THE ENTROPY CONJECTURE FOR
DIFFEOMORPHISMS AWAY FROM TANGENCIES

GANG LIAO!, MARCELO VIANAZ2 JIAGANG YANGS3

ABSTRACT. We prove that every C! diffeomorphism away from homoclinic
tangencies is entropy expansive, with locally uniform expansivity constant.
Consequently, such diffeomorphisms satisfy Shub’s entropy conjecture: the
entropy is bounded from below by the spectral radius in homology. More-
over, they admit principal symbolic extensions, and the topological entropy
and metrical entropy vary continuously with the map. In contrast, generic dif-
feomorphisms with persistent tangencies are not entropy expansive and have
no symbolic extensions.

1. INTRODUCTION

In this paper we prove that the dynamics of any diffeomorphism away from
homoclinic tangencies admits a very precise description at the topological level.
Let us begin by introducing the set-up of our results.

For each r > 1, let Diff"(M) denote the space of C” diffeomorphisms on some
compact Riemannian manifold M, endowed with the C" topology. A periodic
point p of f € Diff" (M) is hyperbolic if the derivative Df"(p), k = per(p) has no
eigenvalues with norm 1. Then there exist C” curves W?*(p) and W*(q) - the stable
and unstable manifolds of p - that intersect transversely at p and satisfy

f™(q) = pforall g e W) and [f7""(q) — p for all g € W"(p).

A point ¢ € W#(p) N W*(p) distinct from p is a homoclinic point associated to p.
The homoclinic point ¢ is transverse if

T,M = T,W*“(p) + T,W?*(p).

We say that f has a homoclinic tangency if there exists a non-transverse homoclinic
point associated to some hyperbolic periodic point. The set of C" diffeomorphisms
that have some homoclinic tangency will be denoted HT".

For notational simplicity, we also write Diff(M) = Diff'(M) and HT = HT'.
Our main results, that we are going to state in a while, hold for diffeomorphisms
in Diff (M) \ HT, that we call diffeomorphisms away from tangencies.
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1.1. Entropy conjecture. Let m = dim M and f. : Hp(M,R) — Hp(M,R),
0 < k < m be the action induced by f on the real homology groups of M. Let

sp(fs) = omax sp(fek)s

where sp(fs ) denotes the spectral radius of f. . Shub [32] has conjectured (see
also Shub, Sullivan [33]) that the logarithm of sp(f.) is a lower bound for the
topological entropy of f:

(1) logsp(f«) < h(f) for every f € Diff(M).

We prove that the conjecture does hold for diffeomorphisms away from tangencies:
Theorem A. The entropy conjecture (1) holds for every f € Diff(M) \ HT.

This is the best result to date on the entropy conjecture in finite differentiability.
We will also comment on the behavior of diffeomorphisms with tangencies. Before
getting to that, let us briefly recall the history of this problem.

The entropy conjecture is known to hold for an open and dense subset of the
space Homeo(M) of homeomorphisms, when dim M # 4. In fact, by Palis, Pugh,
Shub, Sullivan [27], the conjecture always holds for an open and dense subset of
any stable connected component of Homeo(M). When the dimension is different
from 4 all connected components are stable, by Kirby, Siebenmann [17], and that
is how one gets the previous statement.

Manning [19] proved that the weaker inequality logsp(f.1) < h(f) always holds
for homeomorphisms in any dimension. Using Poincaré duality, one deduces the
full statement of the entropy conjecture for homeomorphisms on manifolds with
dim M < 3. The conjecture is also known to hold for homeomorphisms on any
infra-nilmanifold, by Marzantowicz, Misiurewicz, Przytycki [22, 20].

Weaker versions of the conjecture, where one replaces the spectral radius of f, by
other topological invariants, have been proved in great generality. Bowen [4] showed
that logy, < h(f) for every homeomorphism, where 7 is the growth rate of the fun-
damental group. This is a strengthening of Manning’s result mentioned previously.
Ivanov [15] proved that the asymptotic Nielsen number is also a lower bound for
the topological entropy, for every homeomorphism. Moreover, Misiurewicz, Przy-
tycki [23] showed that the topological entropy of every homeomorphism is bounded
from below by the logarithm of the degree. For local diffeomorphisms a proof can
be given using the Perron-Frobenius operator (see Oliveira, Viana [25]).

On the other hand, Shub [32] exhibited a Lipschitz (piecewise affine) counterex-
ample to the entropy conjecture: while the spectral radius is strictly positive, the
topological entropy vanishes. Thus, some smoothness is necessary for a general
(not just generic) statement. A major progress was the proof, by Yomdin [38], that
the entropy conjecture is true for every C'*° diffeomorphism. The main ingredient
is a relation between topological entropy h(f) and the growth rate v(f) of volume
under iteration by a diffeomorphism. For C*° diffeomorphisms the two numbers
actually coincide (that is false in finite differentiability). The entropy conjecture is
a consequence, because logsp(f.) < v(f) for any C! diffeomorphism f.

