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Abstract

Representation models are very important in Applied Computational

Mathematics (Requicha, 1980), (Gomes & Velho, 1992).

In this work we introduce a model for color space representation. Using

this model we construct a mathematical framework that enables us to develop

systematically the classical results in the area of colorimetry without the need

to use Grassmann Laws as a basic set of axioms for the theory.

1 Introduction

The classical theory of colorimetry deals with �nite dimensional color spaces.

More speci�cally, trichromatic spaces are studied and the starting point are the

Grassmann Laws (Pratt, 1978). These laws were stablished by H. Grassmann,

(Grassmann, 1854), based on perceptual color experiments. The laws can be used

as a set of postulates to get an axiomatic development of the theory of trichromatic

spaces.

The extension of trichromatic space theory to n-dimensional color spaces is

rather straightforward. But we should mention that trichromatic color theory

is based on Grassmann Laws, and since these laws come from color perceptual

experiments the extension to higher dimensions is a bit cumbersome. We will
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introduce a simple mathematical model that enable us to develop the theory of

�nite dimensional color spaces on a mathematical basis.

The organization of the paper is as follows: in section 2 we de�ne the color

space as an in�nite dimensional vector space of functions; in section 3 we introduce

a mathematical model to represent the color space as a �nite dimensional vector

space; in section 4 we give an overview of the basic colorimetric concepts from

the point of view of color representation theory. Finally, on Section 5 we conclude

making some remarks on possible future research topics related to this work.

2 Spectral Color Space

We will denote by [�a; �b] the visible interval of the electromagnetic spectrum.

A color which is the visual stimulus produced by an electromagnetic wave, is

characterized by the spectral distribution of some radiometric physical unit (in

general radiant power is used). Therefore, the color space can be de�ned to be

an appropriate function vector space, E, de�ned on a subset of the real line (e.g.

the visible interval [�a; �b] of the spectrum). Not all functions on E represent

real colors because this space might contain unbounded or negative functions.

We can conveniently consider di�erent function spaces containing the spectral

distributions to be a mathematical model of the color space. A natural way is to

de�ne E as the space of square integrable functions on the real numbers R

E = ff : R! R ; jf j2 is Lebesgue integrableg: (1)

Another possible choice is to de�ne the spectral color space E as the vector space

of bounded functions on the visible interval [�a; �b] of the spectrum. In some

problems it might be convenient to extend the spectral color space to include

distributions.

The choice of a convenient function space as the mathematical model for the

color space E has an inuence on the metric that can be de�ned to compute

the distance between two colors of the space. This is very important, particularly

when we are concerned with approximation properties on the color space. We will

not deal with these problems in this work, therefore we will use only the vector

space structure of the spectral color space E.

3 Color Space Representations

In order to represent color in the computer we must get �nite dimensional rep-

resentations of the spectral color space E de�ned on the previous section. The
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standard way to introduce these spaces in the literature is referring to color com-

bination experiments and introducing Grassmann Laws. In fact an immediate

consequence of these laws is the vector space nature of the trichromatic color

space. In this section we will introduce a mathematical model for �nite dimen-

sional representations of the color space without resorting to the use of color

experiment results.

De�nition 1. Let T : E ! Vn be a linear transformation from the spectral

color space E to some n-dimensional vector space Vn. If the image T (E) is the

whole space Vn, we say that the triple (T;E;Vn) is a �nite dimensional color space

representation of dimension n. The map T is called representation map, and the

vector space V is called representation space.

When we choose some basis of the vector space Vn, a coordinate system is

de�ned on V and it becomes naturally isomorphic to the Euclidean space Rn. We

prefer to use Vn instead of Rn in the above de�nition, because of the di�erent

color coordinate systems used in colorimetry.

In De�nition 1, Vn is a representation model of the spectral color space in the

sense de�ned in (Requicha, 1980) [ see also (Gomes & Velho, 1992)]. We will give

two examples below in order to show that the above de�nition has an intrinsic

physical nature.

Example 1. (Color Point Sampling) Consider the spectral color space E of the

bounded functions on the visible interval [�a; �b] of the spectrum. If �1, �2, : : :,

�n are n points on the visible interval [�a; �b] of the spectrum, we can de�ne a

linear map T , in de�nition 1, by

T (C(�)) = (C(�1); C(�2); : : : ; C(�n)): (2)

T de�nes an n dimensional representation of the spectral color space.

