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What happens to the medial axis of a curve that evolves through MCM
(Mean Curvature Motion)? We explore some theoretical results regarding
properties of both medial axes and curvature motions. Specifically, us-
ing singularity theory, we present all possible topological transitions of a
medial axis whose originating curve undergoes MCM. All calculations are
presented in a clear and organized fashion and are easily generalized for
other front motions. A companion article deals with non-singular points of

the medial axis through direct calculations.

1. INTRODUCTION
1.1. Organization of the paper

The main definitions are placed right in the introduction, after which we can
pose the question that is the motivation of this work: what happens to the medial
axis (or symmetry set) of a curve as this curve evolves through Mean Curvature
Motion? In this article, we focus our attention in the singularities of the medial axis
(through which the interesting topological transitions occur); a companion paper
[19] examines non-singular points.

Section 2 gives some pointers for the basics of singularity theory that will be used.
A series of papers by Bruce, Giblin and others [5][10] used these ideas to provide a
general classification of the possible kind of general singularities that might happen
in the medial axis and in symmetry sets. Section 3 only presents those results and
reorganizes them in a way suitable for our purposes.

In [4], Bruce and Giblin provide all topological transitions that a symmetry set
can suffer as its originating curve changes. Section 4 extends their method to find
all possible topological transitions that a symmetry set can go as the curve evolves
through time for a specific time evolution of the curve; we actually pinpoint
the possible directions of such transitions based on the particular curve evolution
scheme that was chosen. We show the power of this method applying it to Mean
Curvature Motion in a very straight-forward manner.

The actual calculations behind the main results of section 4 are delayed until
section 5. This way, one could just apply the main results to various evolution
schemes and Medial Axes without paying attention to the details of the method.
However, if one chooses to work with objects similar to the Medial Axis, one will
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definitely be concerned with such computations. We hope the reader will find them
well organized and clearly presented. Besides, many readers will find easier to
understand the abstract concepts of section 4 through their application in section
5.

This work is part of the doctoral thesis [20]; for another look at evolving medial
axes, besides the previously mentioned [19], we also recommend the article by
August [1].

1.2. Mean Curvature Motion
Front deformations determined by differential equations depending on local prop-
erties have been a subject of study for a long time; one instance of such deformations
is given by the Mean Curvature Motion (MCM, for short), here stated for curves
in R2.

DErFINITION 1.1. Let C(t), 0 <t < Tarax, denote a family of closed C? curves
embedded in R? parametrized by Q(s,t); We say that C(t) satisfies the MEAN
CURVATURE EVOLUTION EQUATION if

Q+(s,t) = K(s,t)N(s,t)

where K (s,t) and N(s,t) are, respectively, the curvature of C (t) and its “inwards”
unit normal vector at the point Q(s,t).

MCM has received much attention in the last 15 years, specially after Gage [9] [8]
and Grayson [12] proved that the MCM for curves embedded in R? has some fas-
cinating properties (mainly, any embedded curve remains embedded and converges
to a “circular point”). For curves that are not that smooth, the management of
singularities can be handled by introducing solutions in a weak form, as presented
by Chen [6] and Evans [7].

It is not surprising that a curve evolution scheme with such geometric appeal
would eventually find applications in shape representation. After setting up the
necessary basic Mathematics of the Mean Curvature Evolution, Kimia [13] [14] [15]
presents an attractive shape classification method based on curvature evolutions.

1.3. Medial Axis

The medial axis plays a role in convex set characterization as shown in 1935 by
Motzkin [17]. In the early 60s, H. Blum [2] suggested the use of the “medial axis
function” as a possible shape descriptor. Yu [21] addresses the famous “instability”
of skeletons by boundary deformations and proposes a way to regularize them.
Other mathematical properties of medial axes can be found in the books by Giblin
[10], [11] and Serra [18] (the latter also mentions some unresolved questions on the
subject). There are a number of closely related definitions for medial axes and
related objects. Here is our favorite definition for the medial axes:

DEFINITION 1.2. The MEDIAL AXIS of a closed curve C is (the closure of) the
set of the centers of circles that are maximal and contained inside or outside C.

To be honest, we will really use the following object:
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DEFINITION 1.3. The SYMMETRY SET of a curve C is (the closure of) the set of
the centers of circles that are tangent to C at two (or more) distinct points.

The symmetry set is basically an extension of the medial axis where we don’t
really care if the circle is globally maximal. The closure operation will essentially
give us some additional centers of circles that are tangent to C at only one point,
but with higher order of tangency. Note that if the orientations of the tangent
vectors are opposite with relation to the circle, then we have a “bad” point of the
symmetry set that can never be part of the medial axis. We will be much more
interested in points like P; and P, in the figure below.

Bad symmetry set point Good symmetry set points

2. A BIT OF SINGULARITY THEORY
2.1. Level bifurcation sets

DEFINITION 2.1.  Given a smooth manifold M and a function f: R" x M — R,
we define the LEVEL BIFURCATION SET OF f as

LBy ={x € R"| f(x,-) has two singularities
at distinct points y1, yo € M such that f(x,y1) = f(z,y2)}

We can factor f through F' = (7w, f) : R" x M — R"” x R and the projection
m : R” xR — R. As in [5], note that LBy is now the projection 7y of the self-
intersection of the critical set X of F.

DEFINITION 2.2. We define the EXTENDED DISTANCE TRANSFORM of a curve C
parametrized by (a(s),b(s)) as the function E¢ : R? — R given by

2B(z,y,5) = (x — a(s))* + (y — b(s))”



4 ! Please write \authorrunninghead{<Author Name(s)>} in file !

The connection between the symmetry set and the extended distance transform
should now be clear. Indeed, the symmetry set is essentially

(c = {P € R*| E¢(P,-) has two singularities
at distinct points Q1, Q2 € C such that E¢(P, Q1) = Ec(P,Q2)
We say “essentially” because there is also a closure step to be taken. If M is
compact, everything is nice and we should have

PROPOSITION 2.1. The symmetry set of a curve C is the closure of the level
bifurcation set of its extended distance transform, and, therefore, can be obtained
by projecting the closure of the self-intersection of

Yr=(m,Ec):R"xM—-R" xR

Proof.  There is nothing to be justified, except for a change between “clo-

sure of projection” and “projection of closure” that is clearly valid in this case. W

2.2. Some results from catastrophe theory
We start this section with some definitions:

DEFINITION 2.3. A function F : R x R” — R is called a »~-PARAMETER UN-
FOLDING of the function f = F(-,0) : R — R.

Remark.  This definition is usually applied only to the germ of the function F'
around (x,0,) € R x R" (and therefore it depends only on the germ of f around
x € R). Usually, x is a singularity of f; adding the other r parameters to create F’
can be seen as an effort to “solve” that singularity.

DEFINITION 2.4. A MORPHISM between two unfoldings F' : R x R” — R and
G:RxR*— R at apoint x € R, is a triple of smooth functions s : R x R* — R,
A:R? - R" and B: R® — R such that

G(z, P) = F (s(x, P), A(P)) + B(P)
s(x,05) = x;
A(Oa) =0,

DEFINITION 2.5. In the case above, we say that the unfolding G is INDUCED
from the unfolding F by (s, 4, B).

Remark. Note that in this case

g9(x) = G(z,05) = F(s(,05), A(05)) + B(0s) = F(,0,) + B(0s) = f(x) + B(0s)
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that is, f and ¢ are the same function (modulo a constant).