The entropy conjecture has also been established for certain classes of systems
with hyperbolicity properties: Anosov diffeomorphisms and, more generally, Axiom
A diffeomorphisms with no cycles (Shub, Williams [34], Ruelle, Sullivan [30]), and
partially hyperbolic systems with one-dimensional center bundle (Saghin, Xia [31]).
All of these systems are away from tangencies, of course.
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1.2. Entropy expansiveness and continuity of entropy. Theorem A will be
deduced from the following result:

Theorem B. Every diffeomorphism f € Diff(M) \ HT is entropy expansive.

Remark 1.1. In contrast, there is a residual subset R of Diff(M) such that any
f € RNHT is not entropy expansive. This is related to results of Downarwicz,
Newhouse [12]. A proof will appear in Section 3.3.

The notion of entropy expansiveness will be recalled in Section 2. It was first
introduced by Bowen [2], who observed that for entropy expansive maps the metric
entropy function (defined in the space of invariant probabilities)

u— hu(f)

is upper semi-continuous. In particular, for such maps there always exists some
measure of maximum entropy. In view of these observations, Theorem B has the
following direct consequence:

Corollary C. For any f € Diff(M)\ HT the entropy function u — h,(f) is upper
semi-continuous and, thus, there is some invariant probability pn with h,,(f) = h(f).

The first examples of C" diffeomorphisms without measures of maximum en-
tropy were given by Misiurewicz [21], for each 1 < r < co. He also introduced a
weaker condition, called asymptotic entropy expansiveness, that suffices for upper
semi-continuity of the metric entropy function. In addition, Misiurewicz [21] gave
examples of C" diffeomorphisms, 1 < r < oo where the topological entropy function

fr=h(f).

fails to be upper semi-continuous. For C*° diffeomorphisms, Newhouse [24] proved
that the metric entropy function is always upper semi-continuous, and Yomdin [38]
proved upper semi-continuity of the topological entropy function. Newhouse’s result
has been improved by Buzzi [8], who showed that every C*° diffeomorphism is
asymptotically entropy expansive. Yomdin’s semi-continuity result also extends to
every C! diffeomorphism away from tangencies:

Theorem D. The topological entropy is upper semi-continuous on Diff (M) \ HT.

Closing this section, let us observe that the metric entropy function is usually
not lower semi-continuous. Indeed, by the ergodic closing lemma of Mané [18],
there is a residual subset R; of Diff (M) such that for every f € Ry every ergodic
invariant measure is approximated by invariant measures supported on periodic
orbits. Thus, for every f € Rq, either h(f) = 0 or the metric entropy function fails
to be lower semi-continuous. For maps on compact surfaces without boundary,
it follows from Katok [16] that the topological entropy function is lower semi-
continuous on Diff" (M), for all » > 1. By Gromov [13], this does not extend
to surfaces with boundary.

1.3. Symbolic extensions. A symbolic extension of a map f : M — M is a
subshift ¢ : Y — Y over a finite alphabet, together with a continuous surjective
map 7 : Y — M such that for = moo. Markov partitions for uniformly hyperbolic
systems (Bowen [3]) are the classical prototype. In general, a symbolic extension
may carry a lot more dynamics than the original map f. We call a symbolic

extension principal if it is minimal in this regard: h,(f) = h7,, (1), where A7, (1)
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is the supremum of the entropy h, (o) of the shift o over all invariant probabilities
v such that m,v = pu.

Corollary E. Any f € Diff(M) \ HT admits a principal symbolic extension.

This follows directly from Theorem B together with the observation by Boyle,
Fiebig, Fiebig [6] that every asymptotically entropy expansive diffeomorphism ad-
mits a principal symbolic extension.

Let us also point out that Diaz, Fisher, Pacifico, Vieitez [11, 26] have, recently,
constructed principal symbolic extensions for partially hyperbolic diffeomorphism
admitting an invariant splitting into one dimensional subbundles. Indeed, they
prove that such maps are entropy expansive. This is in contrast with previous work
of Downarwicz, Newhouse [12], based on the theory developed by Boyle, Downar-
wicz [5], where it is shown that nonexistence of symbolic extensions is typical on the
closure of the set of area preserving diffeomorphisms with homoclinic tangencies.
Also very recently, Catalan, Tahzibi [9] proved non-existence of symbolic extensions
for generic symplectic diffeomorphisms outside the Anosov domain. In this setting,
they also find lower bounds for the topological entropy in terms of the eigenvalues
at periodic points.

2. ENTROPY THEORY

Here we recall some basic facts about entropy. See Bowen [2] and Walters [35]
for more information. Moreover, we propose an alternative definition of entropy
expansiveness, in terms of invariant measures (almost entropy expansiveness), that
will be useful in the sequel.

2.1. Definitions and statements. Throughout, f : M — M is a continuous map
on a compact metric space M. Let K be a subset of M. For each € > 0 and n > 1,
we consider the following objects. The dynamical ball of radius € > 0 and length n
around x € M is the set

By(w,e) ={y € M :d(f’(x), f(y)) < ¢ for every 0 < j < n}.

