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Abstract

In this work we are concerned with valuing the option to invest in a project when the

project value and the investment cost are both mean-reverting. Previous works on stochas-

tic project and investment cost concentrate on geometric Brownian motions (GBMs) for

driving the factors. However, when the project involved is linked to commodities, mean-

reverting assumptions are more meaningful. Here, we introduce a model and prove that

the optimal exercise strategy is not a function of the ratio of the project value to the

investment V/I – contrary to the GBM case. We also demonstrate that the limiting trig-

ger curve as maturity approaches traces out a non-linear curve in (V, I) space and derive

its explicit form. Finally, we numerically investigate the finite-horizon problem using the

Fourier space time-stepping algorithm of Jaimungal and Surkov (2009). Numerically, the

optimal exercise policies are found to be approximately linear in V/I; however, contrary

to the GBM case they are not described by a curve of the form V ∗/I∗ = c(t). The op-

tion price behavior as well as the trigger curve behavior nicely generalize earlier one-factor

model results.

Key-words: Real Options; Mean-Reverting; Stochastic Investment; Investment under

Uncertainty
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1 Introduction

Quantitative methods to analyze the option to invest in a project enjoy a long and distin-

guished history that dates back to McDonald and Siegel (1985) and Brennan and Schwartz

(1985). These authors pioneered the valuation of projects subject to stochastic cash-flows

and developed the real-options methodology in the context of shutting down a plant. More-

over, the value of the option to invest and start producing at a fixed future time T was

shown to be given by a European style call option, i.e.,

value = e−rTE [(VT − IT )+] . (1.1)

Here, the expected value is taken under an appropriate risk-adjusted measure, while VT

and IT represent the project’s value and the amount to be invested, respectively, at time

T .

Shortly after, McDonald and Siegel (1986) investigated the problem of timing the launch

of an investment (see Dixit and Pindyck (1994) for a comprehensive review). If the project

can be started at anytime, then (1.1) is modified to its American counterpart. In this case,

the maturity date T is replaced by a stopping time τ and the agent chooses τ to maximize

the option’s value, i.e.,

value = sup
τ∈T

e−rτE [(Vτ − Iτ )+] , (1.2)

where T is a family of stopping times in [0, T ]. As such, the problem becomes a free

boundary problem for which the optimal investment strategy is computed simultaneously

with the option’s value.

Traditionally, as in the early work of Tourinho (1979), the project value is assumed to be

a geometric Brownian motion (GBM) and the investment cost is constant or deterministic.
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Stochastic investment costs have also been studied in the literature. In particular, the

perpetual option with project value and investment cost both being GBMs is treated in

McDonald and Siegel (1986) (see also Berk, Green, and Naik (1999)). More recently,

Elliott, Miao, and Yu (2007) have investigated regime switching investment costs for the

option in perpetuity. Not surprisingly, valuing the option with both uncertain investment

and project value is similar to valuing exchange options, as in Margrabe (1978), and in

uncertain payoffs, as in Fischer (1978).

Assuming GBM may be appropriate in certain circumstances; however, as noticed early

on by McDonald and Siegel (1986), in situations where the cash-flows are directly linked

to commodities, geometric mean-reversion (GMR) may be more appropriate1. Indeed, in

an equilibrium framework, when commodity prices are somewhat high, high cost produc-

ers are expected to come into the market, thus inducing a downward pressure in prices.

Conversely, when prices are somewhat low, high cost producers leave the market, thus in-

ducing an upward pressure in prices. This implies a mean-reversion of commodities prices

(cf. Schwartz (1997)) and references therein). Another distinctive feature is that a holder

of a commodity may be inclined to hold it unless they are paid an additional premium –

a convenience yield – which plays the role of a dividend. When inventories are high, con-

venience yields should be low and conversely when inventories are low, convenience yields

should be high. Such effects can be modeled either through stochastic convenience yield

models, as in Gibson and Schwartz (1990) and Miltersen and Schwartz (1998) (who also

account for stochastic interest rates), or through two-factor long-term/short-term models,

as in Schwartz and Smith (2000). More information on the literature of Real Options in

the context of commodities and natural resources, with applications ranging from the val-

uation of dual-fuel industrial steam boilers to valuing operating flexibility in multinational

networks, can be found in Brennan and Trigeorgis (2000) and in Schwartz and Trigeorgis

1The GMR process is also known as the Stochastic Logistic or the Stochastic Verhulst model (cf.
Kloeden and Platen (1992)).
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(2001).

One case in point where mean-reversion plays a clear role is the option to the invest in

an oil field. As most commodities, oil prices tend to mean-revert. Consequently, the value

of investing in an oil field is also mean-reverting implying that GBM is a poor modeling

choice for such projects. Needless to say, several authors have noticed this and mean-

reverting processes in the context of real options have already been considered. Metcalf

and Hasset (1995) study the optimal time to invest in a perpetual cash-flow where the cash-

flow is driven by either a GBM or GMR. The authors found that, at the aggregate level,

there was little difference between GBM and GMR due to two competing effects (i) mean-

reversion pulls the trigger levels lower (ii) mean-reversion also prevents extreme events from

occurring in realized paths. However, Sarkar (2003) argues that those earlier results are

valid only for agents who assign zero market price of risk to the risk factor. Sarkar goes on

to demonstrate, in a stochastic cost model rather than a stochastic value model, that when

the agent includes a market price of risk there can be significant differences in valuation.

