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Abstract
This paper considers pricing rules of single-period securities markets

with �nitely many states and without arbitrage opportunities. Our main
result characterize those pricing rules C that are super-replication prices
of a frictionless incomplete asset structure. This characterization relies on
the equivalence between the sets of frictionless securities and undominated
securities priced by C. The former captures securities without bid-ask
spreads while the second captures the class of securities where, if some of
its delivers is replaced by a higher payo¤, then the resulting security is
characterized by a higher value priced by C.

We also analyze the special case of pricing rules revealing securities
markets admitting a structure of basic assets paying one in some event
and nothing otherwise. In this case we show that any security can be
priced against a capacity. This risk-neutral capacity, or Arrow-Debreu
ambiguous state price, can be viewed as a generalization for incomplete
markets of Arrow Debreu price valuation, and the corresponding pric-
ing rule is determined by an integral w.r.t. a subadditive capacity. For
instance, a special class of Choquet integral is related to frictionless in-
complete markets of Arrow securities and a riskless asset.
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1 Introduction

Since the Arrow�s Role of Securities seminal paper, the general equilibrium the-
ory has been the fundamental scope for the study of some fundamental issues in
economic theory. As an important branch of this theory that highlights the role
of uncertainty in economics, the �nancial general equilibrium models assume
that the price of assets satis�es equilibrium conditions in a setting where many
agents demand assets pro�les in accordance with their preferences and their en-
dowments, providing the foundations for the study of �nancial markets through
a fundamental result says that for an economy with �nancial markets satisfy-
ing mild conditions, at equilibrium, �nancial markets must not o¤er arbitrage
opportunities for any agent. For instance, in a two period economy it implies
the impossibility, at equilibrium, to realize positive net �nancial returns in the
second period without spending at the initial period some amount of money in
the asset market. Furthermore, the fundamental theorem of asset pricing for
frictionless complete markets1 enforce linear pricing rule: the cost of replication
of any security is given by the mathematical expectation of its payo¤s stream
under the unique state contingent price or risk neutral probability obtained by
the no-arbitrage principle.
Nowadays, a widely accept paradigm says that complete markets assumption

becomes the exception rather than the rule in the study of �nancial markets.
Thus, since market incompleteness says that not all securities admit a perfect
hedge, the studies of securities markets reveals a new and important aspect
when compared to complete market case: in many cases the seller of a security
should consider a superhedging strategy2 in order to protect against any possible
claims of the buyer of such security3 . Hence, in a �nancial economy where
agents can trade a �nite and potential limited number of frictionless securities,
the pricing rule gives the minimum cost of getting a payo¤ equal to (or larger
than) a given contingent claim in any state of nature, which is also known
as the super-replication price. Importantly, by no-arbitrage and assuming the
presence of a fair risk-free security, the super-replication price of any security can
be determinate by its supremum expected value with respect to all risk-neutral
probabilities.
Another prominent problem in the study of �nancial markets is the possi-

bility of frictions a¤ecting tradeable assets. Among others, frictions includes

1Recall that a �nancial market is complete if the trading of basic securities reproduce any
�nancial payo¤ stream, otherwise the �nancial market is incomplete.

2A superhedging strategy or super-replication is a portfolio strategy which generates payo¤s
across the states that are at least as large as the underlying security.

3Some results show that this is typically the case for some important classes of securities
markets, for example, a well known result from Ross (1976) says that whenever the payo¤
of every call or put option can be replicated, the securities market must be complete. Also,
Aliprantis and Tourky (2002) showed that if the number of securities is less than half the
number of states of the world, then generically we have the absence of perfect replication of
any option. Hence, the approach of �nding the value of an option by reference to the prices of
the primitive securities breaks down for any option. In another way, Baptista (2007) showed
that (generically) if every risk binary contingent claim is non attainable then every option is
non attainable. For further results, see Polyrakis and Xanthos (2010).
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bid-ask spreads, short sales constraints and short selling costs, and di¤erences
between borrowing and lending rates. In such cases, the market might be com-
plete and we still have more than one underlying risk-neutral probability and
the pricing rule is also given by the supremum over the expected values with
respect to all risk-neutral probabilities. A consequence is that any normalized
pricing rule should satisfy a set of mild and intuitively conditions as essentially
obtained by a well known representation theorem for a functional described by
a set of probability measures4 . Next section assumes such conditions as a prim-
itive for pricing rules, as done by Jouini and Kallal (2001), and discusses its
intuitive appeal.
It is quite immediate that given a pricing rule there are many candidates for

the corresponding underlying type of �nancial structure. So, given a non-linear
pricing rule, how to identify the type of market imperfection related to it? Our
main result identi�es the case of pricing rules related to frictionless incomplete
markets by �nding a special property for pricing rules avoiding frictions in all
tradeable securities.
For our main result characterizing those pricing rules C that are super-

replication prices of some frictionless incomplete asset structure, we established
an equivalence between the set of frictionless securities and undominated se-
curities priced by C. The set of frictionless securities priced by C is de�ned
as

FC := fY : C (Y ) + C (�Y ) = 0g ;
and the set of undominated securities priced by C is de�ned as

LC := fY : X > Y ) C (X) > C (Y )g :

While a frictionless security can be bought and sold without any frictions,
undominated securities have the property that if a payo¤ assigned to a state
by the security is replaced by a bigger payo¤, then the resulting security has
a strictly superior super-replication price5 . So, for an undominated security,
there is no gain that can be added while maintaining its super-replication price.
On other hand, for a dominated security X, there is some Y paying never less
than X and delivering more in at least one state of nature with same price,
i.e., C (Y ) = C (X). So, if an agent purchase X instead of Y then she/he
is discarding the positive contingent wealth sure in the event where the �rst
security reveals a worse performance than the second one. Hence, our main
result says that C reveals a frictionless securities market if, and only if, every
security such that every payo¤ can not be improved without additional cost is
frictionless.
We also analyze the special case of pricing rules revealing securities mar-

kets admitting a structure of basic assets paying one in some event and nothing
4See, for instance, Huber (1981), Gilboa and Schmeidler (1989), and Chateauneuf (1991).

The same characterization is the key for the representation of coherent risk measures as
introduced by Artzner et al. (1999).

5Formally, this de�nition captures the pricing rule�s domain of monotonicity. Also, given
an arbitrary pricing rule, any frictionless security is an undominated security.
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otherwise, i.e., a structure of bets. In this case we show that any asset can
be priced against a capacity. This risk-neutral capacity, or Arrow Debreu am-
biguous state price, can be viewed as a generalization for incomplete markets of
risk neutral probabilities or Arrow Debreu state prices, and the corresponding
pricing rule is determined by an integral w.r.t. such non-additive probability.
More precisely, general markets of bets are revealed through pricing rules given
by a Lehrer integral and the special case of partition markets (i.e., markets of
bets where basic assets induces a partition of state space) are revealed through
pricing rules given by a Choquet Integral.

2 Framework

We consider a single-period economy where the uncertainty is modeled by a
�nite state space S = fs1; :::; sng. A mapping X : S ! R is a security that
gives the right to X (s) units of consumption or wealth in the second period in
each state of nature s 2 S.
We denote by C : RS ! R a pricing rule, i:e:, agents have to pay C (X)

units of initial wealth in order to guarantee at least X (s) units of wealth in
each state s 2 S. Following well-known works in the literature, we shall make
the following assumptions concerning a pricing rule

De�nition 1 A pricing rule satis�es :
i) C is sublinear, i:e:;

C (�X) = �C (X) ; and

C (X + Y ) � C (X) + C (Y ) ;
for all X;Y 2 RS and all non-negative real number �;
ii) C is arbitrage free, i:e:, C (X) > 0 for any nonzero security X � 0;
iii) C is normalized, i:e:, C (1S) = 1;
iv) C is monotonic, i:e:, C (X) � C (Y ) for all X;Y 2 RS s.t. X � Y ;
v) C is constant additive, i:e:;

C (X + k1S) = C (X) + k;

for all X 2 RS and all real number k.