A set E C M is (n,e)-spanning for K if for any x € K there is y € E such that
d(fiz, fiy) < e for all 0 < i < n. In other words, the dynamical balls B, (y,¢),
y € E cover K. Let r,(K,¢) denote the smallest cardinality of any (n,¢)-spanning
set, and
r(K,e) = limsup 1 logr, (K, €).
n—+oo T

A set F C K is (n,e)-separated if for any distinct points 2 and y in F there is
0 < i < n such that d(fiz, f'y) > e. That is, no element of F belongs to the
dynamical ball B,,(y,e) of another. Let s, (K, ¢) denote the largest cardinality of
any (n,e)-separated set, and

1
s(K,e) = liszrup - log s, (K, €).

The topological entropy of f on K is defined by
h(f, K) = lim s(K,e) = lim (K, ¢).
e—0 e—0
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The topological entropy of f is defined by h(f) = h(f, M). Given any finite open
cover B of M, let

N D R
(2) h(f,8) = lim —log|f"| = inf —log|B"],

where " = {AqgN f~1A; ﬂ---ﬂf‘"‘*‘lAn,l) cA; €fBfor0<i<mn—1}and |B"]is
the smallest cardinality of a subcover of 8™. The topological entropy h(f) coincides
with the supremum of h(f,3) over all finite open covers.

Remark 2.1. If diam(f5) < € then r,(M,¢) < s,(M,e) < |8"| for every n. Hence,
r(M,e) < s(M,e) < h(f,5).

Lemma 2.2 (Bowen [2]). Let 0 =ty <t1 < -+ <t,_1 <tr =mn and, for0 <i<r,
let E; be a (t;11 — ti,€)-spanning set for f'i(F). Then

Tn(Fv 26) < H #(EZ)
0<i<r

Now let u be an f-invariant probability measure and & = {Ay,--- , A} be a
finite partition of M into measurable sets. The entropy of & with respect to p is

k
H(f, €)= =) u(A:)log j(A;).
i=1
The entropy of f with respect to € and p is given by

. 1 n
hli(fv 5) = nErJIrloo E IOgH#(fv g )
Finally, the entropy of f with respect to p is given by
hu(f) = Slglp h,u(f7 f)a

where £ ranges over all finite measurable partitions of M.
For each x € M and € > 0, let Boo(x,¢) = {y : d(f™(z), f"(y)) < € for n > 0}.
The map f is entropy expansive if there exists € > 0 such that

sup h(f, Boo(,€)) = 0.
xeM

Then we say that f is e-entropy expansive. When f is a homeomorphism, one
may replace Bo(7,¢) by B (z,¢) = {y : d(f"(z), f*(y)) < ¢ for n € Z}: indeed,
Bowen [2, Corollary 2.3] gives that sup, h(f, Boo(z,¢)) = sup, h(f, B (z,¢)) for
every € > 0.

Lemma 2.3. Let W C Homeo(M) and € > 0 be such that every f € W is e-entropy
expansive. Then the topological entropy f — h(f) is upper semi-continuous on W.

Proof. Bowen [2, Theorem 2.4] asserts that h(f) = r(M,e) if f is e-entropy expan-
sive. Then, by Remark 2.1, we have h(f) = h(f,3) for every f € W and every
open covering 3 of M with diam 8 < €. Let (3 be fixed. It is easy to see from the
definition (2) that the map f +— h(f, ) is upper semi-continuous (because it is an
infimum of upper semi-continuous functions). This gives the claim. (I

Let f be a homeomorphism and i be any f-invariant probability measure. Given
e > 0, we say that f is (u,e)-entropy expansive if

(3) h(f, BL(x,€)) =0 for p-almost every z € M.
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We say that f is e-almost entropy expansive if it is (u, £)-entropy expansive for any
invariant probability measure p. It is clear that e-entropy expansiveness implies
e-almost entropy expansiveness. The converse is important for our purposes:

Proposition 2.4. If f is e-almost entropy expansive then f is e-entropy erpansive.

This follows from a stronger result, Proposition 2.5, that we present in the next
section. The notion of almost entropy expansiveness extends to non-invertible maps,
with Buo(z,¢) instead of BE (x,¢) in the definition (3). Proposition 2.5 remains
true, with the same change in the hypothesis, and so Proposition 2.4 also extends
to the non-invertible case.

2.2. Entropy expansiveness from almost entropy expansiveness. Let f be a
homeomorphism. We denote B (z,¢) = {z € M : d(f7(z), f(2)) < § for |j| < n},
for each x € M and ¢ > 0. Proposition 2.4 is the particular case a = 0 of

Proposition 2.5. Given a > 0, if h(f, BL(x,¢)) < a for p-almost every x € M
and every f-invariant probability p, then h(f, Bo(z,€)) < a for every x € M.

Proof. Suppose that h(f, Boo(20,€)) > a for some xzo € M. Fix constants a; and
ay such that h(f, Boo(20,€)) > a1 > ag > a. Then, there exists § > 0, arbitrarily
small, and a subsequence (m;); — oo such that

4) T'm; (Boo (%0, €),0) > ™™ for every i.