As well, Schwartz (1997) states: “... it is very important to consider mean reversion in

prices in evaluating projects. The discounted cash flow (CDF) criterion induces investment

too early (i.e. when prices are too low), but the real options approach induces investment

too late (i.e. when prices are too high) when it neglects mean reversion in prices” (pg 972)

– emphasis added.

As another important example, consider the classical case of the Antamina mine studied

in Moel and Tufano (2000). In 1996, the Peruvian government was privatizing several of its

state-owned assets and the Antamina mine was one of the first. This mine contained several

metallic ore deposits and the government was selling the right to explore the mine for two

years, after which the winning bidder can decide whether to develop it. Such embedded

optionality can be regarded as a European option to invest in the mine. Moel and Tufano

(2000) utilized stochastic convenience models for the price of the two main metals (copper
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and zinc) whose ore are found on the property. To correctly capture the price behavior of

these metals, they argue that mean-reversion effects must be taken into account and went

on to do so in their model for convenience yield. After calibrating the model to historical

data they resorted to a Monte Carlo simulation to value the embedded option. The details

of their model itself are not important here, rather the fact that mean-reversion played a

critical role is and this ties in well with the earlier discussions.

Considering that several authors model price movements, and hence project values,

as mean-reverting while others model investment costs as mean-reverting, it is natural to

consider the case when both project value and investment costs are mean-reverting. To

date this combination has not been considered in the literature and it is precisely this

research gap which we investigate here.

Our main results concern the behavior of the trigger curves for this two factor class

of models. Firstly, unlike models in which investment costs It and project value Vt are

GBMs, we demonstrate that a Bermudan option to invest either immediately or at one

fixed future maturity date, traces out a non-linear trigger curve in the (I, V ) plane. The

reason is that having mean-reversion in both investment cost and project value introduces a

“dividend” like effect which becomes stronger as the project value and investment cost move

away from their equilibrium point. A linear trigger would result only if the “dividend” was

independent of this distance – as it is in the purely GBM case. Secondly, we derive the PDE

satisfied by the value of the perpetual option to invest in the project. Unfortunately, due

to technical reasons discussed in Section 4, it is not possible to reduce this PDE to a system

of ODEs through a separation of variables. Nonetheless, we are able to fully characterize

the limiting trigger curve for a finite maturity American option to invest in the project as

maturity approaches. Our result generalizes the limiting trigger point S∗ = max(1, r/δ)K

for an American call option on a dividend paying asset with GBM drivers. To the best our

knowledge, the analysis of the limiting trigger point for mean-reverting processes – even
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for a single factor model – has not been investigated elsewhere. Finally, we introduce a

numerical scheme for valuing the option to invest in the project with a finite maturity and

numerically explore some of its features. All of our results are consistent with previous

findings, however they generalize those results to the two-factor case.

The remainder of this article is organized as follows. In Section 2, we provide a modeling

framework which naturally extends the mean-reverting project value to account for mean-

reverting investment costs. The class of risk-neutral measures under which valuation is

carried out is also discussed. Based on this modeling assumption, Section 3 investigates

the European option to invest in the project and we provide an explicit closed form formula

for the value of the real option. Next, in Section 4, we investigate three forms of the early

exercise option: (i) the perpetual American option; (ii) the finite time horizon American

option; and (iii) the Bermudan option with finite time to maturity. Finally some concluding

remarks are made in Section 5.

2 A Mean-Reverting Value and Investment Model

The difficulty with allowing both project value Vt and investment cost It to be stochastic

lies in the fact that the problem becomes two-dimensional and the optimal policy will, in

general, depend on both Vt and It. However, since the payoff (VT − IT )+ of the option

to invest is homogeneous in (VT , IT ), when the project value and the investment cost are

GBMs the optimal policy can be shown to depend only on the ratio Vt/It and the option’s

value inherits the payoff’s homogeneity2. This was observed quite early in McDonald and

Siegel (1986) and it seems that this trigger ratio policy has become a paradigm in Real

Options pricing. See Dixit and Pindyck (1994) for a review of these triggers for perpetual

2Some early observations on homogeneity were made by Merton (1973) (see Theorem 9, page 149) in
the context of Warrants. Specifically, he noticed that the value of a warrant is homogeneous in the share
price and strike price if the share price distribution is independent of the share’s level. Here, however, we
are dealing with two sources of uncertainty.
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options with both GBM and mean-reverting project values but constant investment cost.

We will see that this very appealing property is not inherited when both processes are

mean-reverting.

2.1 The Stochastic Model

We now describe our joint mean-reverting project value and investment cost model.