Such properties are usual and have been proposed by Jouini (2000), Jouini
and Kallal (2001) and Castagnoli et. al. (2002), among others. The assumption
(i) means that the price of a security is proportional to the quantity purchased
and that it is less expensive to purchase a portfolio of securities than to purchase
each security separately. We note that subadditivity implies that

C (X) � �C (�X) ;

that is, the price at which X can be bought is larger than or equal to the price
at which it can be sold. The assumption (ii) captures the absence of arbitrage
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opportunities by imposing that there are no free security that are nonnegative
in every state of nature and strictly positive in at least one. Assumption (iii)
means that the riskless asset can be bought and sold without any frictions and
that riskless rate is equal to zero. The assumption (iv) is a natural condition
saying that any investor will not pay more for less. Finally, the assumption (v)
means either to purchase a portfolio composed by a security and the riskless
asset or to purchase each of these securities separately.
We recall that in a given �nancial economy, where in order to transfer wealth

from the initial date to the future agents can trade a �nite number of securities,
the induced pricing rule C reveals for any security X its minimum cost C (X)
of getting a payo¤ equal to (or larger than) the delivers promised by X across
the states of nature. The pricing rule C is also referred as a super-replication
price of its underlying securities market6 .
In terms of representation, every pricing rule can be computed by the fol-

lowing representation7 :

Theorem 2 For any pricing rule satisfying conditions (i)-(v) there is a closed
and convex set Q of probability measures, where at least one element is strictly
positive, such that for any security X

C (X) = max
P2Q

EP (X)

With such representation in mind, given a pricing rule C, its extended set
of risk-neutral probabilities Q is the closure of the usual set of risk-neutral
probabilities, knowing also as the set of "underlying" linear pricing rules. By this
representation we are motivated to adopt a de�nition saying that the probability
measure P 2 Q "prices" X if its satis�es C (X) = EP (X).

3 Pricing Rules and Frictionless Securities Mar-

kets

The usual way in the literature that obtains pricing rules starts from a given
�nancial market without arbitrage opportunities, and by considering the notion
of super-replication obtains a functional form for the super-replication price
describing the market pricing rule that, of course, satis�es the �ve conditions
as given in the de�nition of pricing rules. It seems useful to review some cases
of market structure and its induced pricing rule:
(i) if markets are complete and frictionless then the set Q has only one

element, i:e:, C is well know linear pricing rule of a complete market;

6We note that values �C (�X) and C (X) can also be interpreted as arbitrage bounds on
the price of X. Indeed, the normative argument is that investors would not pay more than
C (X) for X and would not sell it for less than �C (�X) ; because in both cases a better
outcome can be research through securities trading.

7This result can be derived from Huber (1981).
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(ii) If markets are incomplete, without any other imperfection, then Q is
the closure of the set of risk neutral probabilities or, taking into account a
multiperiod framework, the set of martingale measures of the traded securities
normalized price (Jouini and Kallal, 1995);
(iii) If the traded securities can be bought at a price (the ask) that is poten-

tially higher than the price (the bid) at which they can be sold, then Q is the
closure of the set of martingale measures of any price between the normalized
bid and ask price (Jouini and Kallal, 1995; see also, Bensaid et. all 1992 and
Baccara et. all 2006).
(iv) If agents are subjective to short sales constraints then the set Q is the

closure of the set of supermartingale measures of the traded securities normalized
price (Dybvig and Ross 1986; Jouini and Kallal, 1995).
Such cases illustrate how di¤erent market structures share a common form

of pricing rules and attest the naturalness of its general de�nition followed by
us as we saw proposed by Jouini and Kallal (1991). Such generality reveals an
interesting identi�cation problem, in fact, for a given pricing rule it is possible
that there are many candidates for its underlying market structure type. Of
course, if we take a linear pricing rule it is quite immediate that the underlying
market must be complete and frictionless. On the other hand, in the case
of a non-linear pricing rule seems problematic regarding the identi�cation of
the respective market imperfection related to it. Traditionally, in a competitive
market the observed price reveal the whole pertinent information to agents. One
question that seems interesting to us is whether the knowledge of the pricing
rule can reveal the type of incompleteness or else if exist some kind of friction
for tradeable securities in the market.
Our main result characterizes those pricing rules C that are super-replication

prices of a frictionless incomplete securities structure with the riskless bond.
We perform this resulting by adding a new condition to the list of necessary
properties (i)-(v) shared by all �nancial pricing rule8 .

3.1 Frictionless and Unambiguously Priced Securities

Consider a pricing rule C, the possible lack of additivity is related to the pos-
sibility of frictions in the �nancial market. For instance, there is friction for a
security X if the buying price C is not the same as its selling price �C (�X),
and in this case the subadditivity captures the natural intuition that its sell-
ing pricing C (X) may be greater its buying price �C (�X). Thus, the set of
frictionless securities is de�ned by

FC :=
�
X 2 RS : C(X) + C(�X) = 0

	
:

The fact thatX 2 FC means that the securityX can be bought and sold without
any frictions when priced by C. Thanks to its basic properties, any pricing rule
induces a collection of frictionless securities with a structure of linear space, in
fact:

8See Appendix, Part A, for a summary about frictionless securities market.
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Lemma 3 Let C be a pricing rule, the set of frictionless securities FC is a
linear subspace.

We already know that given a pricing rule C there is a unique convex and
closed set probabilities Q related to it that reveals the set of linear pricing rules
compatible with the underlying market. Due to the possibility of multiple linear
pricing rules related to the original non-linear price rule, for several securities
it is possible to �nd many expected values for di¤erent choices of the linear
pricing operator. On the other hand, many securities may be immune to the
existence of multiple linear pricing, which motivates to de�ne a security X as
an unambiguously priced security if for all linear pricing rules P;Q 2 Q

EP (X) = EQ (X) .

Such condition means that all linear pricing rules agree about the price of
X, i.e., any risk-neutral probability P 2 Q+ "prices" the security X. A simple
and interesting result says that

Lemma 4 Given a pricing rule C, a security X is frictionless if, and only if,
X is unambiguously priced.

3.2 Pricing Rules and Undominated Securities

Given a pricing rule C, its set of undominated securities is de�ned by9

LC :=
�
X 2 RS : Y > X ) C (Y ) > C (X)

	
:

A undominated security X is a security with the property that if some payo¤
assigned to a state by the claim is replaced by a better payo¤, then the resulting
security is strictly more expensive than the original one.
On other hand, for a dominated security X, by de�nition, there is Y such

that Y > X and C (Y ) = C (X): It means that if an agent purchase X instead
of Y as above then she/he is discarding the wealth Y (s) �X (s) in each state
of the event fY > Xg. We note that all frictionless security X is undominated:
in fact, for a pricing rule C with a set of multiple linear pricing rules Q that
contains a strictly positive probability P0, if Y > X since X is unambiguously
priced we obtain that10

C (Y ) � EP0 (Y ) > EP0 (X) = C (X) :

3.3 Main Result

Our result that characterizes frictionless incomplete market says that

9 In the context of decision theory under uncertainty, Lehrer (2007) provided a representa-
tion for preferences using a similar notion called fat-free acts.
10Or, in another way, given a security X s.t. C (X) = �C (�X), for any Y > X we obtain

that C (Y )� C (X) = C (Y ) + C (�X) � C (Y �X) > 0.
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Theorem 5 The pricing rule C is a super-replication price of a frictionless
incomplete market of securities if, and only if, FC = LC .

The main intuition of this result is that for a given pricing rule that the
investor would observe in the �nancial market, the underlying complete or in-
complete market structure will not exhibit friction in any tradeable security if,
and only if, any undominated security is unambiguously priced or, equivalently,
frictionless. Also, in this case, the presence of any non-linearity reveals that the
corresponding �nancial market is incomplete. In another way, taking into ac-
count the viewpoint of a price taker investor choosing between securities priced
by a non-linear pricing rule as in our main result, the choice of any friction
security will make the investor suboptimal in the sense that it is available a
security that improves the former in at least one contingence11 .
Now, we present some examples showing how our result can reveals when

the underlying market is incomplete and without frictions, and also the corre-
sponding set of tradeable securities.

Example 6 Consider the pricing rule C : R3 ! R de�ned by

C (X) = max fEP1 (X) ; EP2 (X)g ;

where P1 =
�
1
2 ;

1
4 ;

1
4

�
and P2 =

�
1
4 ;

1
2 ;

1
4

�
. We note that, for all security X =

(x1; x2; x3)

C (X) = max

�
�x1 +

�
3

4
� �

�
x2 +

1

4
x3 : � 2

�
1

4
;
1

2

��
:

It is simple to see that FC =
�
X 2 R3 : x1 = x2

	
and X = (1; 2; 0) 2 LC with

bid-ask 1=4. Hence, C is not a super-replication price of a frictionless incomplete
market.

An interesting fact is that the pricing rule in Example 6 is a special case
of insurance functional as studied by Castagnoli, Maccheroni and Marinacci
(2002). So, in this case, the underlying insurance market must admit frictions
for some tradeable securities.

Example 7 Consider C : R3 ! R de�ned by

C (X) =

�
x3; if x1 + x2 � 2x3 < 0

1
2 (x1 + x2) , if x1 + x2 � 2x3 � 0

:

We note that, for all security X

C (X) = max

�
�x1 + �x2 + (1� 2�)x3 : � 2

�
0;
1

2

��
We note that case FC = LC =

�
X 2 R3 : x1 + x2 � 2x3 = 0

	
. Hence, C is

the super-replication price of the incomplete market where, e.g., basic assets are
given by (1; 1; 1) ; (2; 0; 1), both with price 1.
11Of course, this reasoning supposes an investor that prefers always increase his/her wealth

any future contingency.
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Example 8 Given a probability Q 2 �+, let C : RS ! R be a pricing rule
de�ned by

C (X) = (1� ")EQ (X) + "maxX (S) ,

that we call a epsilon-contamination pricing rule.
In fact, for all security X

C (X) = max
P2(1�")fQg+"�

EP (X) :

In this case FC = span f1Sg and LC = RS. Hence, C is not a super-replication
price of a frictionless incomplete market. We note that for all security X, its
bid-ask is given by

BA (X) := C (X) + C (�X) = " (maxX �minX) .

