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Abstract

In this paper we introduce 4–8 subdivision, a new scheme that generalizes the four-
directional box spline of classC4 to surfaces of arbitrary topological type. The crucial
advantage of the proposed scheme is that it uses bisection refinement as an elementary
refinement operation, rather than more commonly used face or vertex splits.

In the uniform case, bisection refinement results in doubling, rather than quadrupling
of the number of faces in a mesh. Adaptive bisection refinement, automatically generates
conforming variable-resolution meshes in contrast to face and vertex split methods which
require an postprocessing step to make an adaptively refined mesh conforming.

The fact that the size of faces decreases more gradually with refinement allows one to
have greater control over the resolution of a refined mesh. It also makes it possible to
achieve higher smoothness while using small stencils (the size of the stencils used by our
scheme is similar to Loop subdivision).

We show that the subdivision surfaces produced by the 4–8 scheme areC4 continuous
almost everywhere, except at extraordinary vertices where they are isC1-continuous.

Keywords: subdivision schemes, four-directional grids, Laves tilings, quincunx lattice, binary
4-8 refinement, two-pass smoothing.

1 Introduction

Subdivision surfaces generalize classical spline surfaces. As such, they overcome
some limitations of splines and offer several advantages, including the ability to
model surfaces of arbitrary topology, as well as the flexibility to combine global
smoothness with control of local features, such as creases and corners. They also
naturally integrate a continuous surface model with a discrete representation, lead-
ing to simple and efficient algorithms.
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Practically all previously known subdivision schemes are based on one of the
two tilings of the plane: the tiling with regular triangles and the tiling with squares.
These tilings are easily refined, and common subdivision schemes are derived from
box splines associated with these tilings. For example, three-directional quartic box
spline gives raise to the Loop subdivision scheme, and tensor product biquadratic
and bicubic splines lead to Doo-Sabin and Catmull-Clark subdivision respectively.

However, regular triangular and quadrilateral tilings are not the only refinable
tilings: a complete classification of isohedral tilings, for which all angles at each
vertex are equal, was found by Laves (see Section 2.1). This classification includes
eleven different types. In this paper we focus on subdivision based on a particular
4–8 tiling, which we demonstrate to have a number of attractive properties. We
introduce a new subdivision scheme based on a box spline associated with the 4–8
tiling. There are several advantages specific to this scheme:
� The basic refinement operation is bisection.The 4–8 meshes, and their arbitrary

topology generalization, 4–k meshes are refined by edge bisection. In contrast
to other commonly used refinement operations, such as triangle quadrisection,
the result of applying a single bisection to a conforming mesh is a conforming
mesh: no cracks can appear. This simplifies adaptive refinement: if a mesh is not
refined uniformly, the refined mesh is still guaranteed to be conforming.Vari-
able resolution meshesbased on 4–8 tilings are discussed in greater detail in
Section 2.1.
� Gradual refinement.For most common schemes, a single uniform refinement

step increases the number of faces or vertices by a factor of 4; a scheme recently
introduced by Kobbelt [17] increases the number of faces by a factor of 3. In our
case, at each refinement step, the increase is only a factor of 2.

� Small support and high smoothness.The masks that we use to implement our
scheme have a small support: the support for a vertex mask is even smaller
than that of the Catmull-Clark scheme, and the support for the face mask is the
same. At the same time, the resulting surface isC 4-continuous on the regular
part of the mesh, substantially higher than Catmull-Clark subdivision which is
C2-continuous1 .
� High symmetry.The basis function of our scheme in the regular case is invariant

with respect to rotations by�=8; thus it has a large symmetry group compared to
basis functions of tensor-product and three-directional box splines.
� Piecewise-polynomial limit functions.Like many commonly used schemes, but

unlike
p
3 subdivision [17], our scheme has piecewise-polynomial limit func-

tions on the regular meshes, which means it can be evaluated explicitly using
techniques proposed in [26].

1 Higer regularity is due to the fact that the mask is applied on every bisection refinement
step; two such steps are equivalent to a single face quadrisection step, and the combined
mask will be larger than that for the Catmull-Clark scheme.
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1.1 Related Work

The 4-8 subdivision scheme that we propose has similarities to a number of exist-
ing schemes. Uniquely, it combines certain features of triangular and quadrilateral
schemes. As the Loop subdivision scheme [22], it generates a hierarchy of triangu-
lar meshes. At the same time, as it operates on triangular meshes partitioned into
quadrilateral blocks, it is similar to primal quadrilateral schemes, such as Catmull-
Clark [2]. Two steps of our subdivision produce a scheme that can be applied di-
rectly to quadrilateral meshes refined by quadrisection, and the support of the masks
of such scheme is close to the interpolating scheme scheme described in [16], but
smoothness on the regular part is much higher.

As mentioned above, our scheme is also similar to
p
3-subdivision considered

in [17]. Our scheme can be viewed as
p
2 subdivision on quadrilateral meshes.

Finally, our scheme is based on aC4 box spline, a natural higher-degree ver-
sion of Zwart-Powell element [34], which was used in [23] and [12] to construct a
subdivision scheme for arbitrary meshes.

Our analysis ofC1 continuity is based on [31,32]; the basic ideas of the analysis
were introduced for the first time in [24].

The 4–8 mesh is closely related to quincunx lattices and has also been investi-
gated in image processing [9,13].

One of the important features of 4–8 meshes, adaptive refinement, was previ-
ously considered in the context of rendering of terrain models in [7,8,21].

2 4–8 Meshes and Refinement

In this section we review the basic concepts of mesh refinement, introduce reg-
ular 4–8 meshes, triangulated quadrilateral meshes, and bisection refinement, For
simplicity, in this section we consider only meshes without boundaries; the bound-
ary case is considered in greater detail in Section 4.

2.1 Regular Refinement and Tilings

A refinement ruleis an algorithm that produces a finer mesh from a given mesh.
The rule is purely topological: it uses only connectivity information about the mesh
and does not use the geometric information (e.g. vertex positions). Typical mesh
refinement methods are closely related to regular tilings, that is, tessellations of
the plane consisting of identical regularn-gons. A refinement rule applied to the
corresponding tiling produces a tiling isomorphic as a graph to the original. In this
case we say that a refinement rule leaves a tiling invariant.

There are only three types of regular plane tilings (see e.g. [11]); the tile has
to be either a square, an equilateral triangle, or a regular hexagon. Most known
refinement schemes are based on square or triangular tilings. Meshes with the same
connectivity as a regular tiling are usually referred to asregular meshes.