Remark.  Again, this should usually be thought as a morphism between the
germs of F' and G instead. In this case, all functions s, A and B must be defined
only locally, and they are local differentiable functions instead.

DEFINITION 2.6. A particular unfolding F' is called VERSAL if any other unfolding
G of f = F(-,0) can be induced from F' by a suitable morphism.

We are now ready to state a couple of results from catastrophe theory that will
be very useful to us: the existence of some canonical forms for a versal unfolding
of a function f.

THEOREM 2.1. The versal unfoldings associated to a function f depend only
on the order of the singularity f(z). Indeed, we can explicitly write such versal
unfoldings in general as

Order 1 — F(x,a) = 22 is versal
Order 2 — F(x,a,b) = 2° + ax is versal
Order 3 — F(x,a,b,c) = +a* + ax® + bz is versal

Remark. By order i here, we mean that f’(z¢) = f"(x) = ...f®(z¢) = 0 but
FOFD (o) # 0.

Proof. Check Brocker’s book [3], for example, for a much more general version of

this. H

These results can be extended to “multi-germs”, that is, we can deal with several
functions (or germs) at a time. A morphism between two unfoldings {Fi, Fb, ...}
and {G1,Ga,...} of a multi-germ {fi, fa,...} would then be a series s;, A, B such
that

Gi(x, P) = F; (s;(x, P), A(P)) + B(P)

Note that in the definition above we require A and B to be the same for all
functions, but s can possibly change for each pair. The good news is that we still
have canonical forms for multi-germs: they are similar to the previous case, except
that we can’t get rid of all constant terms now since the term B(P) must be the
same for all F;, G; (we can get rid of one of them, though). This gets much clearer
through an example.

ExamPLE 2.1. If f; has an order 4 singularity at x1, fo has an order 3 singularity
at zo and f3 has an order 1 singularity at a3, then any unfolding of {f1, fo, f3} can
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be induced from

Gy =2° + a12® + asx® + asx
Gy = ta* + asx? + asz + ag

Gz = +2? + ay

(after a suitable translation in the x direction). That is, {G1,G2,G3} is a versal
unfolding.

Now we combine this with another powerful proposition.

ProposITION 2.2. For a general compact smooth M submanifold of R™ (n <5),
for any fized Qo € R™, and for any collection of points P; € M, the multi-germ
represented by the function F; : M x R™ — R given by Eyp(P,Q) = |P — Q|2
(around P;) is a versal unfolding of the multi-germ represented by f;(Q) = F(P;, Q).

Proof. This statement has been taken from [5]; it is a consequence of results in
[16]. =

Moreover, according to [5], the (level) bifurcation sets of isomorphic multi-germs
must be equivalent by a local diffeomorphism of the plane. The path is now clear:
if we want to look at the symmetry set, we consider it as the level bifurcation set
of the extended distance transform. In general, this is a versal unfolding, but so
is the canonical one given by some simple expressions like, for example, the set
of G;’s on the example above. That will indicate that both these unfoldings are
isomorphic, and so their level bifurcation sets are locally diffeomorphic. But the
level bifurcation set of the G;’s is easy to obtain! We will apply this process for
all possible generic cases of singularities that we expect to find when looking at
multi-germs based on the extended distance transform.

3. SYMMETRY SET CANONICAL FORMS

We are now ready to face the only possible (generic) canonical forms that the
symmetry set has to offer. There are 5 of them.

3.1. Case A3
This corresponds to points of the symmetry set that are centers of circles that are
tangent to the curve at one point only, but with order of tangency 3 there. From
singularity theory, we obtain the canonical form

G(u,a,b) = +u® + au® + bu

The level bifurcation set of G consists of the pairs (a,b) for which there are
distinct u, v such that

G(u,a,b) = G(v,a,b)
Gu(u,a,b) = Gy(v,a,b) =0
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that translates to

+ut + au® + bu = +o* + av® + o
+4u3 + 2au+b=0
+40% + 200 +b =0

Solve the last two equations for a and b (using that u # v) to obtain

+a = —20% — 2uv — 2u?
+b = 4uv? + dvu?
and then substitute them into the first equation
—ut + 2002 + 2030 = —v* + 203U + 2u? =
(w+u) (~u+v)’ =0=u=—v
Therefore, we must have a = F2u? and b = 0. Whatever this sign is, this is the
parametrization of a half-line. This indicates that the medial axis close to a As
point is a curve that suddenly stops and reverses. Compare this with the analysis by
Teixeira in [19] — there, we declared this situation to be a “stumper” since the points
Q(s1) and Q(s2) on the curve that correspond to this symmetry set point “came

together”. Reversing the direction on the symmetry set consists in “switching” the
points Q(s1) and Q(s2) as you keep moving them along the curve.

3.2. Case AxA;

This is a center of a circle that is double-tangent to the curve at a point and
tangent to the curve at another one. Note that the even order of tangency indicates
that this will never be in the medial axis proper (the corresponding circle crosses
the curve). The canonical form here is

Gi(u,a,b) =u +au+b
Ga(u,a,b) = +u?

and there are three potential contributions for the level bifurcation set. One corre-
sponds to

Gl (U, a, b) = Gl (U7 a, b)
Gru(u,a,b) = Giy(v,a,0) =0
ie.,

Wrau+b=v>+av+0b
3uP+a=0
30 +a=0

However, this has no non-trivial solutions. Actually, it is clear that

GQ(U" a, b) = GQ(U7 a, b)
Gaoy(u,a,b) = Goy(v,a,b) =0
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has no non-trivial solution either, so we are left with only one case

Gl (U, a, b) = GQ(U7 a, b)
Gru(u,a,b) = Goy(v,a,b) =0

that is,
u 4 au + b= +0?
3uP+a=0
+2v =0
what implies a = —3u? and b = 2u>. This is the parametric graph of the following
cusp

And therefore this will be the shape of the symmetry set around a A3 A; point.
Once more, we note that such behavior can never be found in the Medial Axis
because of the A, contact.

3.3. Case A1A1A1
Now, the canonical form is simply

Gi(u,a,b) = +u?
Ga(u,a,b) = +u? +a
Gs(u,a,b) = +u® + b

None of the G;G; pairs contribute with anything, but we can cross them like this

Go(u,a,b) = G3(u,a,b)
Gaoy(u, a,b) = Gsy(v,a,b) =0

ie.,

+u? +a=+0v2+0b
tu=xv=0

so clearly a = b. Similarly, G1G2 gives us a = 0 and G1G3 gives us b = 0. Therefore,
the local picture of the symmetry set is
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Note that if you are traveling the symmetry set, there is always a natural way of
passing through the singularity.

3.4. Case A,

This case is more generic than the previous ones, but never corresponds to a
point in the medial axis (due to the even order of tangency). The calculation is
already done in the AsA; case: it corresponds to an isolated point (unless you allow
u = v in that calculation, in which case you detect the evolute of the curve passing
through that isolated point). With our definition of symmetry set (that requires
u # v), this will never be a point of the symmetry set either.

3.5. Case A A,

Again, this case is more generic than the 3 first ones (there must be a 1D-set of
such points). The calculation is all done in the A5 A; case, and this will correspond
to a nice simple line. Therefore, this case corresponds to points where the symmetry
set is smooth.

4. EVOLUTION OF THE MEDIAL AXIS CLOSE TO ITS
SINGULARITIES

Here we repeat the arguments of the previous section for some 1-parameter fami-
lies of level bifurcation sets, exactly in the spirit of [4]. Actually, a great part of the
results below can be found in that paper for a generic 1-parameter family of curves;
the difference is that we present our calculations following an organized (and hope-
fully simple) method, and we need some more work in finding out what transitions
are allowed for our specific curve deformation. Our consistent method can be easily
applied to other kinds of movement and we provide lots of nice pictures.

