FIBERS OF THE BAUM-BOTT MAP FOR FOLIATIONS OF
DEGREE TWO ON P?

A. LINS NETO

ABSTRACT. In this paper we study the fibers of the Baum-Bott map in the
space of foliations of degree two on the projective plane P2. In the main result
we prove that its generic fiber contains exactly 240 orbits of the natural action
of Aut(P?) on the space of foliations.
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1. INTRODUCTION

1.1. The Baum-Bott map. One of the most basic invariant for singularities of
holomorphic foliations of surfaces is the Baum-Bott index : if F is a holomorphic
foliation on a neighborhood U of p € C2, induced by a holomorphic 1-form w =
A(z,y)dy — B(x,y) de, with an unique singularity at p, then the Baum-Bott index
of F at p is defined as

1

where 7 is any (1,0)-form, C* on U \ {p}, satisfying dw = n A w, and T is the
boundary of a ball B around p with p € B C B C U (cf. [Br]). Note that if
f€0*(U) and wy = f.w then dw; = m Awr, where 1 =1+ %, so that

daf

771/\d771=77Ad17+d<n1Af> = /?7/\d77=/771/\dm.
r I

In particular, the Baum-Bott index does not depend on the 1-form representing the
foliation.
Another important fact is that it is invariant by biholomorphisms; if ¢ : (V,q) —
(U, p) is a biholomorphism then BB(¢*(F),q) = BB(F,p) (cf [Br]).
1
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When the dual vector field X = A(z, y)0, + B(z,y)9d, has invertible linear part,
i.e., det DX (p) # 0, a simple computation shows that
_ tr’(DX(p))
= del(DX (p)
If the eigenvalues of DX (p) are A\; and Ay then

AMAA)? A A
BB(F,p) = ML) 1;)\22) :/\—j+)\—;+2.

The numbers Aa /A and A1 /A2 will be called the characteristic values of the singu-
larity. Note that the charachteristic values satisfy the equation

2>+ (2-BB(F,p)z+1=0.

BB(F,p)

Singularities with invertible linear part will be called non-degenerate singularities.

In this paper, we will deal with holomorphic foliations on the complex projective
plane P2, A holomorphic foliation on P? can be defined in an affine coordinate
system (z,y) € C% C P? by a holomorphic vector field X = P(z,y) 0, + Q(x,y) 0y,
or by its dual 1-form w = P(z,y) dy — Q(z,y) dx, where P and @ are polynomials.
We will denote the induced foliation by Fx or F,. The degree of Fyx is defined
as the number of tangencies of the foliation and a generic line £ C P2, It can be
proved that if a vector field X = P(xz,y) 0, + Q(z,y) 9y induces a degree d foliation
then

(1) P(x,y) = p(x,y) + vg(z,y) and Q(z,y) = q(z,y) +yg9(z,y) ,

where p, q,g € Clz, y], maz(dg(p),dg(q)) < d (dg = degree) and g is homogeneous
of degree d. When g # 0 the set of directions given by (g(z,y) = 0), in the line
at infinity L., of C?, defines the set of tangencies of Fx with L... We will denote
the set of foliations of degree d on P? by Fol(d,2) and the set of singularities of a
foliation F € Fol(d, 2) by sing(F). The set of foliations of degree d and with only
non-degenerate singularities will be denoted by Fol,q(d, 2).

Remark 1.1. We will not assume that P and ) have no common factor, as usual
in the theory of complex foliations. With this convention, it follows from (1) that
Fol(d, 2) can be considered as a projective space of dimension M (d) := (d + 3)(d +
1) — 1. We would like to remark also that Fol,q(d,2) is a Zariski open subset of
Fol(d, 2).

Remark 1.2. If 7 € Fol(d, 2) has only isolated singularities then
> mult(F,p)=d’+d+1:=N(d),
pesing(F)

where mult(F,p) denotes the multiplicity of the singularity p. In particular, a
foliation F € Fol,q(d, 2) has exactly N(d) singularities (cf. [Br]).

Given a topological space X we will denote by )S(—m the quotient of X™ by the
equivalence relation such that the equivalence class of (z1,...,z,,) € X™ is

(1, s Zm] = {(To1), s Ta@m)) | 0 € S},

where S,,, denotes the set of premutations of {1,...,m}.
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The Baum-Bott map,
(CN(d)

BB, : Folyg(d,2) —
SN(a)

is defined by
BB4(G) = [BB(G,p1),--.,BB(G, pn(a))]

where sing(G) = {p1,...,pn@}. Given F € Folyq(d,2) we will denote its fiber
BB; ' (BBa(F)) by Fa(F).
Note that BB, extends to a rational map
P1YN(d)
BB, : Fol(d,2) --» @) .
SN(a)
The well-known Baum-Bott Index Theorem says in the case of foliations of P2
that (cf. [Br]) :
Theorem 1.1. If F € Fol(d, 2) has only isolated singularities then
> BB(F,p)=(d+2).
pesing(F)

In particular, BBy is not dominant. On the other hand, the following result is
known :

Theorem 1.2. If d > 2 then the generic rank of BBy is d*> + d. In particular, if
d > 2 then the dimension of the generic fiber of BBy is 3d + 2.

Theorem 1.2 was proved for d = 2 in [AG] and for d > 3 in [LN-JP].

Remark 1.3. Denote by Aut(P?) ~ PSL(2,C) the group of holomorphic auto-
morphisms of P2 and consider the natural action ¥ given by

(T, F) € Aut(P?) x Fol(d, 2) > T*(F) € Fol(d, 2) .

We will denote by Orb(F) the orbit of the foliation F under this action. Since the
Baum-Bott index is invariant by local biholomorphisms, we get

Orb(F) C Fy(F) , ¥ F € Folpa(d, 2) .

In particular, the fiber Fy(F) is foliated by the orbits of W.

When d = 2 the dimension of the generic fiber of BBy is 8 = dim(Aut(P?)).
Therefore, in this case the generic fiber is a finite union of orbits of .

Other notations that we will use :

e Zso(F) the isotropy group of F :
Tso(F) :={T € Aut(P?) | T*(F) = F} .
e Given A C Fol(d,2) the saturation of A is by definition
Sat(A) = {T*(F) | F € Aand T € Aut(P?)} .

Definition 1. When d > 2, we will say that a fiber Fy(F) is exceptional if
dim(Fq(F)) > 3d + 2. Otherwise, we will say that the fiber is non-ezceptional.
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1.2. Statement of the results. Concerning the generic fiber of the Baum-Bott
map on Fol,4(2,2), we have the following result :

Theorem 1. The generic fiber of BBy contains exactly 240 orbits of the natural
action of Aut(P?).

The proof of Theorem 1 will be done in §2.5. The basic technique will be to
reduce the computation of the Baum-Bott indexes of the singularities of a foliation
F € Folyq(2,2) to a computation of the residues of a rational form on P! (§2.1).
For this reduction we will assume that F has a singularity p satisfying :

(a). BB(F,p) # 4, or equivalently 1 is not a characteristic value of F at p.
(b). F has no invariant straight line through p.

From now on, we will refer these conditions as conditions (a) and (b), respec-
tively. In lemma 2.1 of §2.1, we will prove that a foliation F € Fol(2,2) which has
a non-degenerate singularity p satisfying (a) and (b) can be represented in some
affine coordinate system (z,y) € C? C P? by a vector field, which depends of six
parameters A = (A, A, B, o, 8,7), Xa = Pa(z,z) 0z + Qa(z,y) 0y, where

@) Pr(x,y) =Aox+ A2+ Bzy+ (1-N)y? +x(az?+Bry+vy?)
Qn(z.y) =y+ A -1a®+Azy+By* +y(aa® + By +vy?)

In these coordinates the point p is the origin and A\ # 1 is one of the charachteristic

values of F at p.

Notations : Given A = (\, A, B,a,3,7) € C% we will denote by Fj the
foliation defined by the vector field Xp = Pp0, + Qa0y, where Py and QA are as
in (2). The six dimensional family of foliations {Fx | A € C°}, will be denoted by
W.

The reduction mentioned above will be done in lemma 2.2 and Corollary 2.1.
In §2.2 we will apply the reduction of §3.1 to study foliations F € Fol,q(2,2) with
sing(F) = {p1, ..., pr} and satisfying the following properties :

(¢c). pr satisfies conditions (a) and (b).

(d). If 1 <i < j <6 then BB(F,p;) = BB(F,p;).

The following result will be proved :

Theorem 2. If b, ¢ {0,4,16} then

(A). There exists F € W with sing(F) = {p1,....ps,p7 = 0}, BB(F,p7) = by,
BB(F,pj) = (16 — b,)/6, 1 < j < 6. In particular, F satisfies conditions
(¢) and (d).

(B). Assume that the charachteristic values X\ and A\=! of F at p; satisfy

MA g {t|t=-50rt?+12t* -3t +2=0}:=A.
Then
Fo(F) W = Orb(F) 1 W = (F. " (F)}

where ¢(z,y) = (y,2).
(C). If X or X1 € A then Fy(F) is an exceptional fiber of BBz and

dim(Fy(F)) = 9. In particular, there are exactly four exceptional fibers
of BBy for which the generic element satisfies conditions (c¢) and (d).