Write i, = (1/m;) Z;rzo_l 0 (z0)- By compactness, (tm,); may be taken to con-
verge, in the weak™ topology, to some invariant measure p. For each n > 1, denote

T, ={z €M :r,(B(zx,¢),5/4) < e™™ for any m > n}.

These sets form an increasing sequence and, as long as § is sufficiently small, the
hypothesis implies that U,,I';, has full g-measure. So, we may choose an increasing
sequence of compact sets A, C I',, such that pu(U,A,) = 1. For each n > 1 and
y € A, let E,(y) be an (n,d/4)-spanning set for BE (y,e) with #E,(y) < e®2".

Then
Un(y) = U Bn(zv 5/2)
z€En(y)

is a neighborhood of the compact set BZ (y,¢). So, we may choose N = N,,(y) and
an open neighborhood V,,(y) of y € A,, such that B]j\[,(u,s) C Up(y) for every u €
V..(y). Choose y1,...,ys € A, such that the V,,(y;), ¢ = 1,..., s cover the compact
set Ap. Then let W, = U<, Va(y:) and L(n) = max{n, Np(y1), .., Nun(ys)}-
The fact that W,, is an open neighborhood of A,, ensures that

(5) Zlinolo ton; (W) = p(Wy) > pu(Ay).
Consider the sequence of integers 0 =ty < t; < -+ < t, = m; defined as follows.

Let j > 0 and suppose that to,--- ,t; have been defined. Then, take

PR 7 if fli(z) € Wy, and L(n) < t; < m; — L(n)

LT U tj+ 1 otherwise.
Write {tg, 1, ,t.} as a disjoint union A U B, where t; € A if f'i(z¢) € W,, and
L(n) < t; <m; — L(n) and t; € B otherwise. For t; € A, choose s; € {1,...,s}
such that f% (z9) € V;,(ys,). Then

JY (B, (20,)) € Bt (1 (20).) € Un ()



ENTROPY CONJECTURE AWAY FROM TANGENCIES 7

and so f% (B, (o,€)) is (n,0/2)-spanned by E(y,,). Fix any §/2-dense subset E,
of the ambient space M. Then f'% (B, (zo,€)) is (1,6/2)-spanned by E, for any
t; € B. So, Lemma 2.2 applies to give

T, (Bm, (20,€),6) < H HE(y,,) - (E)#E < corm#A L #E
t]‘GA

where k = #F,. The definitions also imply that n#A < m,; and
#B < #{0 < j <my: f(w0) € Wi} +2L(n) = (1 — ptm, (Wa))m; + 2L(n).
Replacing in the previous inequality, we find that

Ty (B, (0, €),0) < e®2™i . gL =pm; (Wa))mit2L(n)

2L
= exp (mi (ag + (1 = pon,(Wy)) log k + # log m))
Fix n large enough so that 1 — u(A,) < (a1 — a2)/(2log k). Then, using (5), take
m; to be large enough so that 1 — uy,, (W,,) and 2L(n)/m, are both smaller than

(a1 —az)/(2log k). Then the previous inequality yields
quy (Boo(x07 8)7 6) S Tmi (Brm (Io, 5)7 5) < ealmia

contradicting (4). This contradiction completes the proof of the proposition. O

3. ALMOST ENTROPY EXPANSIVENESS

Here we prove that every diffeomorphism away from tangencies is robustly almost
entropy expansive:

Theorem 3.1. Every diffeomorphism away from tangencies admits a C* neigh-
borhood U and some constant € > 0 such that h(g, BE (z,€)) = 0 for every g € U,
every g-invariant probability p, and p-almost every x € M.

In view of Proposition 2.4, this implies that every such diffeomorphism is robustly
entropy expansive, with locally uniform expansiveness constant:

Corollary 3.2. Every diffeomorphism away from tangencies admits a C' neigh-
borhood U and some constant € > 0 such that every g € U is e-entropy expansive.

3.1. Preparatory remarks. Let A C M be a compact set invariant under f. Let
TAM = E'@---@® EF be a splitting of the tangent bundle over A into D f-invariant
subbundles (some of the E/ may reduce to {0}). Given an integer L > 1, the
splitting is called L-dominated if for every ¢ < j, every x € A, and every pair of
non-zero vectors u € E! and v € EJ, one has

IDfE@Il _ 1]IDfE )]
[l 2l

In the sequel we focus on the case of dominated splittings TAM = E' @ E? &
E? into three subbundles. Write EY = E' @ E’ for i # j. Given a foliation
F and a point y in the domain, we denote by F(y) the leaf through y and by
F(y, p) the neighborhood of radius p > 0 around y inside the leaf. Following Burns,
Wilkinson [7] we avoid assuming dynamical coherence by using locally invariant
(“fake”) foliations, a construction that goes back to Hirsch, Pugh, Shub [14]. For
any L-dominated splitting over any invariant set of a diffeomorphism in some small
neighborhood of f, the angles between the invariant subbundles are bounded from
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zero by a constant that depends only on L. This simple observation allows us to
get the Hirsch, Pugh, Shub statement in a somewhat more global form:

Lemma 3.3. For any f € Diff(M), L > 1, and ¢ > 0 there is a C' neighborhood
Uy of f and real numbers p > rq > 0 with the following properties. For any g € Uy
let Ay be a g-invariant compact set such that the tangent space over A, admits an
L-dominated splitting Ta, M = E; @ E; @ Eg. Then, the neighborhood B(x,p) of
every x € Ay admits foliations fglw, ]-'QQ,W fg,x, .7-";721., .7-"3731. such that for every
y € B(z,79) and * € {1,2,3,12,23}:

(1) the leaf F; . (y) is C' and T, (F; ,(y)) lies in a cone of width ¢ about E};
(2) 9(F;2(y,m0)) C Fyo(g(y)) and g~ (Fy . (y,m0)) C Fyulg™ (v));

(3) F, . and F; , subfoliate F,2 and F7, and F3 . subfoliate F;3,.

