtain that

$$
\lambda_{i}^{2}=\frac{\theta_{i}^{2}}{\sum_{j} \theta_{j}^{2}}=\frac{1}{n} .
$$

Since, for any $X \in T_{p} M$,

$$
\|X\|^{2}=\left\|\left(\frac{\sqrt{P_{r}} A}{\left\|\sqrt{P_{r}} A\right\|}\right)^{-1}\right\|^{2}\left\|\frac{\sqrt{P_{r}} A}{\left\|\sqrt{P_{r}} A\right\|} X\right\|^{2}
$$

we can write

$$
\|\tilde{\nabla} u\|^{2}=n \frac{\left\|\sqrt{P_{r}} A \tilde{\nabla} u\right\|^{2}}{\left\|\sqrt{P_{r}} A\right\|^{2}}
$$

Therefore, we have from (4.4),

$$
\begin{aligned}
0 & =\int_{D}\left(\frac{n\left\|\sqrt{P_{r}} A \tilde{\nabla} u\right\|^{2}}{\left\|\sqrt{P_{r}} A\right\|^{2}}-n u^{2}\right) \frac{1}{n}\left\|\sqrt{P_{r}} A\right\|^{2} d M \\
& =\int_{D}\left(\left\|\sqrt{P_{r}} A \tilde{\nabla} u\right\|^{2}-\left\|\sqrt{P_{r}} A\right\|^{2} u^{2}\right) d M
\end{aligned}
$$

By using that $\tilde{\nabla}=A^{-2} \nabla\left([2]\right.$, Lemma 2.9), that P_{r} commutes with A, and that $\left\langle\left\langle A^{-1} X, A^{-1} X\right\rangle\right\rangle=\langle X, X\rangle$, we have, by Stokes Theorem,

$$
0=\int_{D}\left(\left|\sqrt{P_{r}} \nabla u\right|^{2}-\left\|\sqrt{P_{r}} A\right\|^{2} u^{2}\right) d M=I_{r}(u, u)
$$

Now we use that ∂D is a first conjugate boundary. Thus for every $\varphi \in C_{0}^{\infty}(D)$, we have that $I_{r}(\varphi, \varphi) \geq 0$. Otherwise, there exists $g \in C_{0}^{\infty}(D)$ with $I_{r}(g, g)<0$; by the Morse Index theorem, there exists a Jacobi field in $D^{\prime} \nsubseteq D$ vanishing in ∂D^{\prime}, and this is a contradiction. Then, for any $v \in C_{0}^{\infty}(D)$, we obtain, for all $t \in \mathbb{R}$,

$$
0 \leq I_{r}(u+t v, u+t v)=2 t I_{r}(u, v)+t^{2} I_{r}(v, v)
$$

hence $I_{r}(u, v)=0$, and thus u satisfies the Jacobi equation. This proves (b) and completes the proof of Lemma 4.3.

LEmma 4.4. Let $S_{1}^{n} \subset \mathbb{R}^{n+1}$ be the unit sphere of \mathbb{R}^{n+1} and $p=(0, \ldots, 0,1) \in S_{1}^{n}$. Then there exist a domain D, symmetric relative to the equator of S_{1}^{n}, and a function $f: S_{1}^{n} \rightarrow \mathbb{R}$ such that $\lambda_{1}(D)=n$ and f is the first eigenfunction of D. Furthermore, $\lim _{q \rightarrow \pm p} f(q)=-\infty, q \in S_{1}^{n}$; here $-p$ is the antipodal point to p.

Proof. This is an application of 4.3 to rotation hypersurfaces. Let \mathbb{R}^{n+1} have coordinates $x_{1}, \ldots, x_{n+1}=y$. Following [9] we let $O x_{1}$ be the axis of rotation and let $y=h\left(x_{1}\right)$ be the equation of the generating curve C of the rotation hypersurface $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ with $H_{n-1}=0$. It is easily checked that $H_{n} \neq 0$ everywhere for such hypersurfaces and that the curve C is symmetric.

Now consider the domain $D \subset M$ bounded by the rotation of the points of contact of the tangent lines to C issued from the origin 0 of \mathbb{R}^{n+1}. It is known ([2], §3.8) that the support function $\langle x, N\rangle$ satisfies the Jacobi equation, is positive in D and vanishes in ∂D. Thus ∂D is a first conjugate boundary and, since the Gauss map of such rotation hypersurfaces is injective $([9], \S 2)$, Lemma 4.3 implies that the symmetric domain $g(D) \subset$ S_{1}^{n} satisfies $\lambda_{1}(g(D))=n$. Furthermore, if f is the first eigenfunction of $g(D)$, then, again by Lemma 4.3, $u=f \circ g$ satisfies the Jacobi equation, $u>0$ in D and $u=0$ in ∂D. It follows that $u=\langle x, N\rangle$.