As a consequence of Theorem 2 we will get the following :
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Corollary 1. Let G € Foln4(2,2) with sing(G) = {q1, ...,q7} and BB(G,q7) =b, ¢
{0,4,16} and BB(G,q;) = (16 —b,)/6, 1 < j < 6. Denote by \,A\"! and p,p~!
the characteristic values of G at g7 and q;, 1 < j < 6, respectively. Assume that
ML e A and

(3) atftyAl, Yae AT}, V8, y efpp}
Then Orb(F) = Fo(F), that is the orbit of F coincides with its BBa-fiber.

An example of foliation satisfying the hypothesis of Corollary 1 is Jouanolou’s
foliation of degree two, Js. It has no algebraic invariant curve and satisfies
BBy (J3) = [16/7,...,16/7], that is it has all Baum-Bott indexes equal (cf. [LN-
JP]). Moreover, the charachteristic values at a singularity are the roots A and A~*
of 722 =22+ 7 =0, so that \,\"! ¢ A and they also satisfies (3) in Corollary 1.
As a consequence we get the following :

Corollary 2. The Jouanolou foliation of degree two, Ja, satisfies Orb(Jz) =
Fy(Js).

We would like to remark that Zso(Jz) is a finite subgroup of Aut(P?) with 21
transformations (cf. [LN-JP]). The group Zso(Jz) will be used in the proof of
Theorem 1 in §2.5.

Remark 1.4. As a consequence of the proof of Theorem 2, we will see that there
is no foliation F € Fol,q(2,2) with sing(F) = {p1,...,p7}, BB(F,p1) = 0 and
BB(F,p;) =8/3,2 < j <7. In particular, [0,8/3,...,8/3] is not in the immage of
BBs (see Assertion 2.1 in section 2.2).

1.3. Examples and related problems. In this section we will see some examples
of exceptional fibers of the Baum-Bott map.

Example 1. Logarithmic and rational foliations. A logarithmic 1-form on P? is
induced by a closed meromorphic 1-form given in homogeneous coordinates by

k
dF;
Q—;)\]?¢07

J

where \; € C* and F} is a non-constant homogeneous polynomial of degree d; > 1,
1 <j <k, with

M=

Ajd;j=0.

Il
_

J
The above condition implies that £ > 2 and that there exists a closed meromorphic
1-form w on P2 such that I1*(w) = Q, where IT : C3\ {0} — P? is the canonical pro-
jection. The form w defines a foliation on P2, denoted by F(X, F), A = (A1, ..., Ak),
F = (F,..., Fy), of degree

dg(FI\F)) =dy+ ...+ dy, —2:=d(D) , D= (dy,....ds) .

Remark 1.5. When [\; : ... : X\g] = [mq : ... : my], where (mq,...,my) € ZF,
then F(A, F') admits a non-constant rational first integral, which in homogeneous
coordinates is expressed as F{"'...F}"*. This happens when k = 2, because d;.\; +
da. Ay = 0. Conversely, if F(\, F) admits a non-constant first integral then [A; :
.. © A\x] € P(ZF). Foliations with a rational first integral will be called rational
foliations.

Y
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Let us state some properties of F (A, F).
1. The algebraic curves S; := II(F; = 0), 1 < j < k, are F(\, F)-invariant.
Denote S = J; S;.
2. If S; is smooth for all j =1,..., k and the singularities of S are nodal then
S; NS; C sing(F(A F)), for all ¢ # j, and any point p € S; NS, is a
non-degenerate singularity of (A, F') and

A — A2
(@) BB(FOLF),p) = - 200
Yy
3. If p € sing(F(\, F)) \ S is non-degenerate then
5) BB(FO\F),p) = 0.
It follows from (4) and (5) that if (A, F') has only non-degenerate singularities
then the Baum-Bott indexes of its singularities depend only of [A] = [A1 :...: Ag] €

P*=! and not of F' = (FY, ..., Fy). Let us fix some notations.
Let P,, be the set of homogeneous polynomials of degree m on three variables.
Given D = (dy, ...,dy) € N¥ and A = (A1, ..., \), with Zj Aj.d; =0, set

P(D) := P4, X ... X Pq,, ,
Log(A\, D) ={F(\,F)|F € P(D)} CFol(d(D),2).
and
Logni(A, D) = Log(\, D) NFolya(d(D),2) .
Note that (4) and (5) imply that Log,q()\, D) is contained in a fiber of BBy(p).

Remark 1.6. It can be proved that Log,q(), D) is never empty. In fact, the set
{F € P(D)| F(\ F) has a degenerate singularity}

is a Zariski proper closed set of P(D). The dimension of Lognq(A, D) can be
calculated and in some cases it is greater than 3d(D) + 2, the dimension of the
generic fiber of BBy(p)-

Notation. Given D, F and A such that F(X, F) € Fol,q(d(D), 2) we will denote
the fiber BB(;(ID)(]-'()\, F)) by E(A, D). Note that Lognq(X, D) C E(X, D).

Remark 1.7. When D = (1,d+ 1), d > 2, then A\ + (d + 1) A2 = 0 and we can
take A = (—(d +1),1). In this case, d(D) = d and F(A, F) is defined by

dF; dF:

bt R

F R

Moreover, Fy/F*! is a rational first integral of F(\, F'). When the curves II(F} =
0) and II(F» = 0) are transverse and II(Fy = 0) is smooth then F(A, F') has d + 1
singularities with Baum-Bott index (d + 2)?/(d + 1) and d? with Baum-Bott index
0. Conversely, if G € Fol,q(d,2) has d? singularities with Baum-Bott index 0 then
G € Logna((—(d+1),1),(1,d+1)) (cf. [LN-JP]). In particular, in this case we have

Logna((—(d+1),1),(1,d+1)) =E(—(d+1),1),(1,d+ 1)) .

Q=—(d+1)

Moreover,

d+3

dim(E((—(d+1),1),(1,d+1)) = dim(P(Pay1))+dim(P(Py))—1 = < 9

> >3d+2 .
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In particular, if d = 2 this fiber has dimension 10. We would like to observe
that we don’t know any other fiber of BBy with dimension 10. This motivates the
following :

Problem 1. Is E((—3,1),(1,3)) the unique fiber of BBy with dimension 10 ¢

Remark 1.8. Given D = (di,...,dy) € N* set N(D) := Y7 dim(P(Py,)) =

2
Zle d"+23 4 Note that dim(Logna(A, D)) < N(D). However, in some cases the
equality is true. For instance, when one of the conditions below is fullfilled it can
be shown that dim(Lognq(A, D)) = N(d) :
2. k=2,dy <dsy and d; /rdg
3. k>3 and if [\o1) 1 ...t Agey] = [A1 ¢ ... 0 Ag] for a permutation o € Sy
then o is the identity.

We leave the proof to the reader.

For instance, if D = (1,1,2) and A satisfies condition 3 of remark 1.8, then we
have d(D) = 2 and N(D) = 9. In particular, we obtain that E(X,(1,1,2)) is an
exceptional fiber of BBs.

Let us state a related problem.
Problem 2. When E(X, D) coincides with Logna(A, D) ¢

For instance, if D = (1,...,1) € N¥ and k > 5 then d(D) = k—2 and N(D) = 2k,
so that N(D) < 3d(D) 4 2. In this case, Lognq(A, D) is always a proper subset of
E(\ D).

Example 2. Consider the pencil of foliations P := (Fa),cz C Fol(2,2), where
Fo, is defined in the affine coordinate system [z : y : 1] ~ (x,y) € C2 C P? by
Wao = Pa(x7 y) dy - ro('r7y) dx, with
Po(z,y) =4z —92° +y> + a2y —4zy)
Qalw,y) =6y — 122y +30a(2® —y?)
The following facts can be checked (see also [LN 1)) :
1. The line at infinity Lo, = (2 = 0) and the rational quartic @ defined by
4y? (1 —3x) — 423 + (322 + y*)? = 0 are F,-invariant, for every a € C.

Set S := Lo, UQ.
2. sing(Fo) ={J,K,L,M, N, P(a), Py(«)}, where

J=(1/2,-1/2), K=(0,0), L=(1/2,1/2), Pi(a) = <4(a2+1) —Sa > |

(@® 1 3)2 (a2 + 3)2

M=[1:v3i:0], N=[1,-v3i:0] and Py(a) = [1,,0] .

Note that J, K, L € @Q, M,N € Lo, N Q, Pi(a) € Q and Py(«) € Ly, for
all o € C.

3.If a ¢ {1,-1,00,v/3i,—/3i} then the singularities of F, are non-
degenerate and BB(F,,J) = BB(F.,K) = BB(F,,L) = 25/6,
BB(Fa,Pi(a)) = -25/6, BB(Fa,M) = BB(Fa,N) = 9/2 and
BB(F,, P:(a)) = —4/3.
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In particular, P is contained in the fiber
T := BB;'[25/6,25/6,25/6,—25/6,9/2,9/2, —4/3] .

On the other hand, it can be checked that Zso(F,) is finite for all & € C. This
implies that dim(Sat(P)) =9, so that T is an exceptional fiber of BBa.

Remark 1.9. The pencil P of this example is flat in the sense of [LN 2]. This
means that the unique meromorphic 1-form 6 which satisfies dw, = 0 A wq, for all
a € C, is closed (it can checked that 6 = %%). This also implies that the foliations
Fo admit a common affine transverse structure (cf. [Sc]).