Example 2. (Color Physical System) In a color physical system there are n

sensors, s1; s2; : : : ; sn, and each sensor outputs a signal when stimulated by elec-

tromagnetic waves in some interval I of the spectrum. Mathematically, each sensor

si has an associated spectral response curve, Si(�) so that the signal produced by

si when stimulated by an electromagnetic wave with spectral power C(�) is

Ci =

Z
I

Si(�)C(�)d�; (3)

Note that (2) is a special case of (3), if we consider the spectral response curve of

the sensor si to be the Dirac delta distribution Æ(�� �i).
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Since the integral is a linear operator, it is immediate that the map T : E !
Vn, de�ned by

T (C) = (C1; C2; : : : ; Cn); (4)

Ci as in (3), is a linear map. Therefore T de�nes an n-dimensional represen-

tation of the spectral color space. This �nite dimensional color space is called

the color space of the physical system. The triple (T;E;Vn) is called the natural

representation of the color space of the physical system.

The eye is an example of a physical system as described in example 2 above.

According to the classical Young-Helmholtz trichromatic theory, there are three

types of molecules in the eye that are sensitive to electromagnetic waves. The spec-

tral response curves of these \biological light sensors" were studied and measured

by Konig and Brodhum (Konig and Brodhum,1889). For more details the reader

should consult (Pratt, 1978) or (Wysecki & Stiles, 1983). This 3-dimensional color

space representation is called trichromatic color space.

The linear transformation T from de�nition 1 de�nes a relation, �, between
the colors C(�) of the space E: if C1(�); C2(�) 2 E, then C1(�) � C2(�) if

T (C1(�)) = T (C2(�)). It is trivial to verify that � is an equivalence relation on

E:

� (1) C1(�) � C1(�);

� (2) If C1(�) � C2(�) then C2(�) � C1(�);

� (3) If C1(�) � C2(�) and C2(�) � C3(�), then C1(�) � C3(�).

In analogy with the study of trichromatic color space, we will call the relation

� methamerism (Wyszecki & Styles, 1982). Two colors C1(�) and C2(�) in the

space E are methameric if C1(�) � C2(�). We can view the �nite dimensional

color space representation Vn as the quotient space E= � of the spectral color

space by the methamerism relation.

4 Basic Colorimetric Concepts

In this section we will give a brief overview of all the basic colorimetric concepts

with respect to the color space representation de�ned on the previous section.
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4.1 Color Coordinate Systems

Suppose that (T;E;Vn) is the natural representation of the color space associated

to a color physical system (Example 2). For any color C 2 Vn, we have

C =
X
k

�kPk; (5)

where Pi, i = 1; : : : ; n are n linearly independent color vectors on the color space

of the system. The basis fP1; : : : ; Png of color vectors is called a set of primary

sources of the color space Vn. The coeÆcients �k, k = 1; 2; : : : ; n are the n-

dimensional coordinates of the color C(�) in the basis of primaries fP1; : : : ; Png,
and represent that color on the color space of the physical system. For n = 3 they

are usually called trichromatic coordinates.

An important problem consists in obtaining Vn as a color space representation

for the coordinate system de�ned by the basis fPig: we must �nd a linear map

T :E ! Vn from some spectral color space E, onto the �nite dimensional color

space Vn, such that

T (C(�)) = C =

nX
k=1

�kPk;

for C(�) 2 E.

Denote by Pk(�) the spectral distribution in E such that T (Pk(�)) = Pk for

some representation of the color space Vn.

If we de�ne

C(�) =

nX
k=1

�kPk(�); (6)

we can not guarantee that C(�) = C(�). However

T (C(�)) = T

 X
k

�kPk(�)

!

=
X
k

�kT (Pk(�))

=
X
k

�kPk

= C = T (C(�)): (7)

That is,

C(�) � C(�): (8)

Since T (C(�)) 2 Vn, we have

T (C(�)) = (T1(C(�)); : : : ; Tn(C(�)));
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where, using (3) and (8), each coordinate function Ti is given by

Ti(C(�)) =

Z
I

C(�)Si(�)d�

=

Z
I

C(�)Si(�)d�

=

Z
I

 
nX

k=1

�kPk(�)

!
Si(�)d�

=

nX
k=1

�k

Z
I

Pk(�)Si(�)d� (9)

If we denote by aik the signal produced by the sensor si when excited by the

primary spectral distribution Pk(�), we have

aik =

Z
I

Si(�)Pk(�)d�; (10)

and from (9) we obtain

nX
k=1

�kaik =

Z
C(�)Si(�)d�: (11)

Given the color spectral distribution C(�), from the knowledge of the primary

spectral distribution Pk(�) and the response spectral curves Si(�), we are able to

compute the coordinates �k from (10) and (11).

