
BMT: A Generic Programming Approach to

Multiresolution Spatial Decompositions

Vińıcius Mello1, Luiz Velho1, Paulo Roma Cavalcanti2 and Cláudio Silva3

1IMPA – Instituto de Matemática Pura e Aplicada
{vinicius,lvelho}@visgraf.impa.br

2Federal University of Rio de Janeiro - UFRJ
roma@lcg.ufrj.br

3AT&T Labs
csilva@research.att.com

Abstract

We present a generic programming approach to the implementation of multiresolution spatial decom-
positions. From a set of simple and necessary requirements, we arrive at the Binary Multitriangulation
(BMT) concept. We also describe a data structure that models the BMT concept in its full generality.

1 Introduction

Generic programming was born from the observation that most algorithms rely on a few basic semantic
assumptions about the data structures, and not on any particular implementation of these structures. Given
a problem, the generic programming basic task is to isolate these essential concepts, framing them in a well
defined interface where semantic requirements and computational complexity guarantees are clearly posed.
The algorithms that comply with that interface are free from idiosyncrasies of data structures, which can be
changed or even replaced by procedural schemes. The great sucess of C++ Standard Template Library is
the main proof on behalf of that methodology [14].

The main contribution of this paper is to show how generic programming techniques can be used to
build a computational framework to deal with multiresolution spatial decompositions. We have studied
from combinatorial topology classics like [1] to modern works on multiresolution modeling [8] in order to
identify the meaningful concepts. As a result, we arrive at a new concept called Binary Multitriangulation
(BMT) that is a particular case of the Multiresolution Simplicial Model (MSM) described in [8], but more
manageable and closer in spirit to well stablished procedures of combinatorial topology. The BMT concept
can also be regarded as a 3-dimensional extension of variable resolution structures like [16].

Currently, generic programming methodology is being used as design philosophy of many libraries in
several areas: computational geometry (CGAL [7]), combinatorics (BGL [12]) and scientific computing (MTL
[13]), for instance. An interesting aspect of generic programming, illustrated in section 5, is orthogonality,
that is, the software components, even from different libraries, can be freely combined. Other aspect is
the omnipresence of C++ language, the most fitted language to generic programming (specially after the
recent ISO/ANSI standardization). This fact justifies the extensive use of C++ code in this paper, but we
must emphasize that there is no intrinsic dependence to specific programming languages in the concepts we
describe.

The paper is organized as follows. In section 2, we set the context where multiresolution spatial decom-
positions are needed and discuss informally some of their advantages. Section 3 is dedicated to the detailed
examination of the concepts we isolate, in increasing order of complexity. In section 4, we describe data

1

structures that models the previously defined concepts. Finally, section 5 contains concluding remarks and
indications of future works, including applications.

2 Background

If multiresolution methods are signficant in the processing of triangle meshes [6, 5], they are indispensable in
the case of tetrahedra meshes, or spatial decompositions, as we prefer to call it, since the complexity of the
mesh increases with the power of its dimension. Therefore, most applications dealing with three-dimensional
data, like scientific visualization, medical imaging, geoprocessing etc., will benefit of techniques that allow
the user to extract from the original data an equivalent representation, in a sense will be made precise
subsequently, but in a resolution more adequate to the task at hand. Because the user often doesn’t know
a priori the desired resolution, the solution is to store a good set of possible resolutions and to give him the
ability of browsing between them. That is the essence of the multiresolution methods.

A cost-benefit analysis of multiresolution methods with respect to the current technology is presented
in [2]. The main conclusion of this analysis is that, in the case of direct volume rendering applications
(DVR), the graphics constraints are stronger than memory constraints. In fact, one can store a mesh three
orders of magnitude larger than that one can visualize with DVR. It is reasonable to assume that similar
conclusions can be extended to other applications dealing with volume data. Thus, the extra cost to store a
multiresolution mesh structure is compensated by the flexibility to choose the most adequate resolution.

