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Abstract

We show that a generic vector field on an affine space of positive characteristic
admits an invariant algebraic hypersurface. This is in sharp contrast with the char-
acteristic zero case where Jouanolou’s Theorem says that a generic vector field on
the complex plane does not admit any invariant algebraic curve.
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1 Introduction

Jouanolou, in his celebrated Lecture Notes [3], proved that a generic vector
field of degree greater than one on P2

C does not admit any invariant algebraic
curve. Here, by generic we mean outside an enumerable union of algebraic
varieties. In this paper we investigate what happens if we change the field of
complex numbers to a field of positive characteristic.

It turns out that the situation is completely different, and we prove that
outside an algebraic variety in the space of affine vector fields of a fixed degree
a vector field does admit an invariant algebraic hypersurface. More precisely,
we prove the following result.

Theorem 1 Let X be a vector field on A
n
k , where k is a field of positive

characteristic. If the divergent of X is different from zero, then X admits an
invariant reduced algebraic hypersurface. If div(X) = 0 then the irreducible
polynomials cutting out invariant hypersurfaces appear as factors of a polyno-
mial F completely determined by X.
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Our methods are quite elementary, and we start by investigating collections
of n vector fields on the n-dimensional affine space over any field, and their
dependency locus. We give conditions for the dependency locus to be invariant
by every vector field in the collection. These conditions turn out to be neces-
sary and sufficient conditions in the two-dimensional characteristic zero case,
see proposition 5. In positive characteristic such conditions imply Theorem 1.

Despite its simplicity the theorem and its proof illustrate some particular
features of vector fields in positive characteristic.

2 Preliminaries

In this section we define the basic vocabulary that will be used in the rest of
the paper. We try to keep the language as simple as possible.

2.1 Derivations and vector fields

Denote by R the ring k[x1, ..., xn], and by Λ(An) the graded R–module of
differential forms.

Definition 1 A k-derivation X of R is a k-linear transformation of R in itself
that satisfies Leibniz’s rule, i.e. X(ab) = aX(b)+ bX(a) for arbitrary a, b ∈ R.

A derivation X can be written as X =
∑n
i=1X(xi)

∂
∂xi

, and understood as a
vector field on Ank .

Definition 2 The inner product of X and a p-form ω is the (p− 1)-form iXω
defined as

iXω(v1, ..., vp−1) = ω(X, v1, ..., vp−1) .

Note that iX is an antiderivation of degree -1 of Λ(An).

Sometimes to simplify the notation we are going to denote iX1iX2 . . . iXnω by
iX1,X2,... ,Xnω.

Definition 3 Given a vector field X on Ank , its Lie derivative LX is the deriva-
tion of degree 0 of Λ(An) defined by

LX = iXd+ diX

The proof of the next proposition can be found in [2], pages 93 and 94.
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Proposition 1 If X and Y are two vector fields on An, then

[LX , iY ] = i[X,Y ]

[LX , LY ] = L[X,Y ]

Definition 4 We say that the hypersurface given by the reduced equation
(F = 0) is invariant by X if X(F )

F
is a polynomial. In case that X(F ) = 0 we

say that F is a first integral or a non-trivial constant of derivation of X.

2.2 Derivations in characteristic p

The derivations in positive characteristic have very particular properties when
compared with the derivations in characteristic zero. Some of these special
properties can be seen in the next two results, and these will be essential for
the proof of Theorem 1.

Proposition 2 Let X be a derivation over a field of characteristic p > 0.
Then Xp is a derivation.

Proof: It is sufficient to verify that Xp satisfies Leibniz’s rule. In fact,

Xp(fg) =
p∑
i=1

(
p

i

)
Xp−i(f)X i(g) = Xp(f)g +Xp(g)f.

Theorem 2 Let X be a derivation of R, where k is a field of characteristic
p > 0. Then X admits a non-trivial constant of derivation if and only if
X ∧Xp ∧ · · · ∧Xpn−1

= 0.

Proof: See Lecture III on [4](more precisely pages 56—57) or [1].