4 Markets of Bets

Arrow (1953) introduced the notion of contingent markets where agents can
trade promises concerning the future uncertainty realizations. A wide class
of assets used is known as Arrow securities characterized by a promise on a
particular state of nature s 2 S, i.e., in a �nancial market the set of possible
Arrow securities is given by A :=

�
fsg� : s 2 S

	
12 . Given an event A, the

f0; 1g-security A� is also often called a bet on (the event) A.

De�nition 9 We say that the mapping C : RS ! R is the super-replication
price of a frictionless market of f0; 1g-securities without arbitrage opportunities
if C satis�es the conditions of Lemma 1713 and there is a collection of events
B1; :::; Bm such that Xj = B�j for any j 2 f1; :::;mg.

For instance, of course, the simplest example is given by a complete securities
market revealed by a pricing rule C such that there is a probability P 2 �+
where

C (X) = EP (X) :

In such case the value P (fsg) := ps is the Arrow-Debreu state price of the
contingence s 2 S. Also, in this case the underlying markets can be constructed
by choosing the whole collection of simple bets 1fsg with respective prices ps.
In this section we characterize the class of frictionless incomplete markets

of bets. Before, we need to recall some mathematical notation and de�nition
about nonadditive measure and integration.

12Of course, markets with only Arrow securities is a very particular case of markets with
f0; 1g-securities.
13See Appendix, Part A:
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4.1 Capacities and non additive integration

A capacity is a set-function � : 2S ! [0; 1] such that: (i) � (;) = 0 and �(S) = 1;
and (ii) A � B ) �(A) � �(B). We say that a capacity � is concave if for all
A;B 2 2S

�(A [B) + �(A \B) � �(A) + �(B):

Of course, all concave capacity is subadditive, in the sense that for all disjoint
event A;B 2 2S

�(A [B) � �(A) + �(B);

but the converse is not true14 . The case of convex and subadditive capacities
follows an analogous way by taking the reverse inequalities.
The set of unambiguous events induced by the capacity � is de�ned by15

E� :=
�
A 2 2S : �(A) + �(Ac) = 1

	
;

which de�nes the linear subspace

F� := span fA� : A 2 E�g .

We note that by Lemma 4, B is a an unambiguous event if and only if the
bet B� is frictionless.
Another important concept related to a capacity � is its acore de�ned by

acore(�) :=
�
P 2 � : P (A) � �(A); 8A 2 2S

	
:

The outer capacity of �, denoted by ��, is de�ned by:

E 2 2S 7! �� (A) = min f� (B) : B 2 E� and A � Bg ;

So, given a capacity �, since �� � � clearly acore (�) � acore (��) :
A capacity � is a-exact if acore(�) 6= ; and for all event E � S

� (A) = max fP (A) : P 2 acore(�)g .

We note that, given a pricing rule C; the induced price of bets

�C (A) := C (A
�) for any E � S;

is a subadditive capacity.
The capacity � has no-gap if for every event A � S and for every positive

measure � : 2S ! [0; 1] that satis�es � � � , there is p in the acore of � such
that p � � . Note that it is not imposed that � (S) = 1.
The "concave integral" was proposed and characterized by Lehrer (2009)

for capacities, which di¤ers from the well-known Choquet integral when the
capacity is not convex. In a similar way, Lehrer integral can be de�ned as a

14See, for instance, Schmeidler (1972) and Chateauneuf and Ja¤ray (1989).
15Of course, an event B is unambiguous i¤ the corresponding bet B� is unambiguously

priced.
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"convex integral". A special goal of this paper is the case of pricing rules that
are characterized by a convex Lehrer integral. For the next de�nition, we use
the convention saying that a contingent claim X is a security with non negative
payo¤s.

De�nition 10 Let C be a pricing rule over the set of contingent claims RS+,
then C is a Lehrer integral if

C (X) = (L)
Z
Xd�C for all X 2 RS+

where,

(L)
Z
Xd�C := min

nX
�i�C (Ai) :

X
�iA

�
i = X;�i � 0

o
:

In this case,
C (X) = max

P2acore(�C)
EP (X) .

The last condition in the de�nition of the Lehrer integral follows from Azrieli
and Lehrer (2007) because every pricing rule is supposed to be constant additive,
and hence the underlying capacity has no-gap16 . Also, following the Remark
3 of Lehrer (2009), if a pricing rule over contingent claims X 2 RS+ is given
by a Lehrer integral then the constant additivity property enables us to extend
the domain of the "Lehrer pricing rule" from the non-negative securities to
all securities. In fact, for instance, given X 2 RS with minS X < 0, then
X � (minS X)S� � 0 and

C (X) := C
�
X �

�
min
S
X
�
S�
�
+min

S
X.

Now, we recall the de�nition of Choquet integral (Choquet, 1954):

De�nition 11 Let C : RS ! R be a pricing rule, then C is a Choquet integral
if

C (X) = (C)
Z
Xd�C for all X 2 RS+

where,

(C)
Z
Xd�C :=

0Z
�1

[�C (fX � tg)� 1] dt+
1Z
0

�C (fX � tg) dt:

We note that by Schmeidler (1986), if the capacity �C is concave then

(C)
Z
Xd�C = max

P2acore(�C)
EP (X) ;

which says that in this case the Choquet Integral coincides with Lehrer Integral
for non-negative random variables.
16 In fact, this result was established for core of capacities with large core (the dual concept

of no-gap) is also presented in Lehrer (2009).
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4.2 Pricing Rules of Incomplete Markets of Bets

Next result will explain why non additive measures and integration is useful in
some important characterization of incomplete markets. Suppose that a pricing
rule C is given by a non additive integral of Lehrer or Choquet, in this case we
call the subadditive capacity �C by a risk-neutral capacity or an ambiguous state
price. Essentially, the main idea of the fundamental Arrow Debreu valuation
in complete markets is that for every security its arbitrage-free price is the
(usual) integral of the state-payo¤ weighted by its unique state price or risk-
neutral probability. By extending the possibilities of Arrow Debreu valuation
through non additive probabilities, this paper also shows that, for an interesting
class of incomplete market, the super-replication price of every security can be
computed as an integral of the state-payo¤ weighted by its unique ambiguous
state price or risk-neutral capacity. In fact, this paper identify the class of
ambiguous state prices related to frictionless market of bets and shows how in
this case the pricing rule is simple.
The following result characterize the case of frictionless securities markets

admitting a structure of f0; 1g-assets and shows that the complete markets
pricing rule given by an expected value with respected to the unique risk-neutral
probability can be restarted in a market of bets by considering a expected value,
in the sense of Lehrer (2009), with respect to a unique risk-neutral capacity.

Theorem 12 Let C : RS ! R be a pricing rule, then (i) is equivalent to (ii):
(i) C is a super-replication price of a frictionless incomplete market of bets;
(ii) C is a pricing rule such that,
(a) �C is an a-exact capacity whose the acore (�C) contains a strictly positive

probability,
(b) acore (�C) = acore (�

�
C),

(c) For any non-negative security X,

C(X) = (L)
Z
Xd�C .

Also, FE�C is the set of attainable claims and acore (�C) is the set Q of
extended risk-neutral probabilities of the underlying market.

This theorem provides a complete characterization of the class of non-additive
probabilities that can be viewed as an ambiguous state price of a frictionless
market of bets. In fact, a capacity � is a risk-neutral capacities of a fric-
tionless market of bets without arbitrage opportunities if, and only if, � is
an a-exact capacity, its acore (�C) contains a strictly positive probability, and
acore (�) = acore (��). By our main Theorem 5 we can interpreted the con-
dition that establishing the equality between the "acores" as a property which
guarantees that every frictionless bets can not be dominated by some security
X.
Next, an example that gives a case of pricing rules of a frictionless incomplete

market with no structure of assets given by f0; 1g-securities.
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Example 13 We consider again the functional as in the Example 7, where for
all security X;

C (X) = max

�
�x1 + �x2 + (1� 2�)x3 : � 2

�
0;
1

2

��
We already proved that C is a pricing rule of a frictionless incomplete market.
Note that for all non empty event E 6= ;,

�C (E) 2
�
1

2
; 1

�
with �C (E) =

1

2
i¤ A 2 ffs1g ; fs2gg ;

which implies that E�C = f;; Sg, hence for any E 6= ;, we have that ��C (A) = 1
and acore (��C) = �. Since �fs1g =2 acore (�C) we obtain that

acore (�C) 6= acore (��C) :

Hence, any underlying market of the pricing rule C is not a market of bets.