In short, the final result is the specification of what kind of transitions can occur
to the singularities of the Medial Axis as the original curve evolves through a specific
motion.

4.1. Introducing time
We would like to use the same ideas that appeared in the last section. However,
we have now a time-changing extended distance transform given by

2F (s,t,2,9) = (x —a(s, ) + (y — b(s, 1))?

where (a(s,t),b(s,t)) is a parametrization of the curve C as it evolves through, for
example, Mean Curvature Motion. The same catastrophe theory applies if we just
think of F' as a 3-parameter unfolding this time. That means that our canonical
forms G will have an extra parameter, but we can still write

G(u,a,b,c) = F(s(u,a,b,c), A(a,b,c)) + B(a,b,c)
A(a,b,c) = (t(a, b, c),z(a,b,c),y(a,b,c))

Now, the level bifurcation set of G (some strange looking surface) will be locally
diffeomorphic to the corresponding level bifurcation set of F(-,¢,x,y); this is an-
other surface, an amalgamation of all level bifurcation sets of F(-, to,x,y) for each
to. We need to separate this amalgamation in each one of its components based on
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the particular value of tg, that is, we want to slice it into the different symmetry
sets for each tg!

Well, instead of slicing the unknown level bifurcation-surface of F' (that lives
in the txy space) using the easy-to-see ¢t = ty planes, we will slice the easy-to-
obtain level bifurcation-surface of G (that lives in the abc space) using the strange-
looking surfaces t(a, b, c) = tg. In particular, if we have an interesting singularity
at a=b=c=0and ¢t =0, the t = 0 plane will correspond to the 0-level surface
of t(a, b, c) in the abc space. Intersect it with the level bifurcation-surface of G and
we have a picture that is diffeomorphic to the symmetry set of F' at ¢t = 0 (at least
locally, around the point (x(0,0,0),4(0,0,0))). If we are interested only in the local
picture of such symmetry set, we don’t really need to know the whole t(a,b,c) =0
surface — just its tangent plane at (0,0, 0) will suffice, that is, we want to get our
hands on the plane t,(0,0,0)a + t,(0,0,0)b + t.(0,0,0)c = 0 in the abe space.

As time passes, how does this slice change? Well, the level set moves to t(a, b, c) =
e, say, and this new slice of the level bifurcation set of G is (locally diffeomorphic
to) the new symmetry set (level bifurcation set of F'). Again, since we only care
about the local picture close to (0,0,0), we might as well imagine the level set
t = 0 moving in the direction of the gradient of ¢, that is, (¢4, t,t.) calculated at
a =b=c=0! So the slices at, + bty + ct. = —¢,0, ¢ of the level bifurcation set of
G should be locally diffeomorphic to the symmetry sets at times —¢, 0, !

The method we follow in this section should now be clear: given a singularity
F, we write down its canonical form G, calculate its level bifurcation set and find
all possible generic ways of slicing it close to their origin. Then we find out what
(ta,tp,te) is at a = b = ¢ = 0, an indication of the direction of the time level sets.
Finally, by comparing these results, we know what generic transitions the symmetry
set (slices at, + bty +ct. = —¢,0,¢) can go through for the Mean Curvature Motion
case. We present these calculations in a systematic way that is (hopefully) fairly
self-explanatory and seemingly extendable to more complex singularities or motions.
The summary of our results is the following:

As a curve evolves through @ = HN, its medial axis can go through one of the
following generic transitions:

e Dove-tail (case Ay)

A dove-tail... ...shrinks to a point... ...and vanishes.

This transition happens when we have a point @ on the curve at which K, = K, =
0; the medial axis radius at the singularity is » = 1/K. The direction of the tran-
sition above is correct if, at )

Ksss (Hsss + KQHS) >0
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e Dove-tail (case AzA;)

A dove-tail and a half-line... ...simplify to... ...a curve and a half-line.

The transition happens when we have points (1 and @2 on the curve such that
K15 =0and r = 1/K; for the medial axis point corresponding to (1 and Q2. The
direction above is correct if

Hlss

i (1 —cosa) + Hygsina+ Ky (Hy — Hy) <0
1

where « is the angle from T} to T, (the tangent vectors at Q1 and Q3).
e Moths (case A3A3)

A moth... ...shrinks to a point... ...and vanishes.

Moths happen whenever we have a bi-osculating circle tangent to the curve at @,
and Q2 such that the curvature functions at these points satisfy KisK2s > 0. The
direction above is correct (the moth vanishes) whenever

Ksi
(K1s + Kas) <H15 + Hyy + (Hy — Hy) —— ) >0
1 —cos«w

o Wvv transition (case AzAz)

\
—

Two interlaced cusps... ...touch by the vertex... ...and separate.

= =

This happens whenever we have a bi-osculating circle tangent to the curve at Q1
and @) but the curvatures at these points satisfy Kj,K2s < 0. Once again,.the
direction shown above is correct (cusps separate) whenever

K sin«
(K15 + Kay) <Hls + Hos + (Hy — H3) 1—> >0
— COS (¢
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e Two cusps and a line (case A2 A1 A7)

o

A line across 2 cusps... ...touch. .. ...and separate.

This happens whenever the point P at the medial axis is center of a circle that is
tangent to the curve at points Q2 and Q)3 and osculating at a point Q1. The
direction above (separation) is correct if

sin (6 —a) +sina—sing [ (K; (Hy — Hy) + Hissina) (1 — cos 8) + <0
Ky, ( + (K1 (Hs — Hy) — Hy5sin 38) (1 — cos «) )

where « is the angle from 73 to 15 and [ is the angle from 77 to T5.
e Flipping quadrilateral (case A1 4141 A4)

N\

Quadrilateral and diagonals... _..shift towards a vertex... ...and go through.
This case happens whenever a point P of the medial axis is center of a circle that
is tangent to the curve at 4 points @1, @2, Q3 and Q4. Since the two sides of the

transition are virtually identical, there is no telling which direction the transition
goes through.

4.2. Applications
4.2.1.  Mean Curvature Motion

It is immediate to apply the results above to the Mean Curvature Motion, using
H = K. Then

e For dove-tails, since

Ksss (Hsss + K2H5> - K2

888

+0>0

whenever K = 0, the direction is always vanishing;
e For dove-tails, the direction of the transition will depend on
K 1ss

—— (1 —cosa) + Ky (K1 — K3) <0
Ky

since again Hy; = K15 = 0 in this case. Both transitions can occur. This seems to
be the only case where MCM can really complicate the symmetry set;
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e For moths and wvv transitions, the direction depends on

Ksi
(K15 + Kay) (Kls ¥ Ko + (K1 — Ko) — ) >0
1 —cosa

but since K1 = K5 in this case, the condition is always satisfied (i.e., moths disap-
pear and W’s turn into VV’s for the MCM);

e Two cusps and a line can go either way, since the sign of

sin (6 —a) +sina—sing [ (K; (Ky — K1) + Kissina) (1 — cos 8) +
Ky, <+(K1 (K3 — K1) — Ki4sin ) (1cosa)>

can go either way.

e Finally, quadrilaterals flip, and both directions are equivalent.