Firstly, as in earlier works, the project value Vt is assumed to be the exponential of an

Ornstein-Uhlenbeck process Xt. Specifically, we write

Vt = exp{θ̂ +Xt}, (2.1a)

dXt = −α̂Xt dt+ σX dŴX
t . (2.1b)

Here, ŴX
t is a standard Brownian motion under the real-world measure3 P. As such,

the project value is a mean-reverting diffusion process which reverts to the equilibrium

value exp{θ̂}, α̂ controls the rate at which the project value mean-reverts, and σX con-

trols the size of the fluctuations. Similar models have been proposed in the literature for

commodity prices as early as Gibson and Schwartz (1990), Cortazar and Schwartz (1994)

and Schwartz (1997); jumps were added to these models in Cartea and Figueroa (2005)

and more general multi-factor cross-commodity models were introduced in Jaimungal and

Surkov (2009). As well, Metcalf and Hasset (1995) consider such models in the context of

real options with constant investment costs. Sarkar (2003) investigates stochastic invest-

ment cost with mean-reversion while the project value is constant. In this work, we add

the effect of stochastic investment cost on top of stochastic project value. It is also possible

to incorporate jumps into the project value and the investment cost; however, we opt to

3As usual we work on a complete filtered probability space (Ω,F,P) where F = {(Ft)0≤t≤T }, Ft =

σ((ŴX
s , ŴY

s )0≤s≤t) is the natural filtration generated by the driving Brownian motions and P is the
statistical (real-world) probability measure.
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leave out such generalizations to maintain simplicity in the exposition.

Next, like in Sarkar (2003), the investment cost It is assumed to be the exponential of

another, correlated, Ornstein-Uhlenbeck processes Yt. Specifically, we write

It = exp{ϕ̂+ Yt}, (2.2a)

dYt = −β̂Yt dt+ σY dŴ Y
t . (2.2b)

Here, Ŵ Y
t is a standard Brownian motion under the real-world measure P correlated to

WX
t with correlation ρ. The investment cost It has an equilibrium level of exp{ϕ̂}, β̂

controls the rate at which the investment cost mean-reverts, σY controls the size of the

fluctuations and ρ controls the strength of the dependence between the project value and

the investment costs.

To illustrate the flexibility of the model, in Figure 1 two sample paths for the value and

investment are presented. The sample paths are both generated from the same uncorrelated

Brownian sample paths to highlight the effect of the correlation. The volatility of the

project was assumed to be 80% while the investment cost was assumed to have a volatility

of 50%. Panel (a) contains no correlation whereas panel (b) illustrates the behavior when

the investment and project value are perfectly correlated. Notice that, as expected, the

positive correlation case has a much lower variability in the ratio of value to investment.

Naturally, a lower variability will translate into lower option values.

2.2 The Risk-Neutral Measure

In this subsection, we provide the collection of equivalent risk-neutral measures under which

the valuation is conducted. As usual, we assume the existence of two tradable assets which

at least partially span the project value and investment costs. Rather than going through

standard dynamic hedging arguments we simply state our assumptions on the market prices
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of risk for the two sources of uncertainty in our model. This assumption imposes a specific

structure in the risk-neutral dynamics of the project value and investment cost and we

adopt this structure throughout the remainder of the article.

Assumption 2.1 The Market Prices of Risk. The market prices of risk λX
t and λY

t

associated with the Brownian factors ŴX
t and Ŵ Y

t are assumed to be affine in Xt and Yt.

In particular,

λX
t =

ax + bxXt

σX

, and λX
t =

ay + by Yt

σY

, (2.3)

where ax,y and bx,y are constants.

Under Assumption 2.1, Girsanov’s Theorem implies that the drift adjusted processes

WX
t =

∫ t

0

λX
u du+ ŴX

t and W Y
t =

∫ t

0

λY
u du+ Ŵ Y

t , (2.4)

are standard Brownian motions, with correlation ρ, under an equivalent risk-neutral mea-

sure Q. This measure will be used for all future valuations. Furthermore, the risk-neutral

dynamics of the project value and investment cost become

Vt = exp{θ +Xt}, (2.5a)

dXt = −αXt dt+ σX dWX
t , (2.5b)

It = exp{ϕ+ Yt}, (2.5c)

dYt = −βYt dt+ σY dW Y
t . (2.5d)

Here, several new constants appear: α = α̂− bx, θ = θ̂+ ax/α, β = β̂ − by, ϕ = ϕ̂+ ay/β.

Notice that under the assumed class of risk-neutral measures, the model is of the same

form as the real-world evolution. However, the level at which the processes mean-revert
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to, as well as the rate at which they mean-revert, can differ from their real-world values.

The minimal martingale risk-neutral measure – which is the measure associated with

the variance minimizing hedge (cf. Föllmer and Schweizer (1991)) – would have bx,y = 0,

i.e. constant market prices of risk. Under this measure, the rate of mean-reversion is not

altered when moving to the risk-neutral measure. Nonetheless, if bx,y = 0 but ax,y ̸= 0 then

the processes will mean-revert to a level distinct from their real-world evolution. We leave

the class of measures general and instead allow the agent to decide – possibly through a

calibration exercise – on the particular choice of the various constants, or equivalently on

α, θ, β and ϕ.

In the remainder of this article, we will refer to the risk-neutral model (2.5) simply as

the model. Further, all subsequent Brownian motions are risk-neutral Brownian motions,

and expectations E[·] represent expectations w.r.t. to the risk-neutral measure.

3 The European Option to Invest

We now investigate the option to invest under the modeling assumption (2.5). The Euro-

pean option to invest has value equal to the discounted expectation in (1.1). One of our

main results is provided in the following Theorem which is proved in Appendix A.