4.3 Frictionless Partition Markets

This section studies a special case of market of bets. Given a frictionless in-
complete market of securities whose basic assets are given by the collection
of securities (B�1 ; :::; B

�
n), with respective vector of prices (q1; :::; qn). We say

that such market is a frictionless partition market of securities if fBkgnk=1 is a
partition of the state space S.
Next result characterizes in a interesting way pricing rules for partition mar-

kets:

Theorem 14 Let C : RS ! R be given, then the following assertions are equiv-
alent:
(i) C is a super-replication price of a frictionless partition market of securi-

ties;
(ii) There is a strictly positive probability P and a partition fBjgnj=1 of S

and such that C(X) =
nX
j=1

P (Bj)maxs2Bj
X(s); for all X 2 RS;

(iii) �C is concave, �C = ��C , there is a strictly positive probability P0 2
acore (�C), and C(X) = (C)

Z
Xd�C , for all X 2 RS;

In any case, the set of attainable claims is generated by the P -atoms of the
"Boolean algebra" E�C and the extended set of all risk neutral probabilities is
given by acore (�C).

Theorem 14 states that in any frictionless partition market the price val-
uation is given by a Choquet pricing with respect to a concave risk-neutral
capacity. Also, given a risk-neutral capacity � of a frictionless market of bets,

13



by the last Subsection that characterizes Lehrer pricing rules of frictionless mar-
ket of securities, we have that a bet A� is frictionless if, and only if, there is no
security X � A� such that

(L)
Z
Xd� = � (A) .

The additional condition � = �� characterizing Choquet pricing rules of friction-
less securities markets jointly with our main Theorem 5 give us that a bet A� is
frictionless if, and only if, there is no bet B� such that B � A and � (B) = � (A).
Next, an example that gives a case of pricing rules of a frictionless market

of bets with no partition structure of basic bets.

Example 15 Consider a capacity � over the power algebra generated by the
state space S = fs1; s2; s3; s4g de�ned by17

�1 = �4 = �12 = �34 =
1

2
;

�2 = �3 = �23 = 1� �14 =
1

3
;

�13 = �123 = �234 =
5

6
;

�24 = �124 = �134 = 1:

We note that � is a-exact and acore (�) = acore (��) contains a strictly positive
probability. So, by our Lehrer pricing rule characterization, the price functional

C (X) := min
nX

�i� (Ai) :
X

�iA
�
i = X;�i � 0

o
; for all X � 0,

de�nes a Lehrer pricing rule of a frictionless market of bets. On the other hand,
since ��123 = 1; i:e:; � 6= �� every possible basic structure of bets can not induces
a partition of the state space. For instance, a possible underlying market is given
by the assets (1; 1; 0; 0) ; (0; 1; 1; 0), and S� pricing by the risk-netral capacity �.

One interesting feature of this class of pricing rules is that the set of at-
tainable securities related to the underlying market is that if two securities is
attainable then the minimum between then should be attainable too. In a more
precisely way,

Corollary 16 A pricing rule revealing frictionless securities markets with the
bond C is a Choquet integral if and only if its underlying set of attainable secu-
rities is a Riesz space.

We note that the class of super-replication prices of frictionless that can be
written as a Choquet integral is linked to �nancial markets where derivative
markets (in the sense of Aliprantis, Brown and Werner (2000)) are complete18 .

17For simplicity, we denote for each A � S; � (A) = �i:i2A.
18A ABW-derivative security is any security that has the same payo¤ in states in which the

payo¤s of all basic assets are the same.
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A restatement of the result due to Ross (1976), provided by Aliprantis, Brown
and Werner (2000), says that derivative markets are complete if and only if
the vector space of attainable securities is a Riesz subspace. Hence, by the
previous proposition we have that frictionless Choquet pricing rules describe
the super-replication prices in markets where derivative markets are complete.
For instance, note that in the Example 15 the Arrow security fs2g� is not
replicated and the basic securities fs1; s2g� and fs2; s3g� induces through the
"min" operator the Arrow security paying related to the scenario two. On the
other hand, given a partition fBjgnj=1 of the state space S and a strictly positive
probability P inducing the risk neutral capatity

� (A) =
X

l:Bl\A
P (Bl) :

There is no no-replicated bet A� given through a security induced by the mini-
mum between two bets in this partition market19 .

4.4 Arrow Debreu Ambiguous Valuation

In both results about markets of bets, an integral with respect to a capacity
plays a fundamental role. The capacities characterized in the study of market
of bets captures the whole information in the market and "prices" any security,
in fact, for any security X

C (X) = "Integral" of X w.r.t �C :

Also, for all event A � S, its "price of bet" is given by C (A�) = �C (A), and, by
considering A = fsg, we have computed the vector of Arrow Debreu ambiguous
state prices (�s)s2S de�ned by �s := �C (fsg). Clearly, this information might
not be enough because the subadditivity of �C implies that the knowledge of
each state price �s only gives a upper bound on the prices of bets on events

20 .
Hence, in general, it is important to known the price of every bet, and in fact, the
Lehrer pricing rule for market of bets says, for instance, that for any contingent
claim X � 0;

C (X) = min
nX

�i�C (Ai) :
X

�iA
�
i = X;�i � 0

o
.

Which means that in order to pricing a claim X, it is enough to consider the
unique non additive event price f�C (A)gA�S and �nd the cheapest portfolio of
bets that "replicates" X.
Thus, the notion of non-linear market evaluation extends the usual way of

pricing in complete market setting to incomplete markets of bets without arbi-
trage opportunities by taking the introduced Arrow Debreu ambiguous valuation

19 In fact, as we saw in the Theorem 14, in this class of markets the family of the unambiguous
events (unambiguously priced bets) form a algebra (Riesz linear subspace) of subsets.
20For instance, given the state prices �s and �s� then �ss� � �s + �s� .

15



through an non-additive integral with respect to an ambiguous state price or
risk-neutral capacity �C .
A simple example of pricing rule that captures the previous intuition is given

by the functional

CA(X) =
X
s2E0

X (s)Q (fsg) +Q(Eco)max
s2Ec

o

X(s);

where Q 2 �+. Note that the cost of betting on the event E is given by the
following concave capacity,

�CA (E) =

�
Q(E); E � E0

Q(E \ E0) +Q(Ec0); otherwise.

One possible underlying market of securities revealed by this pricing rule is the
potential incomplete market of Arrow securities and one bond with the assets
1S ;

�
1fskg

�
k=1;:::;K

and corresponding prices 1; (qk)k=1;::;K , where E0 is the set
of all unambiguous states and qk = Q (fskg). Hence, CA can be viewed as an
Arrow ambiguous pricing rule of an incomplete market of Arrow securities.
This results about Choquet pricing shows that even if without transaction

costs, the valuation in incomplete �nancial markets can be achieved through the
notion of Choquet integration. In fact, in a sense, this result comes in contrast
with Bettzüze et. all (2000) that analyzed a general equilibrium model with
transaction costs satisfying mild conditions, and showed that the Choquet non-
linear pricing approach, as proposed by Chateauneuf et. all (1996) for the case
of transactions costs, typically does impose restrictive pricing conditions that
are incompatible with non-linear equilibrium prices. A positive aspect of this
limitation is that Choquet pricing can distinguish special market characteristics
that are beyond the condition of a perfect market. For instance, from our
results we can say that every incomplete market given through a basic structure
of assets with the riskless bond and only Arrow securities can be constructed
by a special case of Choquet pricing. In the case of transaction costs, Choquet
pricing also have special implications, as showed by Castagnoli et all (2004)21 ,
and this topic represents a start point of our goal for future research about
pricing rules for markets with frictions.

21They have shown that Choquet pricing rules can represent strong frictionalities, in the
sense that that the existence of any frictionless tradeable security makes the whole market
frictionless. The weakness of this result in a set-up of two period economy with �nitely many
states is the required existence of a fully revealing security, i.e., a security which all available
information is summarized by its contingent payments.
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5 Appendix

5.1 Part A : Frictionless securities markets and its pricing
rules

Arrow (1953) proposed the approach of contingent markets with the presence of
a complete securities market and used the results from Arrow and Debreu (1954)
as well as McKenzie (1954) for the existence of equilibrium. Magill and Quinzii
(1996) and Magill and Shafer (1991) are basics references for the case of general
equilibrium analysis of incomplete markets, and such works provided a list of
the main contributions in this �eld. In another way, Föllmer and Shied (2004)
provided a treatment of the basics results in frictionless incomplete markets
following the lines of �nance theory.
Next, we describe the case of a securities market without assuming complete-

ness and avoiding the possibility of frictions in any tradeable security. Formally,
a pricing rule C is a no-arbitrage super-replication price of a frictionless incom-
plete market if we have the following conditions:

� There is a �nite number of assets Xj 2 RS , 0 � j � m, with respective
prices qj 2 R, where X0 = S� := (1; :::; 1) is the riskless bond with the
price normalization q0 = 1. We note that there is only possible deviation
from the standard frictionless complete markets set up given by the pos-
sibility of incomplete markets when the set of attainable claims, denoted
by F := span fX0; X1; :::; Xmg ; is a proper subspace of RS .

