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Abstract

Hypersurfaces in euclidean spaces with vanishing r-mean curvatures are natural
generalizations of minimal hypersurfaces. When they are complete and have finite
total curvature, we prove that their topological structure is similar to that of minimal
hypersurfaces. We apply this result to prove a theorem on stability, a gap theorem
on the total curvature, and a non-existence theorem for one-ended hypersurfaces
with even dimensions.

1 Introduction

Let z: M™ — R""! be a hypersurface of the Euclidean space R"*!. Consider the ele-
mentary symmetric functions S,, » = 0,1, ..., n, of the principal curvatures kq, ..., k, of
x:
So=1, Sp= > kiy...kiy, .0 =1..n,
1 <o <ip

and their associated r-mean curvatures H, given by

o\t
(") s
r

Hypersurfaces with H, = 0 generalize minimal hypersurfaces (H; = 0). The re-
lation is even deeper, since minimal hypersurfaces are critical points of the functional
A = | 1 HodM for compactly supported variations of M whereas hypersurfaces with
H,;y = 0 are critical points of the functional A, = [ o Hr dM again for compactly sup-
ported variations [12]. A breakthrough in the study of such hypersurfaces was made when
Hounie and Leite [8] proved that the equation H,;; =0, r # 0,n — 1, is elliptic provided
that H,, # 0 everywhere (actually they proved that a weaker condition suffices but that
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is the one we want to use). In the case r = 0, no such condition is necessary, since the
equation of a minimal hypersurface is automatically elliptic.

From now on, we assume that M™ = M is orientable and fix an orientation on M.
Let g: M — ST C R™"! be the Gauss map in the given orientation, where ST is the unit
n-sphere. Recall that the linear operator A: T,M — T,M, p € M, associated to the
second fundamental form is given by

(A(X),Y)=—(VxN,Y), X, Y €T,M,

where V is the covariant derivative of the ambient space and N is the unit normal vector
in the given orientation. The map A = —dg is self-adjoint and its eigenvalues are the
principal curvatures ki, ko, ..., k,.

Assume now that the immersion is complete. We will say that the total curvature of
the immersion is finite if [,, [A[" dM < co. Here |A| = (3, k2)'/2.

Let z: M™ — R""! be a complete minimal hypersurface with finite total curvature.
Then M is (equivalent to) a compact manifold M minus finitely many points and the
Gauss map extends to the punctures. This was proved by Osserman [11] for n = 2 (the
equivalence here is conformal and the Gauss map extends to a (anti) holomorphic map
g: M- S2). For an arbitrary n, this was proved by Anderson [1] (here the equivalence
is a diffeomorphism and the Gauss map extends smoothly).

In this paper, we want to show that a similar topological structure holds for the case
H,=0,r=1,...,n—1,n > 3. For various reasons (including ellipticity, but not only
for that), we want the additional condition H,, # 0 to hold everywhere. Furthermore we
also want H; >0, j =1,...,r — 1. More precisely, we prove

THEOREM 1.1. Let z: M™ — R"' n > 3, be an orientable complete hypersurface with
H =0,r=1,...,n—-1, H;>0,5=1,...,7r—1, and H, # 0 everywhere. Assume that
the total curvature of the hypersurface is finite in the sense that fM |A|" dM < oo. Then:

i) M is diffeomorphic to a compact manifold M minus a finite number of points
di- .-, 4k-

ii) The Gauss map g: M™ — S} extends continuously to the punctures.

iii) The extended Gauss map g: M — S} is a homeomorphism.

We want to observe that the condition H; > 0, 7 = 1,...,7 — 1 in Theorem 1.1 is
automatically satisfied for the minimal case (H; = 0) and for the case of zero scalar
curvature (Hy = 0). For H; = 0, this is obvious, and for Hy = 0, see Remark 4.1 in
Section 4.

It follows that Theorem 1.1 applies to minimal hypersurfaces (n > 3) with H,, # 0
everywhere and finite total curvature. We do not know, however, whether the extension
g can be made differentiable in our case.



We further remark that the condition H; > 0, j = 1,...,r — 1, appears naturally in
the statement of the Maximum Principle for hypersurfaces with vanishing H, as described
by Hounie and Leite in [9] (Lemma 1.2 and Theorem 1.3).

We want to apply Theorem 1.1 to a question on stability of complete hypersurfaces
with H, = 0. In [2], a definition of stability (see Section 4) was given for such hypersurfaces
and the following conjecture was proposed: There exists no complete, orientable, stable
hypersurface : M?® — R* with Hy = 0 and Hs # 0 everywhere. Here we show that with
additional conditions a more general conjecture is true. Namely, we prove

THEOREM 1.2. There exists no complete orientable, stable hypersurface x: M™ — R+,
n >3, with H,_, =0, H; >0, j =1,...,n—2, H, # 0 everywhere and finite total
curvature.

The paper is organized as follows. In Section 2, we discuss (Proposition 2.3) the rate
of decay at infinity of the second fundamental form of a hypersurface in the hypothesis
of Theorem 1.1. In Section 3, we show that each end of such a hypersurface has a unique
“tangent plane at infinity” (see the definition before Lemma 3.4) and prove Theorem 1.1.
In Section 4, we prove a lemma that yields domains in the unit n-sphere with n as first
eigenvalue of the Laplacian (Lemma 4.3) and use it together with Theorem 1.1 to prove
Theorem 1.2. In Section 5, we present further applications of Theorem 1.1 and discuss
some related questions.

We thank Elon Lima, Barbara Nelli, Harold Rosenberg and Walcy Santos for conver-
sations related to this paper.