Theorem 3.1 European Option Price. The value of the European option to invest in

the project at a fixed date T under the modeling assumptions (2.5) is

value = E[VT ]Φ (d+)− E[IT ]Φ (d−) . (3.1)

Here, Φ(·) denotes the normal cdf, the constants

d± =
1

σ̃
ln

(
E[VT ]

E[IT ]

)
± 1

2
σ̃ , (3.2)
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and σ̃2 denotes the effective total variance

σ̃2 = σ2
X

1− e−2αT

2α
− 2ρσXσY

1− e−(α+β)T

α+ β
+ σ2

Y

1− e−2βT

2β
, (3.3)

while the expectations are given by

E[VT ] = exp

{
θ + e−αT X0 +

σ2
X

4α

(
1− e−2αT

)}
, and (3.4)

E[IT ] = exp

{
ϕ+ e−βT Y0 +

σ2
Y

4β

(
1− e−2βT

)}
. (3.5)

In Figure 2, the value of the European option to invest in the project is shown together

with the payoff function. If the optionality was instead a Bermudan option to invest either

immediately or at maturity, the option value would be the maximum of the payoff surface

(immediate investment) and the European option value (hold to maturity). In the purely

GBM case (with no dividends), for the Bermudan option, it would not be optimal to invest

immediately. When dividends are included it may be optimal to invest immediately if the

project value is large enough, or the investment cost is small enough. In our mean-reverting

model, even if the market price of risk is zero (so that there is no analog of a dividend) it

is optimal to invest in the project when the project value is large or the investment cost

small enough. This feature can be seen graphically in Figure 2 – all points at which the

value function intersects the immediate exercise value are optimal exercise points for such

a Bermudan option. At a fixed investment cost, once the project value is large enough, the

agent should optimally invest in the project.

Another interesting observation is the fact that the trigger curve itself is clearly non-

linear. This indicates that the optimal strategy for investing is not provided by monitoring

the ratio V/I, and in particular is not provided by a line V ∗/I∗ = const. as it is in the

GBM case. Instead, both processes must be monitored simultaneously. It is the mean-
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reverting nature of both processes which causes such distinct results. We will see that

similar features flow through to the multiple exercise case.

To further assist in understanding the valuation, in Figure 3 we show how the price

varies with the model parameters. In each panel, one model parameter is varied while all

other parameters remain constant. The price behavior is easily explained. As the mean-

reversion rate α of the project value increases, the option losses value because there is less

variability in the project’s value. However, as the project’s volatility σX increases, the

variability induces higher option value as usual. Contrastingly, when the mean-reversion

rate β of the investment cost rises, the option value increases because this induces less

variability in costs and more certainty in the profits once invested and therefore more

value in the option. Of course, the opposite effect is seen when the volatility σY of the

investment costs increases. As correlation ρ increases the variability of the profits upon

investment decreases because project value and investment costs move in tandem with

higher correlation. Consequently, the option value decreases as correlation increases.

In addition to the price sensitivities, in Figure 4 we show how the trigger curves evolve

as the parameters move. We now explain the observed behavior in turn.

− As the mean-reversion rate α of the project value increases, the trigger curve moves

closer to the equilibrium point. This happens because as α increases the effective

volatility of the project value decreases; consequently, an agent will invest earlier to

gain the potential of the immediate payoff and not wait to maturity.

− As the mean-reversion rate β of the investment cost increases, the trigger curve

becomes more and more similar to the trigger curve of a constant investment cost

model. In particular when the investment cost is below the equilibrium point, the

trigger curve moves upwards as the mean-reversion rate increases, while the trigger

curve moves downward when the investment cost is above the trigger level. This
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feature can be explained by observing that the effective volatility of the investment

cost increases as β decreases. Therefore an agent will in general wait longer before

investing resulting in the trigger curve tilting away from the equilibrium point.

− As the volatility σX of the project value increases, the trigger curves move up. This

is to be expected because an agent will be willing to take the risk that the project

moves deeper in the money when volatility is high and they will delay investing in

the project.

− As the volatility σY of the investment cost increases, the trigger curves move down.

This is also to be expected because an agent is not willing to take the risk that

investment costs go up. They will rather invest immediately at moderate profit levels

and forgo the potential of higher future project value in fear of large investment costs.

− As the correlation ρ increases, the trigger curves move downward. An agent is not

willing to take the risk of waiting because as correlation increases, large project values

are also accompanied by large investment costs and therefore lower profitability.

These results are consistent with and similar in spirit to the results for mean-reverting

project value alone with fixed investment costs as described in Chapter 5 §5 of Dixit and

Pindyck (1994). Further, the results are also consistent with the behavior when project

value is fixed but investment costs are mean-reverting as found in Sarkar (2003).

4 The Early Investment Option

In the previous section, we investigated the European option to invest and the Bermudan

option to invest immediately or at maturity. However, agents generally have the ability to

invest early in a project, consequently, the value of the option to invest in a project is truly

of American type as in (1.2). As is well known, the American option price f(t,Xt, Yt) is
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not known in closed form when the time to maturity is finite. Nonetheless, for infinite time

horizon problems – i.e. the perpetual option – with GBM drivers for project value and

investment cost, closed form solutions do exist (e.g., Chapter 6 §5 in Dixit and Pindyck

(1994)). Furthermore, the infinite time horizon problem for project value with GMR driver

and fixed investment cost is also known in closed form (e.g., in Metcalf and Hasset (1995)

as well as Chapter 5 §5 in Dixit and Pindyck (1994)).