Since M behaves asymptotically like a parabola ([9], §2), we have that the support function, with a convenient choice of orientation, tends to $-\infty$, on both ends of M. Thus, f satisfies $\lim _{z \rightarrow \pm 1} f(z)=-\infty$, where $z=g \circ x_{1}$.

REmARK 4.5. If we know the explicit expresion of the generating curve C, we can write explictly the function f. For instance, in the case of a rotation hypersurface $x: M^{3} \rightarrow \mathbb{R}^{4}$ with $H_{2}=0$, we know that the generating curve C is given by

$$
y=1+\frac{x_{1}^{2}}{4}
$$

A simple computation shows that the support function transfered to S_{1}^{n}, i.e., $\langle x, N\rangle \circ$ $g^{-1}=f$ is given by

$$
f(z)=\frac{1-2 z^{2}}{\sqrt{1-z^{2}}}, \quad z=g \circ x_{1}=\frac{x_{1}}{\sqrt{4+\left(x_{1}\right)^{2}}} .
$$

Since f is a radial function, one can easily check, by using the expression of the Laplacian for radial functions (see, for instance, Sakai [14], p. 263) that

$$
\tilde{\Delta} f+3 f=0
$$

as it should be.
Lemma 4.6 below follows an argument of do Carmo and Silveira [6].
Lemma 4.6. Given finitely many points $p_{1}, \ldots, p_{k} \in S_{1}^{n}$ there exists a domain $W \subset S_{1}^{n}$ that omits neighborhoods $U_{i} \subset S_{1}^{n}$ of $p_{i}, i=1, \ldots, k$, and is such that $\lambda_{1}(W)=n$.

Proof. For each p_{i}, make a rotation of S_{1}^{n} so that $p_{i}=(0, \ldots, 0,1)$ and let D_{i} and f_{i} the domain and the function given by Lemma 4.4. Set $h=\sum_{i} f_{i}$ and define W as a connected component of the set $\left\{p \in S_{1}^{n} ; h \geq 0\right\}$.

We recall that a hemisphere H of S_{1}^{n} has eigenvalue n and that of all domains in S_{1}^{n} with the same area, the spherical cap has the smallest eigenvalue. Since $D_{1} \cap D_{2} \neq \emptyset$, the set $\left\{p \in S_{1}^{n} ; f_{1}+f_{2} \geq 0\right\}$ is not empty. Thus a connected component D_{12} of $\left\{p \in S_{1}^{n} ; f_{1}+f_{2} \geq 0\right\}$ has eigenvalue n with eigenfunction $f_{1}+f_{2}$. By the above minimization property,

$$
A\left(D_{12}\right)>A\left(H \subset S_{1}^{n}\right)
$$

where $A(\quad)$ denotes the area of the enclosed domain. By the same token, $A\left(D_{i}\right)>A(H)$, $i=1, \ldots, k$. Thus $D_{12} \cap D_{3}=\emptyset$, and an induction shows that $A(W)>A(H)$. This shows that W is not empty. Clearly $\lambda_{1}(W)=n$, and h is the first eigenfunction of W. Since $\lim _{p \rightarrow p_{i}} f_{i}=-\infty, W$ omit neighborhoods U_{i} of p_{i}, as we wished.

Proof of Theorem 1.2 We assume the existence of an immersion $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ as in Theorem 1.2. Since x has finite total curvature, Theorem 1.1 implies that, there exist a compact manifold \bar{M} and points $q_{1}, \ldots, q_{k} \in \bar{M}$ such that M is diffeomorphic to $\bar{M}-$ $\left\{q_{1}, \ldots, q_{k}\right\}$ and the Gauss map extends to a map $\bar{g}: \bar{M} \rightarrow S_{1}^{n}$. Set $p_{i}=\bar{g}\left(q_{i}\right), i=1, \ldots, k$. Let $W \subset S_{1}^{n}$ be the domain, given by Lemma 4.6, that omits neighborhoods U_{i} of p_{i} and is such that $\lambda_{1}(W)=n$. Let $W^{\prime} \supsetneq W$ be a domain in S_{1}^{n} that still omits neighborhoods of p_{i}, and set $D=g^{-1}\left(W^{\prime}\right)$. Since g is bijective and $\lambda_{1}\left(W^{\prime}\right)<n$, we conclude, by Theorem B , that D is unstable. This contradicts the assumption and completes the proof.

Example. The following example shows that the hypothesis of stability in Theorem 1.2 cannot be dropped. As mentioned in [2] the hypersurface M in \mathbb{R}^{4} generated by the rotation of the parabola $h(z)=1+z^{2} / 4$ around the z-axis is a nonstable complete hypersurface with $H_{2}=0$ and $H_{3} \neq 0$ everywhere. By using the orthogonal parametrization $x: M \rightarrow \mathbb{R}^{4}$,

$$
x(z, \theta, \varphi)=(h \cos \theta \sin \varphi, h \sin \theta \sin \varphi, h \cos \theta, z)
$$

we can easily compute that

$$
\int_{M}|A|^{3} d M=\frac{27}{2} \pi^{2}
$$

Thus M has finite total curvature and this proves our claim.