A commonly used refinement rule leaving quadrilateral tiling invariant isface
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split. This rule operates on arbitrary meshes. A vertex is inserted on each edge,
and on each face; the new vertices are connected by edges, so that each face is
partitioned inton quads, wheren is the number of vertices of the face. After a
few refinement steps the refined mesh has the same structure locally as the regu-
lar quadrilateral mesh, excluding some vertices inherited from the top level. This
property is very important: for a suitable choice of geometric rules for computing
new vertex positions, local properties of surfaces generated by iterative refinement
(e.g. smoothness) are the same as of surfaces obtained from a regular initial mesh.

2.2 4–8 Meshes

We can obtain new classes of refinement rules if we consider a larger class of
tilings, and look for rules that leave these tilings invariant. One possible class to
consider is the class ofmonohedral tilingswith regular vertices, also known as
Laves tilings, named after the crystallographer Fritz Laves [11].

In a monohedraltiling, every tile is congruent to one fixed tile, called thepro-
totile. A vertexv of a tiling is calledregular if the angle between each consecutive
pair of edges that are incident inv is equal to2�=d, whered is the valence ofv.
There are eleven tilings that satisfy these two conditions, including three regular
tilings.

The prototile of the[4:82] 2 Laves tiling is an isosecles right triangle. We refer
to it as 4–8 tiling, as it has alternating vertices of valence 4 and 8. This tiling has a
rich structure that can be exploited in the context of subdivision with a number of
advantages over regular tilings. The basic structure of this tiling is a pair of triangles
forming a square block divided along one of its diagonals. We call this structure a
basic block(Figure 1(a).) We will call the common edge of the two triangles the
interior edgeof the block; all other edges are calledexterior edges.The[4:82] tiling
forms atriangulated quadrangulation.

We say that a mesh is aregular 4–8 meshif it has the same connectivity as a
[4:82], or 4–8, Laves tiling. A regular 4–8 mesh has the same block structure as
the 4–8 tiling, and its edges can be similarly classified as interior and exterior block
edges. Note that each triangle has a single interior edge and two exterior edges. This
allows us to usebisectionas a primitive refinement operation: for each triangle we
bisect the unique interior block edge.

Bisection refinement. More precisely, the bisection refinement rule is defined as
follows:

Bisection refinement:
(1) Insert a split vertex on all internal edges of blocks.
(2) Subdivide each face into two sub-faces, by linking the the split vertex on the

internal edge to the opposite vertex of the face.

2 (An explanation of tiling signatures like[4:82] can be found [11].
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a b

Fig. 1. a. Laves [4:82] tiling with one of the basic blocks outlined. b. Two bisection
refinement steps are equivalent to a face split. Vertices inserted at each step are
shown as circles, new edges are shown as dotted lines.

Bisection refinement of a regular 4–8 mesh produces a regular 4–8 mesh. On
regular 4–8 meshes, bisection refinement is equivalent to quincunx refinement of
basic blocks (Section 3.2).

One important property of bisection refinement is that two steps result in a face
split of quads formed by pairs of triangles of basic blocks. Thus, bisection refine-
ment can be viewed as a way to decompose the face split into two steps. This is
illustrated in Figure 1(b).

Bisection refinement relies on the special topological structure of the mesh,
namely, the fact that it is partitioned into the basic blocks. Clearly, it can be ap-
plied to an arbitrary mesh partitioned into blocks of two triangles sharing an edge.
We call such meshestriangulated quadrilateral meshes, or tri-quad mesh for short.

A number of methods can be used to produce tri-quad meshes. If a quadrilateral
mesh is given, a tri-quad mesh can be produced by splitting each quad into two
triangles. A simple way to convert an arbitrary polygonal mesh into a tri-quad mesh
is to use a single step of Catmull-Clark refinement to obtain a quadrilateral mesh,
and then split each quad into two triangles. The disadvantage of this method, for
arbitrary triangular meshes in particular, is that it may result in six-fold increase in
the number of triangles. For triangular meshes, a more complex approach which
approximately doubles the number of triangles is described in Section 5.1.

Refinement of tri-quad meshes. Several important observations can be made
about the structure and refinement of tri-quad meshes. To state these observations,
we introduce notation for vertex types. Note that for any block two vertices are on
the diagonal and two are not. We will call a vertex type 1, if for at least one adjacent
block it is not on the diagonal. Otherwise, we call it type 2.
� All vertices added by a single refinement step, are type 1 with valence 4.
� A single refinement step converts all vertices of type 1 to type 2.
� The valence of vertices of type 2 is not changed by refinement.
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Fig. 2.Bisection refinement of a mesh (4 levels).

After a sufficiently large number of refinement steps, the structure of a neighbor-
hood of a vertex of a fixed size is identical to the structure of a submesh of a 4–8
mesh, excluding the neighborhoods of extraordinary vertices of valence2n, n 6= 4.
The structure of the mesh on such neighborhoods is shown in Figure 2(b). Note that
the extraordinary vertices have alternating exterior and interior edges.

Adaptive bisection refinement. Refinement methods such as face or vertex split,
cannot be used to refine a mesh adapitively without breaking topological consis-
tency of the mesh, that is, without creating cracks in the mesh. This is particularly
clear in the case of face splits, because at every step all edges of a face are subdi-
vided; therefore, to maintain consistency all adjacent faces have to be subdivided
to the same level. By induction, the whole mesh would have to be subdivided. To
overcome this difficulty, meshes with faces at different refinement levels have to be
fixed by a post-process. (see e.g. [14, 30]). In contrast, bisection refinement gener-
ates a hierarchical mesh structure that naturally supports variable resolution.

Suppose for any edge we can evaluate a criterion that tells us whether this edge
should be bisected or not. Two cases are possible, as shown in Figure 3: the edge is
either interior or exterior. For an interior edge, no other blocks have to be refined to
maintain a conforming triangulation. For an exterior edge, a single adjacent block
has to be refined.

internal edge split

external edge split

Fig. 3.Adaptive refinement of a 4–8 mesh. Left: two cases of edge splits; an interior
edge split does not require modification of any other blocks to maintain a conform-
ing mesh. An exterior edge split requires refining a single adjacent block. Right: an
example of adaptively refined 4–8 mesh.
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Fig. 4. Masks of our subdivision rules; the same face mask is used in all cases;
vertex mask coefficients depend on k, the number of incident exterior block edges.
In the case shown in the figure, k = 7. Note that the same rule applies for any
choice of diagonals of the adjacent blocks. For a regular 4–8 mesh only two cases
shown on the left are possible.

The above mechanism for refining internal and external edges, makes it possible
to build conforming tessellations with different resolution levels. Figure 3 (right)
shows an example of constrained resolution propagation.

3 4–8 Subdivision

In this section we present a 4–8 subdivision scheme, based on bisection refine-
ment, and describe its basic properties.