2 The rate of decay of the second fundamental form

In the rest of this paper, we will be using the following notation for an immersion
x: M" — R

p = intrinsic distance in M.

d = distance in R"*!; 0 =origin of R"*!,

Dy(R) ={z € M; p(z,p) < R}; Ly(R) = 0Dy(R).
D,(R,S)={z € M; R < p(xz,p) < S}

B(R) = {x € R™"!; d(z,0) < R}; S(R) = 90B(R).
A(R,S) ={z e R""; R <d(z,0) < S}.

The following proposition will be used repeatedly in this and the next section.

PROPOSITION 2.1. (The C?-Compactness Theorem). Let D C R™™! be a bounded domain
with smooth boundary OD. Let (M;) be a sequence of connected hypersurfaces in R™H
with (H,); =0, (H,); #0 and (H;); >0, for j =1,...,r — 1, everywhere, and such that
OM; N D = 0. Assume that there exists a constant C > 0 such that sup,cy;, |A;(z)]* < C
and that there exists a sequence of points (x;), x; € M;, with a limit point xo € D. Then
a subsequence of (M;) converges C? to a hypersurface Mo C D and (H,)s = 0.
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PROOF. From the uniform bound of the curvature |A4;|?, we conclude the existence of a
number § > 0 such that near each p; € M;, M; can be graphed by a function f* over a
disk Us(p;) C T, M, of radius § and center p; in the tangent space T}, M;, and that such
functions have a uniform C'! bound (independent of p; and 7). Notice that the normal
curvature of the graph of f* at a point ¢ in the direction v, v € T,(M;), |v| =1, is given
by
ko = 1)1+ (PP,

Here the primes denote derivatives at ¢ = 0 of the restriction f(c(t)), and ¢(t) is a curve
on the graph parametrized by arc length with ¢(0) = ¢, ¢/(0) = v. Since [(f7*)']* and
k% are uniformly bounded, we obtain a uniform bound for the second derivative in any

direction. By a standard procedure (see e.g. [5] p. 280), this implies a uniform C?-bound
on fr.

Now, consider the sequence (z;) with a limit point x, and let 7; be the translation that
takes x; to xo. The unit normals of 7;(M;) at zy have a convergent subsequence, hence a
subsequence of the tangent planes T, (7;M;) converges to a plane 7 containing . For i
large, the parts of M; that were graphs over Dy(z;) are now graphs over Dj /g(xo) C
we will denote the corresponding functions by g;°.

We need the following lemma.

LEMMA 2.2. A subsequence of (gi°) converges C* to a function g=°.

PROOF. By the bounds on the derivatives that we have obtained, the functions g and
their first and second derivatives are uniformly bounded, say, |g;° |2, Ds a(m0) < .

For each ¢, consider the parallel hypersurface of the graph of ¢;° obtained by displacing
by ¢ this graph along its normal. For ¢ small, we obtain a graph over Ds/4(z0) C ™ whose
r-mean curvature is easily computed to be

1t (S)i 2 () (Sppa)i 4+ + 17 (M) (S0)s
(H:(1)); = ny NTEETTAY ’
() [T (1 +t(k;)i)
where we have used that S, = 0. Let us denote the function corresponding to the parallel
graph by ¢ (t). Since (H,,); # 0, we have that (S,11); # 0 ([9], Lemma 1.2), and by taking
t small enough (positive or negative as the case may be), we obtain that (H,.(t)); > 0.
By construction, for small ¢, the function ¢;°(¢) and its derivatives are close to ¢g;° and

its derivatives. So given 7, there exists ¢; such that
97°(t:) — 6|20 < 1/1,

where Q = Dy/4(x0). Consider the sequence (¢i°(t;)). Since g;° is uniformly C*-bounded,
so is (g;" (t:)), say
197° (i) |20 < Cha.



Now set v; = (H,(t;));. Then, for each i, g°(t;) satisfies the following fully nonlinear
elliptic equation of second order:
H/* =",
Set I' = connected component in R™, containing a = (1,...,1), of the set of princi-
pal curvatures vectors (ki,...,k,) for which H, > 0. The conditions (H,); = 0 and
(H;); > 0,7 =1,...,r — 1, guarantee that ((k1);,...,(kn);) € OI' (see [9], Lemma 1.2;
notice that the notation for T' in [9] is C'). Thus, since (H,.(t;)); > 0, we have that
((k1(t:))iy - -+, (kn(t;));) € T'. Because H}'™ is concave in T (see [15], Example 2), we
can apply the known Hélder estimates for fully nonlinear elliptic equations ([7], Theorem
17.14, p. 461) to obtain
[DQQfO(ti)]a;Q’ < K,

where Q' C Bsu(x0), ®o € €, and K is a constant that depends essentially on 2" and
Cy. It follows that ¢;°(¢;) and its first and second derivative are uniformly bounded and
equicontinuous. By the Theorem of Arzeld-Ascoli, a subsequence of (g;°(t;)) converges
C? to a function g%°. By construction, the corresponding subsequence (g;°) converges C?
to g0 and this completes the proof of the lemma. O

Notice that we have obtained a subsequence of (M;) with the property that those parts
of M; that are graphs around the points x;, converge to a hypersurface passing through
xo. We will express this fact by saying that (M;) has a subsequence that converges locally
at xg.

To complete the proof of Proposition 2.1, we need a covering argument that runs as
follows.