Example 3. Observe that the typical foliation, in the exceptional fibers of examples
1 and 2, have some kind of projective transverse structure. However, as we will see
next, it is not true that in every exceptional fiber of the Baum-Bott map the typical
foliation has some transverse structure. Let P; = (Fu)acc be the l-parameter
family of foliations of degree two, where F, is defined by the vector field X, =
Py (z,y) 0 + Qulx,y) Oy, with

Py(z,y) = -bx+az?+6y*>+2 (76% a?x? - 36zy — %ayQ)

Qulz,y) =y —62>+ary+y (-G o 2> —36zy — 2ay?)

It can be checked that, except for a finite number of parameters, the foliation F,
has all singularities non-degenerate. Moreover, in the proof of Theorem 2 we will
see that if 7, € P; NFoly4(2,2) := Pynq then

BBy(F.) = [~16/5,16/5,16/5,16/5,16/5,16/5,16/5) := M

and that BB, ' (M) is an exceptional fiber with dimension 9. Concerning the above
family of foliations, the following result we will proved in §2.4 :

Proposition 1. Let « € C be such that F,, € Fol4(2,2). Then F, has no algebraic
invariant curve. In particular, F, has no projective transverse structure.

The problem of classification of the exceptional fibers of the Baum-Bott map
seems to be very dificult, even in the case of degree two. However, the following
one seems to be accessible :

Problem 3. Classify the exceptional fibers of BBg, d > 2, for which the typical
foliation has a projective transverse structure.

2. FOLIATIONS OF DEGREE TWO

In this section we will deal only with foliations of degree two. For this reason,
we will denote BBy := BB.

2.1. Reduction of the problem to dimension one. Let F € Fol(2,2) be a
foliation with a non-degenerate singular point p € sing(F). If we fix an affine
coordinate system (u,v) € C? C P? such that p € C? then F can be represented
in this coordinate system by a polynomial vector field Y, where Y (p) = 0 and
det(DY (p)) # 0. Let A1, A2 be the eigenvalues of DY (p) and A = A2/A\; be a
characteristic value of F at p. We will assume :

(a). A:=X2/A1 # 1. This is equivalent to BB(F,p) # 4.

(b). There is no F-invariant straight line through p € C2.
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Lemma 2.1. In the above situation there exists ¢ € Aut(P?) with ©(0) = p
and such that ©*(F) can be represented by a polynomial vector X = P(x,y) 0, +

Q(z,y) 0y with
(©) Plz,y) = e+ A2’ + Bay+ (1 -\ y* +z(aa? + By +7y?)
Qz,y)=y+A—-1) 2> +Azy+ By’ +y(az®+fry+vy?)

Proof. Since A # 1 the linear part of DY (p) is semi-simple and is conjugated
to L = Apx 0y + A y0,. Therefore, after an affine change of variables, we can
suppose that Y(0) = 0 and DY (0) = L. Set Y; := A\;%.Y. Note that V; =
P (z,y)0; + Q1(x,y)0, with

Pi(z,y) = Az + pa(x,y) + w g2(x,y) and Q1(z,y) =y + ¢2(2,y) + y 92(2,y)

where p3, g2 and g, are homogeneous polynomials of degree two.

Let R = 20, + y 9, be the radial vector field on C? and R the foliation defined
by R on P2. Denote by Tang(F,R) the divisor of tangencies between the foliations
F and R. Observe that Tang(F,R) N C? is defined by (G = 0), where

GO, NOy=A-1)"" V1 AR =
Gr,y) =zy+ A =17 " (ypa(n,y) — 2 ga(a,y)) == xy — Ga(z,y) .
We assert that, after a projective change of variables, we can assume that
Gla,y) =xy -2 —y*.

Let us prove the assertion. First of all, the cubic G(z,y) = zy — Gs(x,y) is
irreducible. In fact, since G3 is homogeneous of degree three, if G was reducible
then it would be divisible by « or by y. On the other hand, both curves (x = 0)
and (y = 0) are R-invariant. However, this would imply that F has an invariant
straight line through 0 € C?, which contradicts (b).

In particular, we can write

Gz,y) =xy — (az® +ba’y +cay’ +dy’)
where a,d # 0. Define T' € Aut(P?) by

Tew) = (2 ) = .
3

where (z,w) =1+ az+ Bw, p> =a2d L, P =a"'d 2, a=pband B =pc. A
straightforward computation shows that

T*(G)(z,w) = GoT(z,w) = pul 3 (zw— 2> —w?) ;= pul3G .

On the other hand, as the reader can check, we have

~ X
T*(R)=L.(20,+w0dy) :=¢Rand T* (Y1) = 7
where X = X1 4+ X5 + §o. R, with R = 20, + wy, X1 = A20, + wdy, Xo =
P2 0, + Ga Ow, D2, G2 and g homogeneous of degree two. This implies,
XAR=T*(ViAR) =T*(A—=1).G.0, A3y) = (A—1).G.9. Ay, ,

which proves the assertion.

In particular, there exists ¢ € Aut(P?) such that ¢*(F) can be represented by
X = X7 + X5 + g2 R. On the other hand.

A=1).G.0. N0 =X AR+ Xo AR=[A—1)zw+wps — 2G2] 02 N Dy =—>
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wpy — 23 =(1-N) (2 +u?) =
there exist A, B € C such that
Pr=AZ2+Bzw+ (1 - \)w?
Go=MN—-1)22+Azw+ Buw?

This proves the lemma. O

From now on, we fix an affine coordinate system (z,y) € C?> C P2. Set A =
{(\ A, B, 3,7) € CO| X #0,1}. Given A = (\, A, B,, 3,7) € A, we will denote
by Fa the foliation defined in the fixed coordinate system by Xt := P 0, + Q 0y,
where P and @ are as in (6). We will denote also

W={Fx| A=A B,apBy) €A},
Note that the map A € A — Fp € W is injective.
Remark 2.1. Let H C Aut(P?) be the group of invariance of the divisor defined in
the fixed affine coordinate system by (zy —2® —y3 = 0). Note that H is generated
by the transformations o(z,y) = (y,z) and 6(x,y) = (j z,j%y), where j = e27/3,
In particular, H is isomorphic to Ss, the group of permutations of three elements.
Moreover, as the reader can check, given A = (A, A, B, «, 3,7) € A we have
6%(Xa) = Xjn, » where 3(A) = (\,j A, 72 B, @, 8,5 7)
o*(Xa) = X\ X5(a) , where 6(A) = A"5UATIB AT A NIy A8, 0 )

which implies §*(Fp) = fS(A)’ o*(Fp) = Fs(ny and H* (W) = W.
Remark 2.2. The rational map BBJyy has generic rank six. In fact, let Fol(a, b)
be the set of foliations of degree two having a singularity which satisfyies conditions
(a) and (b). It follows from [LN] that Fol(a,b) contains an open and dense subset
of Fol(2,2). In particular, BB|F01(a7b) has generic rank six by Theorem 1.2. On the

other hand, lemma 2.1 implies that if F € Fol(a,b) then Orb(F) N W # 0. The
assertion follows now from the fact that BB is constant along the orbits of Aut(P?).

Lemma 2.2. Let A = (M A, B,a,8,7) € A and Fp be as before. Then there
exists a birrational transformation ®: P? —-» P2 and an affine coordinate system
(t,v) € C? C P? such that

(I). @1 is a biholomorphism in a neighborhood of sing(Fy) \ {0} and
O~ (sing(Fa) \ {0}) C (v=0) .
(IT). ®*(Fp) is defined by a vector field
Zn=A=1)t00 + (PA(t) + t.Qa(t) v + A t3?) 0,
where

7) PA(t) =t +BtO+ (A+ Nt + A+ B8+ )3+ (B+a)t?> + At + A
Qrt) =B =N +Bt2+ At+ (31 —1)

Proof. The foliation Fj is represented in the fixed affine coordinate system by
the 1-form

wr = Az +pa(2,y) + 2 g2, y)) dy — (y + q2(2,y) + y g2(x,y)) do |
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where
pa(w,y) = Az + Bry + (1 - \)y°
@(r,y) = (A=1)2* + Azy + By?
ga2(x,y) = aa® + Bry+yy?
We begin by a blowing-up 7 : (P2, D) — (P2,0) at 0 € C? C P?, where D = 7 1(0).
Consider the chart (t,z) € C?> C C? where 7(t,z) = (z,t.z). A straightforward
computation shows that 7*(wy) = x. 604, where
Or =z [A+ape(l,t)+2°go(L,t)] dt—(1=X) t—z(t® +1)] do .
Note that 7! is a biholomorphism in a neighborhood of sing(Fa \ {0}) and
7 (sing(Fa \ {0})) C (t — = (t* +1) = 0) \ (0,0) .
Define a birrational map ®; by
1
o (tv)=(t,———— ) = (¢,
1( U) ( U+1+t2> ( x)

with inverse

- 1 144
oMt a)=(t,~ — .
1 ( 7:C) ( 733 n )
In particular, <I>1_1 is a diffeomorphism in a neighborhood of (t —x(t3+1)= 0) \
(0,0) and
&7t ((t—2(t*+1)=0)\(0,0)) C (v=0).
Set @ := 7o ®;. Note that ®~! is a biholomorphism in a neighborhood of
sing(Fa) \ {0} and
O (sing(Fa) \ {0}) C (v=0).
On the other hand, a straightforward computation shows that
1

®1(02) = 37 (vt L+¢2

)3 °77A7

where
M= (Pa(t) +t.Qa(t) v+ Av?) dt — (A= 1) P vdv ,

where Py and Qp are as in (7). Since the dual vector field of n is Zp = (A —
D200, + (Pa(t) +t.Qa(t) v + A3 v?) 9, we get the lemma. O
Remark 2.3. Note that =1 (sing(F4)\{0}) = (v = Pa(t) = 0)\(0,0). Since P4 (t)
is monic of degree six, we can set Pa(t) = II9_; (t — 7;(A)), where 71(A), ..., 76(A)
are the roots of Pp(t) = 0. When Fj € Folpq(2,2) then

(i). 7(A) #0,if 1 <j <6.