For simplicity, let us drop the reference to g in the notations for the invariant
subbundles and foliations. Lemma 3.3 allows us to define product structures on the
r-neighborhood of every point = € Ay, as follows. For y, z € B(z, p), write

o [y,z]12 = aif 2 € F}%(y) and F1(y) intersects F2(z) at a € B(z, p);

e [y,z]123 = a if F12(y) intersects F3(z) at a € B(z, p).
Analogously, one defines [y, z]2,3 and [y, z]1,23. By transversality (Lemma 3.3(1)),
in each case the intersection point a is unique when it exists. Moreover, one can
find 71 € (0,r¢], independent of g, Ay, and z, such that [y, z], is well defined
whenever y and z belong to B(x,r1). Moreover, for any y € B(x,r1) there are
points y. € F(x), for each x € {1,3,12,23}, such that

(6) [ySa y12]12,3 =Yy= [y237y1]1,23.

Part (1) of Lemma 3.3 ensures (for sufficiently small ) that the locally invariant
foliations F, are transverse, with angles uniformly bounded from below. Thus,

there exists [ > 0, independent of g, A4, and z, such that
(7) Y« € Fa(x,lr) for all x € {1,3,12,23} and

(8) { Y1 =12 =y =y € F2(x,lr)

12 23 _ 2
Vs =7 =y = yia € F12(, Ir) } =y e F (x,lr)NF2(x,lr) = Fo(z,lr)

for any y € BT (x,r) with Ir < r;. Moreover, y € Boo(z,7) implies
(9) (F7 ()« € Ffigy(f7(x),lr) and  f7(y.) = (f7(y))-

for all j € Z and * € {1,3,12,23} (by local invariance of the foliations).
The next proposition improves on a main result of Yang [37], see also Cro-
visier [10], and is the key step for Theorem 3.1. The proof is given in Section 4.

Proposition 3.4. Let f : M — M be a diffeomorphism away from tangencies.
Then there exist \g > 0, Lo > 1, and a C' neighborhood Uy of f, such that,
given any g € Uy, the support of any ergodic g-invariant measure p admits an Lg-
dominated splitting Tsupp , M = E* @ E* ® E3 with dim(E?) < 1 and, for p-almost
every point x,

: 1 S L 1
Jm 2 3 0B ND" | Byinag | < o and

(10)

n—oo

N -
lim p ZlogHDg Lo | ES@'LO(J/,)“ < —Xo.
i=1
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3.2. Proof of Theorem 3.1. Let g, Ly, and Uy be as in Proposition 3.4. Fix
6 > 0 with 20 < Ag and then let ¢ > 0 and r, > 0 be sufficiently small so that, for
any g € Uy, we have

Lo —Lo
ay s IDEEl s 1D

= [DgEe(y)ol] = = [Dg Tyl =

whenever d(z,y) < r, and Z(u,v) < ¢ (begin by choosing some local trivialization
of the tangent bundle). Let Uy, r1, and [ be as in Lemma 3.3 and the comments
following it. Take U = Uy NUy and € = min{ry /I, 7, /l}. We are going to prove that
the conclusion of Theorem 3.1 holds for these choices.

By ergodic decomposition, it is no restriction to suppose that the measure p is
ergodic. Given x € M, denote z; = g'lo(x) for each i € Z. Let T be the set of
points x € supp p such that

1 1
lim =) log||Dg™ | E;_ || <—A d lim =) log||Dg=" | E3 || < =Xo.
ner;on; og||Dg™ | E; .|| < =X an nirgon; og || Dy | EZ < =Xo
Proposition 3.4 asserts that pu(I') = 1. Take z € " and y € B(x,¢), and then let
Yy« € Fr, % €{1,3,12,23} be as in (6). We claim that

(12) y1 =x=ys foreveryy € BE(z,¢).

If E3 = {0} the leaf F3(z) reduces to {x} and there is nothing to prove. So, let us
assume that E3 is non-trivial.

