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It was Voltaire, I think, who said that “even the most skillful future-
teller cannot always be wrong.” A long list of, old and new, misguided
prophecies about natural phenomena or the evolution of human societies,
leaves no doubt about his point...

Anticipating the evolution of a scientific field should be a somewhat
less hazardous goal, though. For scientific knowledge has a kind of inter-
nal coherence, new challenges often originating from the solution of older
ones. Which is, perhaps, even truer for Mathematics, a science that has
kept a remarkable unity throughout its history. Hilbert’s famous speech
at the 1900 International Congress of Mathematicians did go a long way
into predicting and, to a substantial extent, influencing main directions
of mathematical research in the twentieth century. However, he could not
foresee the birth and extraordinary development of Dynamical Systems,
even if two of his problems (16th and 21st) were related to it.

Poincaré, whose fundamental work in Celestial Mechanics was found-
ing Dynamics as a mathematical discipline, of course knew that cette
étude aura par elle-même un intérêt du premier ordre. His legacy was
taken over a few decades later by Birkhoff, who also clarified important
issues raised by Boltzmann and Maxwell. By the middle of the century,
Kolmogorov, Arnold, and Moser were settling a major problem going
back to Laplace and Leverrier, not to mention Newton, and precisely
formulated by Poincaré: convergence of the Lindsted series obtained by
formal solution of the gravitation equations. The implications went well
beyond the problem of the stability of the Solar system, that was the ini-
tial motivation. Kolmogorov, Arnold, Moser theory remained, to present
days, one of the most active areas in Dynamical Systems, through ma-
jor contributions from Herman, Mather, Rüssman, Zehnder, and many
other mathematicians.

Gradient-like systems and, short afterwards, the “horseshoe” were the
first attempts to provide a general paradigm, valid for most dynamical
systems. Introduced by Smale at the beginning of the sixties, and devel-
oped through the work of his students and collaborators, as well as of
mathematicians in the Soviet Union, the theory of uniformly hyperbolic
systems also aimed at characterizing the notion of structural stability,
proposed by Andronov and Pontryagin in the thirties. This objective was
achieved (essentially, stability is tantamount to uniform hyperbolicity),
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for systems that are once differentiable, the final outstanding parts of
the proof being provided by Mañé in the mid-eighties, and by Hayashi
some ten years later.

Hyperbolicity was a main idea in Anosov’s solution of the classical
problem of ergodicity for the geodesic flow of manifolds with negative
curvature; the surface case had been done by Hedlund and Hopf. Further-
more, bringing ideas from statistical mechanics into play in the domain
of smooth dynamics, Sinai, Ruelle, and Bowen proved that uniformly
hyperbolic systems admit a very precise description in statistical terms
(typical evolution of most initial states), notwithstanding the great com-
plexity they may exhibit at the level of individual orbits.

On the other hand, it was soon clear that uniform hyperbolicity is
too rigid a property, that can not account for most dynamical systems:
there are smooth maps and flows that are not even approximated by
hyperbolic ones. A new, more general, paradigm was needed...

Subsequent progress occurred in several fronts: bifurcation theory, es-
pecially homoclinic phenomena (Newhouse, Palis, Takens, Yoccoz, Mor-
eira); specific models of non-hyperbolic behavior, such as the Hénon
maps (Benedicks, Carleson, Mora, Viana, Young) or the Lorenz flows
(Afraimovich, Shilnikov, Guckenheimer, Williams); various extensions of
the notion of hyperbolic system, especially Pesin’s theory of non-uniform
hyperbolicity (Pesin, Katok, Ledrappier, Young); low-dimensional sys-
tems, like maps of the interval (Jakobson, Milnor, Thurston, de Melo,
van Strien, Mañé, Sullivan, Yoccoz, McMullen, Lyubich, Swiatek) or the
complex sphere (Douady, Hubbard, Sad, and many of the previous).

As the twentieth century is drawing to an end, time seems ripe for
a new attempt at developing a global theory, suitable for the majority
of dynamical systems. A new view of such a theory has been emerging,
and some very exciting progress is taking place right now. Let me tell
you a bit about it, and some of the challenges we shall be facing along
the way.