(ii). m(A) #7(A),if 1 <i<j<6.
We will set ®(7;(A),0) = pj(A), 1 < j < 6. Note that sing(Fa) =
{O7p1(A)7 7p6(A)}
Corollary 2.1. Assume that Fp € Folnq(2,2). Let

_ Qi ()
(8) WA = M\W dt .

With the notations of Remark 2.3 we have
(9) BB(Fa,pj(A)) = Res(wa,t =7;(A) , 1<j<6.
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Proof. Let p;j(A) and (7;(A),0) := g, 1 < j <6, be as in Remark 2.3. Since
®(g;) = p;(A) and @ is a biholomorphism in a neighborhood of ¢;, we get
BB(Fp,pj(A) = BB(Za,q5) , 1 <j<6.
By assumption the singularities of Fx are non-degenerate, and so det(DZa(g;)) # 0,
which implies
tr*(DZa(g;))
BB(Z )=
( AaQJ) det(DZA(q]))

As the reader can check

tr(DZ(g;)) = 7j(A). Qa(7j(A)) and det(DZx(gy)) = (1-N). 75 (A)*. P{(7j(A)) =
QA (7 (A))

(1 =A). 7 (7). P{(7; (7))

Remark 2.4. The Baum-Bott theorem can be proved to a foliation as in Corollary

2.1 by using (9) and the residue theorem. In fact, if we consider the form wy as a

meromorphic 1-form on P! then it has eight poles : {0, 00,q1, ..., gs}. On the other

hand, it can be checked that

(3N —1)2 (A —3)?

A(1=2) A—1

Since BB(F,0) = (A +1)2/), we get from Corollary 2.1 and the residue theorem

that

BB(Zx,q5) = = Res(wa,t =71;(A)) O

Res(wp,t=0) = and Res(wp,t = 00) =

6 2 —1)2 —3)2
BB(Fa,0)+ Y BB(Fa,p;(7) = (Ail) - (j’(’\l _12) - (’\A _31) =16.

j=1
We close this section with the following auxiliary result :

Lemma 2.3. Let F € Fol,q(2,2) and assume that any singularity of F is contained
in a F-invariant straight line. Then F has a radial singularity.

Proof. The following fact is well known : let G € Fol,q(2,2) and £ C P? be
a straight line. Then ¢ is G-invariant if, and only if, it contains exactly three
singularities of G (cf. [Br]).

Assume that any singularity of F € Fol,q(2,2) is contained in at least an in-
variant straight line. Set sing(F) = {pi,...,p7r}. Through p; passes an invariant
straight line, say ¢;. The line ¢; contains two other singularities, say p. and ps,
and no other singularity. In particular, the invariant straight line through p,, say
{y, is distinct from ¢;. Since ¢ and ¢y are F-invariant the intersection ¢1 N /{5 is a
singularity of F. We can assume that ¢; N¢y = {p1}. Therefore, {5 contains the sin-
gularities p;, p4 and another one, that we can assume to be ps. Since pg, pr € £1Ul,
then they are contained in other two straight lines, distinct from ¢; and /5, say {3
and {4, respectively. We assert that {3 = ¢4 and it contains the singularities p1, pg
and pr.

In fact, if ¢35 # {4, then {3 contains four singularities of F : pg, €3 N €1, €3 Nl
and f3N ¥4, a contradiction. Therefore, /3 = ¢4 and ¢35 contains the singularities pg,
p7, €3N {1 and f3 N 5. Since it contains exactly three singularities, we must have
Eg ﬂfl = €3 ﬂeg = {pl}.

In particular, the singularity p; is contained in three, two by two, distinct F-
invariant straigh lines : ¢, o and £3. If X is a holomorphic vector field defining



FIBERS OF THE BAUM-BOTT MAP FOR FOLIATIONS OF DEGREE TWO ON P2 13

F in a neighborhood of p; then the linear part of X at p; must be of the form
AR, where R is the radial vector field and A # 0. This implies that p; is a radial
singularity of F. (]

Corollary 2.2. Let F € Folnq(2,2) and assume that BB(F,p) # 4 for all p €
sing(F). Then F has at least one singularity satisfying conditions (a) and (b).

2.2. Proof of Theorem 2. With the notations of lemma 2.2 and Remark 2.3, we
want to prove that there exists A = (A, A4, B, o, 8,7) € A such that Fx € Folyg(2,2)
and sing(Fa) = {0,p1(A), ..., p(A)} satisfy BB(Fa,0) = (A+1)?/X and

BB(Fp,pi(A)) = BB(Fa,pi(A) i=p, 1<i<j<6.

Since BB(Fa,0) = (A + 1)2/), it follows from Baum-Bott theorem that p must
satisfy
A+ D?

1 =16 .
(10) 6u+ 3 6

By lemma 2.2 and Corollary 2.1, this is equivalent to prove that there are polyno-

mials Py (t) and Q4 (¢) as in (7), such that the form wy = % has all residues

at the roots of Py(t) = 0 equal to p and Res(wp,0) = (3X — 1)2/A(1 — \) = a.
Since dg(Q3) < dg(t Pp), if we set Py(t) = IIS_, (t — 7;), we must have

6 6
a Res(wa, ;) a 1 a P{(¢)
|2 e T = | 2 at = (¢ dt .
o= |7+ tﬂ‘;t—rj RN

In other words, we have to find A € A such that the identity below is verified :

QA (t) a P
t

(11) A=N.tP) ¢ PR

+p

where,

PA(t) =t + BtO + (A+ )Nt + A+ 8+ D)3+ (B+a)t? + At + )\
QrAt) =B-Nt*+Bt*+At+3X—1 '

After setting a = (3 — 1)?2/A(1 — A) in (11), we obtain the following equivalent
identity :

(12) AL =X ptP{(t)+ (BN —=1)?Pr(t) = AQ3(t) =0 .

Identity (12) impose conditions on the coefficients of ¢, ...,t5 of the right hand
side involving the parameters A\, A, B, a, 8 and . Let us prove that they have a
solution, if we assume (A +1)2/\ ¢ {0,4,16}. If we substitute (7) and (10) in (12)
then we find the following coefficients of ¢ and ¢° :

{coeff. oftin (12) :  L(A+5)(A-1)2A4=0

(13) coeff. of 5 in (12) : L (5A+1)(A—1)%.B =0

Since A # 1 the equations in (13) imply that we have three possible cases :
Case 1. A\=—-5 = B=0and AcC.
Case2. A\=-1/5 = A=0and BeC.
Case 3. M\ #£ -5 = A=B=0.
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Analysis of cases 1 and 2. In case 1, if we set B =0 and A = —5 in (7) then we
get :

coeff. of 3 in (12) : —-328-1152=0 = B =-36
coeff. of 2 in (12) : 64a+542=0 = a=-5A?/64
coeff. of t*in (12) : —128y —484=0 = ~y=-3A4/8

In particular, A = (=5, 4,0, -5 A2 /64,36, -3 A/8) and Fp = Fx,, where X =
P40y + Qa0 and

5 3
Py=-b5x+Az?+6y* 4z (—A2x2 —36zry — SAyQ)

64

5 3
Qa=y—62>+Ary+y (—64142302—36:Ey—814y2>

Therefore, we get the 1-parameter family of foliations & = (Fx,)acc. As the
reader can check, for any A € C then Zso(Fx,) is finite. This implies that

dim(Sat(&y)) =9 .

On the other hand, BB(Fx,,0) = —=5 —1/5+4 2 = —16/5, which implies u = 16/5
and
BB(Fx,) = [-16/5,16/5,16/5,16/5,16/5,16/5,16/5] := M .

In particular, the fiber BB~ (M) is exceptional, because it contains Sat(&p).

We would like to observe that Remark 2.1 reduces case 2 to case 1 : let
o(z,y) = (y,x). In Remark 2.1 we have seen that o*(Fp) = Fsn) where
G(A) = AWVELATIBATIA NI A8, 07 ta). On the other hand, we have
found in case 1 A = (—5,4,0,—5A?/64,—36,—3 A/8), which implies 6(A) =
(=1/5,0,—A/5,3 A/40,36/5, A2/64). If we set B = —A/5 then we get the solution
of case 2 :

6(A) = (~1/5,0,B, -3 B/8,36/5,25 B*/64) .