Lemma 3.5 (Pliss [29]). Given a, < ¢y < ¢1 there exists 0 = (c1 — c2)/(c1 — ax)
such that, given any real numbers ay,--- ,an with

N

Zai <coN and a; > ay for every i,

i=1

there exist I > NO and 1 <ny < --- <n; < N such that

j
Z a; <ci(nj—n) forall 0<n<n; and j=1,---,L
1=n—+1
Take a, = min{log |Dg=L°(z)|| : ¢ € U and z € M} and note that a, < —X\o.
Let —\g < ¢ < €1 = —Ag + 8. Applying Lemma 3.5 to a; = log|[Dg~"° | E3 || and
large values of IV, we find an infinite sequence 1 <n; <ng <--- <n; < --- such
that

nj
> log|Dg~* | ES,
t=n-+1

< (=Ag+0)(n; —n) forevery 0 <n < n,.

By Lemma 3.3, the relation (11), and our choice of &,
s _ |1Dg~ " | T.F (i)
= | Dge | T F (w:)

From these two relations one gets that
g(nin]‘)Lo (fgn] (wn,‘ ,le)) C .7:;0’" (7n, e(njin)(iAOJrzé)lg)'

| <€ for every z € Fl(x;,le) and i € Z.

for every 0 < n < n; and, in particular,

(13) g nailo (F3 (wp,,1e)) C Tg(x,e"j(_’\ow‘s)le).

T,
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Let y € BL(z,¢). By (9) and our choice of €, the point g'fo(y3) = (g'Lo(y))s
belongs to F2(z;,le) for every i. In particular, ys belongs to the intersection of
all g="ik0(F3 (xy,,le)) over all j. By (13), this intersection reduces to {z}. So,
y3 = x as claimed in (12). The proof that y; = x is entirely analogous, and so the
proof of the claim is complete. Together with the relations (8) and (9), this gives

that
¢’ (BZ (z,¢)) C fgj(z)(gj(m),rl) for any j € Z.

g
stant C if dim E? = 1, and they reduce to points if dim E? = 0. In the first case one

can easily see that r,(BZ (z,¢),3) < Cn/B for every n > 1 and 3 > 0, whereas,
in the second case r,(BZ (z,¢),3) = 1. So, in either case, 7(BZ (z,¢),3) = 0 for
every # > 0. In this way, we have reduced the proof of Theorem 3.1 to proving
Proposition 3.4.

Observe that the F2; ( x)(gj (x),71) are curves length bounded by some uniform con-

3.3. Proof of the main results. We are in a position to deduce all our main re-
sults. As mentioned before, Corollary E follows from Theorem B and a result in [6].
Theorem D is a direct consequence of Lemma 2.3 and Corollary 3.2. Corollary C
follows immediately from Theorem B, as we also observed before. Theorem B is
a corollary of Proposition 2.4 and Corollary 3.2. Finally, to prove Theorem A one
can argue as follows. Given any f € Diff(M) \ HT, let (f,). be a sequence of
C> diffeomorphisms converging to f in the C' topology. We may assume that
every f, belongs to the isotopy class of f, so that sp(f,) = sp(f). Then, by up-
per semi-continuity of the topological entropy (Theorem D) and the main result in
Yomdin [38],

h(f) = limsup h(fn) > limsuplogsp((fa)«) = logsp(f.).
Therefore, f satisfies the entropy conjecture, as stated. This completes the proof.
Closing this section, we prove Remark 1.1. If HT has empty interior (in the C*
topology) then we may take R = Diff(M) \ HT, and there is nothing to prove.
From now on, assume that int(HT) is non-empty. For each k > 1, define Ry, to
be the set of diffeomorphisms which either are away from tangencies, or admit a
hyperbolic set of the form

(14) AUFA)U---U ™ H(A)

for some m > 1, with f™(A) = A and diam(f’(A)) < 1/k for every j. Since
hyperbolic sets are stable under small perturbations of the diffeomorphism, and
the diameter remains essentially unchanged, Ry is a C' open set. Moreover, Ry
is C! dense in Diff(M). Indeed, consider any g € Diff(M). If g is away from
tangencies then, by definition, it belongs to Ry. So, we may suppose that g € HT.
It follows from homoclinic bifurcation theory (see, for instance, [28, Chapter 6])
that, given any € > 0, there exist diffeomorphisms f arbitrarily close to g such
that f admits a hyperbolic set of the form (14) with max; diam(f7/(A)) < e. This
proves that Ry, is indeed dense, for every n. Then R = NyRi. R is a C' generic
subset. One can easily verify that each diffeomorphism f € RNHT has a sequence
of periodic horseshoes with periodic diameters converging to 0. This implies that
f is not entropy expansive, as claimed.
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4. PROOF OF PROPOSITION 3.4

Let f: M — M be any diffeomorphism away from tangencies. We denote by
7(p, f) the smallest period of a periodic point p. The logarithms of the norms of
eigenvalues of D f7®/)(p) are called exponents of f at the periodic point p.

Proposition 4.1 (Wen [36]). There are constants A1, y1 > 0, L1 > 1, and a
neighborhood Uy of f such that, for any periodic point p of any diffeomorphism
g €U,

(1) there is at most one exponent in [—v1,v1]; if such an exponent does exist,
the corresponding eigenvalue is real and of multiplicity 1;

(2) there is an Ly-dominated splitting Towmp,g)M = E® © E°¢@® E over the
orbit of p, where E°°, E¢, E°" correspond to the sums of the eigenspaces of
Dg;(p’g) whose exponents fall in (—oo, —v1) and [—v1,71] and (y1,+00).