3.1 Definition of the scheme

To define a subdivision scheme for a closed tri-quad mesh we need to specify
rules for computing positions of the new vertices that we insert when bisecting the
basic blocks, and rules to update the positions of the existing vertices. The rules
that we propose are very simple (Figure 4):
Face rule: each new vertex inserted as a result of bisection refinement of a basic

block is computed as the barycenter of that block;
Vertex rule: the new position of an exisiting vertex v is computed as the average

of the old position and barycenter of the vertices sharing an exterior block edge
with v.
The vertex rule equally applies to vertices of types 1 and 2. As it was observed

in Section 2.2, after one bisection subdivision step all type 2 vertices have even
valence and alternating exterior and interior incident block edges; thus, the valence
becomes even, and equal to 2k, where k is the number of basic blocks sharing the
vertex. All newly inserted vertices are of type 1, and after one subdivision step turn
into type 2 of valence 8.
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The scheme can be extended to handle meshes with boundary, as discussed in
Section 4. Note that the support of the masks is quite small; the face mask is similar
to the face mask of the Catmull-Clark scheme, and the vertex mask has even smaller
support.

Remarkably, this scheme has a high degree of smoothness:
Proposition 1 The subdivision scheme defined above has the following properties:
� on a regular 4–8 mesh, the limit surface produced by the rules is a C 4 four-

directional box spline;
� by locality, on a tri-quad the rules produce a C 4-continuous surface away from

the extraordinary vertices;
� at the extraordinary vertices, the resulting surface is C 1-continuous.

These properties will be proved in subsequent sections. In the regular case the
rules reduce to simple masks shown in Figure 4. The rules of the scheme were
obtained as a straightforward generalization of the regular case. The rules for the
regular case were obtained as a quincunx subdivision rules for C4 four-directional
box spline as discussed in greater detail in the next section.

Once we establish that the scheme produces C4 box splines on regular meshes,
the analysis of C1-continuity can be performed using techniques developed in [31].
A detailed outline is presented in Appendix A, where we verify that the scheme is
indeed C1-continuous for all valences.

3.2 C4 four-directional box spline

Recall that a bivariate box spline is defined by a set of directions [d1; : : : dn]. The
spline Bn(x), x 2 R2 , can be computed using the following recurrence:

Bj(x) =
Z 1

0

Bj�1(x� tdj)dt

with B0 being the delta function. If the directions dj are chosen from the set [1; 0],
[0; 1], [1; 1], [1;�1] and have equal multiplicities, the spline has the symmetries of
the four-directional mesh.

The simplest smooth box spline of this type is the Zwart-Powell function [34],
also known as the ZP element. It is associated with the set of four directions above,
with each direction having multiplicity 1. This spline was used in [23] to define a
C1 dual subdivision scheme on quadrilateral meshes.

A four-directional box spline that exhibits a higher order of smoothness than the
ZP element is the function generated by the same set of directions, each taken with
multiplicity 2.

We note that this spline is piecewise polynomial of degree 6 ( [5], Proposition
I.28), and it is C4 continuous ( [5], Proposition I.37). Figure 5 shows a plot of the
function, and compares it to other basis functions.

The remarkable property of the C4 box spline which it shares with ZP spline,
is that it is refinable with respect to quincunx refinement, which is equivalent to
bisection refinement on regular 4–8 meshes. To define the notion of refinablilty, we
need to introduce dilation matrices for refinement of regular grids.
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Fig. 5. Top row: bicubic B-spline, C4 box spline function. Bottom row: Zwart-Powell
basis function, biquadratic B-spline. The squares on the horizontal plane are unit
size. All plots are stretched 8:1 in vertical direction.

Dilation matrices. Consider a refinement rule on a regular two-dimensional grid,
which produces a finer regular grid including the original grid. The rule is com-
pletely characterized if we identify the positions of the vertices of the original grid
in the refined grid. As the original grid is regular, its vertices form a periodic lattice
in the refined grid. This lattice can be characterized by a pair of generating vectors
v1 and v2: the lattice contains vertices with coordinates v1i + v2j, i; j 2 Z. If we
use multiindex notation q = (i; j), then the points of the lattice can be represented
in the form Mq, where M = [v1v2] is called the dilation matrix. The dilation ma-
trix for dyadic refinement, which is the basis of face split refinement, is a diagonal

matrix diag(2; 2). Quincunx refinement has the dilation matrix M =

0
B@ 1 1

1 �1

1
CA.

To summarize, the columns of the dilation matrix are generating vectors of the
lattice formed by the the vertices of the coarse mesh in the refined mesh. For quin-
cunx refinement, this is illustrated in Figure 6.

Scaling relation and subdivision masks. We show that for a particular choice
of the refinement mask cq, q 2 Z

2, the C4 box spline B(x) satisfies the scaling
relation

B(x) =
X
q2Z2

cqB(Mx� q); x 2 R2 (1)

where M is the dilation matrix of quincunx refinement, and cq, q 2 Z2, is a simple
mask defined below.

It is well known that if a basis function B(x) satisfies (1), then the control points
pq of a surface

P
q pqB(x� q) can be refined using the refinement rule
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refinement

Fig. 6. Quincunx refinement. The coarse mesh is shown with thick lines, the refined
mesh is shown with thin lines. Inserted vertices are indicated with circles. The
column vectors of the dilation matrix generating the coarse mesh are shown.

p0
q
=
X
r2Z2

cq�Mrpr (2)

from which we can deduce separate refinement masks for different vertex types.
To show that (1) is satisfied for the C4 box four directional spline B(x), and to

find the subdivision mask cq it is convenient to consider the scaling relation in the
Fourier domain, where it takes the form

B̂(!) =
1

jdetM j ĉ
�
(M�1)T!

�
B
�
(M�1)T!

�
; ! 2 R2 (3)

(see, e.g., [19]), and the mask can be computed using j detM jB̂(MT!)=B̂(!).
Following [5], we find the Fourier transform of our box spline, shifted so that its

support is centered at 0:

B̂(!) =
(1� e�i!1)

2
(1� e�i!2)

2
�
1� e�i(!1+!2)

�2 �
1� e�i(!1�!2)

�2
e3i!1ei!2

!2
1!

2
2(!1 + !2)2(!1 � !2)2

Applying the formula for the Fourier transform of the mask c yields after cancela-
tions

ĉ(!) =
1

8

�
1 + e�i!1

�2 �
1 + e�i!2

�2
ei!1ei!2

This yields the following simple mask:

1

8

0
BBBBB@
1 2 1

2 4 2

1 2 1

1
CCCCCA (4)
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with entries numbered from -1 to 1 in both directions.
Finally, we have to extract subdivision masks for two types of vertices: newly

inserted face centers and vertices of the coarse mesh. Recall that by definition of
the dilation matrix the vertices of the coarse mesh have coordinates (i + j; i � j),
�; j 2 Z2 in the refined mesh; it is easy to see that the new vertices have coordinates
(i+j; i�j+1). Rewriting (2) for two types we get two rules: p0

Mq
=
P

r cM(q�r)pr
(vertex rule), p0

Mq+e1
=
P

r cM(q�r)+e1pr (face rule), where e1 = [1; 0]. Substituting
the mask (4), we get

p0
i+j i�j =

1

2
pi;j +

1

8
(pi�1 j�1 + pi�1 j+1 + pi+1 j�1 + pi+1 j+1)

p0
i+j+1 i�j =

1

4
(pi j + pi+1 j + pi j+1 + pi+1 j+1)

These are exactly the rules of our subdivision scheme in the regular case (Figure 4).
It is interesting to note that this mask coincides, up to a scale factor, with the mask
for midpoint subdivision for dyadic refinement.