In the next subsection, we briefly discuss the partial differential equation (PDE) ap-

proach for the price, together with appropriate boundary conditions both for the finite-time

and perpetual options, and provide a brief discussion about their solutions. In Subsection

4.2.1, we investigate the limiting exercise region for the finite maturity problem and de-

rive an explicit formulae for the trigger curve. In Subsection 4.2.2, we utilize a version of

the Fourier space time-stepping algorithm of Jaimungal and Surkov (2009) to numerically

solved for the time-dependent trigger surface for the finite maturity problem.

4.1 The PDE approach

A much favored approach to American option valuation is to observe that the value can

be recast as a free boundary value problem, and then to solve the resulting PDE either by

numerical means for the finite-time horizon, or by writing the solution in terms of special

functions for the perpetual case.

Through standard arguments, the value4 f(t, x, y) of the option to invest under the

model (2.5) must solve the PDE

∂tf + α(θ − x)∂xf + β(ϕ− y)∂yf + 1
2

(
σ2
X∂xxf + 2ρσXσY ∂xyf + σ2

Y ∂yyf
)
= rf,

(4.1)

4Note that we have written the value in terms of the log-state variables x = lnV − θ and y = ln I − ϕ
rather than V and I directly as the resulting PDE is simpler in these variables.
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together with the value matching and smoothing pasting conditions

f(t, x∗(t, y∗), y∗) = eθ+x∗(t,y∗) − eϕ+y∗ , (4.2a)

∂xf(t, x
∗(t, y∗), y∗) = eθ+x∗(t,y∗), (4.2b)

∂yf(t, x
∗(t, y∗), y∗) = −eϕ+y∗ , (4.2c)

and the limiting conditions

lim
x→−∞

f(t, x, y) = 0, (4.3a)

lim
y→+∞

f(t, x, y) = 0, (4.3b)

lim
y→−∞

f(t, x, y) = f0(t, x). (4.3c)

Here, (x∗(t, y∗) , y∗) represents the trigger curve in the (x, y) plane as a function of

time. Condition (4.2a) represents the value matching condition, i.e., the condition that

the option value matches the exercise value along the trigger curve. Condition (4.2b) and

(4.2c) represent the smooth pasting conditions along the boundary in the direction of the

project value and the investment cost, respectively. These last two conditions appear a

little different than usual because we are working with the log-variables x and y rather

than V and I directly. The limiting conditions (4.3a), (4.3b), and (4.3c) represent the

limiting cases of zero project value, infinite and zero investment cost respectively. Also,

f0(t, x) solves the early fixed-investment problem with zero investment.

If the option to invest is perpetual, its value f(t, x, y) is independent of time due to the

stationarity of the driving processes. Thus, it solves the equation

α(θ − x)∂xf + β(ϕ− y)∂yf + 1
2

(
σ2
X∂xxf + 2ρσXσY ∂xyf + σ2

Y ∂yyf
)
= rf (4.4)
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together with the contact and smooth pasting conditions (4.2) as well as the limiting

conditions (4.3), with the right hand side of (4.3c) replaced by the corresponding perpetual

value.

Unlike the case of a fixed investment cost, (4.4) is still a PDE. A tempting approach to

solve this problem is to try a separations of variables f(x, y) = g(x)h(y) in an attempt to

reduce the problem to an ODE. However, while it is possible to show that such solutions

can be written in terms of Kummer functions, they cannot satisfy the conditions (4.3).

Due to the subtle issue of analyticity of the Kummer functions at the equilibrium points,

together with the limiting conditions, the construction of the analytical solution for the

perpetual option price (4.4) is quite difficult and is outside the scope of the current article.

We will however report on its solution elsewhere.

4.2 The Finite Time Horizon Problem

4.2.1 The Limiting Trigger Curve

In this section, we analyze the limiting trigger curve as maturity approaches. Indeed, for an

American call option on a dividend paying stock, it is well known that the limiting exercise

level does not always approach the strike. In fact, if the underlier follows a GBM, then

the limiting level is S∗ = max(1, (r/δ)) K – see e.g. Proposition 33, page 59 in Detemple

(2005). Consequently, only when the dividend is large enough would the limiting trigger

level equal K. Similarly, here, we show that the limiting trigger curve is not given by the

line V ∗ = I∗. The intuition for the result is that the mean-reversion is playing a similar,

but distinct role, to a dividend yield.
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Proposition 4.1 Limiting Trigger Curves. The limiting boundary as t ↑ T of the

trigger region traces out a curve in the (V, I) plane satisfying the constraint

V ∗

I∗
= max

(
1 ,

β ( ln I∗ − ϕ ) +
(
r − 1

2
σ2
Y

)
α ( lnV ∗ − θ ) +

(
r − 1

2
σ2
X

) ) . (4.5)

Proof. See Appendix B.

When V ∗ > I∗ it is possible to characterize V ∗ as a function of I∗ using the Lambert-W

function5 L(z):

V ∗ = exp

{
θ̃ + L

((
β(ln I∗ − ϕ) + r − 1

2
σ2
Y

) e−θ̃

α

)}
, (4.6)

where the constant

θ̃ = θ −
r − 1

2
σ2
X

α
.