4.2.2.  Reaction Equation

It is instructive to see what happens if H is a constant (independent of s). Note
that all “discriminant” expressions above turn out to be zero if we do so! That is not
a surprise: the symmetry set is, in a way, the points in the shockwave of Q; = N.
There is a tendency for the symmetry set not to go through these transitions: if
a singularity exists at ¢ = 0, it will still be there at other times. If you have a
dove-tail, it stays there; and so on.

5. COMPUTATIONS

In this section, we present the computations that led to the main result on the
previous section. We start with a collection of results that will be used in all cases.

5.1. Preparations
If we use

G(u,a,b,c) = F(s(u,a,b, c), A(a,b,c)) + B(a,b,c)
A(a7 b’ C) = (t(a" b’ c)’ x(a'7 b7 C)’ y(a’ b7 C))
and the notation

ta Ta Ya
dA= |ty z» U

te Te Ye
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We obtain the following relations between G/, Fis) and s(,)

0G
- — Fs u
ou °
0%’G
W = SSSZ + Fssuu
3G
W = Ssssi 4+ 3FssSuusSu + FsSuuu
84G 4 2 2
W = I'ss555,, T 6Fssssuusu + Fss(4susuuu + 38uu) + FsSuuuu (1)
85G 5 3 2 2
W = Fssssssu =+ 10F33538uu8u + Fsss(losusuuu + 158U8uu) + Fas() + FsSyunuu
86G 6 4 3 2.2
5F = FisssssSy + 15FsssssSuusy + Fosss (208, Suuu +4555,55,) + Fsss(...) + Fos(...) + Fi(...)
87G 7 5 4 3.2
W = FSSsssssSu + 21Fsssssssuusu + Flssss (35‘9“8“”” + 105S”SUU) T

and some more relations involving the derivatives of these expressions with relation
to a, b, c:

VAG = dAVAF + F,Vs
VG, = dAVFssy + Fs55,Vs + FsVsy (2)
VGuu = dA (VFsss, + VFsuu) + (FussSi + Fssuu) Vs + FsV(sh) + FiVsuu
VGuuu = dA (VFsss85 + 3V Fsssuusu + VFsSuuu) + (FasssSs + 3FsssSuusu + FosSuuu) Vs +
+ FlossV(53) + 3F.sV(suuse) + FsV(Suuu)

where the symbol A should be read as a “difference” (AF = F} — Fy) and V
is the “spatial” gradient, a vector with three components that are the derivatives
with relation to the abc variables. The difference will be useful whenever we have
two or more canonical forms — we can subtract them to get rid of our B(a,b,c)
term, and then the a, b, ¢ derivatives give us the first equation on the previous list
(this will become clear later on). In general, we will have to pick enough (three)
equations from the set 2 in order to mount a linear system that will allow us to
calculate dA and, consequently, (t4,%p,t.). Now, we can probably calculate some
of the s(,) terms from the set 1, but what about the other terms?

Well, remember that our function F' is the extended distance transform

2F = (Q(s,1) — (,9),Q(s,t) — (2, ¥))
Ft = <Q - ($7y),Qt>
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Now, fix t = 0 and suppose Q(s,0) is arc-length parametrized in order to find
the following 7 expressions for F(y)

OF
% - <Q - (xay)aT>
O*°F
D (Q — (x,y), KN) +1
3F
?933 (Q— —K°T + K,N)
O*F 3 2
o =(Q- ,—3KK, T+ (~K*+ Ky ) N) - K (3)
5
L (g () (K~ AK Ky~ 3K3) T+ (KK, + Ko) N) — 5K,
86F 3
={(Q — (z,y), (10K’K, — 5K K55 — 10K, Ky5) T) +
+(Q — (z,y), (K® = 10K* Ky — IBKK? + Kyss) N) +
+ K* 9KK35 8K?
7
%Tf =(Q— (2,9), (.) T+ (15K*K, — 15K*Kygs — 60K K Ko — 15K? + Kogoss) N) +

+ 14K*K, — 14K K55 — 35K, K s
and the corresponding expressions for the P = (z,y) derivatives are

Fp=P—Q(s,t)
Fup =T
Fssp=—KN

Fosp = K*T — K;N

We will also need some of the Fy for t =0

=(Q—(z,y),Q)
=(Q — (7,9),Qts) + (T, Q)
Ftss (Q = (2,9), Quss) + 2(T, Qrs) + (KN, Q)
Fisss = (Q = (2,9), Qtsss) + 3(T, Quss) + 3 (KN, Qrs) + (—K*T + KN, Q)

So if you know the curve evolution you are about to use, you can fill in for the
values of @y and the derivatives Q;(,). Usually we have an evolution like Q; = HN
(usually, H is a function of the curvature and its derivatives) and

Qe =HN
Qis = —HKT + H,N
Qtss = (—2H,K — HK,)T + (Hys — HK*) N
Qtsss = (—3Hs K —3H, K, — HK s + HK®) T + (Hyss — 3H,K* —3HKK,) N
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and using @ — (x,y) = —rN (what holds whenever we have at least A; tangency)
we end up with

F,=—-—rH

Fst = —rHs (4)
Fos = —r (Hys — HKQ) —HK
Fasst = —7 (Hasa — 3H,K? — 3HKK,) — 3H,K — 2HK,

Note that whenever r = 1/K, these translate simply to

H
Fo=—7
Fu =5 (5)
H,
Fo = =%
Fraw = —222

We are now ready to face all the cases for all possible canonical forms; again,
there are 5 of them.

5.2. Case A4
In this case, we have a circle of center P that is tangent to the curve at a point
Q@ with order of tangency 4. The canonical form has only one polynomial

G(u,a,b,c) = u® + au® + bu® + cu

5.2.1.  Level bifurcation set of the canonical form

We are looking for the points (a, b, ¢) for which there are distinct uw and v such
that

G(“’v a, bv C) = G(’U, a, bv C)
Gu(ua a, b7 C) = GU(U7 a, ba C) =0

Now, those equations immediately translate to

u® + au® + bu? + cu = 0° + av® + b® + v
S5ut + 3au? +2bu+¢=0
5v* 4+ 3av? + 2bv + ¢ =0

and, solving for a, b and ¢

a = —3u? — dvu — 30>
b=2(u+v) (v’ + 3uv + v?)
¢ = —uv (4u® + Tuv + 40?)

We plot this surface below
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Ay level bifurcation set

Note that the “leftmost” edge in this picture is not a cropping effect, i.e., the
surface actually “ends” there (and the same applies for its symmetric with relation
to the ac-plane). Indeed, a normal vector to this surface is obtained through

X = (—6u — 4v,6u” + 16uv + 8v*, —12u’v — 1duv? — 40°) =
=220+ 3u) (-1, u + 2v, —v (2u + v))
X, = (—4u — 6v, 8u® + 16uv + 6v2, —4u® — 14u’v — 12uv2) =
=2(2u+ 3v) (—1,2u + v, —u (u + 2v))
Xy x Xy = —4(2v+ 3u) (2u + 3v) (u—v) (V> + vu+v? v+ u,1)
so the non-regular points are given by v = v, 2u + 3v = 0 and 2v + 3u = 0.