(3) if 7(p,g) = L1, then

1 [r(p.g9)/La]—1
_ log | Dg™t | E < =X and
[T(p,g)/Ll] ; gH g | ng(p)” 1
[T(p.g)/L1]—1

1 "

Take A1, v1, L1, and the neighborhood U; to be fixed once and for all. Moreover,
denote K7 = max{|log ||Dg™(z)|||: g € Uy and x € M and |m| < L1}. Let g € U
and p be any ergodic g-invariant probability measure. We are going to use Mané’s
ergodic closing lemma:

Proposition 4.2 (Mané [18]). Let p be an ergodic measure of a diffeomorphism
g. Then there exist diffeomorphisms g,, n > 1 and probability measures p,, n > 1,
where each pu, is gn-invariant and supported on a periodic orbit Orb(py, gn), such
that (gn)n — g in the C* topology and (jin)n — 1 in the weak* topology.

Of course, we may assume that g, € U; for all n. Then, by Proposition 4.1, the
orbit of each p, admits an Li-dominated splitting To.p(p,,,g,) M = EloE20 E3
such that dim(E?2) < 1. Restricting to a subsequence if necessary, we may assume
that the dimensions of the subbundles E! are independent of n. The fact that
(4n)n converges to p in the weak™ topology implies that any Hausdorff limit of
the sequence (Orb(py, gn))n contains the support of p. It follows, that the support
admits an L;-dominated splitting Tyupp , M = E' @ E? @ E3 with dim(E?) < 1 (see
remark at the end of page 288 in [1]). This gives the first claim in Proposition 3.4.
For the proof of (10) it is convenient to distinguish two cases.

4.1. Measures with large support. Take \g € (0, A1) and Uy = U; and Ly to be
an appropriately large multiple of L; (to be chosen along the way). We are going
to prove that (10) holds for every ergodic invariant probability measure p whose
support contains at least L; points. Let (g,), and (u,), be as in the ergodic
closing lemma. The assumption #suppy > Li implies that 7(pn, gn) > L1 for
arbitrarily large n. Then, restricting to a subsequence if necessary, we may assume
that 7(pn,gn) > L1 for every n. Thus, we are in a position to use part (3) of
Proposition 4.1.
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Lemma 4.3. There exists g > 0, and for any n > 1 there exists A,, C Orb(pn, gn),
such that p,(Ay,) > 0y and

k
1 - n
z E log | Dg~ 1 | E? | <—=Xo foreveryqe A, and k> 1.

iLq
P gn (q)

Proof. We are going to apply Lemma 3.5 to a; = log|[Dg~* | Ejgf,lﬂl(pn)ﬂ for

i=1,...,N, where N > 1 is some large integer (precise conditions are stated along

the way). Take a, = —Kj and ¢ = —\j and ¢; = —Xg and 0 = (A — o)/ (K1 — o).
The assumption of the lemma is a direct consequence of part (3) of Proposition 4.1,
as long as we choose N to be a multiple [7(pn, g)/L1]. The conclusion of the lemma
yields 1 <nj <--- <ny < N with [ > 6N such that, for every j =1,...,1,

nj—l
Z log || Dg=% | E?”,"iLl( )|| < —(nj —m)Xg forall 0 <m < nj.
— 9n "t a
Denoting ¢, ; = g~ "1 (p,), this may be rewritten as
k
—L 3,n
(15) > log|[Dg~ " | B )| S ko forall 1<k <n,.

i=1
Assume that n; > 7(p,,g). Observing that gT(p"’g)Ll(anj) = ¢n,j, one easily

deduces that the inequality (15) holds for every 1 < k < oo. This means that the
conclusion of the lemma holds for every point ¢ in

Ap ={g7"" (pn) : T(Pn, g) < mj < N}.

Observe that #{j : 7(pn,9) < n; < N} > ON — 7(pn,g), but different val-
ues of n; may yield the same point in A,. Take N to be some large multi-
ple £7(pn,g) of the period. Then N is also a multiple of the smallest period
T(Pny g*1) = 7(pn, 9)/ ged(L1, T(pn, g)), of py, relative to the iterate g©t. Hence,

ON —7(pn,g9) Ok — 1

#An = = 7(Pns g
N/r(png™)  reed(lnr(png) )
> M pag) 2 57 T(0as)
= kL, T\Pn,9 72L17pn»9,
as long as  is large enough. Then u,(A,) = #A,/7(pn,g) > 0/(2L1). The proof
of the lemma is complete. (I

Let us proceed with the proof of (10) in the case suppu > L;. Restricting to
a subsequence if necessary, we may assume that (A, ), converges to some compact
set A in the Hausdorff topology. Since (p,, ), converges to p in the weak* topology,
we have that p(A) > 6. Moreover,
1t
(16) z Zlog |Dg~ 1t | Esml(y)ﬂ < =)y forevery k>1andye€A.
i=1
By ergodicity, for p-almost every x, there exists n(z) > 1 such that ¢"(®)(z) € A.
Take Lo = kL; for some large x > 1 and denote jo = [n(z)/Lg]. Clearly
Jo
(17) > log||[Dg=" | B3y |l < GorKr.
j=1
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Let j; = [(n(z)—joLo)/L1] and I3 = n(x)—joLo—j1L1. By construction, j; € [0, k)
and Iy € [0, Ly). Let us write g~10 = g7l1 o (g_Ll)K o g'*. Then, for every j > jo,
the expression log ||[Dg~Fo | E;’jLO(I) || is bounded by