5 Further applications and related questions

It is convenient to define \mathcal{C} as the set of finite total curvature complete hypersurfaces $x: M^{n} \rightarrow \mathbb{R}^{n+1}, n \geq 3$, with $H_{r}=0, r=1, \ldots, n-1, H_{j} \geq 0, j=1, \ldots, r-1$, and $H_{n} \neq 0$ everywhere. It follows from Theorem 1.1 that there exists a universal lower bound for the total curvature in the set \mathcal{C}. More precisely, we prove

Theorem 5.1. (The Gap Theorem)

$$
i n f_{\mathcal{C}} \int_{M}|A|^{n} d M>\sqrt{24} \pi^{2}
$$

Proof. First, we easily compute that

$$
|A|^{2 n}>(n!) H_{n}^{2}
$$

Thus, since H_{n} is the determinant of the Gauss map $g: M^{n} \rightarrow S^{n-1}(1)$, we obtain

$$
\int_{M}|A|^{n} d M>\sqrt{n!} \int_{M}\left|H_{n}\right| d M=\sqrt{n!} \text { area of } g(M) \text { with multiplicity. }
$$

By Theorem 1.1, the extended map $\bar{g}: \bar{M} \rightarrow S^{n}(1)$ is a homeomorphism, hence

$$
\text { area } g(M)=\text { area } \bar{g}(\bar{M})=\text { area } S^{n}(1)
$$

But the area σ_{n} of a unit sphere of \mathbb{R}^{n+1} is given by ω_{n} / n, where ω_{n} is the volume of the corresponding ball given by

$$
\omega_{n}=2(\sqrt{\pi})^{n} / \Gamma(n / 2)
$$

here Γ is the gamma function. From this formula it is easily seen that σ_{n} increases with n and $\sigma_{3}=2 \pi^{2}$.

It follows that, for all r and all n,

$$
\int_{M}|A|^{n} d M>\sqrt{3!} \sigma_{3}=\sqrt{24} \pi^{2}
$$

A natural question related to Theorem 5.1 is whether the infimum in \mathcal{C} of the total curvature is reached for some hypersurface in \mathcal{C}.

A well known result about minimal surfaces in \mathbb{R}^{3} with finite total curvature is that if it has only one embedded end, it is a plane. The embeddedness of the end is essential as shown by the example of the Enneper surface. Based on Theorem 1.1 and a recent result of Barbosa-Fuknoka-Mercuri [4], we will show that a similar result holds for the class \mathcal{C}, provided the dimension of the hypersurface is even.

Theorem 5.2. An immersion $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ in the class \mathcal{C}, n even, has exatly two ends. In particular, there does not exist an immersion in \mathcal{C} with a single end provided n is even.

Proof. The proof depends on the following considerations from differential topology (for details see [4]). By using a vector field v in $\mathbb{R}^{n+1},|v|=1$, such that v does not agree with the normal at any of the ends V_{i} of $M, i=1, \ldots, k$, and projecting v orthogonally onto the tangent plane of $x(M)$, one obtains a smooth vector field ξ with singularities at the critical points of the height function $h=\langle x, v\rangle$. By compactifiction, ξ can be thought as a smooth vector field on $\bar{M}-\left\{q_{1}, \ldots, q_{k}\right\}$, with further singularities at the points q_{i}.

By using Hopf's theorem that the Euler characteristic $X(\bar{M})$ of \bar{M} is equal to the sum of the indices of the vector field ξ, the following expression is obtained in [4] for a general situation which includes the elements of the class \mathcal{C} as examples: if n is even,

$$
X(\bar{M})=\sum_{i=1}^{k}\left(1+I\left(q_{i}\right)\right)+2 m \sigma
$$

Here $I\left(q_{i}\right)$ is the multiplicity of the end V_{i} (since $n \geq 3, I\left(q_{i}\right)=1$ in our case), σ is ± 1 depending on the sign of H_{n} and m is the degree of the Gauss map g. From Theorem 1.1, g is a homeomorphism. Thus, $m=1$ and, since n is even, $X(\bar{M})=2$. It follows that for even dimensional hypersurfaces in \mathcal{C}, we have

$$
2=2 k+2 \sigma
$$

where k is the number of ends. Thus $k=2$ and $\sigma=-1$, and the theorem follows.
Before closing this Section, we want to mention a question related bo Theorems 1.1 and 5.2. Is an immersion in \mathcal{C} with exactly two ends a rotation hypersurface?