It remains to define more precisely what is a tetrahedral mesh. Although, the basic intuitive concept is
clear, it is not so clear that some properties of a mesh are independent of the geometry of its constituent
tetrahedra or, more specifically, of their spatial embedding. The area of mathematics that studies such
properties is called combinatorial topology. A manifold is a well known mathematical object and it is very
useful in combinatorial topology. A combinatorial manifold is characterized by a certain uniformity in the way
its parts are glued. Despite of the fact that in some applications it is necessary to consider “non-manifold”
structures, the concept of a manifold is sufficient for most applications.

In the next session, we will describe a series of concepts progressively more complex, until we arrive at a
definition of a combinatorial manifold. Each concept will be followed by an API which defines the operations
required to work with the concept. We will postpone the introduction of geometric concepts as much as
possible, in order to clearly isolate the topological properties.

However, geometric concepts, such as volume, area, aspect ratio, etc., are of fundamental importance
in applications and are deeply related with the mechanisms that are employed to select a particular mesh
resolution from a multiresolution structure. In general, we deal with functions whose domain is the combina-
torial manifold, and we would like to have a more refined mesh in regions where these functions exhibit high
variations. This property is called adaptivity. We intend to discuss techniques for generation and processing
of multiresolution adaptive tetrahedral meshes in a future paper.

3 Concepts

In this section, we adopt the following strategy in describing the concepts: we will define the mathematical
objects involved, the name and type signature of the requirements, and let the semantics be derived from
them and from hints in the text body. Auxiliary tables containing associated types and notations fulfill
the description. Concerning to type signatures, each concept has a trait class where all type information
is encoded. Trait classes are essentially a mechanism to ensure algorithm independence of data structure
implementation [15].

Some definitions bellow differs from the usual (see [3], for instance), but this happens because we have
choosen equivalent definitions easily translatable to algorithm requirements.

2

description type
Vertex descriptor as3c traits<T>::vertex descriptor
Edge descriptor as3c traits<T>::edge descriptor
Face descriptor as3c traits<T>::face descriptor
Simplex descriptor as3c traits<T>::simplex descriptor
Complex vertices iterator as3c traits<T>::vertex iterator
Complex edges iterator as3c traits<T>::edge iterator
Complex faces iterator as3c traits<T>::face iterator
Complex simplices iterator as3c traits<T>::simplex iterator

Table 1: Associated types of an AS3C.

3.1 Abstract Simplicial 3-Complex

Definition 1. Given a finite set V , called vertex set, an abstract simplicial complex on V is a set K of
subsets of V verifying the following properties:

1. For each ν ∈ V , {ν} ∈ K;

2. If σ ∈ K and φ ⊂ σ, them φ ∈ K. An element σ of K is called simplex and the subsets of σ are called
faces;

3. There is a total ordering on the vertices of each simplex of K such that the ordering on the vertices on
any face of a simplex σ is the ordering induced from the ordering on the vertices of σ.

If n+1 is the cardinality of a simplex σ ∈ K, we say that σ is a n-simplex and K is an abstract simplicial
n-complex if the largest simplex of K is a n-simplex. We will use the same name simplex to mean the
subcomplex of K formed by the faces of a simplex σ, and we define ∂σ = {τ ∈ K : τ � σ}, that is, the
boundary of σ.

We are interested here in abstract simplicial 3-complexes, AS3C for short. In this case, we adopt the
terminology vertex, edge, face and simplex for 0, 1, 2 and 3-simplex, respectively.

Item 3 from definition 1 has a twofold propose: it provides a “canonical form” for each simplex and
enables us to define the face operator di, that assigns for each simplex σ the face of σ obtained by removing
the i-th vertex. The face operator satisfies

didj = dj−1di, if i < j. (1)

The existence of operators satisfying (1) is sufficient to recover all relations between the faces of a
simplex1. Figure 1 shows all that relations. We exploit this fact to define a minimum set of requirements on
a AS3C (see table 3). Program 1 shows how to get the i-th vertex of a simplex and program 2 implements a
vertex-simplex membership test. Of course, we can specialize both programs if more information about the
underlying data structure is known.