1 Basic set-up

I focus on two main models of evolution law (see the last section for brief
comments on other models). The first one corresponds to transformations
f : M → M on a space M, the points of which describe the different
states of the system. The orbit of each x0 ∈ M is the sequence (xn)n
defined by xn = f(xn−1) for n ≥ 1. Most of the time I assume that f is
invertible, and then one also defines xn = f−1(xn+1) for n < 0.

Another model are continuous-time flows f t : M → M , t ∈ R, that
is, one-parameter families of transformations satisfying f t+s = f t ◦ fs
for t, s ∈ R, and f0 = id. The orbit of x0 ∈M is the curve xt = f t(x0),
where t ∈ R. Assuming the flow depends smoothly on time t, there is an
associated vector field F on M , defined by

F (x) =
d

dt
f t(x)

∣∣∣
t=0

.
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Indeed, it will always be understood that M is a (compact) manifold,
and the system is smooth, both in time and in space M .

In either setting, the overall objective is twofold:

– to describe the behavior of most orbits for most systems, specially
when time goes to infinity

– to understand whether this behavior is stable under small modifica-
tions of the evolution of the law

I want to stress that description of all orbits or systems is not a realistic
goal, in general, because there are too many forms of exceptional behav-
ior. Also, concerning the second problem above, one should note that
mathematical models are, really, only approximations to the phenomena
they are meant to describe.

2 Attractors: finiteness

An attractor is a compact invariant set Λ ⊂M whose basin of attraction

B(Λ) := {points in M whose forward orbits converge to Λ}

has positive Lebesgue probability (volume). As I shall comment upon
later, it is possible for a dynamical system to have an infinite number of
attractors, which renders the description of the dynamics rather difficult.

The following conjecture of Palis is at the basis of an ambitious pro-
gram put forward in [44] to bypass this, and other stumbling blocks
on the way towards an understanding of complex dynamical behavior:
Can any dynamical system (flow or diffeomorphism) be approximated
by another having only a finite number of attractors, whose basins of at-
traction include almost every orbit ? Moreover, these attractors should
have nice ergodic properties, including existence of physical measures
and stochastic stability (stability under small random noise). I shall re-
turn to this later.

The finiteness conjecture has been established by Lyubich [34] for
real quadratic maps x 7→ a + x2, in a very strong form: for almost ev-
ery parameter value of a there is a unique attractor, which is either
periodic or “chaotic” (non-uniformly hyperbolic). There is an ongoing
extension for rather general families of unimodal maps of the interval,
by Lyubich, de Melo, and de Melo. Before that, Swiatek with the aid of
Graczyk [26], and Lyubich [35], had shown that parameters correspond-
ing to occurrence of a periodic attractor are dense. Recently, Kozlovsky
[33] extended this last result for very general families of unimodal maps.
On the other hand, a pioneer theorem of Jakobson [30] stated that non-
uniformly hyperbolic dynamics corresponds to a set of parameters with
positive Lebesgue probability.

There has also been some remarkable progress for systems in higher
dimensions, part of which is touched upon in the next sections. Moreover,
finiteness of attractors, and corresponding statistical properties, were
proven for “general” dynamical systems with random noise [3].
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3 Infinitely many sinks

Systems with an infinite number of attractors do exist: by Newhouse
[43], coexistence of infinitely many attracting periodic orbits is generic
(Baire second category) in certain open subsets of the space Diffk(M2)
of Ck diffeomorphisms, for any surface M2 and any k ≥ 2. These open
sets exhibit several other complicated phenomena, such as homoclinic
tangencies [51], with all their dynamical consequences [45, Chapter 7],
and also super-exponential growth of the number of periodic orbits [31].

Newhouse’s results have been extended to arbitrary dimensions [46],
to conservative systems [24], and to certain holomorphic maps [19]. A
version for non-hyperbolic (Hénon-like) attractors was given in [20], and
another mechanism yielding infinitely many sinks was described in [12],
that applies also to Diff1(Md) for dimension d ≥ 3.