3 Invariant hypersurfaces in Ank

In this section we define the notion of a polynomially involutive family of vector
fields and show how it can be used to guarantee the existence of invariant
algebraic hypersurfaces for vector fields in such a family.
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3.1 Dependency locus of vector fields

Definition 5 Let X1, . . . , Xn be vector fields on Ank . Their dependency locus
is the hypersurface cut out by Dep(X1, . . . , Xn), where :

Dep(X1, . . . , Xn) = iX1 · · · iXndx1 ∧ · · · ∧ dxn

Proposition 3 If X1, . . . , Xn are generically independent vector fields in Ank
then there exist polynomials p

(k)
ij and a non-negative integer m such that

[Xi, Xj] =
n∑
k=1

p
(k)
ij

Dep(X1, . . . , Xn)m
Xk

Proof: In the principal open set {An\(Dep(X1, . . . , Xn) = 0)} the vector fields
are independent, whence the lemma follows.

Lemma 1 (Fundamental Lemma) Let X1, .., Xn be vector fields on A
n
k

and a
(k)
ij be rational functions such that [Xi, Xj] =

∑n
k=1 a

(k)
ij Xk . Denoting

Dep(X1, . . . , Xn) by F , then

iXkΩ ∧ dF =

(−1)k+1div(Xk) +
n∑

j=k+1

a
(j)
kj +

k−1∑
i=1

(−1)i−k+1a
(i)
ik

F
Ω .

where Ω = dx1 ∧ · · · ∧ dxn .

Proof: The proof of the lemma follows from a few manipulations with the
formulas given in Proposition 1. From the definition of the Lie derivative, we
can see that

dDep(X1, · · · , Xn) = diX1 · · · iXnΩ = (LX1 − iX1d)iX2 · · · iXnΩ

=
n∑
i=1

(−1)i+1iX1 · · · iXi−1
LXiiXi+1

· · · iXnΩ .

We can write the last expression on the formula above as
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n∑
i=1

(−1)i+1iX1,... ,Xi−1
LXi(iXi+1,... ,XnΩ)

=
n∑
i=1

(−1)i+1

div(Xi)βi +
n∑

j=i+1

iX1,... ,Xi−1,Xi+1,... ,Xj−1,[Xi,Xj ],Xj+1,... ,Xn

Ω

=
n∑
i=1

(−1)i+1

div(Xi)βi +
n∑

j=i+1

(−1)i−j+1a
(i)
ij βj + a

(j)
ij βi

 ,

where βi = iX1 · · · iXi−1
iXi+1

· · · iXnΩ. Since

iXkΩ ∧ βl = δkl(iX1 · · · iXnΩ)Ω ,

we obtain that iXkΩ ∧ diX1 · · · iXnΩ is equal to(−1)k+1div(Xk) +
n∑

j=k+1

a
(j)
kj +

k−1∑
i=1

(−1)i−k+1a
(i)
ik

 iX1 · · · iXnΩ

Ω ,

and the lemma is proved.

3.2 Polynomially involutive vector fields

Definition 6 A collection of vector fields X1, . . . , Xn of Ank is polynomially

involutive if there exist polynomials p
(k)
ij such that

[Xi, Xj] =
n∑
k=1

p
(k)
ij Xk .

Proposition 4 Let k be a field and X1, . . . , Xn a collection of vector fields on
A
n
k . Suppose that {Xi}ni=1 is a polynomially involutive system of vector fields.

If the dependency locus is not a constant of derivation then it is invariant by
Xj for each j = 1, . . . , n.

Proof: Let F := Dep(X1, · · · , Xn). By the fundamental lemma,

Xk(F ) =
iXkΩ ∧ dF

Ω
=

(−1)k+1div(Xk) +
n∑

j=k+1

a
(j)
kj +

k−1∑
i=1

(−1)i−k+1a
(i)
ik

F.
Since {Xi}ni=1 is a polynomially involutive system of vector fields, one can see
that

Xk(F )

F
is a polynomial. Therefore, if dF is different from zero, the dependency locus
is invariant by Xj.
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In general the converse of the Proposition above does not hold, as the next
example shows.