3.2 Abstract 3-Manifold

In principle, the requirements on a AS3C are enough to answer incidence queries like “get all faces meeting
an edge” or “get all edges meeting a vertex”. But, in many cases, we have more information about the

1Face operators appear in algebraic topology in the definition of simplicial sets [10].

3

<0,1,2,3>

<1,2,3>

d0

<0,2,3>

d1

<0,1,3>

d2

<0,1,2>

d3

<2,3>

d0

<1,3>

d1

<1,2>

d2d0

<0,3>

d1

<0,2>

d2 d0d1

<0,1>

d2d0d1 d2

<2>

d1

<3>

d0

<1>

d1d0d1d0

<0>

d1d0 d1d0 d0d1

Figure 1: Face operator graph. The nodes are the simplex’s faces and the edges are the face operators di.

symbol definition
vertex typedef as3c traits<T>::vertex descriptor vertex;
v a object of type vertex
edge typedef as3c traits<T>::edge descriptor edge;
e a object of type edge
face typedef as3c traits<T>::face descriptor face;
f a object of type face
simplex typedef as3c traits<T>::simlpex descriptor simplex;
s a object of type simplex
vi typedef as3c traits<T>::vertex iterator vi;
ei typedef as3c traits<T>::edge iterator ei;
fi typedef as3c traits<T>::face iterator fi;
si typedef as3c traits<T>::simplex iterator si;

Table 2: AS3C related notation.

4

expression return type

empty vertex(t) vertex
empty edge(t) edge
empty face(t) face
empty simplex(t) simplex
face op(t, s, i) face
face op(t, f, i) edge
face op(t, e, i) vertex
vertices(t) pair<vi, vi>
edges(t) pair<ei, ei>
faces(t) pair<fi, fi>

simplices(t) pair<si, si>

Table 3: Requirements of an AS3C. Some remarks about the notation: t is a object which type models
a AS3C; empty vertex(t) returns a null vertex descriptor; vi is the type of a iterator which traverses the
vertex container; vertices(t) return a pair of iterators: the first points to the first vertex and the second is a
“past-the-end” iterator. The other operators work analogously.

template <typename T> as3c traits<T>::vertex descriptor ith vertex(T t, as3c traits<T>::simplex descriptor s, int i) {
if(i<2) {

if(i==0) return face op(t, face op(t, face op(t, s, 1), 1), 1);
else return face op(t, face op(t, face op(t, s, 0), 1), 1);

} else {
if(i==2) return face op(t, face op(t, face op(t, s, 0), 0), 1);
else return face op(t, face op(t, face op(t, s, 0), 0), 0);

}
}

Program 1: i-th vertex of a simplex. Note how the trait class as3c traits isolates the algorithm from the data
structure implementation.

local structure of the complex in each vertex. That information can be used to speed-up those queries. To
describe precisely that local structure, we need some definitions.

Two simplices σ1, σ2 are independent if σ1 ∩ σ2 = ∅. The join σ1 � σ2 of independent simplices σ1, σ2 is
the set σ1 ∪σ2. The join of complexes K and L, written K �L, is {σ � τ : σ ∈ K, τ ∈ L}. The link of simplex
σ ∈ K, denoted link(σ, K), is defined by

link(σ, K) = {τ ∈ K : σ � τ ∈ K}.

And finally, the star of σ in K, star(σ, K), is the join σ � link(σ, K).
The link and star operators provides a combinatorial description of a neighborhood of a simplex. We

can use them also to define certain changes in a complex, but care must be taken to not modify essentially
(“topologically”) that neighborhood.