Interestingly, the limiting trigger curve (4.6) does not always lie above the maturity

trigger curve of V ∗ = I∗. To illustrate this effect, and to gain some intuition on how

the trigger curves behave, in Figure 5 we show the limiting trigger curve for several levels

of project value mean-reversion α and for several levels of investment mean-reversion β.

Notice that certain levels of mean-reversion lead to limiting trigger curves which intersect

the maturity trigger curve. Recall that for the American call option, the limiting trigger

is max(1, r/δ)K and as the dividend yield increases, the limiting trigger curve eventually

hits the maturity trigger. Here, the distance from the equilibrium point is acting as an

effective dividend and the further one moves away from it the stronger the effective div-

idend. Moreover, increasing and decreasing the mean-reversion rates alters the effective

(invariant) volatilities. As the volatility of the investment decreases and/or the volatility

5The Lambert-W function L(z) solves L(z)eL(z) = z.
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of the project decreases, the limiting trigger curve intersects the maturity trigger curve at

lower levels. This is intuitive because in both scenarios the amount of optionality embed-

ded in the real option is being reduced and therefore an agent would act to exercise if the

investment amount is large and if the project value exceeds the investment amount.

One final observation can be made by comparing Figures 5 and 4: the limiting trigger

curves for the American option and the trigger curves for the Bermudan option to invest

immediately or at maturity are very similar. We therefore expect that the early trigger

curves (and not just the limiting trigger curve) for the American option will inherit a

similar structure.

4.2.2 A Recursive Solution

For finite time horizons, no analytical solutions are known, not even for the one dimensional

case with GBM project value, therefore we do not attempt to find analytic solutions.

Instead we will develop an efficient numerical scheme and investigate the consequences of

our model on the trigger curves. Rather than focusing on tree approximations or finite

difference schemes of the PDE (4.1) or invoking least squares Monte Carlo (as developed in

Carriere (1996) and further developed in Longstaff and Schwartz (2001)), we make use of

the mean-reverting Fourier space time-stepping algorithm of Jaimungal and Surkov (2009).

More details are to follow.

We will approximate the American option as a limiting sequence of Bermudan options

as the time between exercise dates tends to zero. The Bermudan option to invest, where

the project can only be invested in at the discrete times {t0, t1, . . . , tn} (e.g. quarterly,

monthly, weekly or daily) where tn = T the maturity date, can priced recursively on the
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exercise dates as follows:
ftn(x, y) = (eθ+x − eϕ+y)+

ftm(x, y) = max
{
(eθ+x − eϕ+y)+ ;

e−r∆tm E
[
ftm+1(Xtm+1 , Ytm+1) |Xtm = x, Ytm = y

]}
,

(4.7)

for m = {1, 2, . . . , n− 1}. Notice that the second term in the maximization is the holding

(or continuation) value of the option to invest on that date. Jaimungal and Surkov (2009)

show that this continuation price f cont.
tm (x, y) can be computed via Fourier transforms,

resulting in

f cont.
tm (x, y) = F−1

[
F
[
f̃tm+1(x, y)

]
(ω1, ω2) e

Ψ((tm+1−tm),ω1,ω2)
]
. (4.8)

Here, F [.] and F−1[.] represent Fourier and inverse Fourier transforms respectively, Ψ is

related to the characteristic function of the generating process

Ψ(s, ω1, ω2) =− 1

2
σ2
X

e2αs − 1

2α
ω2
1 − ρσXσY

e(α+β)s − 1

α+ β
ω1ω2 − 1

2
σ2
Y

e2βs − 1

2β
ω2
2 , (4.9)

and f̃ is the option value evaluated on a “mean-reverting grid”:

f̃tm+1(x, y) = ftm+1

(
xe−α(tm−tm+1) , ye−β(tm−tm+1)

)
. (4.10)

By comparing the continuation value (4.8) with the value of immediately investing, the

optimal strategy can be computed numerically. This requires two fast Fourier transforms

to approximately evaluate the Fourier and inverse transforms. Such a procedure is far more

efficient than a tree or finite-difference scheme as it requires O(N logN) computations per

exercise date. On the other hand, finite difference schemes will require multiple steps (M)

18



in between the exercise dates and have computation cost O(MN). For more details see

Jaimungal and Surkov (2009).

In Figure 6, we plot the sequence of trigger curves for a ten year option to invest

assuming investment can be made only once a year. Naturally, as maturity approaches,

the trigger curves move downwards toward the maturity trigger of V ∗ = I∗; however,

the early trigger curves lie significantly above the maturity trigger itself. For comparison

purposes, the limiting trigger curve (4.6) for the American option to invest is also displayed

in the diagram. Not surprisingly the shortest maturity Bermudan trigger curve behaves

much like the limiting American trigger curve. Another interesting point is that the trigger

curves are approximately described by the straight line V ∗ = a(t)+ b(t) I∗ with a non-zero

intercept. When the drivers are GBMs the intercept is zero and the trigger curves are

exactly linear. As the investment costs move below its equilibrium level the non-linearities

become apparent. However, as the investment costs move above its equilibrium level the

non-linearities are harder to spot visually, but they do in fact persist.