In practice, the coordinates �k are normalized against a standard reference

color W : we compute the coordinates (w1; : : : ; wn) of W according to the proce-

dure above, and the normalized coordinates of C(�) on the basis of primaries Pk,

k = 1; : : : ; n, are de�ned by

Ck =
�k

wk

: (12)

Take C(�) = E(�) to be a constant spectral distribution in E (E is called the

equal energy white). At a speci�c value � the normalized components in the basis

Pk will be denoted by pK(�). From (12) we get

pk(�) =
�k

wk

(13)

The functions pk(�), k = 1; : : : ; n, are called color matching functions associated

to the basis of primary colors fPkg, k = 1; : : : ; n.
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In order to compute pk(�) at some speci�c wavelength �, we take C(�) to be

the Dirac distribution Æ with center at �. From equation (11), we obtain

nX
k=1

�kaik = Si(�); (14)

and from (13), we get
nX

k=1

wkaikpk(�) = Si(�): (15)

The color matching functions are of great importance in computing the coor-

dinates of a color with spectral distribution C(�) in the color space representation

with basis P1; : : : ; Pn. This is the content of the Proposition below.

Proposition 1. If pi(�) are the color matching functions associated with a base

fPig of primary colors in a physical system, then the normalized coordinates, Ck,

of a color C(�) 2 E on the basis fPig are given by

Ck =

Z
I

C(�)pk(�)d�: k = 1; : : : ; n (16)

Proof: Multiplying both sides of (15) by C(�), and integrating, we obtain

nX
k=1

wkaik

Z
C(�)pk(�)d� =

Z
C(�)Si(�)d�: (17)

From (11) we have

nX
k=1

wkaik

Z
C(�)pk(�)d� =

nX
k=1

�kaik; (18)

that is,
nX

k=1

aik

�
wk

Z
C(�)pk(�)d� � �k

�
= 0: (19)

Since the matrix (aik) is non-singular (this is a required characteristic of the

physical system) we have from (12) and (19)

Z
I

C(�)pk(�)d� =
�k

wk

= Ck:

This proves the proposition.
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Said di�erently, Proposition 1 de�nes a linear representation map T :E! Vn

from the spectral color space E to the color coordinate system de�ned on Vn by

the primary basis fP1; : : : ; Png. T is de�ned by

T (C(�)) = (C1; : : : ; Cn);

where each Ck is computed using (16). Everything happens as though to each

primary color Pk there exists an associated \virtual sensor" sk of the physical

system, and the color matching functions pk(�) are the spectral response curves

associated to these sensors (see Example 2).

We will �nish this section with some computational remarks. If we know the

spectral response curves Si(�), and the spectral distribution Pk(�) of the primary

colors of some basis fPig of the color representation space V
n, then from (10), (11)

and (12) it is possible to compute the normalized coordinates Ck of a color with

spectral distribution C(�) on the given basis. If we do not have the knowledge

of the spectral response curves Si(�), then it is possible to compute Ck using the

color matching functions, pk(�), associated to the basis.

In the physical system of the eye, the spectral response curves are very hard

to be measured accurately (Pratt, 1978). The color matching functions on the

other hand are obtained from perceptual color combination experiments and are

tabulated (Wyszecki & Stiles, 1983).

4.2 Color Solid

A color in the spectral color space E is called a real color if it is visible in a

perceptual experiment. Mathematically a function in E represents a real color if

it is non-negative. The set of real colors in E is called spectral color solid, and it

will be denoted by SE.

A subset S of a vector space V is a cone if it is invariant under multiplication

by a positive real number t. The following proposition is immediate

Proposition 2 The spectral color solid SE is a cone of E.

If T :E ! Vn is a color space representation, the set of color vectors in Vn

that correspond to real spectral colors in E is called by color solid, and will be

denoted by S, that is S = T (SE). Since a cone is invariant under linear maps,

the proposition below is also immediate

Proposition 3 The color solid S is a cone of Vn.

A pure spectral color of wavelength � is a color whose spectral distribution

in E is null everywhere, except at �. The proposition below is also very easy to

prove
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Proposition 4 The pure spectral colors are on the boundary of the color solid.

4.3 Luminance and Chrominance

Given a physical system such that the spectral response curve of the sensor si, is

Si(�), i = 1; : : : ; n, we de�ne the average spectral response curve by

V (�) =

nX
i=1

aiSi(�); ai 2 R; ai > 0 (20)

where the constants ai depend on the characteristics of the system.

For the thricromatic physical system of the eye, the curve V (�) is called relative

luminous eÆciency function and its values, obtained experimentally, are tabulated

(Wyszecki & Styles, 1983). In what follows we will suppose that the function V (�)

has compact support. The support of the relative luminous eÆciency of the eye

is the visible interval [�a; �b] of the spectrum.

De�nition 3. If C(�) is the spectral radiance distribution of a color C in the

space E, its luminance, with respect to a physical system with average spectral

response curve V (�), is de�ned by

L(C(�)) = K

Z
R

C(�)V (�)d�; (21)

where K is a constant that depends on the unit system used.