The stellar moves are a such change. Indeed, many concepts of combinatorial topology are founded on
stellar moves [9]. Let K be a complex on the vertex set V , K ′ a complex on V ′, σ a simplex in K and
ν a vertex in V ′. The operation that changes K into K ′ by removing star(σ, K) and replacing it with
ν � ∂σ � link(σ, K) is called a stellar subdivision and is written K ′ = (σ, ν)K. The inverse operation (σ, ν)−1

that changes K ′ into K is called a stellar weld.
Two complexes are stellar equivalent if they are related by a sequence of stellar moves. A (abstract)

5

template <typename T>
bool in(T t, as3c traits<T>::simplex descriptor s,
as3c traits<T>::vertex descriptor v) {
for(int i=0; i<4; ++i) if(ith vertex(t, s, i)==v) return true;
return false;

}

Program 2: Vertex-simplex membership test.

description type
Incident faces iterator a3m traits<T>::radial face iterator
Incident simplices iterator a3m traits<T>::radial simplex iterator

Table 4: Associated types of an A3M.

n-ball is a complex stellar equivalent to a n-simplex and a (abstract) n-sphere is a complex stellar equivalent
to the boundary of a (n + 1)-simplex.

We can now define a special kind of abstract simplicial complex that has nice local properties.

Definition 2. An abstract n-manifold M is an abstract simplicial n-complex such that for each vertex
ν ∈ M , link(ν, M) is a (n − 1)-ball or a (n − 1)-sphere.

The boundary of M , denoted by ∂M , is the subcomplex ∂M = {σ ∈ M : link(σ, M) is a ball}. One can
proof that ∂M is a (n − 1)-manifold.

Many properties follows from definition 2. In our particular case, we want properties that help us to
speed-up local queries over abstract 3-manifolds (A3M). Each boundary face of a 3-manifold, for example, is
incident to a unique simplex and internal faces (faces not on boundary) are shared by exactly two simplices.
Therefore, we can require operators that, in constant time, retrieve all simplices meeting at a face.

Table 6 lists a set of additional requirements to the AS3M ones we judge sufficient to formalize the A3M
concept. With that additional requirements, we can implement program 3 which, given an internal face f and
an incident simplex s, returns the simplex that shares f with s. That modest operation is the key component
of a radial iterator, that is, an iterator that traverses all faces or simplices meeting an edge. Radial iterators
are used in algorithms that compute the star of vertices and edges, for instance, and are reminiscent of the
Weiler’s radial edge structure (RED) [17]. Again, nothing prevents users from implementing ad hoc iterators,
perhaps based on some reliable implementation of the facet-edge structure of Dobkin and Laszlo [4].

3.3 Oriented Abstract 3-Manifold

Orientation is another notion we want capture. Since orientation can be defined in a purely combinatorial
way, without reference to geometrical concepts, we choose to place the oriented abstract 3-manifold concept
as a refinement of abstract 3-manifold.

symbol definition
rfi typedef a3m traits<T>::radial face iterator rfi;
rsi typedef a3m traits<T>::radial simplex iterator rsi;

Table 5: A3M related notation.

6

Refinement of abstract simplicial 3-complex

expression return type

on boundary(t, v) bool
on boundary(t, e) bool
on boundary(t, f) bool
incident simplex(t, f) simplex
incident simplices(t, f) pair<simplex, simplex>

a incident face(t, e) face
boundary faces(t, e) pair<face, face>

a incident edge(t, v) edge
radial simplices(t, e) pair<rsi, rsi>
radial faces(t, e) pair<rfi, rfi>

Table 6: Requirements of an A3M. Type t models a A3M. Types rsi and rfi model a radial simplex iterator
and radial face iterator, respectively. Some pre-conditions must hold: boundary faces(t, e) can be used only
if on boundary(t, e)==true, for instance.

template <typename T> as3c traits<T>::simplex descriptor
opposite simplex(T t, as3c traits<T>::simplex descriptor s, as3c traits<T>::face descriptor f) {
as3c traits<T>::simplex descriptor s1, s2;
tie(s1, s2)=incident simplices(t, f);
if(s1==s) return s2 else return s1;

}

Program 3: Opposite simplex. The tie function above is just a compact way of assign a pair of values to two
variables.