Nevertheless, three decades after the initial results, this phenomenon
remains essentially as little understood as ever. It is not even known
whether coexistence of infinitely many periodic attractors may occur
robustly , that is, for a whole open set of systems (not just a generic
subset of it). But, in light of the conjectures mentioned before, one does
not expect this to be possible. Even more: Does coexistence of infinitely
many attractors correspond to a zero measure set in parameter space
(zero Lebesgue measure on typical families with a finite or countable
number of parameters) ? In any case, is there a symbolic description for
systems with an infinite number of attractors ?

4 Dynamical decompositions

The limit set of a diffeomorphism f : M →M is the set of accumulation
points of all the orbits

L := closure
(
{lim
k
fnk(x) : x ∈M and nk → ±∞}

)
.

The diffeomorphism is called uniformly hyperbolic (or Axiom A [42,54])
if L is a uniformly hyperbolic set , that is, if there exists a splitting of the
tangent space over it TLM = Eu⊕Es into two sub-bundles Eu and Es,
such that the derivative of f preserves both sub-bundles, expanding Eu

and contracting Es, at uniform rates. In that case, by [54], the limit set
may be broken into a finite number of basic pieces, two-by-two disjoint,

L = Λ1 ∪ · · · ∪ ΛN , (1)

each of which is compact, invariant, and dynamically indecomposable:
it contains dense orbits. Since attractors are included among the basic
pieces (not exclusively), existence of a finite number of attractors is an
immediate consequence. Is there a corresponding decomposition for very
general (non-hyperbolic) systems ?

There has been some very encouraging progress in this direction. The
hint comes from the fact that each basic piece Λj in (1) is a robust set :
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there are neighborhoods U of Λj and U of f in Diff1(M), such that
Λj = Λf , and Λg is dynamically indecomposable for every system g ∈ U ,
where

Λg := {x ∈M : gn(x) ∈ U for every n ∈ Z}

is the maximal invariant set of g inside U . It turns out that we can say a
great deal about robust sets of diffeomorphisms. If M is two-dimensional,
robustness implies uniform hyperbolicity [36]. In general, Bonatti, Dı́az,
Pujals, Ures [13,21] prove that every robust set satisfies a weaker (but
still uniform) property of hyperbolicity: dominated splitting, or even
partial hyperbolicity.

A dominated splitting for a compact invariant set Λ ⊂M is a decom-
position TΛM = E1 ⊕E2 of the tangent space, such that the derivative
preserves both sub-bundles E1 and E2, and is more expanding/less con-
tracting on the former than on the latter: there is σ > 1 such that

‖Df(x)v1‖ ≥ σ‖Df(x)v2‖ (2)

for every x ∈ Λ and any norm−1 vectors v1 ∈ E1 and v2 ∈ E2. If Df
either expands E1 or contracts E2, then we call Λ partially hyperbolic.
One reason such properties are so important is that they yield very useful
geometric information about the dynamics on Λ, like the existence of
invariant foliations.

Corresponding results have also been proved for flows, at least in
dimension 3. Robust sets that do not contain equilibrium points are
hyperbolic [28]. Most interesting, by a result of Morales, Pacifico, and
Pujals [41], robust sets containing equilibria are, necessarily, attractors
or repellers, and they are partially hyperbolic of Lorenz type. This theory
developed in [41] fits nicely with the conclusions of Tucker [55], who has
recently proved the long standing conjecture that the famous equations
of Lorenz contain a “strange” attractor.

In either case, discrete-time or continuous-time, a partially hyper-
bolic invariant set is not necessarily robust. What are the appropriate
additional conditions that ensure robustness ? Related to this, Pujals,
Sambarino have just shown that, for surface diffeomorphisms, invariant
sets with a dominated splitting admit a dynamical decomposition into
finitely many basic pieces.