Otherwise, as u,v — 0 the unit normal vector approaches £(0,0,1). Each one of
these special cases gives us a curve:

u=v= (—10u?,20u% ~15u*) = T = (—20u, 60u?, —60u>) || (1,0,0) as u — 0

1 1 = 15 15
u=—3v= <Z5U2, %fu?’, Z5v4> =T= (—v, —?, 15v3> | (1,0,0) as u — 0

2 4
15,5 4 15 ,\ = 15 15 , . 4
=— Y Y Rt T= (-2 2421 1 ,
20 3ué< T4 T = 2u,4u,5u | (1,0,0) asu — 0

The first case corresponds to both edges named before, while the two latter cases

(that are the same curve) correspond to the other two top edges. We should also
consider possible self-intersections

—3u? — 4vyu; — 308 = —3ud — 4vouy — 303
2 (u1 4 v1) (uf + Burvr +v7) = 2 (uz + v2) (U3 + 3ugvy + v3)
—uqvy (41@ + Tuv; + 41)%) = —UgUsy (4u§ + Tugvs + 4@%)

Besides the trivial solution u; = us and v; = v, we also have a solution us = v
and u; = vy that indicates the fact that the surface is “doubled” (all sheets are
covered twice) — note that the normals have the same direction in both these cases.
The last solution of that system can be expressed as

{uy,v1} = {1 iz\/gt} and {ug,ve} = {L\/gt}

2
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in any of the possible orders (there are four pairs of parameters for each point).
Note that two of these points have a normal pointing towards (2t2,t, 1) and the
other two have a normal in the (2t2, —t, 1) direction, indicating a transversal self-
intersection:

1++5 o
{ug,v1} = { 2‘/_t} = (=5t%,0,5t") = T = (—10¢,0,20¢%) || (1,0,0) as t — 0

Note that all edges and the self-intersection all have the same direction close
to (0,0,0); therefore, when shifting our plane in the direction (¢4, s, t.), the only
expression that matters is the sign of (1,0,0) - (¢4, s, tc) = t4. The general shape of
the transition can then be obtained from, for example, picking (¢, ts, ) = (1,0, 0).
Indeed here are the general shapes for the cross-sections at a = —¢, a = 0 and
a=¢>0

Note that the picture on the left side is actually bounded (there is no “cropping
effect”, the curve actually stops at the lower corners).

5.2.2.  Level sets for the time function
The Ay case requires Fy = Fyg = Fygs = Fyg55 = 0:

P—-Q=rN
—-rK+1=0
—rKs=0

—r (K — K*) —K*=0

Not surprisingly, this implies r = 1/K and K; = K5 = 0 at the point @ on the
curve, so

KSSS
K

Fygesss = =1 (K° = 10K° Ky — 15K K? + Kygss) + K* — 9K K, — 8K? = —

Fsssss =T (_6K2Ks + Ksss) - 5KKS = -
Kssss

s _ —r (IBK*K, — 15K?Kgs — 60K K Koy — 15K3 + Kogous) +
sssssss FI4KB K, — 14K K o5 — 35K, K B
KSSSSS

:KKsssf K
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Now, from the G(u) expressions and using that Fy = Fss = Fss5 = Fssss = 0 at
the point at hand, we could obtain s, Syu and Sy

120 = Fyegss50

0= Fsssssssi + 15Fsssss$uu
0= Fssssssssﬁ + 21Fsssssssuusi + Flssss (SBSuSuuu + 105373“)

ie.,

50 = —120 K

EEE]
s _ Kssss 82
uw —

15 Ks5 ¢

Suuy = -
Now, the linear system we look for is given by equations based on VG, VGuy

and VG,. Indeed, using again that Fs = Fys = Fsgs = Fssss = 0 at (u,a,b,¢) =
(0,0,0,0), we can mount the linear system from Equations 2

6 00 Fssstsi + 3FsstSuuSu + FotSuuu Fssts'%b + FstSuu  Fstsu
020 =dA Fsssxsi + 3FssuSuuSu + FosxSuuu Fssxsqz,, + FowSuu FosxSu
001 Fsssysi + 3Fssy5uu5u + Fsysuuu Fssysi + Fsysuu Fsysu

We could easily find then t,, t, and t., but we only care about t, We start with
the following determinant

3 2
Fssstsu + 3FsstSuuSu + FstSuuu Fsstsu + Fotsyu  Fstsy
— 3 2 _
D= Fsssxsu + 3Fss25uuSu + FszSuuu Fssxsu + FouSuu Fszsu | =
3 2
Fsssysu + 3Fssy5uu$u + Fsysuuu Fssysu + Fsysuu Fsysu

3 2
Fssstsu Fsstsu Fstsu Fssst Fsst Fst
— 3 2 _ 6
- Fssszsu Fsszsu Fszsu =Sy Fsssz Fss:c Fs:c
3 2
Fsssysu Fssysu Fsysu Fsssy Fssy Fsy
6 Fssst Fsst Fst

:Su

= —SgK (Fssst + K2F5t>

KT —KN -T

We also need the determinant of the following minor (that is independent of the
time evolution of the curve)

2

Fssxsu + FsaSuu Fsasu
2

Fssysu + Fsysuu Fsysu

si| -KN -T |=—-Ks

Foso For
Fssy Fsy

3

u

D, =

and then
D, 6

ty = 6—2 =
“ D Si (Fssst + Kstt)

So the destruction of dove-tails is tied to the sign of t,; using the expression for
Su, we see that dove-tails disappear if it can be shown that

KK (Fssst + Kstt) <0
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Finally, as r = 1/ K, we can use Equations 5 for evolutions of the kind Q; = HN;
then, the simplification of the symmetry set happens if the following inequality
holds whenever K, = K. =0

KSSS (HSSS + Ksz) > 0

5.3. Case 2: AzA;,
We have a circle of center P that is tangent to the curve at two points ()7 and
Q2 with order of tangency 3 and 1, respectively. There are four possible pairs of
canonical forms

Gi(u,a,b,c) = +u* + au® +bu + ¢
Ga(u,a,b,c) = +u?

5.8.1.  Level bifurcation set of the canonical form
We are now looking for (a, b, ¢) for which there are distinct « and v such that

Gl (U, a, b7 C) = Gl (U7 a, ba C)
G1y(u,a,b,¢) = Giy(v,a,b,¢) =0

or

G(1 (U, a, bv C) = GQ(vv a, b7 C)
G1y(u,a,b,¢) = Goy(v,a,b,¢) =0

The first case is

+ut+a’ +butc=+vr+a® +bv+ec
+4u® +2au+b=0
+403 + 2av +b =0

Use that u # v and solve for (a, b, ¢); we are forced to conclude that u = —v and
a = F2u?
b=0
c=c

that is, the first part of the level bifurcation set is half the ac-plane.
The second case means

+ut + au® + bu + ¢ = +0?
+4u® +2au+b=0
+2v =0
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so v =0,

a=a
b= F4u® — 2au

c = +3u* + au?

and we are left with another dove-tail looking surface (note that the sign used for
G2 does not affect the level bifurcation set at all). We use the top sign to draw
both surfaces together below, from two different points of view

A3 Ay bifurcation set - View 1 A3 Ay bifurcation set - View 2

The bottom signs produce basically the same picture, but with a different orien-
tation (indeed, the relation (a,b,c) — (—a, —b, —c) takes the level bifurcation set
produced by one sign by the set produced by the other). We will work with the
“top sign” surface until we need to do otherwise.

What are the edges of these surfaces? Clearly, the half-plane has an edge along
(0,0,1). For the dove-tail part, write

Xo = (1, —2u,u?)
Xu = (0, —120® — 2a,12u® + 2au)
Xo x Xy = =2 (6u” +a) (u*,u,1)

so we have a critical curve at a = —6u?; otherwise, the normal points towards
(0,0,1) as a,u — 0. This critical curve is

a=—6u® = (—6u? 8u’, ~3u?) = T = (—12u,24u?, —12u) || (1,0,0) as u — 0

Finally, we should mention the self-intersections of the level bifurcation set. The
intersection between the half-plane and the dove-tail are given by

a=—2u?
—4u3 — 2au; =0

3uf +au? =c
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whose solutions are

up =0= (-2u%0,0) = T = (—4u,0,0) || (1,0,0) as u — 0
w = tu = (—2u%0,u’) = T = (—4u,0,4v?) || (1,0,0) asu—0

while the self-intersections of the dove-tail are

ap = a2 = a
—4ud — 2au; = —4u3 — 2aus

3ui + au? = 3uj + aul
whose only non-trivial solution is
Uy = —us = —u, a = —2u* = (—2u?,0,u?)