Let L be the set of all limit points of sequences of the form (p;), where p; € M;,
and let N be a connected component of L. Let ¢, qs,... be a sequence of points in N
that is dense in N. Let (¢!), ¢¢ € M;, be a sequence that converges to ¢;. As we did
before, we can obtain a subsequence (M}) of (M;) that converges locally at q;. From
this sequence, we can extract a subsequence (M?) that converges locally at ¢; and ¢o. By
induction, we can find sequences (M;") that converge locally to |J; ¢, ¢ = 1,...,n. By
using the Cantor diagonal process, we obtain a sequence M|, M3, ... that converges C?
to a hypersurface M, that contains N. Clearly M, satisfies H, = 0. This completes the
proof of Proposition 2.2. [l

REMARK. Lemma 2.2 in the proof of the C%-compactness theorem is the only reason
why we need the condition H; > 0, j = 1,...,r in Theorem 1.1. This comes from the
fact that, in contrast to the minimal case, where the elliptic partial differential equation
involved is quasi-linear, the case H, = 0 involves a fully nonlinear equation on f of the
type F(Df, D?f) = 0. For such equations, the available theorems that yields Holder C**
bounds for f in terms of C* bounds require the function F(Df, D?f) to be concave in
the second argument. Since H, is not a concave function, we approximated our graphs
by using the function (H, )"/ which is concave in I'. Thus we must require our curvature
vectors to be in OI', and this is equivalent to requiring H; >0, j =1,...,r — 1.
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The proof of the following Proposition is similar to that of [1], Proposition 2.2; for
completeness, we present it here. We assume that the immersion passes through 0 € R™*!.

PROPOSITION 2.3. Let x: M™ — R™ be a complete immersion with H, = 0, H; > 0,
j=1,....,r—=1, and H, # 0 everywhere. Assume that x has finite total curvature. Then,
giwen € > 0 there exists Ry > 0 such that, for R > Ry,

R* sup |AP(2) <e.
@€ M—Do(R)

The proof of Proposition 2.3 depends on Lemmas 2.4 and 2.5 below. For these lemmas
we use the following notation. We denote by h: X™ — R™*! an immersion into R"*! of an
n-manifold X" = X with boundary 0X and such that H, =0, H; >0,j=1,...,r — 1,
H,, # 0 everywhere and that there exists a point 2 € X with D (1) N 90X = 0.

LEMMA 2.4. There exists § > 0 such that for any h: X™ — R""! as above, if

/ A" dX <,
Dy(1)

then

sup [t2 sup |A*| < 4.

t€[0,1] Do (1—t)

Here Ay, is the linear map associated to the second fundamental of h.

PROOF. Suppose the lemma is false. Then there exist a sequence h;: X; — R"*! and
points x; € X; with D,,(1)NoX; =0, (H,); =0, H; >0,j=1,...,r—1, and (H,); # 0,

such that
/ |A;["dX; — 0
Dg,; (1)

sup [t* sup |A)?
0] | D, (1-t)

> 4,

for all ¢, where A; = Ap,.
Choose t; € [0,1] so that

(A
Da, (1—1)

t2 sup |A* = sup |t* sup |4
Da,(1-t,) t€[0,1]

and choose y; € D,.(1 —t;) so that

|Ail*(y;) = sup A
Dw.(lfti)

1



By using that D, (t;/2) C D,,(1 — (¢;/2)) and the choice of ¢;, we obtain

t2
sup AP < sup AP < /1 sup | A%,
Dy, (t:/2) Day (1(t:/2)) /4 D, 01-1)
hence, by the choice of y;, we have
sup Ai* < 4] A (y). (2.1)

Dy, (t:/2)

We now rescale the metric defining ds? = |A;|?(y;)ds?, that is, ds? is the metric on X;
induced by h; = d; o h, where d; is the dilation of R about hi(y;) by the factor | A;|(y;)
(by translation, we may assume that h;(y;) = 0). The symbol ~ will indicate quantities
measured with respect to the new metric ds?.

By assumption, |A;]?(y;) > 4/t?. Thus

Dy,(1) = Dy ([[Ail ()] ") © Dy (t:/2) € Dy (1 = 1:/2) € Dy (1),
It follows that D,, (1) N 9X; = 0. Now, use (2.1) and the fact that

|41(p) = [ A4l ()] Al (p)

to obtain
sup |A;|* < 4.
Dy, (1)

Therefore, the sequence h; = [)yz(l) — Rt Bz(yz) = 0, is a sequence of immersions
with (H,); =0, H; > 0,5 =1,...,r—1, (H,); # 0, and uniformly bounded second
fundamental form. By the C?-Compactness Theorem, a subsequence converges C? to an
immersion

hoo: Dy (1) — R™.
Furthermore, since
Dy, (1) Da, (1)

hoo(D,..(1)) is contained in an n-plane of R™'. But |4;|(y;) = 1, for all 4, hence
(y

| Aso|(yso) = 1. This is a contradiction, and completes the proof of Lemma 2.4. O

LEMMA 2.5. Given e, > 0, there exists § > 0, such that, for any h: X™ — R"! as above,

if
/ A" dX <,
Dy(1)

sup |Ap)? < e
D4(1/2)

then



PROOF. Assume the lemma is false. Then there exists a sequence of immersions h;: X; —
Rn—l—l with (Hr>z = 0, (H])z > 0, j = 1, NN 1, (Hn)z 7£ 0, and D$Z(1> N 0XZ = (Z) (by
translation, we can assume h;(z;) = 0) such that

Day (1)
but
sup |A;]* > O (2.3)
Day(1/2)

for some constant C'.
By Lemma 2.4 (with t = 1/2), we have, for ¢ sufficiently large,

sup |A;]* < 16.
Dy, (1/2)

By the C?-Compactness Theorem and (2.2), a subsequence of (h;) converges smoothly to a
domain in an n-plane in R"*1. This is a contradiction to (2.3) and proves Lemma 2.5. O

PROOF OF PROPOSITION 2.3. We first rescale the immersion x to & = dy/rox, where dy /g
is the dilation by the factor 2/R. Thus the metric induced by Z in M is ds? = (4/R?)ds?,
where ds? is the metric induced by 2. We will denote the quantities measured relative to
the new metric by the superscript ~. Notice that the second fundamental form A satisfies
AP = |41