Analysis of case 3. If we set A = B = 0 then we get :

coeff. of t*in (12) : F [(A+1)3B+ (N2 +18A+1)(A—1)2] =0
(14) coeff. of t2 in (12) : Fa(AN+ 1202 -3X14+2)=0
coeff. of t*in (12) : FY(2A=3A2+12X+1)=0

Before going on in the analysis of case 3, let us prove the assertion of Remark
1.4.

Assertion 2.1. We assert that there is no foliation G € Fol,,4(2,2) with sing(G) =
{plv"'7p7}7 BB(QaP?) =0 and BB(f7p]) = 8/37 1 SJ <6.

Proof. Assume by contradiction that there exists a foliation G as above. We will
prove first that there is no G-invariant straight line through p~.

Assume by contradiction that there is a G-invariant straight line ¢ through ps.
Since the singularities of G are non-degenerate, ¢ contains exactly three singularities
of G, p1 and two others, say ps and pg. In this case, by Camacho-Sad theorem we
must have (cf. [Br])

(15) CS(Q,&p5) + C’S(Q,E,pﬁ) + 05(97&]97) = 01(5)2 =1.
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In our case, C'S(G,p;) coincides with one of the characteristic values of G at pj,
5 < j < 7. The characteristic values of G at p; and pg are 1+23‘/§i and 1*23‘/51',
whereas the characteristic value at p; is —1. Therefore, (15) is impossible and
there is no G-invariant straight line through ps.

In particular, there exists an affine coordinate system (z,y) € C?> C P? where
G can be represented by a vector field X, where A = (A, A, B,a, 3,7), A = —1.
Since A ¢ {5,1/5} we are in case 3. In particular, we get A = B =0 and «, 3,7
satisfy (14). However, the first equation in (14) has no solution if A = —1. This
finishes the proof of Assertion 2.1. O

Let us continue the analysis of case 3. Since A # —1 the first relation in (14)
implies that
(A2 +18A+1) (A —1)?
= — = )\ .

Since the polynomials A3 + 122 —3X +2 and 223 — 32 4+ 12\ + 1 have no
common roots, from the second and third relations in (14) we get three sub-cases :

Case 3.1. M3+ 12X —=3X+2#0and 2X3 —3A2 + 120 +1#0 = a=+v=0.

Case 3.2. M3 +12X%2 =32 +2=0and 2X> —3X2 +12A+1#0 = ~ =0 and
a e C.

Case3.3. M +12X2 —3X+2#0and 2X3 —3X2 +1204+1=0 = o =0and
v e C.

Analysis of case 3.1. In this case, we get A = (A,0,0,0,3(1),0) := A(A). In

particular, if we set
Xo=Az+ 1=y +8N)2%y) 0.+ (y+ A =1 2>+ B\ zy?) 9,

then the foliation Fa(x) = Fx, satisfies (A) of Theorem 2.

Let us prove (B) of Theorem 2. From Remark 2.1 we get o*(Fan)) = Foa(n)
where 6(A(N)) =
(2,0,0,0,5(),0) = (A71,0,0,0,A71. B(A),0) = (A™,0,0,0, (A" 1),0) = A(ATH) .
In particular, the unique solutions of identity (12) with A\,A"! ¢ A and re-

quired Baum-Bott indexes are A(A) and A(A™1). In particular, F (Fyn)) NW =
{fA()\),fA(/\—l)}. Since fA()\—l) = 0*(.7:/\@)) € Orb (.7:/\(/\))7 we get

(16) Fy (.FA()\))QWZOTZJ (.FA()\))QW .
This proves (B) of Theorem 2.

Analysis of cases 3.2 and 3.3. In case 3.2 we get A = (X,0,0,a, 5(A),0), where
a€C, N +12X2 -3 +2=0and B(A\) = —(A2+ 18 A+ 1)(A = 1)2/(A + 1)3.

Let A, A2, A3 be the roots of s + 1252 —3s+2 = 0. For each i = 1,2,3 and
each o € C we get the foliation F;, := Fyx,,, where X;o = Pio 0 + Qiq 0y and

Po=XNz+(1-)\)y*+x (cw:2 +ﬂ()\i)xy)

Qio =y+ N —1)2? +y (az®+ B(N) zy)
In this way, we get three one-parameter families of foliations & = (Fia)acc C
Fol(2,2), i« = 1,2,3. For fixed ¢ € {1,2,3} and a € C set sing(Fin) =
{0,pi (@), ..., ps(a)}. If Fip € Folya(2,2) then :
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b BB(fzomO) = (/\z + 1)2//\1 and
o BB(Fia,pi(a)) = (16—BB(Fiq,0))/6 = —(A7 =14 X;+1) /6 \;, if 2 < j < 7.
Since ); is a root of 53 + 1252 — 3 s +2 = 0, we have
: 1
BB(Fia,pj(@) = 15 (A +5)2,2<5<7,

because

214 1 1
,% = E(s+5)2 md(s® +12s% — 35+ 2)
In particular,
N+ 1) 1 2 L 2| ._
N 12 (A +5)%, ..., 12(/\Z+5) =M,

and
& CBB M) = Sat(&) c BBHM;) .
As the reader can check, for any o € C the group Zso(F;) is finite. This implies
that
dim(Sat(&;)) =9 =
BB~'(M;) is an exceptional fiber.

Finaly, case 3.3 can be reduced to case 3.2 by using Remark 2.1 as we have done
to reduce case 2 to case 1. This finishes the proof of Theorem 2.

2.3. Proof of Corollary 1. Let G € Fol,q(2,2) with sing(G) = {p1, ..., 7}, where
e The charachteristic values of G at py are A, A1, where A ¢ {1, -1} U A.
e BB(G,pi) = BB(G,p;) #0if 1 <i<j <6.
o If p, p~! are the characteristic values of G at any of the points p1, ..., ps then
condition (3) of the hypothesis of Corollary 1 is verified.

We would like to observe that condition (3) and Camacho-Sad theorem imply that
there is no G-invariant straight line through p;. It follows from lemma 2.1 that there
exists Fp € Orb(G) N W, with A = (A, A, B, «, 3,7). Note that F»(G) = F3(Fa).

On the other hand, A satisfies the conditions of case 3.1 because A\, A\~ ¢ A. In
particular, A = (},0,0,0,3(\),0) and (16) implies

E(G)NW = Fo(FA) NW = {Fp, 0" (Fa)} C Orb(G) =
F5(G) = Sat(Fy(G) N W) C Sat(0Orb(G)) = Orb(G) =
Orb(G) =F»(G). O

2.4. Proof of Proposition 1. Consider the family of foliations (F,)qcc of Propo-
sition 1. Recal that F, is defined by the vector field X, = P, 9, + Q4 0y, where

Py(z,y)=-bz+az?+6y*+z (—Za?2? —36zy— 2 ay?)
Qalz,y) =y—622+azy+y (—Fo?a? —36zy— 3ay?) -

Fix @ € Csuch that F := F, € Fol,q(2,2) and set sing(F) = {p1, ..., ps, p7 = 0}.
Since BB(F,0) = —16/5 and BB(F,p;) = 16/5 if 1 < j < 6, its charachteristic
values are :

(1) )\71 = —5, )\72 = —1/5 at Pr-

(11) )\jl e (3—|—4Z)/5 and /\]’2 = (3 —42)/5 at pj, 1<j5<6.

Since A\j; ¢ Q4,1 <7 <7,i=1,2, we get
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(iii). There are exactly two analytic separatrices, say Sj;, ¢ = 1,2, of F through
pj, which are smooth, 1 < j < 7. Moreover, we can choose the charachter-
istic values at p; in such a way that CS(F,S;;) = A, 1 <j <7, 1=1,2,
where C'S denotes the Camacho-Sad index (cf. [C-S]).

Now, suppose by contradiction that F has an irreducible invariant algebraic

curve, say Z. Let

AZ)={(,1) |1<j<7,1<i<2and Z D S;}.

It follows from a version of Camacho-Sad theorem in [LN] that

(iv). A(Z) # 0 and A(Z) is a proper subset of {(j,4) |1 <j <7, i=1,2}.

(V) X (iyeacz) Nii = 3dg(Z) — X(Z*) € Ly, where X(Z*) denotes the Euler
charachteristic of the normalization of Z.

As the reader can check, there are only three possibilities for the above sum to be
a positive integer :

1t b+ (E+E)+(E-40)=1
nd . 545 x f(gisi)+5§—5)¢)]=1
I R LR (EEDIEL

In the first two cases we get
3dg(Z)-X(Z")=1 =

Z is a F-invariant straight line. since —5 and —1/5 are the charachteristic values
of F at 0, we get 0 € Z. But, F has no invariant straight line through 0, and so
the first and second cases cannot happen for the curve Z.

In the third case, the curve Z contains five separatrixes with Camacho-Sad index
(34 414)/5 and five with index (3 —41)/5. Since F has six singularities with these
charachteristic numbers, the curve Z must contain k € {4,5} pairs of separatrices
through the same singularity. These points are nodal singularities of Z. If we set
dg(Z) = d then the genus formula for nodal curves implies that

(d—=1)(d-2)

5 — k>0 — d®-3d+2>2k>8 — d>5.

9(2%) =
This also implies that
X(Z*)=2-29(Z") = —-d* +3d+ 2k .
Therefore, from 3d — X (Z*) = 6, we get
3d—(—d*+3d+2k)=6 = d*=6+2k = d=4andk=5,
a contradiction. This finishes the proof of Proposition 1.