Not surprisingly, this belongs to the half-plane above. They are actually A; A; Ay
points; indeed, Gy = 4 — 2u2t2 + u* = (t — u)® (¢ + u)® has two minima at the
0-level and G9 = t2 has a third minimum also at the 0-level.

Since the only directions involved in the edges and self-intersections are (1,0,0)
and (0,0,1), the only expressions that matter are (the signs of) ¢, and t.. We
choose two representatives to obtain the shape of the cross-sections, say, (1,0,1)
and (1,0, —1).

For the first, look at the cross-sections given by a 4+ ¢ = —&,0,¢ (where again
€ > 0). The symmetry sets look like

Note that the horizontal line actually ends at the right side for all pictures. All
the other ends are effects of image cropping. In particular, the left-side picture

deserves a close-up

Now, let’s look at the cross-sections given by a — ¢ = —¢,0,c. We have

Again, the horizontal line actually ends at its right side, and the close-up for the
first picture reveals a similar situation:
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Summarizing, t, > 0 indicates a “simplification” of the symmetry set that sep-
arates its two components and transforms the dove-tail into a smooth curve; the
sign of t,t. determines the relative orientation of those two components.

Finally, if we use the “bottom sign” surface, we must revert the orientations
of the transitions above, i.e., then t, < 0 is the simplification while the relative
orientation of the components still comes from the sign of ¢,t..

5.8.2.  Level sets for the time function
The A3A; case requires Fs = Fys = Fgss = 0 at (P, Q1), what implies r = 1/K;
and K15 = 0 at that point. So, for Q;:

Kigs
Fogss = =1 (_K3 + Kss) - K?= _K;j
— 2 _ Klsss
Fsssss = - (76K Ks + Ksss) - 5KK5 - 7?
1

Now, from the G, expressions and using that Fy = Fy, = 0 at ), we obtain s,

+24 = Fyegq50
0= Fssssssi + 10Fsssssuu

ie.,

Ky
Klss

s _ Klsss 82
uu —
10Klss “

st =324

In particular, this tells us when to use each sign; if Igl‘ < 0, we must use the

top sign, and vice-versa. Similarly, we only have F; = 0 at (P, Q2), what implies
P - Qg = TNQ.

Now, the linear system we look for is given by equations based on VG1y., VGiy
and VAG. From the set of equations 2, using Fy; = Fss = Fyss = 0 at Q1 and
F; =0 at Q2 we mount the following linear system at (u,a,b,c) = (0,0,0,0):

200 Flsst$3+Flst5uu Flstsu AFt
010 | =dA| Fissz5® + Frsesuu Flsesu AF,
001 Flasys? + FiaySuu Fiaysu AF,
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We only care about ¢, and t.. The time evolution dependent determinant is

2
Flsstsu + Flstsuu Flstsu AF‘t
— 2 —
D= Flsszsu + Flsmsuu Flsmsu AF:C -
2
Flssysu + Flsysuu Flsysu AFy

Flsstsq% Figtsy AFt Fiost Fist A}7:‘,
= Flssxsi Fiopsy AF(E = Si Flosa Flse AF&C
Flssysqz,, Flsysu A}Ty Flssy Flsy A‘Fy

The other important determinants are independent of the time evolution

D ‘Flsxsu AF, — s Fise AFy
@ Flsysu AFy “ Flsy AFy
D. = ‘ Flssmsa +Flsm$uu Flsmsu _ .3 Flssm Flsz ‘
¢ Flssysi + Flsysuu Flsysu b Flssy Flsy
Now, if we let a be the angle from T3 to T5
Flss;c Flsx
=|-KiN; -T) |=-K
'Flssy Flsy ‘ i 1‘ !
Flssz AF:C .
‘ Fiesy AF, = ] —KiNy rNi —rNy | =sina
Fis: AF, 1 —cosa
=|-Ty rNy —rNy | = ———7—
‘Flsy AF, | =T 2| K,
so we have
1—
D=-s <F155t$ + Fiysina + KlAFt>
1
1—cosa
D, = _SuT
D,=—s3K;
and then
D, 2 1—cosa 1—cosa . -t
to = 2# = TR ( A + Fistsina + KlAFt>
D, 1—cosa . -t
tczi =K <Flsst—K1 +Flst51na+K1AFt>

Note that

82 K1

u

—2
1-— 1-—
¢4, —glzcos (F_a P sina+ KM) >0

so the only possible orientation of the two components of the symmetry set is the
first one (the “T” looking one, as opposite to the “Y” looking orientation).
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Now, the direction of the transition depends on the sign of ¢, > 0; in other words,
simplification occurs if we can show that

Fiaet (1 —cosa) + Fig Ky sina+ K2AF, >0

Since r = 1/K, Equations 4 turn to

H, — H
A==
H
Flts = I{lls
HSS
Fltss = 7K;1

so the simplification of the symmetry set happens if the following inequality holds
whenever K15, =0

HSS .
K;1 (1 —cosa) + Hissina+ Ky (H1 — Ha) <0

where « is the angle from T to T5.
5.4. Case 3: AzA-
In this case, we have a circle of center P that is tangent to the curve at two points

@1 and Qo with orders of tangency 2 and 2, respectively (a bi-osculating circle).
The canonical form has two polynomials

G1(u,a,b,¢) = u® +au+c
Go(u,a,b,c) = u’ + bu

5.4.1.  Level bifurcation set of the canonical form

Three cases to consider now: we are now looking for (a, b, ¢) for which there are
distinct v and v such that

Gi(u,a,b,c) = Gy(v,a,b,c)
G1y(u,a,b,c) = Gry(v,a,b,¢) =0

or

GQ(U, a, b7 C) = GQ(U7 a, ba C)
Goy(u,a,b,c) = Goy(v,a,b,¢) =0

or

Gl (U, a, b7 C) = GQ(U7 a, ba C)
G1u(u,a,b,c) = Goy(v,a,b,¢) =0
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The first case is
3 _.3
u’ +au+c=v"4+av+c

3u +a=0
3 4+a=0

but this forces u = v = 0, so there is nothing to consider here.
The second case is similar; indeed,

w4 bu =03 + b
3u4+b=0
302 +b=0

also implies v = v = 0, so nothing to be done here either. We are left with only
one case

wWHaute=v3+w

3u?+a=0
3P +b=0
Solving for (a, b, c), we find
a=—3u?
= —30v?