Therefore, Proposition 2.3 will be established once we prove that given € > 0 there
exists Ry such that, for R > Ry,

sup  |A]? < /4.
xEM—Do(2)

Given the above €, set 1 = /4 and let § > 0 be given by Lemma 2.5. Since M has
finite total curvature, there exists Ry such that, for R > Ry,

5> / |AI"dM = |A|™ dM.
Do(R/2,00) Do(1,00)

Now, take 2 € M — Dy(2). Then D, (1) C Dy(1,00). By Lemma 2.5, the above inequality
implies that
sup |A|* < e, =¢/4,

Da(1/2)
hence
sup |A]? < ¢/4.
€M —Do(2)
This completes the proof of Proposition 2.3. O
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3 Proof of Theorem 1.1

The proof of Theorem 1.1 depends on a series of lemmas to be presented now. In this
section, z: M™ — R™! will always denote a complete hypersurface with H, =0, H; > 0,
j=1,....,r—=1, H, # 0 everywhere, and with finite total curvature.

The following lemma is similar to Lemma 2.4 in Anderson [1]. For completeness, we
include its proof.

LEMMA 3.1. Let x: M™ — R be as above. Assume that x(M™) passes through the
origin 0 of R™ and let r(p) = d(p,0), where p € M and d is the distance in R™™. Then
x is proper and the gradient Vr of r in M satisfies

lim |Vr| = 1.

T—00

In particular, there exists ro such that if r > ro, Vr # 0, i.e., the function r has no
critical points outside the ball B(rg).

PROOF. Let v(s) be any minimizing geodesic issuing from 0 € M (a ray) parametrized
by the arc length, and set T' = ~'(s). Let

X = (1/2)Vr? = rVr,

be the position vector field, where Vr is the gradient of  in R**!. Since V; X = T, we
have

T(X,T)= (V¢ X,T) + (X,V7T) =1+ (X,V7T).
Since v is a geodesic in M, the tangent component of VT vanishes and
V7T = (NyT,N)N = —(NoN,T)N = (A(T),T)N.
It follows, by Cauchy-Schwary inequality, that
(X, VaT)| < IX[JAM)|IT] < |X]] Al

hence
T(X,T)>1—|X||A|

By using Proposition 2.3 with e = 1/n?, and the fact that r = | X(s)| < s, we obtain

T(X,T)(s) > 1—%, (3.1)

for all s > Ry, where Ry is given by Proposition 2.3. Integration of (3.1) from Ry to s

gives

(X,T)(s) > (1= )(s — Ro) + (X, T)(Ro). (3.2)



Since

(X,T)(s) = (rVr,T)(s) < r[Vr(s),
we have

l)(S_RO)_|_ <X7T>(RO> (33)

>
V7i(s) 2 )&= k

> (1-

(X, T)(s)

Because 7(s) = |X(s)] > (X,T)(s), we see from (3.2) that r goes to infinity with s;
thus M is properly immersed. Furthermore, by taking the limit in (3.3) as s — oo, we
obtain that lim,_., |[Vr| > 1 — (1/n). Since n is arbitrary and |Vr| < 1, we obtain that
lim, o | V7| = 1. This concludes the proof of Lemma 3.1. O

Now, let 79 be chosen so that r has no critical points in W = z(M) — (B(ro) Nx(M)).
By Morse Theory, W is diffeomorphic to [z(M) N S(rg)] x [0,00]. Let V' be a connected
component of 271 (W), to be called an end of M. Since B(ry) Nz (M) is compact, M has
only a finite number of ends. In what follows, we identify V' and x(V).

Let r > ry and set

| =

5, = =V AS() € S(1),

IHﬁ

V, = =[V N B(r)] C B().

r
Denote by A, the second fundamental form of V,. Then

AP () = AP (ra).
LEMMA 3.2. Forr >y, VN B(r) is connected.

PROOF. Notice that V' =5 x [0, 00) where S is a connected component S,,, of M NS(ro).
Consider the trajectories of Vrin V. By the choice of r¢, these trajectories cover V' simply
(i.e., for each point of V' there passes one and only one such trajectory).

Assume that V' N B(r) has two connected components, V; and V5. Since (V; U V,) N
S(rog) = Sa, is connected, either V4 N .S(rg) or Vo N S(Ry) is empty. Assume it is V5.

Let p € V5. Since the trajectories of Vr cover V' simply, there exists a trajectory
o(t) with ¢(0) € V1 N S(rg) and p(ty) = p. Thus, there exist tg,t; € [0,ts], such that a
trajectory of Vr satisfies |¢(to)| = |¢(t1)| = r. We claim that this implies the existence
of a critical point at some point of ¢(t).

Indeed, let f(t) = r(o(t),0), where r is the distance in R™"! restricted to M. Then
f: R — R is a smooth function with f(tg) = f(t;). Thus, there exists t € [tg,t;] with

f'(t). But
f'(t) =dr <Z—f) =dr(Vr) = (Vr,Vr).

Therefore,
0= f(F) = |Vr@)]?
and this proves our claim.
Thus we have reached a contradiction and this proves the lemma.
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LEMMA 3.3. Let 0 < § < 1 be given and fix a ring A(d,1) C B(1). Then, given ¢ > 0,
there exists ry such that, for all v > ry and all x € A(), 1), we have

|A, % (z) < e.
ProoOF. By Proposition 2.3, there exists r¢ such that for r > r

r? sup |A]*(z) < &%. (3.4)

z€Lg(r)
Take 1 = ro/d. Then, for r > r and = € A(d, 1),
rlz| > rd > ro.