We are also interested in the limiting case of the Bermudan option tending to an

American option. To this end, in Figure 7, we plot the trigger surface for a ten year

Bermudan option to invest with daily exercise dates. The solid blue line indicates the

equilibrium level of the project value and investment cost, while the black random path is

a sample path of the joint investment cost / project value process. Once the path pierces

the surface it is optimal to invest in the project. For these specific model parameters and

this particular sample path, it was optimal to wait until about year 6. Since the Bermudan

option to invest is being monitored on a daily basis it well approximates the American

option to invest and these results show that the general features of the Bermudan option

with yearly exercise (as shown in Figure 6) are also inherited by the American trigger

surface.
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5 Conclusions

In this work, we have addressed the problem of the decision of investing, when both the

value of the project and the investment cost follows a mean-reverting dynamics. In this

case, the optimal policy depends on both the value of the project and the investment level,

rather than just on their ratio. The former is known to be the case when the value and the

investment are driven by GBMs. This phenomenon precludes the use of a trigger curve

for determining the investment frontier, which has been recognized, since the work by

McDonald and Siegel (1986), as a specially convenient representation. We have explicitly

solve two cases: (i) the European option to invest and (ii) the limiting trigger curve for the

American option to invest. Finally, we utilized the Fourier Space Time-Stepping method,

developed by Jackson, Jaimungal, and Surkov (2008) and Jaimungal and Surkov (2009),

to numerically explore the early trigger levels for the finite-time horizon Bermudan and

American options to invest.

There are a few avenues left open for future work.

The first is an analytical one: solving the perpetual American option price. As already

pointed in the Section 4.1, the naive separation of variables does not satisfy the boundary

conditions for the perpetual option. Although it is possible to solve the PDE, the techniques

are outside the scope of the present paper and will be reported elsewhere.

The second avenue left open is related to calibrating this class of models to real data.

Calibrating the project value is not terribly difficult – indeed this has been done in several

earlier works. However, calibrating the parameters of investment cost process will pose

more difficulties. One possible way to proceed would be to utilize a co-integrated model

rather than two separate mean-reverting processes. Indeed, one may believe that the costs

of a project are somewhat tied into the value that can extracted from it. In fact, even the

simple view that the a project may have a fixed cost plus a variable cost which is driven
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by production leads to such a picture. One very simple approach to a co-integrated model

would be to have the cost It satisfy the SDE: d(ln It) = −β(γ (lnVt − θ)− (ln It − ϕ))dt+

σX dWX
t . In this manner, when project values are high, the investment cost is also high,

while when project values are low, the investment costs are also low. We have investigated

such a co-integrated model, and the results are qualitative similar to those reported here.

This model may be easier to calibrate, but at this stage it is still open question.

The third avenue to explore is incorporating technical uncertainty. Here, technical un-

certainty is referring to factors that are endogenous to the project – perhaps the amount of

reserves that exist in an unexplored oil field. This must be modeled quite distinctly from

the mean-reverting project value and investment cost included here. While there has been

significant work in this area (cf. Trigeorgis (1999) and e.g. more recently Koussis, Mart-

zoukos, and Trigeorgis (2007)), incorporating mean-reverting project value and investment

cost together with technical uncertainty is yet unexplored.

A Proof: European Option Pricing Formulae

In this appendix we prove Theorem 3.1 – i.e. we derive the value of the European option

to invest in a project with stochastic investment and project value. The value is

Opt0 = e−rTE[(VT − IT )+ |F0]

= e−rT ET

[(
VT

IT
− 1

)
+

∣∣∣∣F0

]
E[IT |F0]

= e−rTET [(ξT − 1)+ |F0]E[IT |F0] (A.1)
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where, ET [·] represents expectations with respect to a new measure PT defined via the

Radon-Nikodym derivative process

ηTt ,
(
dPT

dP

)
t

=
E[IT |Ft]

E[IT |F0]
, and ξt ,

E[VT |Ft]

E[IT |Ft]
.

Note that (i) ξT = VT/IT and (ii) ξt is a PT -martingale under any modeling assumptions

for Vt and It (as long as It is strictly positive). Property (ii) can be seen from the following

simple computation (0 ≤ s ≤ t):

ET [ξt|Fs] = E
[
E[VT |Ft]

E[IT |Ft]
.
Et[IT ]

E0[IT ]

∣∣∣∣Fs

]/
E[IT |Fs]

E[IT |F0]
=

E [E[VT |Ft]|Fs]

E[IT |Fs]

=
E[VT |Fs]

E[IT |Fs]
= ξs .

For our model (2.1)-(2.2), we have

XT = e−α(T−t)Xt + σX

∫ T

t

e−α(T−u) dWX
u ,

YT = e−β(T−t) Yt + σY

∫ T

t

e−β(T−u) dW Y
u ,

so that,

E[VT |Ft] = exp
{
θ + e−α(T−t)Xt +

σ2
X

4α

(
1− e−2α(T−t)

)}
,

E[IT |Ft] = exp
{
ϕ+ e−β(T−t) Yt +

σ2
Y

4β

(
1− e−2β(T−t)

)}
.