2.5. Proof of Theorem 1. The idea is to use Corollary 2 and the fact that the
isotropy group of the Jouanolou’s foliation of degree two has 21 elements.

Jouanolou’s foliation of degree two, Jo, can be defined in some affine coordinate
system (z,y) € C? C P2 by the vector field

X;=(01-29?) 0+ (2 —9*) 9, .
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in the above affine coordinates (cf. [LN-JP] pg. 1566). For instance, the reader can
check that T%(X ;) = (> X; and S*(X;) =y~ . X .
The singular set of Js is the orbit of py = (1,1) by T :
sing(Jo) = {p1,...,pr} , where p; ;=TI "1(1,1), 1 <j<7.
This implies that
BB(J2,pi) = BB(Ja,pj) , V1<i<j<T,

and so,

BB(Ja,pj) =
by the Baum-Bott theorem.

Remark 2.5. The charachteristic values of the Jouanolou foliation Jy at any of
its singularities are A, and )\;1 = ),, where )\, = %. Since Jy satisfies the
hypothesis of Corollary 1 we have :

° OT’b(JQ) = FQ(JQ)

o Orb(Jo) N W = {Fa,,Fa,}, where A1 = (X,,0,0,0,8(X,),0) and Ay =

(Toa 07 07 07 5(>\70)7 0) .

Since all singularities of J, are non-degenerate we can find a neighborhood U,
of J3 in Folyq(2,2) and holomorphic functions P;: Uy — P2, 1 < j < 7, with the
following properties :

(1). Pj(J2) =p;, 1 <j<T.

(ii). For all F € U; we have sing(F) = {P1(F), ..., Pr(F)}.

For each j € {1,...,7} fix a small ball W} in the Fubini-Study metric, centered at
pj, 1 <j <7, in such a way that W; N W; = (0 if i # j. By taking U, small we can
assume that

Define B : U; — C7 by

B(F) = (BB(F,P\(F)),.... BB(F, P;(F)) := (B1(F), .., Bz (F)) .

By Baum-Bott theorem we have B(U;) C X, where

7
S =4 (b1, b)) €CT| > b =16
j=1

On the other hand, in Theorem 2 of [LN-JP] it is proved that the map B has rank
six at Jo. As a consequence, there exist neighborhoods Us C U of Jo in Fol,4(2, 2)
and Vs of (16/7,...,16/7) in ¥ such that By, : Us — V» has rank six.

Recall that Orb(J3) is a smooth submanifold of Fol,q(2,2) of dimension eight.
A transverse section to Orb(Jz) through Js is, by definition, the immage I of an
embedding f : U — Fol,q(2,2), where U C C® is a neighborhood of 0 € C°, such
that f(0) = J; and T is transverse to Orb(J3) at Ja.
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Let us fix some notations :
(D). by := B(J2) = (16/7,...,16/7).
(IT). Given b = (by, ...,b7) € C” we will denote [b] = [by, ..., b7], the immage of b
by the symmetrization map C7 — C7/Sj.
(ITT). Given o € S7, we will denote by & : C” — C7 the map defined by
&(bl, . b7) = (ba(l)a ey bg(7)) .
Note that 6(X) = ¥ for all o € S7.

Lemma 2.4. There exists a transverse section I' to Orb(Jz) with the following
properties :
(A). T C Us. Moreover, if we set V := B(I') C ¥ then Blr : ' = V is a
biholomorphism.
(B). T is Zso(Ja)-tnvariant. In other words, o*(I') =T for all ¢ € Tso(Js).
(C). V is invariant by the action (o,b) € S7 x C” — &(b) € C". In other words,
(V)=1V forallo € S;.
(D). If F1,F5 € T are in the same orbit then there is ¢ € Iso(Jz) such that
Fo = @*(F1).
The proof of lemma 2.4 will be done at the end of the section.
Corollary 2.3. Let T and V = B(T') be as in lemma 2.4. Given b €V set N(b) =
the number of orbits contained in BB~ [b] cutting T”. Then :

(A). If b€ V then N(b) divides 240.
(B). If b= (b1,...,b7) € V is such that b; # b; for all i # j then N(b) = 240.

Proof. By (A) of lemma 2.4 the map B|r : I' — V is a biholomorphism. Given
b € V we will denote F}, := (B|r)~!(b) € I. With the above notations we have
fbo = Jo, B(fb) = b and BB(f&(b)) = [b] for all o € S7.

Let us introduce a group homomorphism ® : Zso(Jz) — S7. Given F € I' and
¢ € Iso(Jy) we have o*(F) € T, by (B) of lemma 2.4. If Y is a vector field defining
F then the vector field p*(Y) = (dp)~1.Y o ¢ defines ¢*(F). In particular,

p € sing(p"(Y)) <= o¢(p) € sing(Y) =

p € sing(¢*(F)) <= ¢(p) € sing(F) = sing(F) = p(sing(¢™(F))) -
Since

sing(F) = {PL(F), ..., Pr(F)} and sing(¢"(F)) = {PL(¢"(F)), -, Pr("(F))}
there exists an unique permutation ®(yp) € S; such that
(17) Popy)(F) = @(Pi(¢™(F)) , 1<j<T.
It can be checked by using (17) that ® is a group homomorphism and that

(T)(1,...,7) = (7,1,2,3,4,5,6) and (S)(1,...,7) = (1,5,2,6,3,7,4) .

This implies that ® : Jy — ®(Jz) = (P(T), ®(S)) is a group isomorphism. In

particular,
#D(Jy) =21 .

Remark 2.6. If F € T" and ¢ € Tso(Jz) then, with the notation of (III), we have

B(¢*(F)) = 3(9)(B(F)) .
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Proof. f F € T and ¢ € Tso(Jz) then it follows from (17) and the definitions
that,

B(¢"(F)) = (BB(¢"(F), Pr(¢"(F))); ... BB(¢" (F), Pr(¢™(F)))) =
= (BB(¢*(F), ¢~ "(Po(o)(1) (" (F)))), ey BB(&* (F), 0 (Po(eyn) (¢*(F))))) =

— (BB(F, Pa(p)1)(F))s s BB(F, Pagoyn)(F))) = 2(9)(B(F) O

Now, fix b = (b1, ...,b7) € V. Clearly,
BB ' NT = {Fsp) | 0 € S} = #(BB'[BNT)=711!.

On the other hand, if 01,02 € S7 are such that F; () and Fs, () are in the same
orbit then there exists ¢ € Zso(J2) such that

" (Fo1(0)) = Faav) >
by (D) of lemma 2.4. Tt follows from Remark 2.6 that

62(0) = B(Foy)) = B¢ (Far ) = () (B(For ) = B()(61(D) = () 0 01(b) -

If we assume that b; # b; for i # j, then the above relation implies that 7 ()
and Fj, ) are in the same orbit if, and only if, oo = ®(p)ooy, for some ¢ € Tso(.Js).

In particular, we obtain that N(b) = ”the number of lateral classes of the subgroup
®(Iso(Jz)) in S7” 4 = 240.

In the general case, we obtain that Fj () and Fj,() are in the same orbit if,
and only if, the permutation o := o5 o ®(¢) o oy satisfies G(b) = b. This implies
that N(b) = "the number of lateral classes of ®(J3) in some subgroup of S7 that
contains ®(J3)”, which is a divisor of 240. O

The proof of Theorem 1 will be achieved if we show that there exists a neigh-
borhood V3 C V of by in X such that for any b € V; then any orbit contained in
BB~ '[b] cuts the transverse section T. In fact, if this is true then :

e for any b € V; the number of orbits contained in BB~ [b] is at most 240.
e for any b = (b1, ...,b7) € Vi, with b; # b; for all ¢ # j, the number of orbits
contained in BB~1[b] is exactly 240.

By using the above facts, Theorem 1 will be a consequence of the following :

e if the fiber of b € ¥ is not exceptional then each orbit contained in BB™*[b]
is an irreducible component of BB~![p].

e if the fibers of b,b’ € ¥ are not exceptional and the fiber of b is generic
then the number of irreducible components of BB~ [b'] is < the number of
irreducible components of BB~ *[b].

e the set {b € ¥ | BB~ '[b] is a generic fiber} is open and dense in ¥.

e the set {b € Vi |b= (b1,...,b7) and b; # b; if ¢ # j} is open and dense in
Vi.

The existence of a neighborhood V; as above will be a consequence of the next
result.

Lemma 2.5. Let (F,)n>1 be a sequence in Folyg(2,2) such that ¢im BB(F,) =
- n—0oo
[bo]. Then there exists n, € N such that Orb(F,) NT # 0 for all n > n,.
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Proof. Since T is a transverse to Orb(J2) at Ja, it is sufficient to prove that Jo
is in the adherence of J,, Orb(F,). We will prove first that F,, has at least one
singularity satisfying conditions (a) and (b) of the hypothesis of lemma 2.1, for n
large. Set sing(F,) = {p},...,p%}.