An orientation on a n-manifold M is a function s that assigns for each n-simplex σ ∈ M , an integer in
the set {+1,−1}. The choice of orientation in σ induces an orientation in its faces in the following way:

s(di(σ)) = (−1)is(σ), i = 0, . . . , n. (2)

An orientation is coherent if contiguous n-simplices, i.e., simplices sharing an (n − 1)-simplex, induces
opposites orientations in its common face, that is,

di(σ1) = dj(σ2) ⇒ s(di(σ1)) = −s(dj(σ2)),

where σ1 and σ2 are n-simplices in M . Now, we can define another basic object.

Definition 3. An oriented abstract n-manifold is an abstract n-manifold plus a coherent orientation.

In the 3-dimensional case, the additional requirement on a A3M is just the operator simplex orientation that
takes a manifold and a simplex and returns an int in the set {−1, 1}. Program 4 is the obvious implementation
of the equation 2.

3.4 3-Polyhedron and Combinatorial 3-Manifold

Until now, we discussed only combinatorial concepts. Let’s introduce the geometrical counterpart of the
previously defined concepts.

We call an euclidean embedding of an abstract simplicial complex K a function g from the vertex set V
to an euclidean space Em that maps a vertex ν ∈ V to a euclidean point g(ν) ∈ Em, such that g(σ) is a set

7

Refinement of abstract 3-manifold
expression return type

simplex orientation(t, s) int

Table 7: Requirements of an OA3M.

template <typename T>
int face orientation(T t, as3c traits<T>::simplex descriptor s, as3c traits<T>::face descriptor f) {
int o=simplex orientation(t, s);
for(int i=0; i<4; ++i, o*=-1) if(ith face(t, s, i)==f) return o;

}

Program 4: Induced orientation of the faces.

in general position in Em, for all σ ∈ K. A subset P of Em is a geometric realization of K if there is an
embedding g satisfying

x ∈ P ⇔ x ∈ ConvHull(g(σ)), for some σ ∈ K.

Below, we define the geometrical objects corresponding to abstract simplicial n-complex and abstract
n-manifold.

Definition 4. A n-polyhedron is a set P ⊂ Em for which exists an abstract simplicial n-complex K and an
euclidean embedding g such that P = |K|g.

Definition 5. A combinatorial n-manifold is a set M ⊂ Em for which exists an abstract n-manifold M and
an euclidean embedding g such that M = |M |g.

From the computational side, a polyhedrom concept (Poly3) is just a refinement of AS3C with an ad-
ditional requirement euclidean point that takes a manifold and a vertex and return an euclidean point, see
table 10. A combinatorial 3-manifold (C3M) is a Poly3 plus the requirements of an A3M.

3.5 Binary Multitriangulation

Now, we’ll investigate the interplay between combinatorial and geometrical concepts related to subdivision
process and how this leads naturaly to the concept of binary multitriangulations.

A polyhedron P ′ = |K ′|g is a subdivision of the polyhedron P = |K|h, denoted by P ′ < P , if P ′ = P
and for each σ′ ∈ K ′ exists a σ ∈ K such that

ConvHull(g(σ′)) ⊂ ConvHull(h(σ)).

The above definition uses geometrical concepts like euclidean embeddings. Therefore, we can not assert a
priori anything about how the complexes K and K ′ are related. However, a theorem of Newman, presented

description type
Point type poly3 traits<T>::point type

Table 8: Associated types of a Poly3.

8

symbol definition
point typedef poly3 traits<T>::point type point;

Table 9: Poly3 related notation.