Example 1 Consider the vector fields X,Y, Z on A3
C given by

X = y
∂

∂x
+ x

∂

∂y
+ z

∂

∂z
, Y = x

∂

∂x
+ z

∂

∂y
e Z =

∂

∂x
.

Then Dep(X, Y, Z) = z2 and [X,Z] = ∂
∂y

= Y−xZ
z

. Therefore the vector fields
X, Y, Z are not polynomially involutive, but the dependency locus is invariant
by all of them.

Although in the two-dimensional case polynomially involutiviness completely
caracterizes the invariance of the dependency locus for pairs of vector fields.

Proposition 5 Let X and Y be vector fields on A2
k such that Dep(X, Y ) is

not a constant of derivation. Then X and Y are polinomially involutive if,
and only if, Dep(X, Y ) is invariant by both X and Y .

Proof: By proposition 4, we have just to prove that the invariance of Dep(X, Y )
by both X and Y implies that X and Y are polynomially involutive. We know
that [X, Y ] = p

Dep(X,Y )m
X + q

Dep(X,Y )m
Y . By the fundamental lemma,

X(Dep(X, Y )) = (div(X) +
q

Dep(X, Y )m
)Dep(X, Y ) ,

and from our hypotheses we can deduce that q
Dep(X,Y )m

is a polynomial. Mu-

tatis mutandis, we can conclude that p
Dep(X,Y )m

is also a polynomial. Hence X
and Y are polynomially involutive.

4 Proof of Theorem 1

If k is a field of positive characteristic p > 0 and X is a vector field on Ank ,
it is fairly simple to decide whether or not X has an invariant hypersurface.
This simplicity is in sharp contrast with the characteristic zero case, where
decidability is not known.

The fact is that in positive characteristic we have a polynomially involutive
system of vector fields canonically associated to X. When X is a vector field
on Ank then the polynomially involutive system is

X,Xp, . . . , Xpn−1

.
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In fact the former system is commutative. By Theorem 2, if

Dep(X, . . . , Xpn−1

) = 0

then X admits a first integral and, in particular, an invariant hypersurface. If
div(X) 6= 0 and

Dep(X, . . . , Xpn−1

) 6= 0

then by the Proposition 4, X admits an invariant hypersurface.

When div(X) = 0, if there exists an invariant hypersurface then its reduced
equation will divide Dep(X, . . . , Xpn−1

). In fact if F is an invariant algebraic
hypersurface then F divides X(F ), and consequently, F also divides Xk(F ),
for any positive integer k. This is sufficient to guarantee that F cut out the
dependency locus of X, . . . ,Xp−1.

Example 2 In general, when div(X) = 0, we can’t guarantee the existence
of an invariant hypersurface. For example, if X = y3 ∂

∂x
+ x ∂

∂y
and we are in

characteristic two, then X2 = xy2 ∂
∂x

+ y3 ∂
∂y

and Dep(X,X2) = (y3 + xy)2.

Therefore the only possible invariant curves are y and y2 + x, which are not
invariant as one can promptly verify. Hence X does not admit any invariant
curve.

Corollary 1 Let X be a vector field on A2
k, where k is a field of characteristic

p > 0. If the degree of X is less than p− 1 then X admits an invariant curve.

Proof: By Theorem 1 we can suppose that div(X) = 0. Then the 1-form
ω = iXdx1 ∧ dx2 is closed, and its coefficients have degree smaller than p− 1.
In this case, the closedness is sufficient to guarantee that ω = df , for some
f ∈ R.

Example 3 Over the complex numbers, Jouanolou [3] showed that X = (1−
xyd) ∂

∂x
+(xd−yd+1) ∂

∂y
does not have any algebraic invariant curve for d ≥ 2. In

characteristic two, for example, if d is odd then x2d+1yd−1 +xdyd+xd−1 +y2d+1

is invariant, and if d is even X has a first integral of the form yd+1x+xd+1 +y.
Observe that for d = 2 the first integral is Klein’s quartic, a curve of genus 3
that has 168 automorphisms. It is interesting to observe that, in characteristic
two Jouanolou’s example has many more automorphisms than in characteristic
zero, where it has 42.
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