Since nhj)ozo BB(F,) =[16/7,...,16/7] we get

16
tim BB(Fop}) = = , Vi € {1,..,7} .
In particular, there exists n; € N such that if n > ny then BB(F,,p}) # 4,
1 < 5 < 7. Therefore, Corollary 2.2 implies that F,, has at least one singularity
satisfying conditions (a) and (b) and we can apply lemma 2.1 to F,, for large n.
Without lost of generality, we can assume that the singularity p? of F,, satisfies
conditions (a) and (b) for all n € N. Let \,,\;! be the charachteristic values of
F, at p?. Since lim BB(F,,p%) = 16/7, we get lim {\,, \;1} = {Xo, Ao}, where
Mo = (1 +4+/34)/7. Without lost of generality, we can assume that fim A, = \,.

n—o00
In particular, if we fix an affine coordinate system (x,y) € C? C P2, then there
exists Ay, = (A\n, An, B, G, BnyYn) € C8 such that G, := Fp, € Orb(F,). In this
coordinate syatem G,, is represented by the vector field X,, = P,,0, + @,,0,, where

Po=Xz+ A, 22+ Byzy+ (1 -2y + 2 (2?2 + Buzy + v y?)
Qn :y+(>\n*1)5U2+Anxy+Bny2+y(anxz+ﬂnmy+7ny2)

It is enough to prove the following :
Assertion 2.2. lim A, = (X1,,0,0,0,8(X,),0) := A,. In particular, lim G, =
]:AD S OT‘b(JQ)

Proof. Assume first that the sequence (A,),>1 is bounded in C. In this case,

it is enough to prove that any convergent subsequence of (An)n21 converges to A,.

Without lost of generality we will suppose that fim A, = (X, Ao, Bo, @0, Boy Vo) =
n—oo

A, € CS. Let w, = wy,, be as in Corollary 2.1,

(1)

Wy = —— gt
(1 =Ap)tpa(t)
where
(18) pn(t) =5 + B,t° + Ogt4 + D2nt3 + B t? + Apt + A\
gn(t) = (B3 =A)t° + Bpt*+ At + 30, — 1 ’

with C,, = A, +vn, D = A+ 6p + 1 and E, = B, + «a,,. In particular,

. a5 (t) _
fim wn =Wy, = (1= Xo) tpo(t) dt = wo ,
where p,(t) and ¢,(t) are as in (18) with n = o. Denote by 77, ..., 7 the roots
of po(t) = 0. Let ® : P2 --» P? be the birrational transformation of lemma
2.2. Choose the roots 77, ..., 78 of p,(t) = 0 and the singularities ¢7,...,q¢ of
Gn in such a way that ®(77') = ¢}, 1 < j < 6, n € N. Since Res(wp,0) =
(3= An)?/(An-(1 = An) := pin and Res(wp, 7)') = BB(Gn,q}), 1 < j <6, n €N, we
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can write
6
n BB(Gn.q!
(19) o= [t 5 BB

Since lim BB(Gn,q;}) = 16/7 for all j € {1,...,6} and the roots of p,(t) = 0

converge to the roots of p,(t) = 0 we obtain from (19) :

o 16 (3—X0)?
14 n = | = dt , po =
W P 7Zt— 0 Ao(1— A)
j=1 J
This implies
po , 16po(t) _  ax(t)

t 7 po(t) B (1 - /\o)pl)(t) ‘

On the other hand, since A\, ¢ A, as we have seen in the proof of Theorem 2, the
above equation in p, and ¢, implies that A, = (),,0,0,0, 3(\,),0) = A,. Therefore,
bim A, = A,.
n—oo

Let us assume, by contradiction, that the sequence (A,)p>1 is unbounded. It
follows from (18) that the components of A, are symmetric polynomial of 7" :=
(1, ..., 78), n € N. In particular, the sequence (7"),>1 is unbounded. By taking
subsequences and reordering the roots, if necessary, we can assume that :

I tim 7" =
n—oo

II. The sequences (T]n)nzl converge in P!, 2 < j < 6. In other words,
fim T”zrfE(CU{oo},2§j§6.

n—oo J

Since py, (t) is monic and its constant coefficient is A, we get

70 =Xy = limIO5_ 7' =X, ¢ {0,00} =

there exists j € {2, ...,6} such that fim 7" = 0. Set k := #{j | lim 7[' = oo} and
Ci= {7 | tim 7} =0} > 1.
n—oo
By reordering again the indexes j = 2, ...,6, we can assume that
(II1). tim T =00,1<j <k

n—oo

(IV). tim ' =0,k+1<j<k+¢

n—oo J

(V). Itk +¢ <6 then fim 7' =72 € C\ {0}, k+(+1<j <.

Now, we use that BB(Gn,q}) = Res(wy,7}') and lim BB(G,,q}) = 16/7,1 <
7 < k. Note that

BB — R . 0 (7}") _
(G, q5) = Res(wn, 75') = (1= Xp) TP pL(Th)
nJty Fnltg

2

B (B=A) ()3 + Bn (T])2 + Ap 7 + 30, — 1) .
- (1= M) i (7 = 77)

(3 = An) + Bu/0 + A /(T1)2 + (BN — 1)/ (1))

(20) BB(Gn,qj) = (1= M) (1L — 72/ 77)
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We will use also the relations below, that follow from (18),

(21) Bp=—('+..4+7)and Ay =— Y 7.7,

J1 J5
J1<...<Js

Let us prove that £ > 2 and ¢ > 2. Assume by contradiction that £k = 1. In
this case, fim 7{* = oo and fim 7} is finite for j > 1. Therefore, (21) implies

n—oo n—oo J

tim (‘?,;'32 = 0 and fim Bl,’: = —1. It follows from (20) and ¢im BB(Gn,q}) =
16/7 that

n—oo

(1= X)L (1 — 7t/ 77)

which contradicts A, = (1 +4v/34)/7.

0 _ gy ({02 BT (0 DI _ 20

By the same reason, £ > 2. In fact, by considering the change of variables t = 1/s
we get the expression of the form w, in a neighborhood of ¢t = oo :

n(s)

(1 —1/\) 55n(5) ds

W =
where
ﬁn(s):56+%55+%84+%83+%52+%5+i
an(s) = @fﬁ) 83+f\1—:sz+f—:s+%fl
Since the roots of p(s) = 0 are 1/7* := (7', 1 < j < 6, we have £ = #{j| n&l& G =
oo}. Hence, by the same argument as before we get £ > 2.

Let us prove that k£ > 3 and ¢ > 3. Suppose by contradiction that k = 2. Since
¢ > 2, we have lim (' = lim 73’ = oo, lim 73 = lim 7' = 0 and lim 77" € Cif

n—oo n—oo n—oo n—oo n—oo

j > 4. By taking subsequences and reordering again, if necessary, we can assume
that fim 22 =z € C. In this case, (21) implies that fim (ﬁ;'sz =0and lim Bz =
n—oo 1 n—oo 1 n—oo 1

—1 — z. Therefore,

i (OB A0 /)Y (2

(1= AT (1 —777/7) A-x)-2

n—oo

16 (A+1)?2 2= —2)?

7 Ao (1-=X)1—2) "
If © = 0 we get the same contradiction of the precedent case. On the other hand,
if 2 # 0 then fim 53, =0 and lim Z& = —1—1/x, which implies
n—oo 2 n—oo '2

i (B2 4 B/ & A /()% + (3o = D/(5))*) _ (2= A= 1/2)?
(= Mgl = 7/7) 0=2)(1=1/2)

n—oo
and so
Mo+ 1)2 (2—X — x)2 (2—=X — 1/95)2 16

o IT-X)1-2) (A-X)A-1/z) 7°
It can be checked that there is no z € C satisfying the above relations. This
contradiction proves that k > 3.
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As in the preceding case, by considering the expression of w,, after the change of
variables t = 1/s, it can be proved that ¢ > 3. We leave the details of this proof to
the reader.

Therefore, we must have k = ¢ = 3, so that ¢im 71" = o0, if 1 < j < 3, and

n—oo J

lim " =0, if 4 < j < 6. In particular, from (19) we get ¢im w, = w,, where

n—oo J

1 16 64 80\/3_
o — t i o :
w —td‘fO M1 u+3><7 - 21 1#0

The contradiction will be provided by a more general result, in which we don’t
assume lim BB(Gn,q}) =16/7,1<j <6.
n—oo

Lemma 2.6. Let w,, = %dt be as in (19) and 7", ..., 78 be the roots of

pn(t) = 0. Assume that :
(1). tim N\, =X e C\{1}.
2). lim w, = £+ dt, where uy € C.

( 7
(3). tim ™ = o0, if j =1,2,3, and lim 7" =0, if j = 4,5,6.

n—oo J n—oo J

Then py = 0.

Proof. Given a polynomial ¢(t) = ag t* + a1 t*~* + ... 4+ a, of degree k (ag # 0),
set [¢] := [ag : a1 : ... : ax] € PF. For instance,

[gn] = [3 = An: Bn: Ap i3, —1] €P?
and
[pn] =[1: B, :Cp:Dy: Ep: Ay )\, €P5 .