The luminance de�nes a linear functional L : E! R. If C1(�) and C2(�) are

methameric spectral curves in E, i.e. T (C1(�)) = T (C2(�)), then from (9) and

(20), we obtain:

L(C1) = K

Z
+1

�1

C1(�)V (�)d�

= K

Z
+1

�1

C1(�)

"
nX
i=1

aiSi(�)

#
d�

= K

nX
i=1

Z
+1

�1

C1(�)aiSi(�)d�

= K

nX
i=1

Z
+1

�1

C2(�)aiSi(�)d�

= K

Z
+1

�1

C2(�)

"
nX
i=1

aiSi(�)

#
d�
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= K

Z
+1

�1

C2(�)V (�)d�

= L(C2) (22)

The above computation shows that the Luminance functional L:E ! R in-

duces naturally a linear functional L:Vn = (E= �)! R; in the color space of the

physical system. As a consequence, L(T (C(�))) = L(C(�)). The functional L is

called the luminance functional of the physical system.

The kernel C0 of the luminance functional L:Vn ! R is a (n�1)-dimensional

subspace. Each aÆne hyperplane of the family Cv = C0 + v, v 2 Vn, contains

colors of constant luminance, and is therefore called a chrominance hyperplane.

If v 2 Vn is a vector, v =2 C0, we will denote by hvi the subspace generated by

v. There is a decomposition of the space Vn = C0 � hvi. Therefore each color

vector w 2 Vn can be written uniquely in the form w = wC + wL, wC 2 C0 and

wL 2 hvi. The component wC contains the chrominance information, and wL the

luminance information of the color vector w. The above decomposition is called

a chrominance-luminance decomposition of the color space.

The chrominance-luminance decomposition is the starting point to de�ne sev-

eral color coordinate systems of great importance in colorimetry and its applica-

tions, such as the CIE-XYZ standard system and the NTSC system used in the

television industry.

If the luminance of each of the sensors in a color physical system is non-zero,

then the luminance subspace is transversal to the hyperplane �:x1 + � � � + xn =

1 of the color representation space. This result can be used to normalize the

chrominance information of the color space as follows: for each real color vector

C, there exists a positive real number t, such that tC 2 �. If C = (C1; : : : ; Cn)

then

t =
1

C1 + � � �+ Cn

: (23)

Geometrically, we are radially projecting the color solid C on the hyperplane

�. The resulting subset on the � contains all of the chrominance information of

the real colors, and it is called chromaticity diagram. It follows from Proposition

3 that it is a convex subset of � (because it is a radial projection of a cone). For

thricromatic color spaces, its horseshoe shape is well known. The coordinates of

the projection of C on � are computed by

ci =
Ci

C1 + � � �+ Cn

; (24)

and are called chromaticity coordinates of the color C.
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4.4 Projective Model

If C is a color vector in some color space representation Vn, and t is a non-zero real

number, the vector tC has the same chrominance (same chromaticity coordinates)

as C. This shows that it is possible to identify naturally the chrominance space

as the set of all 1-dimensional subspaces of Vn, excluding the origin. This is the

real projective space of dimension n� 1.

This simple remark is of great help when studying color space transformations:

the natural transformation relating chromaticity coordinates in di�erent color

coordinate systems are projective transformations. This fact is not used explicitly

in the literature and the explanation of chromaticity coordinate transformation is

rather cumbersome.

4.5 Grassmann Laws

Grassmann Laws are used as the set of axioms in the development of colorimetry

theory. These laws were established after perceptual experiments with color in

the 19th century (Grassmann, 1854). Some of Grassmann's laws have an intrinsic

perceptual nature (e.g. components of a mixture of colored lights cannot be resolved

by the human eye). Other laws are of a more mathematical nature and can

be shown to be valid in any �nite dimensional color space representation. This

assertion holds, for instance, in relation to Grassmann's fourth law: The luminance

of a mixture is equal to the sum of the luminance of its components. This can be

easily proved with the results from Section 4.3.

5 Conclusion and Research Topics

We introduced a mathematical framework to de�ne a representation of the spectral

color space as a �nite dimensional vector space. This framework makes it pos-

sible to develop systematically the theory of colorimetry for n-dimensional color

spaces, without resorting to results from perceptual color experiments (Grass-

mann's Laws). The basic colorimetric concepts are given in this framework.

It is interesting to establish conditions under which a color space representation

is in fact an approximation of the color space as the dimension gets higher. In the

case of the trichromatic color space of the eye, di�erent metrics in the spectral

color space can be investigated in order to study its relationship with the uniform

Riemmanian metric of the �nite dimensional color space representation.
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