Another related problem concerns the shadowing property . The clas-
sical statement, for uniformly hyperbolic systems [15], asserts that near
any pseudo-orbit , that is, any sequence (xn)n such that dist(f(xn), xn+1)
is small for all n, there exists a true orbit of the system. Such a strong
statement can not be expected to hold in any reasonable generality out-
side the hyperbolic context, see [11,61]. On the other hand, properties
of finite-time shadowing for most orbits are implicit in some important
situations, e.g. in the proof of stochastic stability of non-hyperbolic sys-
tems such as the Hénon maps [7]. Is there a useful shadowing lemma for
very general non-uniformly hyperbolic systems ?
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5 Non-uniform hyperbolicity

In Pesin theory one assumes that an invariant probability µ has been
fixed, one interesting case being µ = volume (Lebesgue measure). The
values λ1(x), . . . , λm(x) taken by

lim
n→±∞

1
n

log ‖Dfn(x)v‖

when v runs over all non-zero tangent vectors at x are the Lyapunov
exponents of f at x ∈ M . The limit exists for every v ∈ TxM \ {0} and
µ-almost every x ∈ M , by a theorem of Oseledets. If µ is ergodic then
the λj(·), 1 ≤ j ≤ m, are constant over a full µ-measure set. Similar
notions and facts hold for flows.

Non-uniform hyperbolicity, meaning non-zero Lyapunov exponents,
ensures that the system shares some of the key features of uniformly
hyperbolic systems, such as local stable and unstable manifolds that are
smooth embedded disks [48]. In contrast, little is known about systems
with zero exponents. Are Lyapunov exponents of flows and diffeomor-
phisms, typically, non-zero ?

The answer can not be unconditionally affirmative, not for conser-
vative systems at least. Herman [60] constructed open sets of smooth
volume-preserving maps admitting positive volume invariant sets that
consist of invariant tori restricted to which the diffeomorphism acts as a
rigid translation:

f(θ1, . . . , θd) = (θ1 + ω1 , . . . , θd + ωd) for all (θ1 , . . . , θd). (3)

For general (dissipative) systems it is not known whether Lyapunov ex-
ponents can be robustly zero. On the other hand, abundance of non-
uniform hyperbolicity was proved in a few important models, such as
the Hénon family [6], and its multidimensional counterparts in [58].
Recently, Dolgopyat proved genericity of non-zero Lyapunov exponents
among volume-preserving, strongly partially hyperbolic diffeomorphisms
in dimension 3 (a definition will appear later).

It is useful to place these problems in a more general setting, that
of linear co-cycles over a map (or a flow). Here one considers, together
with the transformation f : M → M , a map A : M → SL(k,R). The
n-th iterate of A is defined by An(x) = A(fn(x)) · · ·A(f(x))A(x), for all
n ≥ 1. Assuming f is invertible, one also defines A−n(x) as the inverse
of An(f−n(x)). The Lyapunov exponents of (f,A) at a point x ∈M are
the values of

lim
n→±∞

1
n

log ‖An(x)v‖

over all v ∈ TxM \ {0} (Oseledets theorem applies in this setting).
Several approaches have been devised for studying Lyapunov expo-

nents in this framework, e.g. Furstenberg [25], Herman [29], and Kotani
[32]. Roughly speaking, mild conditions are often sufficient to ensure
that the exponents are non-zero. For instance, for products of random
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SL(2,R) matrices (i.i.d. with probability distribution ν) [25] requires
only the non-existence of a probability measure in the projective space
RP

1 invariant under every matrix in the support of ν.
However, this should be contrasted with the following dichotomy

that was recently proved by Bochi: generic (Baire second category) con-
tinuous SL(2,R) co-cycles over any ergodic aperiodic transformation
f : (M,µ) → (M,µ) either are uniformly hyperbolic or have zero Lya-
punov exponents (aperiodicity just means that the periodic points of
f are not a full µ-measure set). A corresponding statement for diffeo-
morphisms was claimed by Mañé several years ago, but no proof was
ever available: C1-generic volume-preserving surface diffeomorphisms ei-
ther are uniformly hyperbolic or else have zero Lyapunov exponents at
Lebesgue almost every point ? What about symplectic diffeomorphisms
in any dimension ?