¢ =2u®— 203

whose graph is the next picture

Ay Ao bifurcation set

You can almost think of these as 4 different surfaces that are almost flat, each
pair intersecting along a different curve. Our normal vector comes from

Xy = [-6u,0,6u”]
X, = [0, —6v, —60°]
X x Xy = 36uv [u, —v, 1]
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So the “edges” correspond to u = 0 and v = 0; otherwise, the normal points
towards (0,0,1) as u,v — 0. Also, the self-intersection is given by

whose only non-trivial solution is u; = —ug = v1 = —vs.
The critical curves are then the two edges and the self-intersection

u=0= (0,-3v*,-20%) = T = (0, —6v, —6v%) || (0,1,0) as v — 0

—

v:O:>(—3u2 0,2u”) = T:(—6u06u2) | (1,0,0) as u — 0
u=v=(-3u?-3u*0) = (—6u, —6u,0) || (1,1,0) as u — 0

and the expressions that matter are (the signs of) ¢4, t, and ¢, + tp. Since the .t
plane is divided in 6 regions when we consider the signs of those expressions, we
choose three representatives to obtain the shape of the cross-sections, say, (1,1,0),
(1,—-2,0) and (2,—1,0).

For the first, look at the cross-sections given by a + b = —¢,0,e. The sequence
looks like “the disappearing moth”

N

While the cross-sections given by a — 2b = —¢, 0, ¢ are the following “vvw” tran-
sition
Finally, the cross-sections given by 2a —b = —¢, 0, € are (not surprisingly) similar

to the ones we have just obtained, a “wvv” transition

=

® t,,t, > 0 =Disappearing moth;

V

\/

Summarizing, we have

o t,,tp, < 0 =Appearing moth;
e t.ty, < 0and t, +tp > 0 =A wvv transition;
e t.ty < 0and t, +1t, <0 =A vvw transition;



28 ! Please write \authorrunninghead{<Author Name(s)>} in file !

5.4.2.  Level sets for the time function

We can treat both polynomials in similar ways: we require Fy = Fy3 = 0 at
(P,@1) and (P, Q2), what implies r = 1/K; = 1/K5. We will write F', G, @, K,...
for a while, bringing the correct indexes back later. So, at Q:

K
Fooo = —1Ks = _?s
Now, from the G, expressions and using that Fy = Fy; = 0 at (), we obtain s,
6K
6 = Fssssi = si = 7Ks

Now, the linear system we are looking for is given by equations based on VG,
VGa, and VAG. From 2, using Fs; = Fys = 0 at Q1 and Q2 we mount the following
linear system at (u,a, b, c) = (0,0,0,0):

100 Fisis10 Fostsou AF;
010 =dA | Fispsiu FoszSou AF
001 Flsyslu ngySQU AFy

The important values for us are t, and t;. Here is the evolution dependent
determinant

Flstslu FQstSQu AF‘t Flst FQst AF‘t
D= Flszslu F25m52u AFI = S1uS2u Flsa: FQS:E AF:C
Flsyslu F25y52u AF‘y Flsy Fst AF‘y

The following minor determinants are independent of the particular time evolu-
tion of the curve

D — FogqSou, AFx — Foep AFx
¢ F25y52u AFy 2u ngy AFy
D, = Flszslu AFx =5 Fls;c AF(E
"7 | Fiysie AF, | P, AF,
But since
Fls;c AFx _ o 1 —cosa
Flsy AFy == | T1 TNl TNQ | = K
Fose AF, | _1l—cosa
Py AF, |~ | =T N1 = 7Ny | = —
Fls;c FZS;c .
=|-1T7 -1y | =sin«
Flsy F2sy | ! 2 |
we have
1 _ .
D= 81u$2uﬂ F15t+F23t+AFtKﬂ
K 1—cosa
1—cosa
Du = 52uT
Dy — 781u1 — Ccos

K
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and then

D, s Kis Ksina \
=—=—/=—=| Fia + F: AF,——
ta == \ 5K < 1st T Fost + tl—cosa)

Dy, s/ Kos Ksina \
ty= ——2 = —¢/ Figt + Fou + AF———
=D 6K < tot st tlcosa)

So we have the following options:

e Disappearing moth

P+ F '
K1 Kos > 0 and K. <% F %) <0

e Appearing moth

K1 Ko > 0 but K, (# ﬂ) 0

K 1—cosa

e WVV transition

KK, <0 and (K13+K23)< 1st T Fost n sin o ) “0

K 1—cosa

e VVW transition

Frg + Fhs ;
Ki15K2s < 0 but (K18+K23)( 1st + Lost sin o >>0

K 1 —cosa
We again use Equations 5

Ap, _ =y

to rewrite the “simplification clause” as

Ksi
(K1s + Kas) <H15 "t Hoy + (Hy — Hy) — ) >0
1 —cosa

whenever K1 = Ky = K; here, we consider the disappearing moth and the WVV
transition as “simplifying”. Once more « is the angle between T and T5.

5.5. Case 4: A2A1A,
In this case, we have a circle of center P that is tangent to the curve at three
points 1, Q2 and Q3 with orders of tangency 2, 1 and 1, respectively. The canonical
form has three polynomials

Gi(u,a,b,¢) =u® + au
Go(u,a,b,¢) = +u? +b
Gs(u,a,b,c) = +u® + ¢
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5.5.1.  Level bifurcation set of the canonical form

There are 6 potential cases that can contribute for the level bifurcation set here.
The first one corresponds to pairs of distinct u, v such that

Gi(u,a,b,c) = Gy(v,a,b,c)
G1y(u,a,b,¢) = Gry(v,a,b,¢) =0

ie.,

u3+au:v3+av
3u?+a=0
30 +a=0

and there are no solutions with u # v.
Secondly, we should consider the “G2G5” case

GQ(U, a, b7 C) = GQ(U7 a, ba C)
Gay(u,a,b,c) = Goy(v,a,b,¢) =0

However, this has been done before (look at the A3 A; case) and no level bifurca-

tion surface was generated then. The “G3G3” case is similar and produces nothing
as well, and the “G2G3” case is

G2(u7 a, bv C) = G3(v7 a, b7 C)
Gaoy(u,a,b,c) = Gsy(v,a,b,¢) =0

or

+u? +b=+v’+¢
+2u =0
+20 =0

giving us the whole plane b = ¢ no matter what the signs are. Finally, the “G1G35”
and “G1G3” cases are similar. The first is

Gl (U, a, b7 C) = GQ(U7 a, ba C)
G1u(u,a,b,c) = Goy(v,a,b,¢) =0

or

Wt au=+02+0b
3u? +a=0
+2v =0
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This gives us [a,b,¢] = [-3u? —2u® ¢|. Similarly, pairing up G1 and G3 gives
us another surface parametrized by [a, b, ¢] = [-3u?,b, —2u3].

Summarizing, the level bifurcation set is given by a plane b = ¢ and two cusp-like
surfaces 4a® = —27b% and 4a® = —27¢?, graphed below

Ay A; Ay level bifurcation set

Clearly, the only edges are the edges of the cusps in the (0,1,0) and (0,0,1)
directions. None of the 3 individual surfaces have self-intersections, but we can find
intersections between each two of them. The cusp-plane intersections are actually
the same curve as seen below

b=—2u’ = (a,b,c) = (—3u?, —2u®, —2u%) = T = (—6u, —6u?, —6u?) || (1,0,0) as u — 0
c=-2u% = (a,b,¢) = (—3u?, —2u®, —2u%) = T = (—6u, —6u?, —6u?) || (1,0,0) as u — 0

while the cusp-cusp intersection is given by

—3u} = —3u3
—Zu? =b
c= —2ug

leading to two curves (one of them is, of course, the previous one)
tu; = ug = u=(a,b,c) = (—3u2,:F2u3, —2u3) =T= (—Gu, F6u?, —6u2) || (1,0,0) asu — 0

Collecting all the information, we found three edge/self-intersection directions given

by the three axes. This indicates that the signs of ¢, t;, and t. all matter, and we

should choose 4 representatives, say, (1,1,1), (1,—1,1), (1,1,—1) and (1,-1,-1).
The first sequence of cross-sections is a + b+ ¢ = —¢,0,¢