� This collection of assets and prices characterize a market of securities
denoted by

M = (Xj ; qj ; 0 � j � m) ;
which is supposed to be without arbitrage opportunities, i:e:; for all port-
folio � 2 Rm+1,

mX
j=0

�jXj > 0)
mX
j=0

�jqj > 0,

mX
j=0

�jXj = 0)
mX
j=0

�jqj = 0.

Recall that a �nancial marketM = (Xj ; qj ; 0 � j � m) o¤ers no-arbitrage
opportunity if and only if there is a strictly positive probability22 P0 2 �
such that EP0(Xj) = qj , 0 � j � m. Also, given the �nancial marketM,
we denoted by

QM = fP 2 �+ : EP (Xj) = qj ; 8j 2 f0; :::;mgg;
22Note that P0 strictly positive means that P0 (fsg) > 0 for any s 2 S. The collection of

strictly positive probabilities is denoted by �+. Also, we are denoting EP (X) as the integral
of the random variable X w.r.t. the probability P .
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the set of risk-neutral probabilities (or martingale measures)

� Finally, C is the super-replication price of the frictionless securities market
M, i.e., for all security X 2 RS

C(X) = inf

8<:X
j

�jqj :
X
j

�jXj � X

9=; :
Any Y =

P
j �jXj � X gives a corresponding super-replication strategy

� 2 Rm+1 for the securityX and, in our case, the existence of superhedging
strategies for all security follows from the existence of the riskless bond.

It is worth noticing that for a frictionless securities market M o¤ering no-
arbitrage opportunity, the super-replication prices satis�es23

C (X) = sup
P2QM

EP (X) ; for all X 2 RS :

Hence, by taking the closure of the set of risk neutral probabilities Q := QM,
we have

C (X) = max
P2Q

EP (X) ; for all X 2 RS :

Building on the well-known properties discussed above, a trivial Lemma
about super-replication prices is naturally derived:

Lemma 17 The mapping C : X 2 RS ! C(X) 2 R is the super-replication
price of a frictionless securities market without arbitrage opportunities if, and
only if:
1) There exist X0; X1; :::; Xm 2 RS with X0 = S� and a strictly positive

probability P0 such that: EP0(Xj) = C(Xj) = �C (�Xj), 0 � j � m;
2) Denoting Q := fP 2 � : EP (Xj) = C(Xj); 0 � j � mg, then

C(X) = max
P2Q

EP (X), for all X 2 RS.

So, in this case C is the super-replication price of the marketM = fXj ; qjgmj=0,
where qj := EP0(Xj).

This Lemma 17 summarizes the structure of a frictionless incomplete market
with the bond revealed by a pricing rule C. Point 1) says that each basic security
is free of arbitrage and pricing by C without frictions. Point 2) gives that any
security has its super-replication cost computed through the set of risk neutral
probabilities Q.
23See, for instance, Föllmer and Shied (2004).
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5.2 Part B: Proofs of the results in the main text

Theorem 2:
By a result due to Huber (1981), conditions i), iii), iv) v) is necessary and

su�cient for the existence of a closed and convex set Q of probability measures
such that

C (X) = max
P2Q

EP (X) :

Now if the pricing rule C is strictly positive then C
�
fsig�

�
> 0;8i 2

f1; :::; ng. Hence, for every state si 2 S there is a probability Pi 2 Q such
that EPi

�
fsig�

�
> 0. Since Q is convex we obtain that it is possible to �nd a

strictly positive probability in Q. For the converse, by assumption there is a
strictly positive probability P0 2 K, hence if X > 0

C (X) � EP0 (X) � max
s2S

P0 (fsg)X (s) > 0.

�
Lemma 17:
This lemma is trivial by considering the well know results in �nance theory

as discussed in the main text.�
Lemma 3:
In fact, for the proof we need only sublinearity. First, consider Y 2 FC

and � 2 R+, since C is positively homogeneous we have that C(�Y ) = �C(Y )
and C(� (�Y )) = �C(�Y ), then C (�Y ) + C (��Y ) = 0, i.e., �Y 2 FC . If
� < 0; follows from the de�nition that �Y 2 FC and then (��) (�Y ) 2 FC ,
i.e., �Y 2 FC .
Now, if Y; Z 2 FC , since C is sub-additive

C (Y + Z) � C(Y ) + C(Z); and

C (� (Y + Z)) � C(�Y ) + C(�Z);

hence, adding these two inequalities

0 = C(0) � C (Y + Z) + C (� (Y + Z)) � 0;

i.e., Y + Z 2 FC . �
Lemma 4:
Since for all security X, C (X) = maxP2QEP (X) ; if X is frictionless then

max
P2Q

EP (X) = �max
P2Q

EP (�X)

which is equivalent to

max
P2Q

EP (X) = min
P2Q

EP (X) ;

and since P ! EP (X) is continuous and Q is compact then EP (X) = EQ (X)
for all P;Q 2 Q. For the converse, if X is such that EP (X) = EQ (X) for
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all P;Q 2 Q, and the same is true for �X. Hence, C (X) = EP (X) and
C (�X) = EP (�X) for any P 2 Q; which entails C (X) = �C (�X).

Theorem 5:
We need some auxiliary results.
For a given frictionless securities market we recall the following simple and

important result:

Lemma 18 Consider a market M = fXj ; qj ; 0 � j � mg with no arbitrage
opportunity, a security X 2 F := span fXjg0�j�m if, and only if, EP (X) =
EQ(X) for all P;Q 2 QM = fP 2 �+ : EP (Xj) = qj ; 8j 2 f0; :::;mgg.

Proof of Lemma 1824 :
That X 2 F implies that all risk measures agree is obvious. In order to

prove the reverse implication, assume that X =2 F and P (X) = Q(X) for any
P;Q 2 QM.
First, we note that:

S (X) := inf

8<:
mX
j=0

�jqj :
mX
j=0

�jXj � X

9=; = min

8<:
mX
j=0

�jqj :
mX
j=0

�jXj � X

9=; :
In fact, by the no arbitrage condition there is a strictly positive probability P0
such that such that S(Y ) = EP0(Y ) for any Y 2 F . For any n 2 f1; 2; :::g
consider the attainable claim Y n such that EP0 (Y

n) � S (X)+n�1. Hence, for
any s 2 S

Y n (s) � P0 (fsg)�1
�
S (X) + n�1

�
� (S (X) + 1)max

s2S
P0 (fsg)�1 =: k

therefore Y n � kS� for any n � 1. Clearly,

S (X) = inf fS (Y ) : X � Y � kS�and Y 2 Fg ;

and since fY 2 F : X � Y � kS�g is compact and S is continuous (since it is a
maximum over a set of probabilities then this functional is Lipschitz continuous)
we obtain that the min can be substituted to inf in the de�nition of C.
Hence, given X 2 RSnF there is Y0 2 F such that Y0 > X and S(X) =

EP0 (Y0). So, we have that EP0 (Y0) > EP0 (X). Now, since

S (X) = sup
P2QM

EP (X) ;

and have supposed that EP (X) = EQ(X) for any P;Q 2 QM, it turns out that
EP0 (X) = S (X), hence

C (X) = EP0 (Y0) > EP0 (X) = C (X) ,

24For sake of completeness we give a proof of this result. For the case of a general state space
see, for instance, Föllmer and Shied (2004), chapter 1. We also note that EP (X) = EQ (X)

for all P;Q 2 QM if, and only if, EP (X) = EQ (X) for all P;Q 2 QM.
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a contradiction. �
Given a pricing rule C, its induced set of probabilities that agree about the

expected value of every frictionless securities is given by,

QC := fP 2 � : EP (Y ) = C (Y ) , for any Y 2 FCg .

An useful characterization of pricing rules of a frictionless securities market says

Lemma 19 Let C : RS ! R be given, then (i) is equivalent to (ii):
(i) C is pricing rule of a frictionless securities market;
(ii) C is a strictly positive linear form on FC and

C(X) = max
P2QC

EP (X) .

Theorem 20 Furthermore, under (i) and (ii) FC is the set of attainable claims
and QC is the set of extended risk-neutral probabilities of the underlying market.