These expressions provide an explicit formula for the ξt process. Further, using Ito’s lemma

and the fact that ξt is a PT -martingale, implies

dξt
ξt

= σXe
−α(T−t)dW T,X

t − σY e
−β(T−t)dW T,Y

t ,
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where W T,X
t and W T,Y

t are correlated standard PT -Brownian motions. Consequently,

ξT
d
= ξ0 exp

{
−1

2
σ̃2 + σ̃Z

}
,

where Z is a standard normal random variable and σ̃ is provided in (3.3). Since ξT is

log-normally distributed, the remaining unknown expectation in (A.1) is

ET [(ξT − 1)+|Ft] = ξtΦ(d+)− Φ(d−) ,

with d± defined in (3.2). The final pricing result (3.1) is now an easy consequence.

B Proof: Limiting Trigger Curve

In this appendix, we prove Proposition 4.1.

We will treat an American option as the limiting case of Bermudan options with time

between decision dates converging to 0. In particular, if we set ∆t = T − t, then the value

of the Bermudan option BO at time T −∆t is simply the maximum of the exercise value

and the European option value given by Theorem 3.1. So,

BO = max
(
VT−∆t − IT−∆t , e

−r∆t (ET−∆t[VT ]Φ (d+)− ET−∆t[IT ]Φ (d−))
)
. (B.1)

Notice that only the in-the-money exercise value is being compared since the second term

in the maximization is always greater than zero. Therefore, we seek (V ∗, I∗) such that

V ∗ − I∗ = e−r∆t
(
E[VT | VT−∆t = V ∗]Φ

(
d∗+
)
− E[IT | IT−∆t = I∗]Φ

(
d∗−
))

(B.2)
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with

d∗± =
ln (E[VT | VT−∆t = V ∗] / E[IT | IT−∆t = I∗])± 1

2
σ̃2

σ̃

Two cases must be treated separately:

• Case I: V ∗ > I∗.

As ∆t ↓ 0, d∗± ↑ +∞ and in particular

Φ(d∗±) = 1−
√
∆t

2

e−(c∗)2/2∆t√
π/2 c∗

(1 + o (∆t)) , where c∗ =
ln (V ∗/I∗)

σ
(B.3)

and σ2 = σ2
X + σ2

Y − 2ρσXσY . Moreover, straightforward computations lead to the

limiting behavior of the two expectations

E[VT | VT−∆t = V ∗] = V ∗
(
1−

(
α (lnV ∗ − θ)− 1

2
σ2
X

)
∆t

)
+ o(∆t) (B.4a)

E[ IT | IT−∆t = I∗] = I∗
(
1−

(
β (ln I∗ − ϕ)− 1

2
σ2
Y

)
∆t

)
+ o(∆t) (B.4b)

Using Equations (B.3) and (B.4) together in (B.2) we have

V ∗ − I∗ = V ∗
(
1−

(
α (lnV ∗ − θ) +

(
r − 1

2
σ2
X

))
∆t

)
(B.5)

− I∗
(
1−

(
β (ln I∗ − ϕ) +

(
r − 1

2
σ2
Y

))
∆t

)
+ o(∆t) (B.6)

since o(∆t) dominates
√
∆te−(c∗)2/2∆t from (B.3). Rearranging the above expression

and canceling the o(1) terms leads to the result in (4.5) when V ∗ > I∗.

• Case II: V ∗ ≤ I∗.
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As ∆t ↓ 0, d∗± ↓ −∞ and in particular,

Φ(d∗±) =

√
∆t

2

e−(c∗)2/2∆t√
π/2 (−c∗)

(1 + o (∆t)) . (B.7)

Note that c∗ < 0 so that this expression is positive. Putting (B.7) together with

(B.4) into (B.2) we have

V ∗ − I∗ = (V ∗ − I∗)

√
∆t

2

e−(c∗)2/2∆t√
π/2 (−c∗)

(1 + o (∆t)) (B.8)

so that as ∆t ↓ 0 we have V ∗ = I∗.

This completes the proof.
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Figure 1: A sample path of project value and investment cost. The lines label mr level are
the equilibrium mean-reverting levels for the value and investment. The model parameters
are: α = 1; θ = ln(20); σX = 0.8; β = 1; ϕ = ln(10); σY = 50%, and λ = 0.
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Figure 2: The value of a 1-year European option to invest and the optimal exercise trigger
for a 1 year Bermudan option to invest immediately or at maturity. The model parameters
are as follows: α = 1, θ = ln(20), σX = 80%, β = 1, ϕ = ln(10), σY = 50%, ρ = 0.5, and
r = 5%.
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Figure 3: The various sensitivities of the value of the European option to invest in the
project at the end of 1 year. The initial project value and investment cost are set at their
equilibrium levels: V = 20 and I = 10. All remaining parameters are kept constant at
their levels reported in Figure 2.
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Figure 4: The various sensitivities of the optimal exercise trigger curve for a 1 year Bermu-
dan option to invest immediately or at maturity. The remaining model parameters are
as in Figure 2. The point Eq.Pt. refers to the long run equilibrium point of the two
mean-reverting processes.
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Figure 5: The limiting trigger curves as rates of mean-reversion changes. The solid dot
indicates the equilibrium point, while the dashed line is the maturity trigger curve of
V ∗ = I∗. The remaining model parameters are as in Figure 2.
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Figure 7: The trigger surface together with a sample path for a ten year option to invest
with daily exercise decisions. The straight line is the equilibrium level of the project
value/investment cost. When the sample path pierces the surface it is optimal to invest in
the project. The model parameters are as in Figure 2.
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