It follows from (1) and (3) of the hypothesis of lemma 2.6 that the sequence
(Bpn,Cp, Dy, Epy Ay) € CP is unbounded and

tim [p,) =[0:0:0:1:0:0:0] € PS |

n—oo

which means that there exists a sequence (cp), in C with ¢im ¢, = 0 and
n—oo
lim cp.pn(t) = t3.
n—oo
We have two possibilities :

15t. The sequence (A, B,) € C? is bounded. In this case fim w, = 0, because

(Bn, Cn, Dy, E,,, Ay,) is unbounded.
27d (A, B,,) is unbounded. In this case, we get
lim [qn] =[0: By: A, : 0] € P3 .
This means that there exists a sequence (d,), in C with ¢m d, = 0 and
n—oo
lim dy.q,(t) = Bot> + Ayt # 0. In particular, we get
n—oo
d? Bot? 4+ A, t)?
lim 2w, = # dt .

n—o0 Cp, (1—=X)¢t
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Suppose by contradiction that p; # 0. In this case, the above limit and the
hypothesis (2) of the lemma imply that
B2 + A, t)?
lim =1 — g , Wt .
n—oo ¢, pr (L —=A)t3

2
However, this is impossible, because fim % is a constant and the right hand side
n—oo ~m

is not. d
This finishes the proof of lemma 2.5. ]

Proof of lemma 2.4. Let S, T and X; be as before. As we have mentioned, we
have T*(X ;) = ¢2 Xy and S*(X;) =y~ 1. X;. Denote by X the set of polynomial
vector fields of the form p(z, y) 0, +q(x,y) Oy+g(z, y) R, where maz(dg(p), dg(q)) <
2, g(z,y) is homogeneous of degree two and R = = 9, + y d,. Note that

X={(2"y 0y, 2"y 0, 2" y'R|0<i,jk, <2, k+l=2andi+j<2),

and Fol(2,2) ~ P(X). We will consider Fol(2,2) parametrized in homogeneous
coordinates by X

A vector field in the set

P={'y 0, 2"y 0y, 2" y' R|0<i,j,k, <2, k+l=2andi+j<2}

will be called a monomial. Note that P is base of X'. Given X € X and W € P we
will denote by C' fy (X)) the coefficient of W when we write X in the base P.

Remark 2.7. Given a polynomial vector field ¥ on C? define S’(Y) = y.5*(Y)
and T(Y) = (72 T*(Y). It can be checked that S(X) = X and S: X — X is a linear
isomorphism. We leave this computation to the reader. Since T%(X,) = ¢ 2X; and
S*(Xy;) =y 1. X, we get S(X;) = Xy and T(X ;) = X ;. Observe also that

(22) SoT=T?0S, 8 =TandT" =1,

where [ is the identity of X.

Proof. We will prove the first relation and leave the others to the reader. By a
direct computation, it can be checked that T oS = S o T?2. This implies $* o T* =
(T*)? 0 S*. On the other hand, for any Y € X we have

TX(S(Y) =Ty S* (V) = (T2 s*(V)) =

=M yoT?) .(T")? 0 S*(Y) =2y S (T*(Y)) = S(T(Y)) O

Let G := <T, §> be the group generated by the linear isomorphisms S and T of

Observe that :
e o(X, )= X, for any ¢ € G.
e (22) implies that G is isomorphic to Zso(J2).
In particular, we can consider the action of Zso(Jz) on Fol(2,2), parametrized in
the homogeneous coordinates by X', by the action of the group G on X.

The first part of the proof of lemma 2.4 will consist in finding a G-invariant
6-dimensional subspace E C X such that Xy + E is transverse to Tx,Orb(Jz), the
tangent space of Orb(Jz) at X .



26 A. LINS NETO

Since T7 = I the eigenvalues of T are ¢4, 0 < j < 6, ¢ = ¢*™/7. In partic-
ular, if we denote by E; the eigenspace of the eigenvalue (7, then the canonical
decomposition of the operator T' : X — X can be written as

6
X:@Ej.

J=0

Remark also that (22) implies :

S(Er) = E4r md(7) > vVr =

(23) S(Ey)=FEo, E1 > E, S By, S By and B3 S5 E5 5 B S E5 .

We leave the proof of (23) to the reader.
On the other hand, it can be checked directly that (see also [LN-JP]) :

Ey = <a:v7 x28y,y2R>,E1 = <ya:va .I'2R>, Ex = <y28w7xay>a
B3 =(2%0,,2y0y), Ex= {0y, zyR), E5s = (20,,y0,), Es = (zy0,, y>0,) .

Now, we use some results proved in [LN-JP]. If we consider B : U; — C7 as
a map defined in a neighborhood of X; € X, then Theorem 2 of [LN-JP] im-
plies that dim(ker(DB(X))) = 9 and its projection on T';,Fol(2, 2) coincides with
T;,0rb(J3). In fact, in lemma 3.5 of §3.4 of [LN-JP] it is proved that a monomial
W € P isin ker(DB(X)) if, and only if, W € Ey. Therefore, it follows from (23)
that if we choose two monomials, say W, = y 0, € E; and W3 = 229, € E3, then
the subspace

E = (W1, 8(Wh), §(W1), W, S(W5), 52(Ws) )

has dimension 6, is G-invariant and transverse to ker(DB(Xj;)). Moreover,
DB(Xy) : E — Ty, X is an isomorphism. In particular, we get :
(i). The projection of X; + E in Fol(2,2), say E, is transverse to Orb(.J;) at
Ja.
(ii). There are neighborhoods I'; of J; in E and V; of by in ¥ such that By :=
B|r, : Ty — V; is a biholomorphism.
If we set
V= () 6(V4) and T := By (V)
oeSy

then I and V satisfy (A), (B) and (C) of lemma 2.4.

Assertion 2.3. We assert that, if V and T are sufficiently small then T' satisfies
(D) of lemma 2.4. In other words, if F1,Fs € T' are in the same orbit then there
exists o € Iso(Js) such that Fo = ¢*(F1).

Proof. Since dim(Orb(J2)) = 8 and I is a transverse section to Orb(Jz), if I' is
small enough then there exists a neighborhood U of the identity I € Aut(P?) with
the following property :

(%) it Fel, pel and ¢*(F) €T then p = I.
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From now on, we will assume that I' satisfies property (x).

Let us assume, by contradiction, that Assertion 2.3 is not true. This implies that
there are sequences (Fiy,)n, (Fan)n, of foliations in T', and (p,,),, in Aut(P?)\Zso(J2)
such that lim Fj, = Jo, j = 1,2, and ¢} (Fin) = Fa, for all n > 1. Note that (x)

n—oo
implies that the sequence (,), is discrete in Aut(P?).
The idea is to prove that there exists fim ¢, = ¢ € Aut(P?). If we assume this
n—0oo

fact, then we will have

Jy = lim Fop, = lim @) (Fin) = " (J2) = ¢ € Iso(Ja) .

n—oo

On the other hand, since the sequence is discrete in Aut(P?), we must have ¢,, =
¢ € Zso(Jz) for n large, a contradiction.

Remark 2.8. We say that four points in P? are in general position if they are two
by two distinct and any three of them, distinct two by two, are not in the same
straight line. We would like to observe that any four points, distinct two by two, in
sing(J) are in general position. This fact, can be checked directly by using that

sing(J2) = {p1,T(p1),...,T%(p1)}, where p; = (1,1) and T(x,y) = (¢ 2?x,(y),

C _ 627”/7.
The following result will be used :

Lemma 2.7. Let (¢,), be a sequence in Aut(P?). Assume that there are sequences
(Zjn)n and (Yjn)n in P2, j € {1,2,3,4}, such that
(A). Yn(Tjn) = Yjn, for alln e N and j =1,2,3,4.
(B). Einozoxjn =uz; € P? and nﬁirgoy]n =y; €P? j=1,2,34.
(C). T&“he four points in both sets {x1,...,x4} and {y1,...,ys}, are in general po-
sition.
Then there exists n&lg,o Y =1 € Aut(P?).

The proof of lemma 2.7 can be done by using the following facts :

e given two sets of four points in P?, say {21, 22, 23, 24} and {wy, wa, w3, w4},
whose points are in general position, then there exists an unique ¢ €
Aut(P?) such that ¢(z;) = w;, 1 < j <A4.

e if n is big enough then the points in both sets {zi,,...,z4,} and
{Y1n, .-, Yan } are in general position.

We leave the details to the reader.

Let Py, ..., P; be the local holomorphic maps, defined before, such that sing(F) =
{P\(F),....; Pr(F)} and P;j(J2) = pj, 1 < j < 7. We have seen in the proof of
Corollary 2.3 that

sing(Fin) = en(sing(e),(Fin))) = en(sing(Fan)) -

Since sing(Fjn) = {P1(Fjn), ..., Pr(Fjn)}, 7 = 1,2, for all n € N there exists a

permutation o, € Sy such that
on(Pi(Fan)) = Pan(i)(]-—ln) , VneN, Vi=1,..,7.

By taking a subsequence, if necessary, we can assume that o, = o € S7 for all
n € N, because S7 is finite. In particular,

(24) Qon(R(}—Qn)) = Po'(i)(fl’n) ,VneN, Vi=1,..,7.
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If we set Tjn = Pj(]rgn) and Yjn = Po(j)(]:ln)a ] = 1, ...,4, then

on(Tjn) =yjn foralln e Nand j =1,2,3,4.
ltim xjn, = pj and lim yjn = po(jy, J = 1,2,3,4.

the points in both sets {p1,...,pa} and {py(1), ..., Po(4) } are in general posi-
tion.

Therefore, lemma 2.7 implies that there exists fim ¢, = ¢ € Aut(P?). This
n—oo

finishes the proof of lemma 2.4 and of Theorem 1. (I
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