Refinement of abstract simplicial 3-complex
expression return type

euclidean point(t, v) point

Table 10: Requirements of a Poly3.

in modern form in [9], shows that P ′ < P if, and only if, K ′ is stellar equivalent to K. Moreover, the stellar
equivalence can be choosed in such a way that only stellar moves on 1-simplices (“edges”) are used.

There is a good reason to restrict the stellar moves to moves on edges. Whenever a stellar subdivision hap-
pens in an edge ε, all simplices containing ε are splitted in two. Accordingly, a sequence of stellar subdivision
induces a binary tree structure in the simplices. And binary trees often leads to simpler algorithms.

In order to define the binary multitriangulation concept (BMT), we need some auxiliary definitions. We
follow closely the definitions in [8]. A partially ordered set (poset) (C, <) is a set C with a antisymmetric
and transitive relation < defined on its elements. Given c, c′ ∈ C, notation c ≺ c′ means c < c′ and there
in no c′′ ∈ C such that c < c′′ < c′. An element c ∈ C, such that for all c′ ∈ C, c ≤ c′, is called a minimal
element in C. If there is a unique minimal element c ∈ C, then c is called the minimum of C. Analogously
are defined maximal and maximum elements.

Definition 6. A binary multitriangulation is a poset (T , <), where T is a finite set of abstract 3-manifolds
(named triangulations) and the order < satisfies:

1. There is maximum and minimum abstract 3-manifolds in T , called base triangulation and full trian-
gulation, respectively;

2. M ′ ≺ M if, and only if, M ′ = (ε, ν)M , for some edge ε ∈ M .

Property 1 says, in fact, that a BMT is a lattice. Other fact which follows from the definition is that
every two triangulations in T are stellar equivalent. As usual, a BMT can be thought as a directed acyclic
graph (DAG), with one drain and one source, whose arrows are labeled with stellar subdivisions on edges.
From an algorithimic perspective, the key idea is to use the above mentioned binary tree structure in the
simplices to encode the DAG.

To describe the requirements on a BMT, we need to do a little digression about state changes in a data
structure. The formerly defined requirements, like incident simplices, are deterministic functions without side
effects, at least from the user viewpoint. In other words, incident simplices must return the same value in
sucessive invocations. The situation changes in the BMT case, because we want to be able to move from a
triangulation in T to another. We can regard this move as a state change in the underlying data structure
modeling a BMT. The point is that, between state changes, the functions like incident simplices behaves
deterministically.

The BMT requirements in table 11 are divided in two groups: operators that changes the state (subdivide,
weld and base triangulation) and the others. The operator base triangulation set the current triangulation in T
to the base triangulation, while subdivide(t, e) applies a stellar subdivision to the edge e and weld(t, v) applies
a stellar weld “removing” the vertex v. The predicate is current is usefull to check if a simplex belongs to the
current triangulation.

9

We must remark that operators subdivide and weld implements just “local” transitions in the DAG, that
is, if T and T ′ are the triangulations before and after subdivide be called, respectively, then T ′ ≺ T . Program
5 illustrates how subdivided edge can be used to achieve non-local transitions.

Refinement of abstract 3-manifold

expression return type

was subdivided(t, e) bool
subdivide(t, e) void
in base triangulation(t, v) bool
weld(t, v) void
base triangulation(t) void
has children(t, s) bool
children(t, s) pair<simplex, simplex>

has parent(t, s) bool
parent(t, s) simplex
subdivided edge(t, s) edge
welded vertex(t, s) vertex
is current(t, v) bool
is current(t, e) bool
is current(t, f) bool
is current(t, s) bool

Table 11: Requirements of a BMT. Type t models a BMT. The binary tree structure in the simplices can
be traversed with children and parent.