Thus, by (3.4),

< 6. (3.5)

€Lo(r|z])

7”2|513|2[ sup |A[*(y)
Y

Now, by using (3.5), we obtain that

2

A, 2(2) = 12| AP(re) < 72 [ sup APy | < l‘;—; <e,

y€Lo(r|x])

and this proves Lemma 3.3. 1

By Lemma 3.3, we see that |A,|> — 0 uniformly in the ring A(,1). It follows from
this and the fact that V.. is connected that we can apply the C?-Compactness Theorem
and conclude that a subsequence V., of V. converges to a piece of an n-plane 7 in A(4, 1).
Since 4 is arbitrary, V, converges to w in B(1) —{0}. Furthermore, since lim, . |Vr| =1,
7 passes through the origin. Thus, 3,, converges to an equatorial sphere X, = S 1(1) C
S™(1), possibly with multiplicity m > 1. By a covering argument, it is easily seen that
m = 1, since S"~! is simply-connected. Thus V is embedded.

The n-plane 7 spanned by Y. is called the tangent plane at infinity of the end V
associated to the sequence {r;}. A crucial point in the proof of Theorem 1.1 is to show
that this plane does not depend on the sequence {r;}.

LEMMA 3.4. Each end V of M has a unique tangent plane at infinity.

PROOF. Suppose that {s;} and {r;},i = 1,..., 00, are sequences of real numbers and that
m and 7y are distinct tangent planes at infinity associated to {s;} and {r;}, respectively.
We can assume that the sequences satisfy

S <T <8 << - <5, < < ....

11



Let K be the closure of B(3/4) — B(1/4) and let N; be the normal to 7, obtained as the
limit of the normals to

KN {lv} = l(VﬂsiK).

Si Si
Similarly, let N5 be the normal to 7 obtained as the limit of the normals to KN{(1/r;)V}.
Now let U; and U, be neighborhoods in S™(1) of Ny and Ns, respectively, such that
Uy NU; = (. Thus, there exists an index ¢y such that, for ¢ > 4y, the normals to
K} = (s;K)NV are in U; and the normals to K? = (r; K) NV are in Uy. If K] N K? # 0,
for some 7 > i, this contradicts the fact that U; N U, = @), and the lemma is proved.
Thus we may assume that, for all i > ip, K} N K? = (. In this case, we have
(1/4)r; > (3/4)s;; here, and in what follows, we always assume ¢ > 7y. Set

W=V (B(5r) ~ B(3s)

Since H,, # 0 everywhere, the Gauss map ¢ is a local diffeomorphism, hence g(0W;) D
d(g(W;)). Since

1

o(S(js) V) C U,

we have g(OW;) C U; U U,. Thus
9(g(Wi)) € g(dW;) C Uy U Uy,
and, since g(W;) has nonvoid intersection with both U; and Us, we obtain
g(Wi) S §"(1) — {U; U U}, (3.6)
On the other hand, because

(kD))" > Ck} .. K2,

for a constant C' = C(n), we have that
1

Ve

Furthermore, since the total curvature is finite,

[Hn| < —= A"

|Al"dM — 0, i— oo.

w;

Therefore, since

1
Area g(W;) < H,|dM < (— Al"dM,
(W3) WZ_I | (\/5) ml |

we have that Area g(IW;) — 0. This a contradiction to (3.6), and completes the proof of
Lemma 3.4. O
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We can now prove our main Theorem.

PROOF OF THEOREM 1.1. We prove (i) and (ii) together. Following Anderson [1],
we consider each end V; and apply to V; the inversion I: R"*! — {0} — R"*! — {0},
I(z) = x/|z|>. Thus I(V;) C B(1) — {0} and, by Lemma 3.4, for any sequence ¢, € I(V;)
that converges to the origin 0, the normals of ¢, converge to a unique normal p; € S"(1)
(namely, to the normal of the plane at infinity of V;). It follows that each V; can be
compacfied with a point ¢; together with a tangent plane at ¢;. Doing this for each V;, we
obtain a compact C'-manifold M such that M — {qi, ..., q.} is diffeomorphic to M, and
a continuous extension g: M — S"(1) of g by setting G(g;) = p;. This proves (i) and (ii).

We prove (iii). Let {r]"} € M, i =1,...,k and n; running in a set I;, be the inverse
image of p; by g: M™ — S™(1). Since g is a local diffeomorphism, either the set {r"} is
finite or the image set {g(r;")} has p; as the unique accumulation point. Clearly the map

k
g: M= J{ri} = S*(1) = {p1, ... ox}
i=1
is proper and its Jacobian never vanishes. In this situation, it is known that the map is
surjective and a covering map ([17], Corollary 1). Since n > 3, S™(1) — {p1,...,px} is
simply-connected. Thus g is a global diffeomorphism.

To complete the proof of (iii), we must show that: a) if g(¢;) = g(r}"), then ¢; = r}"
(this shows that the sets {r]"} are actually empty), and b) if G(¢;) = g(¢;), then ¢; = g;.
Let us prove (a). Suppose that the contrary is true, that is, there exist ¢; and r# with
9(q;) = g(r?) = p; and ¢; # ri. Let W C S™(1) be a neighborhood of p;. By continuity,
there exist disjoint neighborhoods U; of ¢; and Uy of r§ such that g(U;) € W, g(Us) C W.
Choose p € g(U;) Ng(Us), p # p;- Then, there exist t; € U; and t, € U, such that
g(t;) = g(ts) = p. But this contradicts the fact that g is a diffeomorphism. This proves
(a).

The proof of (b) is similar. This completes the proof of (iii) and of Theorem 1.1 [

4 Proof of Theorem 1.2

Before going into the proof of Theorem 1.2, we need to fix some notation and to recall
some facts on stability. Further details can be found in [12], [13], [3] and [2].