Zlog ||DgiL1 | E;)(J'*I)L0+l1+iL1 (z)” + 2K1
=1
(18) i=(j—1—jo)r+(k—j1)

= Z log | Dg~*" | E}Ll(y)ll + 2K,
i=(j—1—jo)s+(1—j1)

where y = ¢™®) (). Adding (17) to the sum of (18) over j = jo +1,...,7n, we find
that Y27, log [ Dg~—"* | E;’jLQ(I)|| is bounded by

(n—jo)r+(k—j1)
JorK 1+ Z log ||[Dg~ | EgiLl(y)H +2Kin
i=(1—j1)
(n—jo)k—J1
< (or+i)Ki+ Y log|Dg " | B, Il + 2K 1.
1=1

Consequently,

. 1 _
llisolip n Z log || Dg ke | EZjLz(z) |

j=1

1t
< mliirisup z Zlog |Dg= | E;’ul(y)H +2K;.
> i=1

According to (16), the right hand side is bounded by —kAg + 2K < —\g, as long
as we choose k sufficiently large. This completes the proof of (10) in this case.

4.2. Measures with small support. Finally, we extend the claims in (10) to
ergodic measures supported on periodic orbits with period smaller than L;. We
need slightly more precise choices of \g, Lg, and Uy, than in the previous section.
These are made precise along the way. Let Per(f,L;) be the (compact) set of
periodic points p of f such that 7(p, f) < L.

Lemma 4.4. There is a positive integer m > 0, such that for any p € Per(f, L1)
there exist my(p) € {1,...,m} satisfying

log |[Dfm+ @)@ | Bl <0 and log|Df~m-®7w:D | B3| <.

Proof. We explain how to find m, satisfying the first claim; the argument for
the second claim is analogous. Suppose that for every m > 1 there is p,, €
Per(f, L;) such that log || Dfm7®m:f) | E) || >0 for all 1 < n < m. Restrict-
ing to a subsequence if necessary, we may suppose that the Li-dominated split-
tings Tom(p,.,/yM = E} & EZ & E3 are such that the dimensions of the sub-
bundles EJ, are independent of m. Analogously, we may suppose that the peri-
ods 7(pm, f) are independent of m and (p,,), converges to some p € M. Then
p is periodic, with 7(p, f) = 7(pm, f), and there is an L;-dominated splitting
Tor(p,)M = E'@E*@ E? with dim B/ = dim EJ,. On the one hand, by continuity,

(19) log [Df™*** | E}|| >0 for any n > 1.
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On the other hand, all the exponents of D f7(®m:/) | E;m are bounded above by
—~; and so the same is true for the exponents of D f7(P.f) | E;. It follows that

lim log | Df""®7) | B}|| = o0,
which contradicts (19). This contradiction proves the claim. ]

Lemma 4.4 implies that if Ly > 1 is chosen to be a multiple of m!Lq! then
log||Df" | EL| <0 and log|[Df % | B3| <0
for every x € Per(f, L1). Define
M. = —max{log | DY | B[, log |Df 20 | B3 : p € Pex(f, L1)}.
Notice that A, > 0, since Per(f, L1) is compact. Moreover, by definition
(20) log [Df* | Byll < =A. and log||Df ™™ | BJ|| < —A.
for all z € Per(f, Ly). Clearly, the map g — Per(g, L1) is upper semi-continuous:
for any neighborhood Uy of Per(f, L), we have Per(g,L;) C Uy for every g in a
neighborhood of f. Reducing Uy if necessary, we may assume that this holds for
every g € Up. Choose Ay € (0, \.). Taking some small § > 0 and shrinking Uy and
Uy if necessary,
(a) for any g € Uy and z, y € M with d(z,y) < §, we have
[log [|Df* | Byl —log [ Dg" | B[l < A« = Ao and
[log 1D~ | E3)| — log [Dg~" | E3]|| < A. — Ao
(b) for any g € Uy and y € Uy, there exists « € Per(f, L) such that
d(filo(x), g'to(y)) < 6 for all |j| < Ly!.
Fix g € U and ¢ € Per(g, L1) C Up. By (b), there exists p € Per(f, L1) such that
d(fito(p), ¢’ (¢q)) < e whenever |j| < L;!.

The periods 7(p, f) and 7(g, g) need not be the same. Combining (a)-(b) with (20),
we get that

1 n
(21) ~ > g [ DFF [ By )| < =
i=1
for any 1 <n < Ly!. Since 7(q,9) < L1!, it follows that (21) holds for every n > 1.
The proof of the claim about log ||[Df° | E3| is analogous. This finishes the proof
of Proposition 3.4.
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