Proof of Lemma 19:
(i)) (ii)
By our assumption, there are X0; X1; :::; Xm 2 RS with X0 = S� and a

strictly positive probability P0 on 2Ssuch that EP0(Xj) = C(Xj) = �C (�Xj),
0 � j � m: Moreover, 8X 2 RS

C(X) = max
P2Q

EP (X);

where QM = fP 2 � : EP (Xj) = C(Xj) =: qj ; 0 � j � mg.
Now, note that no-arbitrage principle implies that C is a strictly positive

linear form on F ; actually, by non arbitrage condition, there is a strictly positive
probability P0 such that 8Y 2 F , C (Y ) = EP0 (Y ).
Also, we note that if C : RS ! R is an super-replication price of the market

M = fXj ; qj ; 0 � j � mg

then FC = F . In fact, Since EP (X) = C (X) for any X 2 F and for any P 2 Q
clearly F � FC . Conversely, let X 2 FC , since for any P 2 Q,

EP (X) � C (X) and EP (�X) � C (�X) ;

and
EP (X) + EP (�X) = 0 = C (X) + C (�X) ;

we obtain that EP (X) < C (X) is impossible for any P 2 Q, i.e., for all X 2 FC
the mapping P 7! �X (P ) := EP (X) is constant over Q, and by Lemma 18,
X 2 F . Hence C is a strictly positive linear form on FC .
Since QC is a nonempty, closed and convex set of probabilities, it remains to

show that QC = QM = fP 2 � : EP (Xj) = qj ; 8j 2 f0; :::;mgg. If P 2 QMwe
know that C (Y ) = EP (Y ) for any Y 2 F , since F = FC we obtain that P 2
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QC . Now, P 2 QC says that C (Y ) = EP (Y ) for any Y 2 FC . Again, since
F = FC entails that

FC = span (X0; :::; Xm) ;

in particular, C (Xj) = EP (Xj) for any j 2 f0; 1; :::;mg, i.e., P 2 Q.
(ii)) (i)
Since S� 2 FC , let us consider X0; X1; :::; Xm, with X0 = S�, a basis of the

linear subspace FC . We intend to show that C is a super-replication price for
the family of securities X0; X1; :::; Xm.
By our assumption the restriction C jFC of C on the linear subspace FC of

the Euclidian space RS is a strictly positive linear form, hence it admits a strictly
positive linear extension C jFC on RS (see, for instance, Gale (1960)). Clearly,
it is true that C jFC (S�) = 1, therefore there is a strictly positive probability
P0 on

�
S; 2S

�
such that EP0 (X) = C jFC (X) , for any X 2 RS ; in particular,

EP0 (Xj) = C jFC (Xj) = C (Xj), 0 � j � m. So, the condition 1) of Lemma
17 is satis�ed. Recalling that F = span (X0; :::; Xm), by our construction FC is
the set of attainable claims. The proof of (ii) implies (i) will be completed if
we prove that C satis�es condition 2) of Lemma 17, or equally, that QC = Q,
where Q is the set of risk neutral probabilities. By de�nition,

QC := fP 2 � : EP (Y ) = C (Y ) , for any Y 2 FCg ,

which is nonempty because we saw that there is a strictly positive probability
P0 2 QC .
Since for any j 2 f0; 1; :::;mg the security Xj is frictionless, we obtain

that every probability P 2 QC is a risk-neutral probability for the market
M = fXj ; qj := C (Xj) ; 0 � j � mg25 . It remains to prove that every risk-
neutral probability belongs to QC . In fact, let P 2 Q and Y 2 FC , i.e.,

EP (Xj) = C (Xj) ; 0 � j � m;

and there are �0; �1; :::; �m 2 R such that

Y =
mX
j=0

�jXj .

Since the restriction C jFCof C on the linear subspace FC is a linear mapping,

EP (Y ) = EP

0@ mX
j=0

�jXj

1A =
mX
j=0

�jEP (Xj) =

mX
j=0

�jEP (Xj) =
mX
j=0

�jC (Xj) = C

0@ mX
j=0

�jXj

1A = C (Y ) :

25By the existence of the strictly positive probability P0, the �nancial marketM is a market
of securities with no-arbitrage opportunity.

22



henceforth,
EP (Y ) = C (Y ) ; for any Y 2 FC ,

this entails that P 2 QC , which completes the proof. �
Proof of Theorem 5:
()) We want to show that LC = FC . In fact, we saw in the main text that

for all pricing rule C it is true that FC � LC .
Now, suppose that X 2 LC then by de�nition Y > X ) C (Y ) > C (X).

Since C is a super-replication price of a frictionless market of securities FC = F .
So, by supposing that X =2 FC = F , since

C (X) = min fC (Y ) : Y � X and Y 2 FCg
(X=2FC)
= min fC (Y ) : Y > X and Y 2 FCg ,

there is Z 2 FC such Z > X and C (Z) = C (X), a contradiction.
(() Since C is pricing rule we know that there is a nonempty, closed and

convex set K � � such that for any X 2 RS ,

C (X) = max
P2K

EP (X) .

By Lemma 19 it is enough to show that C is strictly positive and K = QC .
The inclusion K � QC is simple: Consider P 2 K, if P =2 QC then there is

X 2 FC such that EP (X) < C (X) = �C (�X), hence EP (�X) > C (�X) =
maxP2KEP (�X), a contradiction.
So, we need to show that QC � K, or equally that K  QC is impossible.

Assume that there is P1 2 QC such that P1 =2 K. Then through the classical
strict separation theorem (see, for instance, Dunford and Schwartz (1958)) there
is a security X0 such that

EP1 (X0) > max
P2K

EP (X0) = C (X0) .

If we prove that there is Y 2 FC ; Y � X0 such that C (X0) = C (Y ), this
will entail a contradiction, since

EP1 (X0) > C (X0) = C (Y ) = EP1 (Y ) � EP1 (X0) .

So it is enough to show that for any security X, setting

EX :=
�
Y 2 RS : Y � X and C (Y ) = C (X)

	
;

there is Y 2 FC \ EX .
This result is obvious if X 2 FC , so let us assume that X =2 FC . Recall that,

since C is a pricing rule, the multiple probabilities set K contains at least a
strictly positive probability P0.
Let us now prove that EX is bounded from above, otherwise there would exist

a sequence fYkgk�1, Yk 2 EX , 8k � 1 and s0 2 S such that limk Yk (s0) = +1.

23



But

lim
k
C (Yk) � lim

k
EP0 (Yk) = lim

k

X
s2S

P0 (s)Yk (s)

�
X
s 6=s0

P0 (s)X (s) + lim
k
P0 (s0)Yk (s0) =1,

contradicting C (Yk) = C (X), 8k � 1.
Let us now show that EX has a maximal element for the partial preorder

� on RS . Thanks to Zorn´s lemma we just need to prove that every chain
(Y�)�2� in EX has an upper bound. De�ne Y by

Y (s) := sup
�2�

Y� (s) , 8s 2 S;

EX bounded from above implies that Y 2 RS . It remains to check that C (Y ) =
C (X), let " > 0 be given, and let si 2 S, hence there is �i 2 � such that
Y (si) � Y�i (si)+", since (Y�)�2� is a chain there is n � 1 and e� 2 f�1; :::; �ng
such that Ye� � Y � Ye� + ", therefore C �Ye�� � C (Y ) � C

�
Ye�� + ", since

C
�
Ye�� = C (X) it turns out that C (Y ) = C (X). Let now Y0 be a maximal

element of EX , the proof will be completed if we show that Y0 2 FC . From the
hypothesis FC = LC , it is enough to show that Y0 2 LC . Let Y1 be an arbitrary
security such that Y1 > Y0, since Y0 is a maximal element in EX , it comes that
Y1 =2 EX , but Y1 > X, therefore C (Y1) > C (X) = C (Y0), so Y0 2 LC which
completes the proof. �

Theorem 12:
First, we will show a result connecting a pricing rule C to the induced set

of probabilities

Q
�C
=
�
P 2 � : P (A) = �C (A) for all A 2 E�C

	
:

Of course, Q
�C
� Q

C
.

Theorem 21 Let C : RS ! R be given, then (i) is equivalent to (ii):
(i) C is super-replication price of a market of bets;
(ii) There is a strictly positive probability P0 belonging to Q�C

and for any
contingent claim X,

C(X) = max
P2Q�C

EP (X) .

Furthermore, under (i) and (ii) FE�C is the set of attainable claims and Q�C

is the set of risk-neutral probabilities of the underlying market

Proof of Theorem 21:
(i) ) (ii) Our assumption says that there exist B0; B1; :::; Bm 2 2S with

B0 = S and a strictly positive probability P0 on 2S such that P0 (Bj) = C
�
B�j
�
;

for any j 2 f0; 1; :::;mg and 8 X 2 RS ,

C(X) = max
P2Q

EP (X),
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where Q = fP 2 � : P (Bj) = C
�
B�j
�
; 0 � j � mg:

Let us now prove that there is a strictly positive probability P0 belonging
Q

�C
. From Lemma 18 we know that if B� 2 F then P (B) = P0 (B) for any

P 2 Q, hence �C (B) = P0 (B). Also, it is easy to see that Lemma 18 implies
that B 2 E�C if and only if B� 2 F , which turns out that P0 (B) = �C (B),
8B 2 E�C .
Now we need to show that Q = Q�C

. Note that by Lemma 19 and by the
fact that

�
B� : B 2 E�C

	
� FC ; we obtain that Q = Q

C
� Q

�C
. For the other

inclusion, taking P 2 Q
�C
and Bj let us show that P (Bj) = C

�
B�j
�
. Since B�j

is an attainable security (in fact, it is a basic asset) we know that Bj 2 E�C ,
hence P 2 Q�C

so Q�C
� Q.