Let z: M™ — R""! be an orientable hypersurface with H,,; = 0 and H, # 0 every-
where. A reqular domain D C M is a domain with compact closure and piecewise smooth
boundary. We say that D is stable if either A”(0) > 0 for all variations with compact
support in D or A”(0) < 0, for all such variations. Details can be found in [2], Remark
2.6. If for some variation with compact support in D we have A”(0) > 0, while for some
other such variation, we have A”(0) < 0, we say that D is unstable.

Following [12], we define a linear map P, of T,,M by

PO:I> PT:STI_APT—17
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where [ is the identity matrix and A is the linear map defined in the Introduction. Next,
we define a second order linear operator L, by

L.f = div(P,Vf), (4.1)

where V[ is the gradient of f. We then write the Jacobi equation of the variational
problem that defines the hypersurfaces with H,,; = 0:

T.f = Lf — (r +2)S,saf. (4.2)

The Jacobi equation (4.2) is the linearization of the equation H,,; = 0. As we mentioned
in the Introduction, H, # 0 everywhere is a sufficient condition for (4.2) to be elliptic.
By (4.1), this is equivalent to the fact that P, has all its eigenvalues of the same sign. We
denote by 6;(r) the eigenvalues of /P, A when P, is positive definite, and the eigenvalues
of /—P,A when P, is negative definite. We will assume for convenience that P, is positive
definite, leaving the details of the other case to the reader.

REMARK 4.1. We can now justify the statement made in the Introduction that the con-
dition H; > 0 is not necessary for the case Hy, = 0 and H,, # 0. Indeed, since the operator
L, defined by (4.1) is elliptic, P, has all its eigenvalues with the same sign. It is known
that (see, e.g., [3], Lemma 2.1(b))

Trace P, = (n —1r)S,.

It follows that H; has a fixed sign which, by a change of orientation, can be made positive,
as we claimed.

In the present case, we can rewrite the Jacobi operator T, as ([2], p. 8)
Tr - Lr + || V PTA||2a

where ||V Al = 5, 62(0).

Under the condition H,,_; = 0, it can be shown that ([2], p. 4)
(03(n — 2))* = =5, (4.3)

Finally, we define the Morse index form I, of our variational problem as

Mﬁmz—éﬁﬂ@MM-

For future reference, we need to quote some of the results of [2] as Theorem A and B
below.

THEOREM A (Theorem 1.1 of [2]). Let x: M™ — R"*! be an orientable immersion with
H, 1 =0 and H, # 0 everywhere. Let D C M be a regqular domain and assume that the
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first eigenvalue of g(D) C ST for the spherical Laplacian satisfies A (g(D)) > n. Then D
15 stable.

THEOREM B (Corollary 1.6 of [2]). Let x: M™ — R™™ be as in Theorem A and D C M
be a reqular domain. Assume that the Gauss map g restricted to D is a covering map onto
g(D). If the first eigenvalue of g(D) for the spherical Laplacian satisfies \i(g(D)) < n,
then D is unstable.

We also need a lemma which is proved in [2] (Lemma 2.7) and that will be quoted here
as Lemma A. We use C§°(D) to denote the space of differentiable functions that vanish
in the boundary 0D of a regular domain D, and C°(D) to denote those differentiable
functions that have a (compact) support in D.

LEMMA A ([2]; see also [16]). The following statements are equivalent:

i) 3 f € C2(D) such that I.(f, f) < 0.
ii) 3 f € C(D) such that I.(f, f) < 0.

iii) 3 f € C§°(D) such that I.(f, f) < 0.

We still need a definition. We say that the boundary 0D of a regular domain D is a
first conjugate boundary if there exists a Jacobi field that vanishes in 0D and there exists
no Jabobi field that vanishes in (the open set) D.

We observe that every domain properly contained in D is stable and every domain that
contains D properly is unstable. In fact, if D’ ¢ D is not stable, there exists f € C°(D’)
such that I,(f, f) < 0. By Lemma A, there exists f € C§°(D’) such that I.(f, f) < 0.
By the Morse Index theorem, there exists D” C D’ and a Jacobi field vanishing in 0D".
This is a contradiction and proves the first part of the statement.

To prove the second part of the statement, let D” 2 D. Since 9D is a conjugate
boundary, by the Morse Index Theorem there exists f € C3°(D") with I,.(f, f) < 0. By
Lemma A, there exists f € C(D") with L.(f, f) <0, hence D” is unstable.

REMARK 4.2. Although we have no need of it, it is not hard to show that the two-part
statement that we just proved is an equivalent definition of a first conjugate boundary.

The proof of Theorem 1.2 will depend on Lemmas 4.3, 4.4 and 4.6 below.

LEMMA 4.3. Let z: M™ — R"™! be a hypersurface with H,_; = 0 and H, # 0 every-
where. Assume that its Gauss map g: M™ — S™ is injective. Let D C M be a reqular
domain such that 0D is a first conjugate boundary. Then:

a) The first eigenvalue \1(g(D)) for the spherical Laplacian satisfies A1(g(D)) = n.
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b) Let f: g(D) — R be the first eigenfunction of g(D). Then uw = f o g satisfies the
Jacobi equation, u >0 in D and uw =0 in OD.

ProOOF. We will prove (a). Indeed, A\ (g(D)) is not smaller than n. Otherwise, we could
find a domain D" C D such that \(g(D’)) < n. Thus D’ is unstable by Theorem B and
this contradicts the fact that every domain contained in D is stable (since 9D is a first
conjugate boundary). Also, it cannot occur that A\;(g(D)) > n. Otherwise, we could find
a domain D" D D such that Ay (g(D”)) > n. By Theorem A, D" is stable, and this is a
contradiction. Thus A (g(D)) = n and this proves (a).

We now prove (b).