template <typename T> void non local subdivide(T t, as3c traits<T>::edge descriptor e) {
a3m traits<T>::radial simplex iterator i, end;
set<as3c traits<T>::edge descriptor> edges;
for(tie(i, end)=radial simplices(t, e); i!=end; ++i) {

as3c traits<T>::edge descriptor se=subdivided edge(t, *i);
if(se!=e) edges.insert(se);

}
set<as3c traits<T>::edge descriptor>::iterator j;
for(j=edges.begin(); j!=edges.end(); ++j) {

non local subdivide(t, *j);
}
subdivide(t, e);

}

Program 5: Non-local subdivide. This program also ilustrates how the encoding of traversal capabilities in
radial iterators makes the algorithm more generic and readable at no extra cost.

4 Models

In this section, we present data structures which are models of the concepts defined above, in the sense
that they fill all necessary requirements. We have absolutely no pretension of describing “the best” data
structure, for the reason that we think that data structures are somehow application dependent. But, if we

10

did a good analysis in the previous section, most algorithms can be used in different applications without
change.

Figure 2 resumes the prototypical data structure which models a BMT. Most operators are easily inferred
by inspection. Stripping out some data, we obtain models to simpler concepts like AS3C and A3M. It remains
to clarify certain points:

• We employ the classical “uses” device to represent the property that one face is common to two
simplices at most;

• The fields fu ind0 and fu ind1 are indices to the subdivided faces. The operator subdivided edge use
them to return the subdivided edge;

• The field f pair in struct edge stores the boundary faces incident to a boundary edge, or stores a face
incident to a internal edge;

• A face f is on boundary if, and only if, f->fu ptr->fu mate ptr is null, and a edge e is on boundary if, and
only if, e->f pair.first!=e->f pair.second.

• A face is current if, and only if, its incident simplices are. And a edge is current if, and only if, one of
its incident faces is.

• A ordering in adopted in the vertices of the simplex in such a way that the welded vertex is always the
last vertex.

We note that this data structure is too general. Once more, the application guides the real implementa-
tion. In dealing with regular spatial decompositions, for example, most of work can be done procedurally.
Even out-of-core techniques (e.g., [5]) can be implemented without changing the interface.

5 Conclusion

We have presented a generic programming framework for multiresolution spatial decompositions which was
formulated through a rigorous mathematical analysis of the concepts involved. Indeed, our current imple-
mentation contains numerous generic algorithms for the extraction of topological information, as well as,
non-generic functions to build a multiresolution mesh and execute other operations such as input/output.
It is certainly possible to employ generic programming techniques in the creation of multiresolution meshes.
Nonetheless, the problem is more involved and we plan to consider it in a future paper.

We are working on an application for direct volume rendering. We plan to use the multiresolution features
of the BMT concept to achieve better rendering performance. At the moment, we have implemented the
basic DVR pipeline as described in [18] and [11]. A very nice feature of our implementation is the way we
compute the visibility order of the tetrahedra. We develop a visibility graph concept that is an adaptor over
the C3M concept, i.e., it provides the appropriate graph interface to a combinatorial manifold. So, we can
use all graph machinery built in the Boost Graph Library [12], for example, to solve the visibility problem.
More specifically, in the simpler regular convex case, the visibility is computed by a single call to the BGL
function topological sort.

We think that our work can be classified in the confluence of two new trends in graphics. On one hand,
our concern to clearly separate geometric and topological concepts, emphasizing the later ones, brings us
closer to Computational Topology as posed in [3]. This new branch is as promising today as Computational
Geometry was thirty years ago. On the other hand, generic programming is a powerful methodology for
computer programming, which holds the promise to complete, specially in relation to algorithm abstraction,
the revolution started twenty years ago by object-oriented programming. Our hope is that this work will
become the basis of a library called CTAL, that is, Computational Topology Algorithm Library.