We conclude that our scheme produces the C4 four-directional box spline sur-
faces on regular 4–8 meshes.

4 Boundaries and Creases

The previous sections presented a 4–8 subdivision scheme that generalizes regu-
lar C4 four-directional box splines for closed surfaces of arbitrary topological type.
However, it is often necessary to model surfaces with boundary, which may contain
sharp features as well. Thus, it is of practical importance to extend our 4–8 subdivi-
sion scheme to support surfaces with smooth boundaries and creases. Furthermore,
it is often useful to have surfaces with piecewise smooth boundary. Special rules
have to be applied in the neighborhood of corner vertices on the boundaries and
creases, where the boundary curve is not smooth. Correctly handling convex and
concave corners requires some effort, and can be done for 4–8 subdivision using the
techniques described in [1]. Here we present only the rules for smooth boundaries.

Our approach follows the ideas that were previously used to design boundary
rules for Catmull-Clark, Loop and other subdivision schemes. We use the observa-
tion that each box spline spline has a corresponding univariate spline. In our case, it
is easy to see that the corresponding univariate scheme is the degree five B-spline.

Indeed, assume that all control points pij for the C4 box spline spline surface
have form (xi; yi; 0), that is, all points in row i coincide. The resulting limit surface
is just a curve in the x; y plane with control points pxy

i
= (xi; yi), with basis func-

tions computed as b(u) =
P

j B(u; v � j), where B(u; v) is the basis function of
the C4 box spline. Note that a priori b may depend on u, but in a moment we will
see that this is not the case. Taking Fourier transforms, we obtain

b̂(!1; !2) = B̂(!1; !2)
X
j

ei!2j = Æ(!2)B̂(!1; !2) = Æ(!2)B̂(!1; 0)
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As the inverse Fourier transform of Æ(!2) is constant, b̂ does not depend on v. Com-
puting B(!; 0) using lim!!0(1� exp(�i!))=i! = 1, we obtain Fourier transform
of b(u) as a univariate function:

b̂(!) =

 
1� e�i!

i!

!6

which is precisely the Fourier transform of a degree 5 B-spline. It turns out that it is
easy to incorporate refinement rules of a degree 5 spline into bisection refinement,
as it is shown below. Unfortunately, as it is the case for the Loop and Catmull-
Clark schemes [1], we have to modify the rules for the points that we insert near
extraordinary boundary vertices to ensure C1 continuity at extraordinary points on
the boundary.

Before we describe the rules, we have to generalize bisection refinement for
meshes with boundary.

Bisection refinement on the boundary. Bisection refinement of closed meshes
relies on the fact that after basic blocks are bisected, new blocks can be con-
structed out of pairs of triangles adjacent to each exterior block edge. In an open
tri-quad mesh, the boundary exterior block edges have only a single adjacent trian-
gle. For open meshes we introduce special single-triangle boundary basic blocks.
The boundary edge of these blocks plays the role of the interior block edge of stan-
dard basic blocks. Clearly, we still can apply bisection to the single triangle of the
boundary basic block, inserting the split vertex on the boundary edge; on the next
refinement level, the boundary edge becomes two exterior block edges (Figure 7).

Fig. 7. On two sequential bisection refinement steps either all boundary edges are
exterior block edges or none. Boundary basic blocks are shown in gray.

We observe that new vertices on the boundary are inserted only on every other
step.

Boundary rules. Our boundary subdivision rules are based on Lane-Riesenfield
algorithm [18]. A degree n B-spline can be computed by recursively applying the
following two-step algorithm: replicate the control points; apply midpoint averag-
ing n times. To adapt the algorithm to our refinement procedure, we combine the
first three averaging steps with point replication. This is equivalent to applying a
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cubic B-spline subdivision rule on the step when new vertices are inserted. The
masks are shown in Figure 8. The remaining two averagings are performed on the
next step, when no new vertices are inserted on the boundary. The combined two
averaging steps amount to convolution with the mask 1=4; 1=2; 1=4.
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1
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1
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Fig. 8. Boundary subdivision rules. Modified subdivision rules; the constants are
given by (5).

This observations lead to the following rules:
� If for a boundary vertex the incident boundary edges are exterior block edges,

apply the smoothing mask. If these edges are edges of single-triangle boundary
blocks, apply cubic B-spline vertex mask.
� To insert a new vertex on the boundary, use midpoint subdivision.

One difficulty with these rules is that they lead to surfaces which are not C 1-
continuous near extraordinary vertices on the boundary, similar to the case of Loop
and Catmull-Clark subdivision [1]. We use a similar approach to eliminate this
problem, modifying the rules for the interior vertices adjacent to the extraordinary
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(a) (b)

Fig. 9. Left: subdivided mesh with boundary after 10 iterations for unmodified rules.
Right: Subdivided mesh with boundary after 10 iterations for modified rules. Note
that the convergence is uniform along different directions.

vertex on the boundary. Here we present an informal explanation of the problem,
and propose the rules that are likely to produce C1-continuous surfaces; this claim
is supported by empirical evidence, and we leave precise analysis along the lines
described in [33].

Rules for extraordinary boundary vertices. First we examine the problem with
using a combination of the degree 5 B-spline rules together with the standard rules
in the interior. Our argument is based on the standard subdivision matrix consid-
erations; basic concepts are discussed in [29, 32]. We emphasize that this is an
informal argument, which is used as a motivation for the choice of coefficients; we
leave formal analysis as future work.

Consider the minimal invariant neighborhood of an extraordinary point on the
boundary, that is, a neighborhood N j(v) of the vertex v such that all control points
in a similar neighborhood N j+1(v) on a finer level j + 1 can be computed using
only the points in N j(v). The vector of control points pj+1 on N j+1(v) is given by
the Spj, where pj is the vector of control points on level j and S is the subdivision
matrix of minimal size (smaller than the one that we need for the analysis of the
characteristic map in Appendix A).

A typical appearance of a mesh obtained by using unmodified rules after a few
subdivision steps can be seen in Figure 9(a).