Since the Gauss map is injective 0(g(D)) = g(0D), and then

Au%—nuzO, w>0inD, w=0indD,

where A is the Laplacian in the pullback metric (( , )) on M by g (we recall that H, # 0).
By Stokes theorem,

0= / (||@u||2 —nu?)dS = /(||@u||2 —nu?)|S,|dM, (4.4)
D D

where dM and dS = |S,|dM are the volume elements of the induced metric and the
pullback metric, respectively.

For notational simplicity, we write (6;(n — 2))? = 62. Since, by (4.3), 62 = —S,,, we
have, assuming that P, is positive definite,

1 1
~IVRAIP == 67 =18
J

Also, denoting by \; the eigenvalues of

VP A
IVEAIl

we obtain that
0;

Since, for any X € T, M,

117 = H(ann)

|IVPATul
VAR

|\/_AII

we can write

[Vul[* =
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Therefore, we have from (4.4),

n”\/F"A@UH2 9\ 1 2
0:/ —nu” | =||\/P.Al|* dM
D< VEAPR VAl

:/(||\/PTA?U||2— [/ PrA|[*u?) dM.
D

By using that V = A2V ([2], Lemma 2.9), that P, commutes with A, and that
((A71X, A71X)) = (X, X), we have, by Stokes Theorem,

0= /D (IVEVul — ||[VBAlPu?) dM = I, (u, ).

Now we use that 0D is a first conjugate boundary. Thus for every ¢ € C§°(D), we
have that I,.(p, ) > 0. Otherwise, there exists g € C§°(D) with I,.(g,9) < 0; by the
Morse Index theorem, there exists a Jacobi field in D’ & D vanishing in 0D’ and this is
a contradiction. Then, for any v € C§°(D), we obtain, for all t € R,

0 < I(u+tv,u+tv) =2t (u,v) + t*1,(v,v),

hence I, (u,v) = 0, and thus u satisfies the Jacobi equation. This proves (b) and completes
the proof of Lemma 4.3. O

LEMMA 4.4. Let ST C R™™ be the unit sphere of R™! and p = (0,...,0,1) € S™.
Then there exist a domain D, symmetric relative to the equator of ST, and a function
f: 87 — R such that \y(D) = n and f is the first eigenfunction of D. Furthermore,
lim, .1, f(q) = —00, q € S}'; here —p is the antipodal point to p.

PROOF. This is an application of 4.3 to rotation hypersurfaces. Let R"*! have coordinates
Z1, ..., Ty = y. Following [9] we let Ox; be the axis of rotation and let y = h(x;) be
the equation of the generating curve C of the rotation hypersurface z: M™ — R"*! with
H, 1 = 0. It is easily checked that H, # 0 everywhere for such hypersurfaces and that
the curve C' is symmetric.

Now consider the domain D C M bounded by the rotation of the points of contact
of the tangent lines to C issued from the origin 0 of R™™. It is known ([2], §3.8) that
the support function (z, N') satisfies the Jacobi equation, is positive in D and vanishes in
0D. Thus 0D is a first conjugate boundary and, since the Gauss map of such rotation
hypersurfaces is injective ([9], §2), Lemma 4.3 implies that the symmetric domain g(D) C
ST satisfies Ay (g(D)) = n. Furthermore, if f is the first eigenfunction of g(D), then, again
by Lemma 4.3, u = f o g satisfies the Jacobi equation, v > 0 in D and v = 0 in 9D. It
follows that u = (x, N).

Since M behaves asymptotically like a parabola ([9], §2 ), we have that the support
function, with a convenient choice of orientation, tends to —oo, on both ends of M. Thus,
f satisfies lim, .1 f(z) = —o0, where z = g o z;. O
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REMARK 4.5. If we know the explicit expresion of the generating curve C', we can write
explictly the function f. For instance, in the case of a rotation hypersurface z: M3 — R*
with Hy = 0, we know that the generating curve C' is given by

2

T
=1+-L
y=1+7

A simple computation shows that the support function transfered to S}, i.e., (z, N) o
g~ ! = f is given by
1) 1 — 222 x
)= ——, 2=gOor = —m——.
V1— 22 ! VA (21)?
Since f is a radial function, one can easily check, by using the expression of the Laplacian
for radial functions (see, for instance, Sakai [14], p. 263) that

Af+3f =0,

as it should be.
Lemma 4.6 below follows an argument of do Carmo and Silveira [6].

LEMMA 4.6. Given finitely many points p1,...,pr € ST there exists a domain W C S}
that omits neighborhoods U; C ST of p;, i = 1,...,k, and is such that \y(W') = n.

PROOF. For each p;, make a rotation of S}* so that p; = (0,...,0,1) and let D; and f; the
domain and the function given by Lemma 4.4. Set h =) . f; and define IV as a connected
component of the set {p € S7'; h > 0}.

We recall that a hemisphere H of S}* has eigenvalue n and that of all domains in S}
with the same area, the spherical cap has the smallest eigenvalue. Since Dy N Dy # (),
the set {p € SP"; fi + fo > 0} is not empty. Thus a connected component Dy of
{p € S fi+ f» > 0} has eigenvalue n with eigenfunction f; + f,. By the above
minimization property,

A(Dy3) > A(H C ST),
where A( ) denotes the area of the enclosed domain. By the same token, A(D;) > A(H),
i=1,...,k. Thus D;sN D3 = (), and an induction shows that A(W) > A(H). This shows
that W is not empty. Clearly \{(W) = n, and h is the first eigenfunction of W. Since
lim,,,, f; = —oo, W omit neighborhoods U; of p;, as we wished. O