11

(a) struct bmt {
list<simplex *> s list;
list<face *> f list;
list<edge *> e list;
list<vertex *> v list;

};

(b) struct face {
struct {
unsigned id : 32;

} bits;
faceuse * fu ptr;
edge * e vector[3];

};

(c) struct edge {
struct {

bool splitted : 1;
unsigned id : 31;

} bits;
pair<vertex *, vertex *> v pair;
pair<face *, face *> f pair;

};

(d) struct simplex {
struct {

unsigned fu ind0 : 2;
unsigned fu ind1 : 2;
bool orientation : 1;
bool current : 1;
unsigned id : 26;

} bits;
faceuse * fu vector[4];
simplex * parent;
simplex * child[2];

};

(e) struct faceuse {
simplex * s ptr;
faceuse * fu mate ptr;
face * f ptr;

};

(f) struct vertex {
struct {

bool current : 1;
bool boundary : 1;
unsigned id : 30;

} bits;
edge * e ptr;

};

Figure 2: Modeling a BMT.

References

[1] J. Alexander. The combinatorial theory of complexes. Ann. Math., 31:294–322, 1930.

[2] P. Cignoni, L. De Floriani, P. Magillo, E. Puppo, and R. Scopigno. TAn2 - visualization of large irregular
volume datasets. Technical Report DISI-TR-00-07, University of Genova (Italy), 2000.

[3] T. Dey, H. Edelsbrunner, and S. Guha. Computational topology. In B. Chazelle, J. E. Goodman, and
R. Pollack, editors, Advances in Discrete and Computational Geometry (Contemporary mathematics
223), pages 109–143. American Mathematical Society, 1999.

[4] D. P. Dobkin and M. J. Laszlo. Primitives for the manipulation of threedimensional subdivisions.
Algorithmica, 4:3–32, 1989.

[5] Jihad El-Sana and Yi-Jen Chiang. External memory view-dependent simplification. Computer Graphics
Forum, 19(3), August 2000. ISSN 1067-7055.

[6] Jihad El-Sana and Amitabh Varshney. Generalized view-dependent simplification. Computer Graphics
Forum, 18(3):83–94, September 1999. ISSN 1067-7055.

[7] Andreas Fabri, Geert-Jan Giezeman, Lutz Kettner, Stefan Schirra, and Sven Schonherr. On the design
of CGAL a computational geometry algorithms library. SP&E, 30(11):1167–1202, 2000.

[8] L. De Floriani, E. Puppo, and P. Magillo. A formal approach to multiresolution modeling. In W. Straßer,
R. Klein, and R. Rau, editors, Theory and Practice of Geometric Modeling. SpringerVerlag, 1996.

12

[9] W. B. R. Lickorish. Simplicial moves on complexes and manifolds. In Proceedings of the Kirbyfest,
volume 2, pages 299–320, 1999.

[10] J. Peter May. Simplicial Objects in Algebraic Topology, volume 11. D. Van Nostrand Company, Inc.,
Princeton, 1967.

[11] P. Shirley and A. A. Tuchman. Polygonal approximation to direct scalar volume rendering. Computer
Graphics, 24(5):63–70, 1990.

[12] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost Graph Library, The: User Guide and
Reference Manual. Addison-Wesley, 2002.

[13] Jeremy G. Siek and Andrew Lumsdaine. The matrix template library: A generic programming approach
to high performance numerical linear algebra. In ISCOPE, pages 59–70, 1998.

[14] A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report X3J16/94-0095,
WG21/N0482, ISO Programming Language C++ Project, 1994.

[15] B. Stroustrup. The C++ Programming Language: Third Edition. Addison-Wesley, 1997.

[16] Luiz Velho and Jonas Gomes. Variable resolution 4-k meshes: Concepts and applications. Computer
Graphics forum, 19:195–212, 2000.

[17] Kevin Weiler. Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments. IEEE
Computer Graphics and Applications, 5(1):21–40, 1985.

[18] P. Williams. Visibility ordering meshed polyhedra. ACM Transactions on Graphics, 11(2), 1992.

13