This behavior is characteristic for schemes which are not C1 on the boundary;
the consequence of the fact that the control points in 1-neighborhood of the extraor-
dinary vertex on the boundary converge to a common limit faster than the points in
the interior, formally corresponds to the fact that two subdominant eigenvectors of
the subdivision matrix defining the tangent plane have zero values on the bound-
ary. This means that the tangent plane, if the surface were C1-continuous, could be
chosen independently from the position of the control points on the boundary, by
manipulating the points in the interior. However, the boundary curve by construc-
tion is independent from the interior. Its tangent, which should be in the tangent
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p12

p21

p11 p22

Fig. 10. The self-similar configuration used to derive the modified rules for vertices
adjacent to the boundary. Right: the complete configuration; it can be obtained by
rotating a single sector shown in light gray. A single sector of the image of the
configuration after a subdivision step is shown in dark gray. Left: the notation for
vertices and the coordinate system are shown.

plane of the surface depends only on the boundary control points. This means that
the surface cannot be C1-continuous.

The general way to improve the situation is to change the coefficients in such
a way that the neighborhood of the extraordinary vertex shrinks uniformly; as on
the boundary the 1-neighborhood is scaled by the factor approaching 1=2 as we
subdivide twice, the interior part should also shrink by this factor. Our idea is to
modify the rules in such a way that for a boundary vertex of valence 2k+1 there is
a self-similar configuration which scales by the factor of 1=2 in all directions when
subdivision is applied twice, or, equivalently, by a factor 1=

p
2 when it is applied

once A single subdivision step also introduces a rotation, which is eliminated after
two steps.

Furthermore, we force this configuration to be one half of a configuration invari-
ant with respect to rotations by �=k and reflections about the coordinate axes. We
would like to limit our modifications to the rules for vertices that are connected to
the extraordinary vertex by an edge, and keep the size of the support for the rules.
These conditions can be used to find the modified coefficients.

Figure 10 shows the configuration that we are using. It should be noted that it is
defined uniquely by our requirements; indeed, it follows from rotation invariance
that the configuration consists of identical sectors, with each sector symmetric.
As any such configuration is defined up to a scale factor, we fix kp11k = 1. It
follows from the condition on scaling by 1=2 after two steps and the subdivision
rules for the boundary, that kp12k = 2. As we require scaling by factor of 1=

p
2

after one subdivision step, we get kp12k =
p
2. The leaves only the choice of the

position of the point p22. Its position is computed using the fact that away from
the extraordinary vertex we do not modify the rules, so the position of the p 022
in the refined mesh is computed using the standard face rule. This yields p22 =

[
p
2 + c;�s], with c = cos(�=k), s = sin(�=k) in the coordinate system shown in

Figure 10.
Once the configuration is fixed, we introduce parameters into the subdivision

rules, and find their values from the condition that the configuration above is scaled
by a factor of 1=

p
2 after subdivision. We parameterize the rules as shown in Fig-

ure 8 and find the following values for the coefficients:
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4
: (5)

One can show formally that this choice of rules guarantees that 1=2 is the sub-
dominant eigenvalue, and that the configuration of Figure 10 can be interpreted as a
complex eigenvector for the eigenvalue 1=2, which gives rise to two real subdomi-
nant eigenvectors (the real and imaginary part of the complex one). When extended
to a larger neighborhood, these eigenvectors form a the control net for the charac-
teristic map [24, 33], which needs to be examined to verify C 1-continuity.

5 Implementing 4–8 Subdivision

In this section we consider in greater detail two important aspects of imple-
mentation of 4–8 subdivision: conversion of arbitrary triangular meshes to tri-quad
meshes, and implementation of adaptive subdivision.

5.1 Triangular Mesh Preprocessing

As we have observed we could use one step of Catmull-Clark subdivision to pro-
duce a quadrilateral mesh, and then add diagonals to obtain a tri-quad mesh from an
arbitrary mesh. However, one can achieve the desired result without increasing the
number of faces by a factor of six. In addition our experience was that the surfaces
obtained using our preprocessing have more pleasing appearance. We propose a
preprocessing procedure with two passes (Figure 11), which increases the number
of faces by a factor only slightly more than two:

Tri-quad preprocess:
(1) Find an independent set of basic blocks, remove interior edges of the blocks;

the result is an intermediate mesh with triangular and quadrilateral faces.
(2) Perform barycenter refinement on the intermediate mesh and mark the result-

ing basic blocks.

To implement pass 1, we select basic blocks based on edge length. This heuristics
guarantees that we obtain triangles with good aspect ratio, and, for a planar mesh,
convex quadrilateral blocks. The following pseudocode describes the algorithm:

The routine sort edges, sorts edges by decreasing length. The routine
mark block(e) marks an edge e and the edges sharing a face with e. Marking en-
sures that we obtain an independent set of basic blocks. In general, it is not possible
to cover the whole mesh with basic blocks. There will be a few isolated triangu-
lar faces remaining, and the intermediate mesh, obtained after removal of interior
edges, will have two types of faces.

The second pass inserts barycenters into the intermediate mesh, splitting each
quadrilateral into four triangles and each triangle into three triangles. (Figure 11).
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pass 2:
barycenter subdivision

resulting
basic blocks

initial mesh
   pass 1: 

intermediate mesh

Fig. 11. Preprocessing of a triangular mesh. The result of the third step is a mesh
partitioned into basic blocks and single-triangle boundary blocks.

Algorithm 1 : find blocks
sort edges (E)
store e 2 E in priority queue Q
while Q 6= ; do

get e from Q

if e not marked then
mark block (e)

It is easy to show that the result of preprocessing is a tri-quad mesh. In the pro-
cessed mesh exactly one vertex of every triangle is a barycenter of a face of the
intermediate mesh, and exactly one edge is an edge of the intermediate mesh. Thus,
with each edge of the intermediate mesh we can associate a unique pair of triangles
of the processed mesh sharing this edge, and any triangle of the processed mesh is
associated with an edge of the intermediate mesh. These pairs of triangles form the
basic blocks.

We note that in practice it is unnecessary to remove the interior edges on the first
step: we can leave them in, and instead of reconnecting barycenters of the quadrilat-
erals with their corners, simply perform bisection refinement on the corresponding
basic blocks.

As a result of preprocessing, valences of vertices increase at most from n to 2n.
This upper bound occurs mostly in the case of lower valence vertices. Because of
geometric reasons, valences greater than 8 tend to change very little. The net effect
is an equalization of vertex valence over the mesh. This is, in part, a consequence
of the longest edge criteria used in pass (1) for selecting basic blocks [25].

In practice, for interior vertices with valence n, we have observed the following
behavior:
� n = 3 — new valence 6;
� 4 � n � 8 — new valence 8;
� n > 8, odd — new valence n+ 1;
� n > 8, even — new valence n.

In the mesh obtained by our preprocessing algorithm, the type 1 vertices have
valence 3 or 4, but after a single bisection refinement step, the processed mesh no
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longer has any type 1 vertices with valence 3.
For the meshes with boundary our preprocessing produces a mesh with single-

triangle boundary basic blocks, of the type shown in Figure 7 on the left.