6 Physical measures

Given f : M →M and x ∈M , the time-average of a function ϕ : M → R

on the orbit of x is

lim
n→+∞

1
n+ 1

(ϕ(x) + ϕ(f(x)) + · · ·+ ϕ(fn(x))) .

Assuming the limit exists for every continuous function ϕ, it defines a
probability measure µx on the Borel σ-algebra of M : the integral of ϕ
with respect to µx is just the time-average of ϕ on the orbit of x. This
measure describes the asymptotic behavior of x in quantitative terms:

µx(D) = average time the orbit of x spends in D,

for any measurable D ⊂ M whose boundary has zero µx-measure. A
probability µ is a physical (or Sinai-Ruelle-Bowen) measure for f if
µ = µx for a set of initial states x with positive Lebesgue measure.
This set is denoted B(µ) and called the basin of µ. These notions extend
to flows in a straightforward way.

Fig. 1. A system without time-averages

The ergodic theorem of Birkhoff ensures that time-averages exist at
almost every point, with respect to any finite invariant measure. This is
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especially meaningful for conservative systems. In general, time-averages
may fail to exist for large sets of initial states x ∈ M , in the sense of
Lebesgue measure. One such example, a planar flow with a double saddle
connection, is depicted in Figure 1. For most dynamical systems: Do
time-averages converge Lebesgue almost everywhere ? Is almost every
point in the basin of some physical measure ? Are the physical measures
finitely many ?

Proving existence or finiteness of physical measures is usually quite
hard, but this has been achieved in a handful of very important cases.
Besides the classical results of Sinai, Ruelle, and Bowen [16,52,53] for
hyperbolic systems, let me mention Jakobson [30] for unimodal maps
of the interval, Benedicks, Young [9] for the non-uniformly hyperbolic
Hénon maps constructed by Benedicks, Carleson [6], and Alves, Bonatti,
Viana [1,2,14] for robust classes of partially hyperbolic maps. Especially,
[2] assumes only some general facts of non-uniform hyperbolicity (non-
zero Lyapunov exponents), raising the conjecture: Does non-uniform hy-
perbolicity at Lebesgue almost every point imply existence of physical
measures ?

7 Homoclinic phenomena

A recent result of Pujals, Sambarino [51] states that every surface dif-
feomorphism can be C1-approximated (uniform approximation, both of
the map and of the first derivative) by another which either is uniformly
hyperbolic or has a homoclinic tangency. A homoclinic tangency is a
non-transverse intersection between the stable manifold and the unsta-
ble manifold of some hyperbolic saddle. See Figure 2, which corresponds
to a case where the stable and unstable manifolds also have transverse
intersections. Thus, in 2 dimensions homoclinic tangencies are the ob-
struction to hyperbolicity, and an understanding of non-hyperbolic be-
havior must rely on understanding the forms of complicated dynamics
occurring near homoclinic tangencies.

Fig. 2. A homoclinic tangency
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There is an intimate relation between the phenomenon of homoclinic
tangencies and the Hénon family of maps f(x, y) = (1 − ax2 + by, x).
In fact, perturbations of the Hénon family model much of what goes on
when a homoclinic tangency is unfolded along a parameterized family of
surface diffeomorphisms; see [45, Chapter 3]. The proof, by Benedicks,
Carleson [6], that Hénon maps have a non-uniformly hyperbolic attractor
for a set of parameter values with positive Lebesgue measure opened the
way to a very complete picture of the dynamics of a large class of non-
hyperbolic systems. See [7–10], as well as [22,40,57] for an insertion of
these results in the general context of bifurcations.

Germane to this, there is an important recent work of Palis, Yoccoz
[47], proving that non-uniform hyperbolicity is prevalent in parameter
space (relative Lebesgue measure close to 1) near homoclinic tangencies
of surface diffeomorphisms. See Figure 2. They need an assumption about
the fractal dimension of the hyperbolic set involved in the tangency,
which is related to the fact that, as of today, the theory of Hénon-like
maps is restricted to the strongly dissipative case. Can this theory be
extended to mildly dissipative diffeomorphisms ?