PROOF OF THEOREM 1.2 We assume the existence of an immersion x: M™ — R"*! as
in Theorem 1.2. Since x has finite total curvature, Theorem 1.1 implies that, there exist
a compact manifold M and points ¢, ...,q: € M such that M is diffeomorphic to M —
{q1,...,q} and the Gauss map extends to amap g: M — S7. Set p; =G(q;), i =1,... k.
Let W C ST be the domain, given by Lemma 4.6, that omits neighborhoods U; of p; and
is such that A; (W) = n. Let W’ 2 W be a domain in S} that still omits neighborhoods of
pi, and set D = g~ *(W’). Since g is bijective and A\ (W') < n, we conclude, by Theorem
B, that D is unstable. This contradicts the assumption and completes the proof. O
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ExaAMPLE. The following example shows that the hypothesis of stability in Theorem 1.2
cannot be dropped. As mentioned in [2] the hypersurface M in R? generated by the
rotation of the parabola h(z) = 1+ 2?/4 around the z-axis is a nonstable complete hyper-
surface with Hy = 0 and H3 # 0 everywhere. By using the orthogonal parametrization
x: M — R%,

x(z,0,¢) = (hcosfsin p, hsinfsin p, hcosb, z),

we can easily compute that

/ AP dM = —=°.
M 2

Thus M has finite total curvature and this proves our claim.

5 Further applications and related questions

It is convenient to define C as the set of finite total curvature complete hypersurfaces
z: M" — R n >3 with H, =0,r=1,....n—1, H; >0,j=1,...,7r— 1, and
H,, # 0 everywhere. It follows from Theorem 1.1 that there exists a universal lower bound
for the total curvature in the set C. More precisely, we prove

THEOREM 5.1. (The Gap Theorem)
mfc/ |A|" dM > /24 72
M
PRrOOF. First, we easily compute that
|A]*" > (n!)H?.

Thus, since H,, is the determinant of the Gauss map g: M™ — S™!(1), we obtain
/ |A|" dM > \/ﬁ/ |H,| dM = v/n! area of g(M) with multiplicity.
M M

By Theorem 1.1, the extended map g: M — S™(1) is a homeomorphism, hence

area g(M) = area g(M) = area S™(1).

But the area o, of a unit sphere of R™*! is given by w, /n, where w, is the volume of the
corresponding ball given by
o = 2(/7)" T (/2);
here I' is the gamma function. From this formula it is easily seen that o, increases with
n and o3 = 27°.
It follows that, for all » and all n,

/ |A["dM > V/3log = /2472,
M
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A natural question related to Theorem 5.1 is whether the infimum in C of the total
curvature is reached for some hypersurface in C.

A well known result about minimal surfaces in R? with finite total curvature is that if
it has only one embedded end, it is a plane. The embeddedness of the end is essential as
shown by the example of the Enneper surface. Based on Theorem 1.1 and a recent result
of Barbosa-Fuknoka-Mercuri [4], we will show that a similar result holds for the class C,
provided the dimension of the hypersurface is even.

THEOREM 5.2. An immersion x: M™ — R"" in the class C, n even, has exatly two
ends. In particular, there does not exist an immersion in C with a single end provided n
18 even.

PROOF. The proof depends on the following considerations from differential topology (for
details see [4]). By using a vector field v in R®™!, |v| = 1, such that v does not agree with
the normal at any of the ends V; of M, i = 1,...,k, and projecting v orthogonally onto
the tangent plane of z(M), one obtains a smooth vector field £ with singularities at the
critical points of the height function h = (z,v). By compactifiction, £ can be thought as
a smooth vector field on M — {q1,-..,qx}, with further singularities at the points ;.

By using Hopf’s theorem that the Euler characteristic X (M) of M is equal to the sum
of the indices of the vector field &, the following expression is obtained in [4] for a general
situation which includes the elements of the class C as examples: if n is even,

X(M) = Z(l + I(q;)) + 2mo.

Here I(g;) is the multiplicity of the end V; (since n > 3, I(¢;) = 1 in our case), o is £1
depending on the sign of H,, and m is the degree of the Gauss map ¢g. From Theorem 1.1,

g is a homeomorphism. Thus, m = 1 and, since n is even, X (M) = 2. It follows that for
even dimensional hypersurfaces in C, we have

2=2k+ 20
where k is the number of ends. Thus £ = 2 and o0 = —1, and the theorem follows. 1

Before closing this Section, we want to mention a question related bo Theorems 1.1
and 5.2. Is an immersion in C with exactly two ends a rotation hypersurface?

This is related to a well known paper [15] of R. Schoen. In [15], a notion of regular at
infinity for a complete minimal immersion M™ in R"*!' was introduced and the following
facts were proved: 1) Let a minimal immersion M™ in R"*! n > 3, have the property that
for some compact K, M — K is a union My, ..., M}, where each M, is a graph of bounded
slope over the exterior of a bounded region in a hyperplane P,. Then M is regular at
infinity. 2) A complete minimal immersion M™ in R*"! n > 3, with exactly two ends
and regular at infinity is a rotation hypersurface.
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Schoen’s result (1) and Theorem 1.1 (or Theorem 3.2 of Anderson [1]) imply a minimal
hypersurface in C is regular at infinity. By (2), if it has two ends, is a rotation hypersurface.
To extend this result to the entire class C, we must have an appropriate definition of regular
at infinity.

Recent work of Hounie-Leite suggests that such a definition in C should be as follows.
Let x: M™ — R"" be an immersion in C with H, = 0. The immersion is reqular at
infinity if for some compact K, M — K consists of k connected components My, ..., My
and the asymptotic behaviour of each M; is the same as the asymptotic behaviour of an
end of the (unique) complete rotational hypersurface with H, = 0 (for details see [10]).
Using this definition, we could ask if the elements in C are regular at infinity and then
try to prove that regular at infinity plus two ends imply that the immersion is a rotation
hypersurface. We mention that for » = 2, this last part was proved by Hounie-Leite in
[10].
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