5.2 Adaptive 4–8 Subdivision

As we have seen in Section 2.2, the 4–8 mesh structure is well suited for adaptive
refinement. In order to exploit this capability in the context of subdivision, we need
to devise an scheme for applying our rules to nonuniformly refined meshes. For
such a mesh, it is possible that we need to compute a control point p l+1(v) for
a vertex v at level l + 1, but the vertices in the stencil of the subdivision mask
have control points evaluated only at levels less than l. This means that we have to
evaluate the control points for these vertices up to level l before we can compute
pl+1(v).

Our approach is to evaluate the required control points lazily. Note that a new
vertex v can only be added to the mesh as a result of bisection of an internal edge
of a basic block. The control point for v is computed by the face mask, which in
turn uses the control points of the four neighbors vS; vN ; vE; vW . Figure 12 shows
the notation that we use for vertices of a basic block, and the face that is required
to exist for the refinement to proceed.

vN

vS

vW vE

Fig. 12. To compute the control point for the newly inserted vertex denoted with a
circle, the gray face have to be created if it did not exist.

The initial control point pl+1(v), of a vertex inserted at level l + 1, is computed
by the face mask, while subsequent values pj(v), j = l + 2; : : : , are computed by
the vertex mask.

To apply the face mask to a basic block f the following preconditions must hold:
the two faces of the basic block should be at the same level l of refinement, and the
control points of the four vertices at level l must be available.

Recall that a basic block has four vertices, two type 1 vertices (opposite to the
diagonal) and two type 2 vertices (i.e. endpoints of the diagonal). Because of the
properties of the 4–8 mesh structure, type 1 vertices are first generation vertices,
inserted at level l. As these vertices exist, they are guaranteed to have control points
evaluated at level j. So, we just need to make sure that the control points of type 2
have been correctly updated using the vertex mask.

The implementation of the adaptive face rule is shown in Algorithm 2. Note that
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the level of the adjacent face f:mate:level in the algorithm can be either l or l � 1

(only faces which are on the same level or differ by a single level can share an
edge).

Algorithm 2 : adapt face (f )
if f has been refined then

return
l f:level

if f:mate:level < l then
adapt face (f:mate)

adapt vertex (vS , l)
adapt vertex (vN , l)
refine quadblock (f , f:mate)
v  split vertex of internal edge

pl+1(v) =
1

4

X
pl(vS + vN + vE + vW )

To apply the vertex mask at level l all the faces sharing this vertex should be
refined to level l � 1 or higher. The implementation of the adaptive vertex rule is
shown in Algorithm 3. We define N l�1

1 (v) to be the collection of vertices appearing
on level l � 1, which share an exterior block edge with v on that level. These are
exactly the vertices we need to apply the subdivision rule.

Algorithm 3 : adapt vertex (f , l)

if pl(v) has not been computed then
for f containing v do

while f:level 6= l do
adapt face (f )

pl(v) =
1

2
pl�1(v) +

1

2n

X
vj2N

l�1
1

(v)

pl�1(vj)

6 Examples and Comparisons

In this section we present some examples of applying 4–8 subdivision for surface
modeling. Surfaces produced by our scheme are constructed and compared with
surfaces generated by other subdivision schemes.

The examples in Figures 13 and Figure 14 show a closed surface and a surface
with boundary generated by 4–8 subdivision, together with their control meshes.
The appearance of the surfaces is quite similar to the appearance of the surfaces
obtained using such schemes as Loop and Catmull-Clark.

Figure 15 shows multiple surfaces with boundary joined with C 0 continuity. The
model shown in Figure 15(a) consists of separate meshes, for the eyes, eyebrows,
and face. Figure 15(b) shows a detail view of a region near the eye, and Figure 15(c)
shows the same region with several parts parts removed.
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The examples in Figures 16 demonstrate adaptive 4–8 subdivision. Figure 16(a)
shows the inital mesh and Figure 16(b) shows the smoothed polygonal mesh after
applying 4 subdivision steps uniformly to the mesh.

In Figure 16(c) the adaptation uses a simple geometric criterion: if the distance
between a position of a new control point computed by subdivision and the mid-
point of the corresponding edge is less than a threshold, the edge is not bisected.

In Figure 16(d) the adaptation is based on a spatial threshold function (the char-
acteristic function of the half-space x > 0). The mesh has finest resolution on one
side of the plane x = 0, and coarsest resolution on the other side of the plane. Note
the fast transition between two regions.

The last examples (Figure 17 and Figure 18) show a comparison between 4–8
subdivision and other schemes. We use four meshes with different complexity: a
cube, an extruded pentagon, a rook model and a mask model. The figures show
the control polyhedron of each mesh and the surfaces generated by Loop [22],
Catmull-Clark [2], Midedge [23], Doo-Sabin [6], and 4–8 subdivision. One can
observe that 4–8 subdivision results in more smoothing and most shrinking than all
other schemes on the mask model and the rook model. Overall, the surface appear-
ance is close to Catmull-Clark. The only case where the difference is appearance
is substantial is the cube model. The reason for this is unclear at this time; it is
likely to be related to the differences in the handling of vertices of valence 3 for
Catmull-Clark scheme and exterior block edge valence 3 for 4–8 subdivision.

7 Conclusions

We have presented 4–8 subdivision, a new scheme using bisection refinement
that extends the four-directional box splines of class C 4 to surfaces of arbitrary
topological type. We have proved that closed limit surfaces are C 4 continuous al-
most everywhere, except at extraordinary vertices where they are C1-continuous
(Appendix A).

Bisection refinement generates a hierarchical mesh structure that supports adap-
tive refinement, while keeping the meshes conforming. In [28], the hierarchical
structure for tri-quad 3 meshes is discussed in greater detail, and its applications
are reviewed.

Applications of bisection refinement are not limited to the presented scheme.
One can implement other schemes extending two-directional and four-directional
box splines. For example, [27] describes the implementation of Doo-Sabin and
Catmull-Clark schemes. We have also implemented the Midedge scheme based on
ZP element using tri-quad meshes.

While the 4–8 subdivision scheme has a number of nice properties it also has
several drawbacks compared to schemes using face splits and lower degree splines.
For example, the support of the masks for tangents and limit positions is rather
large. While direct evaluation along the lines proposed in [26] is possible, more

3 In [28] and [27] tri-quad meshes are referred to as 4–k.

20



subdivision steps are required before it can be performed, and the evaluation itself
is computationally more expensive. Finally, the translates of theC 4 four-directional
box spline are not linearly independent ( [4], Proposition II.57). This might lead to
problems with fitting a 4–8 subdivision surface to data. While in some cases high
degree of smoothness is an advantage, quite predictably it also results in greater
shrinkage of a surface and greater attenuation of high-frequency detail.
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(a) Control polyhedron (b) Suface

Fig. 13. A surface generated using 4–8 subdivision.