This is related to a well known paper [15] of R. Schoen. In [15], a notion of regular at infinity for a complete minimal immersion M^{n} in \mathbb{R}^{n+1} was introduced and the following facts were proved: 1) Let a minimal immersion M^{n} in $\mathbb{R}^{n+1}, n \geq 3$, have the property that for some compact $K, M-K$ is a union M_{1}, \ldots, M_{k}, where each M_{i} is a graph of bounded slope over the exterior of a bounded region in a hyperplane P_{i}. Then M is regular at infinity. 2) A complete minimal immersion M^{n} in $\mathbb{R}^{n+1}, n \geq 3$, with exactly two ends and regular at infinity is a rotation hypersurface.

Schoen's result (1) and Theorem 1.1 (or Theorem 3.2 of Anderson [1]) imply a minimal hypersurface in \mathcal{C} is regular at infinity. By (2), if it has two ends, is a rotation hypersurface. To extend this result to the entire class \mathcal{C}, we must have an appropriate definition of regular at infinity.

Recent work of Hounie-Leite suggests that such a definition in \mathcal{C} should be as follows. Let $x: M^{n} \rightarrow \mathbb{R}^{n+1}$ be an immersion in \mathcal{C} with $H_{r}=0$. The immersion is regular at infinity if for some compact $K, M-K$ consists of k connected components M_{1}, \ldots, M_{k} and the asymptotic behaviour of each M_{i} is the same as the asymptotic behaviour of an end of the (unique) complete rotational hypersurface with $H_{r}=0$ (for details see [10]). Using this definition, we could ask if the elements in \mathcal{C} are regular at infinity and then try to prove that regular at infinity plus two ends imply that the immersion is a rotation hypersurface. We mention that for $r=2$, this last part was proved by Hounie-Leite in [10].

References

[1] Anderson, M., The compactification of a minimal submanifold in Euclidean space by the Gauss map, Preprint IHES, (1985).
[2] Alencar, H., do Carmo, M. and Elbert, M.F., Stability of hypersurfaces with vanishing r-mean curvatures in euclidean spaces, Preprint IMPA, (1999).
[3] Barbosa, J.L. and Colares, A.G., Stability of hypersurfaces with constant r-mean curvature, Ann. Global Anal. and Geom. 15, 277-297 (1997).
[4] Barbosa, J.L., Fukuoka, R., Mercuri, F., Hypersuperfaces of finite geometric type, preprint.
[5] Caffarelli, L., Nirenberg, L., Spruck, J., The Dirichlet for nonlinear second order equation, III, Functions of the eigenvalues of the hessian, Acta Math., 155, 261-301, (1985).
[6] do Carmo, M., and Silveira, A. da, Globally stable complete minimal surfaces in \mathbb{R}^{3}, Proceed. of A.M.S., 79, 345-346 (1980).
[7] Gilbarg, D. and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, 224, Springer-Verlag, 2nd edition, (1983).
[8] Hounie, J. and Leite M.L., The maximum principle for hypersurfaces with vanishing curvature functions, J. Diff. Geometry, 41, 247-258 (1995).
[9] Hounie, J. and Leite, M.L., Uniqueness and non existence theorems for hypersurfaces with $H_{r}=0$, Ann. Global Anal. and Geom., 17, 397-407 (1999).
[10] Hounie, J. and Leite, M.L., Two-ended hypersurfaces with zero scalar curvature, Indiana University Math. J. 48, 867-882, (1999).
[11] Osserman, R., On complete minimal surfaces, Archiv Rational Mech. Anal., 13, 392-404 (1963).
[12] Reilly, R., Variational properties of functions of the mean curvature in space forms, J. Diff. Geom. 8, 465-477 (1973).
[13] Rosenberg, H., Hypersurfaces of constant curvature in space forms, Bull. Sc. Math., 117, 211-239 (1993).
[14] Sakai, T., Riemannian Geometry, A.M.S. Translations of Math. Monographs, 149 (1997).
[15] Schoen, R., Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Diff. Geom., 18, 791-809 (1983).
[16] Traizet, M., On the stable surface of constant Gauss curvature in space forms. Ann. Global Anal. Geom., 13, 141-148 (1995).
[17] Wolf, J. and Griffiths, P., Complete maps and differentiable coverings, Michigan Math. J., 10, 253-255, (1963).

M. do Carmo M.F. Elbert
IMPA
Estrada Dona Castorina 110
CEP 22460-320
Rio de Janeiro, RJ, Brasil
e-mail: manfredo@impa.br
UFRJ
Instituto de Matemática
Cx. Postal 68530, CEP 21941-590
Rio de Janeiro, RJ, Brasil
e-mail: elbert@impa.br

[^0]: Key words and sentences: Topology, r-mean curvature, finite total curvature, complete, stability.
 1991 Mathematics Subject Classification: 53C42, 58G25