So Q�C
is actually the set of risk-neutral probabilities of the initial market.

It remains to prove that FE�C = F . In fact, by B 2 E�C , B� 2 F , we obtain
that FE�C = span

�
B� : B 2 E�C

	
= span fB� : B� 2 Fg = F .

(ii)) (i) Since B0 = S�, let us consider the �nite family of all unambiguous
events B0; B1; :::; Bm. By assumption there is a strictly positive probability P0
such that P (Bj) = C

�
B�j
�
; 0 � j � m. The proof will be completed if we

show that Q = Q
�C
and FE�C = F , where Q and F refer to the previous de�ned

market of f0; 1g-securities M = (B�0 ; B
�
1 ; :::; B

�
m; 1; �C (B

�
1) ; :::; �C (B

�
m)). But

this is straightforward by the equality E�C = fB0; B1; :::; Bmg. �
Another important lemma for Theorem 12 is given by

Theorem 22 Let C : RS ! R be given, then (i) is equivalent to (ii):
(i) C is a super-replication price of a frictionless market of bets;
(ii) C satis�es,
(a) acore (�C) contains a strictly positive probability P0,
(b) acore (�C) = acore (�

�
C),

(c) For any contingent claim X,

C(X) = max
P2acore(�C)

EP (X) .

Furthermore, under (i) and (ii) FE�C is the set of attainable claims and
acore (�C) is the set of extended risk-neutral probabilities of the underlying mar-
ket

Proof of Theorem 22:
(i) ) (ii) By our assumption says that C is a super-replication price of a

frictionless securities market of bets
�
B�j
	m
j=0
, for all A � S

�C (A) = C (A
�) = max

P2Q
P (A) ;

hence �C is an anti-exact capacity and the acore (�C) contains at least one
strictly positive probability, namely P0.
Let us now show that

C(X) = max
P2acore(�C)

EP (X) ; 8X 2 RS :
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Note that it is enough to show that Q = acore (�C):
Consider P 2 acore (�C), hence P (Bj) � �C (Bj) ; 0 � j � m. Since B�j

is attainable by assumption, then Bj is an unambiguous event, i.e., �C (Bj) +
�C
�
Bcj
�
= 1. Also, P

�
Bcj
�
� �C

�
Bcj
�
; 0 � j � m and then

P (Bj) + P
�
Bcj
�
= 1 = �C (Bj) + �C

�
Bcj
�
= 1;

allows us to obtain P (Bj) = �C (Bj) ; 0 � j � m, i.e., P 2 Q.
Now, setting P 2 Q and A � S, since our assumption says that

�C (A) = max
P2Q

P (A) ;

clearly P (A) � �C (A), i.e., P 2 acore (�C).
For (b) it is enough to show that acore (��C) � acore (�C), or else from the

previous identity saying Q = acore (�C) it is enough to show that acore (��C) �
Q. So let P 2 acore (��C) and let Bj be a basic bet. By de�nition of ��C , one
has ��C (Bj) = �C (Bj) therefore P (Bj) � ��C (Bj) implies P (Bj) � �C (Bj);
as we notice before Bj 2 E�C , hence ��C (Bj) = �C (Bj) and P

�
Bcj
�
� ��C

�
Bcj
�

implies P
�
Bcj
�
� �C

�
Bcj
�
from P (Bj) + P

�
Bcj
�
= 1 = �C (Bj) + �C

�
Bcj
�
, it

turns out that P (Bj) = �C (Bj).
(ii) ) (i) We need to prove that there exist B0; B1; :::; Bm 2 2S with

B0 = S and a strictly positive probability P0 on 2S such that P0 (Bj) = C
�
B�j
�
;

for any j 2 f0; 1; :::;mg and 8 X 2 RS ,

C(X) = max
P2Q

EP (X),

where Q = fP 2 � : P (Bj) = C
�
B�j
�
; 0 � j � mg:

Note that C is well de�ned since acore (�C) 6= ; (by assumption (a)) and
compact, moreover for any A � S

�C (A) = C (A
�) = max

P2acore(�C)
P (A) .

Clearly B0 := S 2 E�C , and E�C is formed with a �nite number of events
B0; B1; :::; Bm. Note that for any B 2 E�C and for any P 2 acore (�C) it is
true that P (B) = �C (B): actually P 2 acore (C) implies that P (B) � �C (B),
P (Bc) � �C (Bc) and P (B)+P (Bc) = 1 = �C (Bj)+�C

�
Bcj
�
, gives the desired

equality (note that its implies that Q � acore (�C)). Since, by hypothesis there
is a strictly positive probability P0 2 acore (�C), it turns out that the �rst
requirement is satis�ed. So the formula

C(X) = max
P2Q

EP (X),

holds for any X 2 RS if and only if Q = acore (�C). Just above we proved
that Q � acore (�C). By our assumption (b) we only have to show that Q �
acore (��C). Let P 2 Q and A � S, from the de�nition of ��C we have that there
is B 2 E�C such that A � B and ��C (A) = �C (B), hence

P (A) � P (B) = C (B) = ��C (A) ;
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i.e., P 2 acore (��C).
Furthermore, under (i) and (ii) acore (�C) is the set of extended risk-neutral

probabilities and by Theorem 21 FE�C is the set of attainable claims. �
Proof of Theorem 12:
It follows from the previous Lemma 22 because any pricing rule is supposed

to be constant additive, and in this case by Proposition 2 in Lehrer (2009), given
a contingent claim X 2 RS+ it follows that

(L)
Z
Xd�C = max

P2acore(�C)
EP (X) = C (X) .

�

Theorem 14:
This theorem needs some previous results. We will see that the possibility

of pricing rules of frictionless securities markets given by a Choquet integral is
related to some strong condition on the set of attainable securities. For that we
present the next well known de�nition,

De�nition 23 A Riesz subspace of RS is a linear subspace F of RS such that
X;Y 2 F implies that X _ Y 2 F and X ^ Y 2 F .

Lemma 24 If a pricing rule of a frictionless securities market C is a Choquet
integral then the induced capacity �C is concave and the subspace F of attainable
securities is a Riesz-space.

Proof of Lemma 24:
First, we note that from Proposition 3 given by Schmeidler (1986) we have

that if C is a subadditive Choquet integral with respect to the capacity �C then
�C is a concave capacity.
Let us now prove that F is a Riesz space:
Let X;Y 2 F , then by Lemma 18 we have that for any P 2 Q, EP (X) +

EP (Y ) = C(X) + C (Y ). Since C is a Choquet Integral with respect to a
concave capacity, it turns out that26

C (X) + C (Y ) � C (X _ Y ) + C (X ^ Y ) .

Therefore, using the previous equality

EP (X _ Y ) + EP (X ^ Y ) = EP (X) + EP (Y ) � C (X _ Y ) + C (X ^ Y ) :

But EP (X _ Y ) � C (X _ Y ) and EP (X ^ Y ) � C (X ^ Y ) for any P 2 Q.
Hence, EP (X _ Y ) = C (X _ Y ) and EP (X ^ Y ) = C (X ^ Y ) for any P 2 Q
which implies by Lemma 18 that X _ Y and X ^ Y belongs to F . �
Another important lemma is,

26See, for instance, Huber (1981) pages 260 and 261.
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Lemma 25 27Let F be a Riesz subspace of Rn containing the unit vector 1Rn =
(1; :::; 1) 2 Rn then F is a "partition" linear subspace of Rn, i.e., up to a per-
mutation:

x 2 F i¤ x = (x1; :::x1; :::; xj ; :::; xj ; :::; xm; ::::; xm) .

Proof: The proof is by induction on the cardinality #S of S � 1. Clearly
the result is true if #S = 1, now assume that the result is true for #S = k and
let us show that it remains true for #S = k + 1.
So let F be a subspace of Rk+1 containing 1Rk+1 , and let G be de�ned by28 :

G :=
�
y = (x1; :::; xk) 2 Rk : 9xk+1 s.t. (y; xk+1) 2 F

	
.