(a) Control mesh (b) Surface

Fig. 14. Surface with boundary.

(a) General view. (b) Detail. (c) Parts removed.

Fig. 15. Multiple surfaces joining with C0 continuity.
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(a) Control mesh. (b) Uniform subdivision.

(c) Adaptation to surface geometry. (d) Adaption to spatial threshold.

Fig. 16. Adaptive refinement. The model is courtesy of Stanford Computer Graphics
Lab.
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Initial mesh Loop Catmull-Clark

Midedge Doo-Sabin 4–8 subdivision

Initial mesh Loop Catmull-Clark

Midedge Doo-Sabin 4–8 subdivision

Fig. 17. Comparison between surfaces generated by different subdivision schemes.
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Initial mesh Loop Catmull-Clark

Midedge Doo-Sabin 4–8 subdivision

Initial mesh Loop Catmull-Clark

Midedge Doo-Sabin 4–8 subdivision

Fig. 18. Comparison between surfaces generated by different subdivision schemes.
The head model is courtesy of of Khrysaundt Koenig, Caltech.
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A Smoothness Analysis

Our analysis of the 4–8 subdivisionscheme is based on the techniques presented
in [31]. For the purposes of the C1-continuity analysis we can regard the scheme
as being defined on a quadrilateral mesh. Indeed, after sufficient number of refine-
ment steps, locally near an extraordinary vertex (that is, a vertex of valence 2k,
k 6= 4), the tri-quad mesh is a quadrilateral mesh with diagonals added (Figure 2).
Removing the diagonals results in a k-regular quadrilateral mesh. Thus, the ex-
traordinary vertices of valence k in the original mesh become vertices of valence
k in the quadrilateral mesh. In this section, valence of a vertex is the valence in
the quadrilateral mesh, not in the original tri-quad mesh. While the facts that are
proved in [31] assume subdivision schemes defined on triangular meshes, the ex-
tension to the case of quadrilateral schemes is straightforward, and requires only
minor changes in notation.

To establish C1-continuity of a subdivision scheme for valence k, it sufficient to
verify that the characteristic map ( [24]) for this valence is regular and injective.

A.1 Eigenstructure of the Subdivision Matrix

After applying the standard DFT approach, the subdivision matrix for the scheme
(see [31] for definitions) is converted into the block-diagonal form with k � 1 of
the following 12 by 12 blocks Bm, m = 1 : : : k � 1 on the diagonal:

B

�
2�m

k

�
=

1

64

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

8 16 + 4c 6 �!+6 2 0 0 0 0 0 0 0 0 0

14+�!+14!+!2 c+14 1+! 1 0 1 0 0 0 0 0 0

24+2 �!+2! 8 �!+8 8 2 0 2 �! 0 0 0 0 0 0

18+6! 2 �!+18 6 6 0 2 0 0 0 0 0 0

8+8! 24 2+2! 8 2 8 0 0 0 0 0 0

6+18! 18+2! 6! 2 0 6 0 0 0 0 0 0

18 6 �!+6 18 6 0 6 �! 2 0 0 0 0 0

!+14 �!+14 14 14 1 �!+1 1 1 0 0 0 0

6+2! 18 6 18 6 6 0 2 0 0 0 0

1+! 14 1+! 14 14 14 0 1 1 0 1 1

2+6! 18 6! 6 6 18 0 0 0 0 0 2

1+14! !+14 14! 1+! 1 14 ! 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where ! = exp(2�im=k), c = cos(2�m=k). In addition, there is a single 13�13

block B(0):
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B(0) =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

24 32 8 0 0 0 0 0 0 0 0 0 0

24 32 8 0 0 0 0 0 0 0 0 0 0

18 32 12 2 0 0 0 0 0 0 0 0 0

14 30 16 2 1 0 1 0 0 0 0 0 0

8 28 16 8 2 0 2 0 0 0 0 0 0

6 24 20 6 6 0 2 0 0 0 0 0 0

2 16 24 4 8 2 8 0 0 0 0 0 0

6 24 20 6 2 0 6 0 0 0 0 0 0

2 18 12 18 6 0 6 2 0 0 0 0 0

1 15 15 14 14 1 2 1 1 0 0 0 0

0 8 18 6 18 6 6 0 2 0 0 0 0

0 2 14 2 14 14 14 0 1 1 0 1 1

0 8 18 6 6 6 18 0 0 0 0 0 2

1 15 15 14 2 1 14 1 0 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

The eigenvalues of the block B(0) can be found explicitly, and are all in the
range 0 : : : 1=4, excluding the eigenvalue 1.

The characteristic polynomial of degree 12 of each block B
�
2�m

k

�
always fac-

torizes into linear factors and a single polynomial of degree 5:

�5 +

�
�25

32
� 5

32
c

�
�4 +

�
17

512
c+

21

128
� 1

512
c2
�
�3 +�

� 25

2048
� 13

8192
c+

7

8192
c2
�
�2 +

�
� 1

32768
c2 +

1

4096
� 1

32768
c

�
�

+
1

2097152
c3 +

5

2097152
c2 +

1

524288
c

In general, the roots cannot be computed explicitly. For fixed m and k, we can
easily find the roots numerically, with guaranteed lower and upper bounds on the
roots. Numerically computed roots of this polynomial are plotted as functions of c
in Figure A.1.

Analysis of the eigenvalues. The analysis is similar to the analysis of the eigen-
values of the subdivision matrix for Kobbelt’s quadrilateral scheme presented in
[31]. From the plot it is clear that the largest eigenvalue increases as a function of
c; therefore, it appears that the largest eigenvalue of the subdivision matrix for any
valence corresponds to m = 1. Moreover, our calculations show that the largest
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Fig. A.1. The magnitudes of the eigenvalues of the subdivision matrix as func-
tions of c = cos 2�=k. Only 5 eigenvalues which depend on c are shown. Double
eigenvalues are indicated with circles.

eigenvalue is always real. Using interval methods, we prove the following proposi-
tion:
Proposition 1 For any valence k, and any m = 1 : : : k�1 the largest eigenvalue is
real and unique, and for any block B(2m�=k), m 6= k�1; 1 the largest eigenvalue
is less than the largest eigenvalue of the blocks B(2�=k) and B(2�(k� 1)=k). The
unique largest eigenvalue is the only eigenvalue in the interval [0:5; 1], for k > 4.
The detailed proof with all calculations can be found in a Maple worksheet avail-
able from the authors. Here we present an outline of the proof. The proof is per-
formed in several steps:
(1) We show that for c < 0, all roots of the characteristic polynomial P (c; �) are

less than 0:51.
(2) We show that for any c 2 [0 : : : 1], there is a unique real root � in the interval

[0:47+0:2c; 0:51+0:2c], and the function �(c) isC1-continuous and increases.
(3) We ”deflate” the characteristic polynomial (that is, divide by the monomial

���), and verify that all roots of the deflated polynomial are inside the circle
of radius 0.5 for c 2 [0; 1].