%:;\éi\
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The second is a — b+ c = —¢,0,¢

%é = ?‘ = —
_—

The cross-sections a — b — ¢ = —¢,0, ¢ give us

% = 7/ - T

/

———

Finally, we have a + b — c = —¢,0,¢

L

Summarizing, we have

e t, > 0 =Two cusps and a line with two triple intersections separate;
e t, < 0 =Two cusps and a line entangle into two triple intersections;
o tpt. > 0 =Line is “between” cusps;

e t3t. < 0 =Line is “across” cusps;

5.5.2.  Level sets for the time function

The equations we get for G are exactly the same as the ones we got in the As A
case, i.e., we have Fy = Fys =0 at (P,Q1) and r = 1/K;, and

Now, the linear system we are looking for is given by equations based on VGi,,
VA12G and VA;3G (here we use A;;Z to represent Z; — Z;). From 2, using
Fy; = Fss = 0 at 1, we mount the following linear system at (u, a, b, c) = (0,0, 0,0):

0 Fissie A1aFy Azl
0 =dA Flsmslu AIQFI AlSFI
1 Flsyslu A12‘Fy A13P1y

S O =
o = O

Now

Fises1u A12Fy Ak
D= Flsmslu A12F‘1: AlSFI
Flsyslu A12}7‘3; AISFy
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Let « be the angle between T and T5 and (3 the angle between T7 and T3 (and
0 — a the angle between T and T3). Then we have the minors

AoF, A3F, sin (f — ) + sina —sin 8
D, = =|rNy—rNy rN3 —rNy | =
AoF, ApF, |V, P ' K?
Frsesiu ArFy 1—cosa
D =35 —T7 rNo —rNy | = Sjuy————
b Fiaysie AuF, 1u ’ 1 2 1 ’ 1 e
Fisesiu A1zl 1—cosfd
D, = =810 | =11 N3 —7rNi | = S1q————
Figysiu A3l | =T ° v = K,
and then
sin (f — ) + sina —sin 8 1—cosp 1—cosa
D = s14 <Flst K2 + AIZFtT + Al?’FtT
From these expressions. we can get
D, Dy D,
to=—J bb=—Fs te= 7
Note that the
tt. = _i (1 —cosa) (1 —cosf) <0

K? D2

so we expect the line to be always “across” the cusps. The separation of the line
and the cusps happens when

sin (8 — «) +sina — sin 8 Flu sin(ﬁ*a)JIr(vslinozfsinﬁ+ o
Kis +A1F; (1 —cosfB) + Az F; (1 — cosa)

Using Equations 4

Hy — H Hs; — H
A by = — 2K1 L ApF = — 3K !
1
Hy,
Flst 71{11

we rewrite the separation condition as

sin (8 — ) +sina —sin 8 (" (K, (H2 — Hy) + Higsina) (1 — cos 3) + 0
Kis (+(K1 (Hs — H1) — Hyssin 3) (1 — cos @) )

Note that the pictures on both sides of the transition are very similar, so it is
hard to talk about “simplification” here.
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5.6. Case 52 A1A1A1A1
This is simply a circle of center P that is tangent to the curve at four points.

The canonical form has four polynomials

G1(u,a,b,c

Go(u,a,b, c

(

(
Gs(u,a,b,c

(

G4(u,a,b,c

+0,2

+u? +a
+u? + b
+u? + ¢

5.0.1.  Level bifurcation set of the canonical form

We have done all the work for this case before. The “G;G;” cases are known not
to provide any level bifurcation surfaces. The cases “G2G3”, “G2G4” and “G3Gy4”
gives us the planes a = b, a = ¢ and b = ¢ respectively, while “G1G2”, “G1G3” and
“G1G4” gives us the planes a = 0, b = 0 and ¢ = 0. The level bifurcation set is this

“paper cut hell”:

A1 A1 A1 A; bifurcation set

It is not hard to see that the self-intersections of this level bifurcation set corre-
sponds to lines in the directions (1,0, 0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1)
and (1,1, 1), so, at first, all signs of t,, tp, te, ta + o, ta +te, to + te and t, +tp + .
matter. However, since the level bifurcation set above is invariant through permu-
tations of the variables a, b and ¢, we will only consider the cases

Case t, tp te to+1ty tq +te
I + + + + +
7 + + - + +
171 + + — + +
v 4+ + - + -
Vo o+ 4+ -+ —

ty +t. t, +tp, +t. Representative

+
+

(1,2,3)
(2,3,—1)
(3,1,-2)
(2,3,4)
(1,2,4)

+ 4+ +
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The pictures for each case are

. .=

II:

R
L
s

1V: = =

e
=

= | ]

Note that the two sides of each transition are indistinguishable. Also, when
reversing the signs of all expressions tq, ty, te, tq +tp, ta +tc, tp +tc and to +tp +te,
just read the transitions above in the right-to-left direction.

5.0.2. Level sets for the time function

In this case, we can obtain a linear system immediately from the differences
VA12G, VA13G and VA14G. Indeed, at (u,a,b,c) = (0,0,0,0):

ApF, AisFy Ak
=dA | ApF, AizF, AuF,
Alng A13Fy A14Fy

o O =
o = O
= o O
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Now, the minors independent of the evolution are

AF, Ak, 2, . . . 5 . (
D, = =7r“(sin(y— @) +sinf —sin~y) = 4r°sin
AvsF, AuF, (sin (v — B) B )

‘«Q
e
N————
@,
o]
VS
]2

)sin<
Jan
)sin(

Ao F, A14F, 2, . . . 2 . (7 - Oz) .
Dy = =r“(sin(y — ) +sina —sin~y) = 4r°sin sin (
b A Fy AwF, (sin (7 — ) 7

N2 N
~—"

[\
(] o)

ApF, AF, 2, . . . 5 . (ﬁ - a) .
D, = =7r°(sin (8 — @) + sina — sin §) = 4r° sin sin (
ATE Alp | =m0 8)

[\
oo

and the big determinant is
D = ApF; Do — A13F; Dy + A14Fy D,

where we use now «, 3 and -y for the three pairs of points. It is not worth expanding

D
“=D
D
tbfffb
t—DC
7D

However, we should note that

D(L_Db+DC 2

ta—&—tb—l—tC:T :%(sin(’y—ﬁ)—sin(’y—a)+sin(6—a)):

A (B—a\ . [(y—a\ . (v—0
—3sm( 5 )sm( 5 )sm( 5 )

tatbtc (tu + tb + tc) =

= — (;—42 sin (%) sin <§> sin (%) sin (5 ; a) sin (fy ; a) sin <’7 ; s

so only transitions II, III and IV are possible. Since these 3 pictures are locally
diffeomorphic (described as “take a convex quadrilateral and its diagonals, shrink
it towards one of its vertices and then start expanding the quadrilateral out of this
vertex on the other side), we can state that they correspond to the only possible
transition in this case.

As we had seen before, both sides of the A; A; A1 A; transition are indistinguish-
able, so there is nothing to say in this case about the direction of the transition, no
matter what time evolution we are dealing with.

and therefore

5.7. Further Work
It is a bit surprising that the medial axis can get more “complicated” as its
originating curve goes through MCM (as in the case A3A; above). Using the
calculations above, we wish to examine if there are other curve motions that have
the property of always simplifying the medial axis. Preliminary results indicate
that this is not the case.

[C] Ry
N——

)>2<0
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