It is straightforward to check that G is a Riesz-subspace of Rk containing 1Rk ,
therefore by the induction hypothesis and up to a permutation y 2 G is equiv-
alent to y = (x1; :::; x1; :::xj ; :::; xj ; :::; xm; :::; xm) where xj 2 R, 1 � j � m.
Clearly, if x 2 F then x 2 eG� eH the direct sum of the linear subspaces of Rk+1
given by

eG =
�
(y; 0) 2 Rk+1 : y 2 G

	
eH =

�
(0; :::; 0; xk+1) 2 Rk+1 : xk+1 2 R

	
:

Therefore, dimF � dim eG � eH = m + 1. It is also immediate to see that
dimF � m: in fact, y 2 G is equivalent to

y =
mX
j=1

xjV
�
j ;

where each V �j 2 Rk, i:e:, Vj � f1; :::; kg, and fV �1 ; :::; V �mg is a basis of G.
Let zj 2 R be such that

�
V �j ; zj

�
2 F , 1 � j � m; it is immediate to see that

ffV �1 g ; :::; fV �mgg linearly independent in G implies ffV �1 ; z1g ; :::; fV �m; zmgg lin-
early independent in F , hence dimF � m.
Two cases have to be examined:
1) dimF = m + 1: Clearly since F � eG � eH, this implies that F = eG � eH

and F is a "partition" space.
2) dimF = m: In such a case since

�
W �
j :=

�
V �j ; zj

	
; 1 � j � m

	
is linearly

independent in F ,
�
W �
j :; 1 � j � m

	
is a basis of F . Hence, we obtain that

x 2 F if and only if there are xj , 1 � j � m such that x =
mX
j=1

xjW
�
j , in

27For sake of completeness we give a direct proof of this result, which in fact has been
obtained independently by Polyrakis (1996, 1999).
28For y = (x1; :::; xk) 2 Rk and xk+1 2 R we use the following notation:

(y; xk+1) := (x1; :::; xk; xk+1) 2 Rk+1:
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particular,

xk+1 =
mX
j=1

xjzj ; (�) :

So, it remains to show that there is j0 2 f1; :::;mg such that for any x 2 F it is

possible to write x =
mX
j=1

xjV
�
j + xj0 . Note that is enough to show that all the

zj�s are equal to zero except zj0 = 1. Since 1Rk+1 2 F by the above property

(�), we obtain that
mX
j=1

zj = 1.

Now take j 6= i; j; i 2 f1; :::;mg. Since F is a Riesz space, W �
j ;W

�
i 2 F

implies thatW �
j ^W �

i 2 F , butW �
j ^W �

i =
�
(Vj \ Vi)� ; zj ^ zi

�
and Vj\Vi = ;,

hence by property (�) we obtain that 0 =
mX
j=1

xjzj = zj ^ zi, therefore zj � 0.

On the other hand, the Riesz space structure implies also thatW �
j _W �

i 2 F , but
W �
j _W �

i = (1Rk+1 ; zj _ zi), hence by property (�) we obtain that zj_zi = zj+zi.
Summing up, we have

mX
j=1

zj = 1, therefore for any j 6= i; j; i 2 f1; :::;mg :

zj ^ zi = 0 and zj _ zi = zj + zi;

this implies that there is a unique j0 2 f1; :::;mg such that zj0 = 1 and for any
j 2 f1; :::;mg n fj0g it is true that j = 0, the desired result. �
Theorem 14 is a special case of the more general and technical Lemma below

Theorem 26 Let C : RS ! R be given, then the following assertions are equiv-
alent:
(i) C is an pricing rule of a frictionless securities markets which is a Choquet

integral;
(ii) C is a pricing rule of a frictionless partition market;
(iii) There is a strictly positive probability P0 and a partition B1; :::; Bj ; :::; Bm

of S such that 8X 2 RS

C(X) =
mX
j=1

P (Bj)max
s2Bj

X(s);

(iv) �C is concave, �C = �
�
C , there is at least a strictly positive probability

P0 2 acore (�C), and 8 X 2 RS

C(X) = max
P2acore(�C)

EP (X),

(v) C satis�es,
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(a) E�C is an algebra29 ,
(b) There is a strictly positive probability P0 belonging to Q�C

,
(c) For any contingent claim X,

C(X) = max
P2Q�C

EP (X) .

In any case, the set of attainable claims is generated by the P0-atoms30 of
the Boolean algebra E�C and the set of all risk neutral probabilities is given by
acore (�C).

(i)) (ii) By Lemma 24 we know that the set of attainable securities F is a
Riesz subspace of RS containing the riskless bond S�. Therefore, by Lemma 25
we obtain that F is a "partition" linear subspace of RS , hence C is the super-
replication price of a "partition" market of f0; 1g-securities without arbitrage
opportunities.
(ii) ) (iii) By assumption we have a partition fB1; :::; Bmg of the state

space S and a strictly positive probability P0 such that P0 (Bj) = C
�
B�j
�
for

any j 2 f1; :::;mg. Recall that,

Q = fP 2 � : P (Bj) = P0 (Bj) ; 1 � j � mg

and
C (X) = max

P2Q
EP (X) ;

hence since EP (X) =
mX
j=1

X
s2Bj

P (fsg)X (s). Now, denote by Q the risk neutral

probability such that for any j 2 f1; :::;mg,

Q (Bj) = Q (fbs 2 Bj : X (bs) = maxX (Bj)g) :
Hence,

C (X) = max
P2Q

8<:
mX
j=1

X
s2Bj

P (fsg)X (s)

9=; =

=
mX
j=1

max
P2Q

8<:X
s2Bj

P (fsg)X (s)

9=; =
mX
j=1

Q (Bj)maxX (Bj) .

Which allows us to write,

C (X) =
mX
j=1

P0 (Bj)max
s2Bj

X (s) .

29A family E of subsets of S is called an algebra if E contains S, it is closed for (�nite)
intersection and complement.
30Let E a Boolean algebra of subsets of S and P a probability measure over E, we say that

an event E 2 E is a P -atom if P (E) > 0 and for any F 2 E such that F � E, P (F ) = P (E)
or P (F ) = 0. If P is strictly positive on the �nite Boolean algebra E , E is a P -atom i¤
P (E) > 0 and if F � E and F 6= ; then F =2 E .
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(iii)) (i) By our assumption we have that there is a strictly positive prob-
ability P0 and a partition B1; :::; Bj ; :::; Bm of S and such that 8X 2 RS

C(X) =
mX
j=1

P (Bj)max
s2Bj

X(s):

Hence,
�C (A) =

X
k2fj:Bj\A 6=;g

P0 (Bj) ;

and it is well know that

C (X) =

Z
Xd�C ;

which completes this part of the proof.
Note that we proved that (i), (ii), (iii).
(ii) ) (iv) From Theorem 25, it remains to prove that C is concave and

that �C = �
�
C . Take A � S, since (ii), (iii) , it comes from (iii) that

�C (A) =
X

k2fj:Bj\A 6=;g

P0 (Bj) ;

since P0 (Bj) > 0 and
X

P0 (Bj) = 1, as it is well-known �C is a plausibility
function (i.e., the dual of a belief function), hence �C is concave.
It remains to show that ��C � �C . From Nehring (1999), we know that �C is

concave, which implies that E�C is a Boolean algebra; let us show that it entails
that ��C is concave: Let A1; A2 be subsets of S, by de�nition of �

�
C there exist

B1 � A1 and B2 � A2, Bi 2 E�C such that ��C (Ai) = �C (Bi), i = 1; 2. Hence,
��C (A1) + �

�
C (A2) = �C (B1) + �C (B2) � �C (B1 [B2) + �C (B1 \B2). Since

B1[B2; B1\B2 2 E�C , B1[B2 � A1[A2 and B1\B2 � A1\A2, it turns out
that ��C (A1)+�

�
C (A2) � ��C (A1 [A2)+��C (A1 \A2). Let A � S, ��C concave

implies that there is a probability P 2 acore (��C), but Theorem ?? guarantees
that acore (�C) = acore (�

�
C) hence P 2 acore (�C), therefore:

��C (A) = P (A) � �C (A) ,

which completes this part of the proof.
(iv)) (v) Note that (a) comes from �C concave and the previously quoted

result of Nehring (1999):
(v)) (ii) By hypothesis, there is a strictly positive probability P0 2 Q�C

and
E�C is a Boolean algebra. Let fB1; :::; Bmg be the collection of P0-atoms of
the Boolean algebra E�C , hence fB1; :::; Bmg is a partition of S. Of course,
P0 (Bj) = C

�
B�j
�
; for any j 2 f1; :::;mg andQ � Q�C

. ForQ � Q�C
, note that

if P 2 � is such that P (Bj) = �C (Bj) for any j 2 f1; :::;mg then if B 2 E�C
and B =2 fB1; :::; Bmg hence there is � � f1; :::;m g such that B = [j2�Bj ,
therefore P (B) =

X
j2�

P (Bj) =
X
j2�

�C (Bj) = �C ([j2�Bj) = �C (B). Hence,

C is a pricing rule of a "partition market". �
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