Let me point out that, by [56], Newhouse’s construction [43] of open
subsets of Diffk(M2), k ≥ 2, corresponding to non-hyperbolic dynamics
does not apply to C1 diffeomorphisms. In fact, it is not known whether
hyperbolic (Axiom A) diffeomorphisms are dense in the space of C1

diffeomorphisms on a surface (that is not true in higher dimensions, by
a result of Abraham and Smale).

The following generalization of [51] to arbitrary dimension was also
conjectured by Palis [44]: Can any diffeomorphism be Cr-approximated,
any r ≥ 1, by another which either is hyperbolic or else has a homo-
clinic tangency or a heteroclinic cycle ? By heteroclinic cycle one means
a finite set of hyperbolic periodic points, cyclically related by intersec-
tions between stable and unstable manifolds, such that not all their sta-
ble manifolds have the same dimension. The proof of this conjecture is
mostly open, even for r = 1.

Cr-approximation results are, very often, extremely hard when r > 1.
For instance: Given a recurrent point x of a diffeomorphism f , is there a
Cr-nearby diffeomorphism for which x is a periodic point ? Pugh’s C1-
closing lemma [49] asserts that the answer is affirmative, if one takes r =
1. This was extended for flows, and some special classes of systems, like
symplectic maps and Hamiltonian flows, in a joint work with Robinson.
In contrast, little could be proved for r > 1 (even for r = 1 + ε !),
apart from partial results for flows on surfaces, by Peixoto and, recently,
Gutierrez [27]. For instance, it is not known whether diffeomorphisms
with some periodic point are dense in Diff2(T2). But Herman [60] proved
that the C∞-closing lemma is, actually, false for symplectic maps and
Hamiltonian flows on some manifolds. In the meantime, there were some
remarkable improvements of Pugh’s result, such as the ergodic C1-closing
lemma of Mañé [37], and the C1-connecting lemma of Hayashi [28].
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8 Conservative systems

The importance of elliptic dynamical behavior can not be overestimated,
especially in the context of conservative systems, that is, symplectic (or
just volume-preserving) maps and Hamiltonian flows. The theorem of
Kolmogorov, Arnold, Moser for symplectic maps states that near every
non-degenerate elliptic periodic point (all the eigenvalues have norm 1)
there exist positive volume sets consisting of invariant tori, restricted
to which the map acts as (3). In particular, in the presence of such an
elliptic point the system can not be ergodic. In the special case when the
ambient manifold M is 2-dimensional, the tori are Jordan curves around
the elliptic point.

Important results, notably by Herman and Rüssmann [60], have con-
siderably deepened the scope of this theory. In 2-dimensions, Zehnder
[62] proved that hyperbolic behavior is present in the regions between
KAM curves, in the form of transverse homoclinic intersections asso-
ciated to hyperbolic periodic points. And the theory of Aubry-Mather
sets [5,38] completed a remarkably rich picture of the dynamics near the
elliptic point, providing a substitute for the “missing” curves.

In global terms, the balance between elliptic and hyperbolic dynamics
is still far from understood. For the standard family of area-preserving
maps of the 2-torus

fκ(x, y) = (−y + 2x+ κ sin(2πx), x) mod Z2,

it has been shown by Duarte [23] that elliptic points and KAM invariant
curves are abundant for generic (Baire second category) sufficiently large
parameters κ ∈ R. However, it is widely believed that the upper hand
should belong to non-uniform hyperbolicity, from a probabilistic point
of view: Is there a positive Lebesgue measure set of values of κ for which
fκ (i) has non-zero Lyapunov exponents on a positive (respectively, full)
Lebesgue measure set of points ? (ii) has no elliptic periodic points,
and is even ergodic ? Kosygin and Sinai have announced that they can
construct an uncountable set of parameters κ for which (i) and (ii) are
valid. More recently, they also announced that their methods yield a
positive Lebesgue measure set, with full density at κ =∞.