We use the Marden-Jury test [15] to show that the roots of a polynomial are inside a
circle of radius 0:51 and 0:5 in the complex plane on steps 1 and 3 respectively. This
test requires only a simple algebraic calculation on the coefficients of the polyno-
mial, and can be performed easily for symbolic and interval coefficients. See [31]
for details of application of this test.

Proposition 1 allows us to compute the subdominant eigenvalue with arbitrary
precision for any k, and establishes that it always corresponds to the blocks with
m = 1 and m = k � 1.

Eigenvectors. We compute the complex eigenvectors of the matrix as a function
of c and �, solving the linear system B

�
2�m

k

�
� �I = 0. Two real eigenvectors

are obtained as the real and imaginary part of the complex eigenvector. To obtain
the subdominant eigenvectors, which define the control mesh for the characteristic
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map, we evaluate the eigenvectors obtained as above for m = 1 and � equal to the
subdominant eigenvalue.

The resulting control mesh for the characteristic maps of the scheme for several
valences is shown in Figure A.2.

Fig. A.2. Control meshes for the characteristic map of the 4–8 subdivisionscheme
for extraordinary valences 3, 5 and 8; the diagonal edges in the two-triangle clus-
ters for the 4-k mesh are not shown.

A.2 Analysis of the Characteristic Map

Instead of proving that the characteristic map is injective, it is sufficient to ver-
ify that it maps only zero to zero, and has index 1. More precisely, the following
theorem was proved in [31]:
Theorem 2 Suppose a characteristic map � satisfies the following conditions:
(1) the preimage ��1(0) contains only one element, 0;
(2) the characteristic map has a Jacobian of constant sign everywhere on R2

except zero.
Then the extension of the characteristic map is a surjection and a covering away
from 0. In particular, if the winding number with respect to the origin of the image
�(
) of a simple curve is 1, the characteristic map is injective and the scheme is
C1-continuous.

For the scheme that we present, the characteristic map can be computed locally
in closed form. Instead we use general tools that evaluate a sufficiently close ap-
proximation of the Jacobian of the characteristic map to verify regularity. Similarly,
rather than computing the image of a curve enclosing zero under the characteristic
map in explicit form, we use a sufficiently close piecewise linear approximation.

The characteristic map � satisfies the scaling relation �(y=2) = ��(y), where �
is the subdominant eigenvalue; to establish its regularity, it is sufficient to examine
its behavior on a ring around an extraordinary vertex, such that under the iterative
application of the scaling transformation t ! t=2, the copies of the ring cover the
k-gon Uk. We choose the ring in such a way that the rules that are applied to refine
the control mesh of the ring are the standard box spline rules. For our scheme, the
control mesh of a minimal ring with this property consists of 6 layers of vertices.
Further, due to the rotational symmetry of the characteristic map, only one segment
needs to be examined.
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Let L1 be the limit function of subdivision, Lm be its approximation after m
steps, and let pm be the vector of control points of a subdivision surface. Then the
following estimate holds [3, 31]:




L1 � Lm





1

� c

1� 

D (pm) (A.1)

where D is the contraction function, which we choose to be



rp




1

, withr being
the vector of finite directional differences. The constants 
 and c can be computed
from the coefficients of subdivision.

For a subdivision scheme S, one can always find a matrix difference subdivision
scheme S 0 (that is, a scheme whose coefficients are matrices) acting on the vectors
of differences at each vertex, such that rSp = S 0rp. If the scheme is C1 on reg-
ular grids, then an estimate similar to (A.1) holds for the difference scheme, with
different constants 
D and cD. These estimates can be used to compute approxima-
tions to the characteristic map and its derivatives with guaranteed error bounds; if
the lower estimate for the Jacobian of the characteristic map obtained in this way
is positive (or upper estimate is negative), the map is guaranteed to be regular. For
our scheme, the convergence constants for the scheme are c = 9=8, 
 = 1=2. The
convergence constants for the difference scheme are cD = 21=16, 
D = 1=2.

Figure A.3 shows the dependence of the upper and lower estimates of computed
Jacobians on the valence for valences up to 444. As the control meshes depend
on the eigenvalues, which are known only approximately, all calculations are per-
formed using interval arithmetic. In this way, if the guaranteed intervals for the
eigenvalue � are known, we also know the guaranteed intervals for the upper and
lower bounds of the Jacobian.

Behavior at infinity. Our proof of C1-continuity for high valences (in the case
of 4–8 subdivisionscheme, greater than 444) is based on the following observation.
One of the subdominant eigenvectors depends only on c = cos(2�=k); the other
has the form sin(2�=k)w(c), where w depends only on c. Clearly, the sign of the
Jacobian of the resulting map does not depend on a scale factor; therefore, we
can rescale the control mesh of the characteristic map by sin(2�=k) in the vertical
direction. The rescaled control mesh for a single segment of the ring approaches a
nondegenerate limit configuration (Figure A.4) as k ! 1. We are using interval
arithmetic to examine approximations to characteristic maps. Suppose the control
mesh was computed using the interval [1 � �; 1] for c. If we verify that for this
control mesh with interval control points the Jacobian has constant sign, we have
verified this fact simultaneously for all control meshes for which c 2 [1� �; 1].

To complete the analysis of the scheme we need to describe the behavior of
�(c) at infinity. Specifically, to use our algorithm for verification of smoothness for
all valences, for an interval c = [1 � �; 1] we need to estimate the corresponding
interval value �(c), so that the eigenvectors can be computed. As �(c) changes
slowly, linear approximation is sufficient for our purposes. The upper bound for
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Fig. A.3. The upper and lower bounds for the Jacobian of the characteristic maps
as functions of the valence for the 4–8 subdivisionscheme. The error bars indicate
the size of the interval (these intervals are quite small and are not clearly visible).
The interval size for c was chosen to be 1 � 10�4; the maximal examined valence
was 444; as the difference between control meshes for large valences was smaller
than the size of the intervals for the control points, a total of 229 valences had to
be examined.

the derivative �0
c

at c = 1 can be computed easily if we regard the characteristic
polynomial as a function F (�; c) of two variables � and c, and estimate �0(c) using
the ratio of the components of the gradient of this function. The upper bound for
�0(c) in the region of interest is approximately 0:45.

Fig. A.4. As k !1, c = cos(2�=k)! 1, and rescaled control meshes for a segment
of the characteristic map converge to a limit; rescaled segments for valences 4, 8,
32 and the limit configuration are shown.

We conclude that the 4–8 subdivisionscheme is C 1-continuous for all valences.
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