For symplectic maps with d ≥ 2 degrees of freedom (the ambient
space M has dimension 2d ≥ 4) KAM tori do not bound regions in the
dynamical space, and so orbits not contained in any invariant torus may
escape to infinity. Ever since this possibility was raised in [4], there have
been several attempts at proving that Arnold diffusion does occur in
generic situations. Currently, the broadest results seem to be given by
Mather’s variational methods [39], see also [59].

The accessibility approach to proving ergodicity of volume-preserving
systems was introduced by Brin-Pesin [17], and brought to a whole new
level of generality by a series of papers of Pugh, Shub, Wilkinson, Burns,
Niţică, Török, and Dolgopyat, over the last few years; see the survey [18]
for updated information. In a few words, one assumes the diffeomorphism
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f to be strongly partially hyperbolic: the tangent space splits into three
invariant sub-bundles TM = Eu ⊕ Ec ⊕ Es such that Df |Eu is an
expansion, Df |Es is a contraction, and Df |Ec is between the two, in
the sense of (2). Then, accessibility means that any two points may be
connected by a piecewise smooth path tangent to either Eu or Es (except
at a finite number of corner points).

While this notion is useful also for general (dissipative) systems, it
has proven itself especially effective in the conservative case. In particu-
lar, a result of Pugh, Shub [50] states that, for volume-preserving diffeo-
morphisms, accessibility together with a number of technical hypotheses
implies stable ergodicity (all volume-preserving maps in a neighborhood
of f are ergodic). Results in the converse direction have been obtained
as well. However, it should be noted that partial hyperbolicity is not
necessary for stable ergodicity [14].

9 Concluding remarks

One thing I find particularly fascinating about Dynamical Systems is
its being a meeting ground for mathematical fields and experimental sci-
ences alike. Analysis (real and complex), Topology (differential and alge-
braic), Probability and Measure Theory, Geometry (in various flavors),
Number Theory, all have lent their methods to Dynamics (often, they
benefited from it). And concrete problems in such areas as Mechanics
(classical or fluid), Electromagnetism, Thermodynamics, Demography,
Information Theory, or Economics, lead to some of the questions that
shaped this domain of Mathematics. In particular, the evolution models
that I discussed more closely, and which have been the aim of most efforts
in this field, can be traced back to its origins in the qualitative theory
of differential equations and, more specifically, in Celestial Mechanics.

Other natural phenomena are better described by such mathemati-
cal models as partial differential equations, or stochastic maps and flows.
One prize example is Fluid Mechanics, especially the problem of turbu-
lence. Although some very basic questions remain open, e.g., the very
existence of global solutions for the Navier-Stokes equation, ideas such
as I discussed before should be useful in extending the theory to such
infinite-dimensional models. One direction along which such an extension
can be attempted for dissipative partial differential equations is by first
reducing the system to an invariant inertial manifold , finite-dimensional
and attracting the solution through almost every initial condition.

Of course, new challenges keep being posed. Right now, one is be-
ginning to dare try to understand the dynamics of extremely complex
biological systems, such as ecological environments or the human brain.
Will our fundamental paradigms apply to such situations, or will we have
to devise fundamentally new tools and ideas ? It would be very nice to
hang around long enough and find out...
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of Math., 133:73–169, 1991.

7. M. Benedicks and M. Viana. Random perturbations and statistical prop-
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Invent. Math., 112:541–576, 1993.

10. M. Benedicks and L.-S. Young. Markov extensions and decay of correla-
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Poincaré Anal. Non Linéaire, 15:539–579, 1998.

21. L. J. Dı́az, E. Pujals, and R. Ures. Partial hyperbolicity and robust tran-
sitivity. Acta Math., 1999. To appear.



Dynamical Systems: Moving into the Next Century 13

22. L. J. Dı́az, J. Rocha, and M. Viana. Strange attractors in saddle-node
cycles: prevalence and globality. Invent. Math., 125:37–74, 1996.

23. P. Duarte. Plenty of elliptic islands for the standard family of area pre-
serving maps. Ann. Inst. H. Poincaré Anal. Non. Linéaire, 11:359–409,
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