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Abstract. We consider the homogenization problem for general porous medium type equations of the form

ut = ∆f(x,
x

ε
, u), where f(x, y, ·) is increasing but may degenerate in the sense that fu(x, y, ·) may vanish

on a set with empty interior. We address both, the Cauchy problem and the initial-boundary value problem,

with null boundary condition. The homogenization is carried out in the general context of ergodic algebras.

1. Introduction

In this paper we consider the homogenization of a porous medium type equation of the general form

ut = ∆f(x,
x

ε
, u),

where f(x, y, ·) is increasing and locally Lipschitz, uniformly in (x, y), and may degenerate, in the sense that
fu(x, y, ·) may vanish in a set with empty interior. We consider both, the Cauchy problem and the initial-
boundary value problem with null boundary condition. In the case of the Cauchy problem, the discussion
here largely extends the corresponding one in [3] concerning the homogenization of the particular type of
such equations where f(x, y, u) = f(u) +V (y), in the nondegenerate case. As in [3], we assume that for each
(x, u), f(x, ·, u) belongs to a given general ergodic algebra, but we restrict the initial data to “well-prepared”
ones, that is, functions of the form g(x, xε , ϕ0(x)), where, for each (x, y), g(x, y, ·) is the inverse of f(x, y, ·),
and ϕ0 ∈ L∞(Rn). Actually, in this case, as in [3], we just consider f = f(y, u), since the general case
f = f(x, y, u) follows easily from this simpler case where the notation is less cumbersome. In the case of
the initial-boundary value problem, the discussion in this paper largely extends the corresponding one in
[15], where we consider the special case f(x, y, u) = f(u) + V (x, y) with f nondegenerate. As in [15], the
method applied in this case allow initial data which do not need to be “well-prepared”. However, again as
in [15], we have to restrict the homogenization analysis to regular algebras with mean value. The latter is
a concept introduced here which includes the Fourier-Stieltjes algebras introduced in [15]. We prove that
such an algebra with mean value (algebra w.m.v., in short) is ergodic. We recall that the theory of algebras
w.m.v. and ergodic algebras was first developed by Zhikov and Krivenko in [28] (see also [17]).

As in [2, 3, 15], one of the main tools used here in the study of the homogenization problem is the
parametrized family of two-scale of Young measures. We recall that two-scale Young measures were first
introduced by W. E in [12] as a nonlinear extension of the concept of two-scale convergence introduced by
Nguetseng in [23] and further developed by Allaire in [1].

This paper is organized as follows. In Section 2 we recall the concepts of algebra w.m.v., generalized
Besicovitch space and ergodic algebra. We also recall a general result established in [3] which relates such
algebras and the translation operators acting on them with the continuous functions defined on certain
compact spaces and certain groups of homeomorphisms of these compact spaces. In Section 3, we introduce
the concept of regular algebra w.m.v., prove that these are ergodic algebras, and that this concept includes
the Fourier-Stieltjes spaces FS(Rn). In Section 4, we briefly recall the general result of [3] on the existence
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of two-scale Young measures associated with a given algebra w.m.v. In Section 5, we provided a self-
contained discussion about the well-posedness of the Cauchy problem and the initial-boundary value problem
with null boundary condition for degenerate porous medium type equations. In Section 6, we consider the
homogenization problem for porous medium type equations defined in all Rn and we analize the case of the
Cauchy problem. Finally, in Section 7, we consider the homogenization problem for porous medium type
equations defined in a bounded domain and we analize the case of the initial-boundary value problem with
null boundary condition.

2. Ergodic Algebras

In this section we recall some basic facts about algebras with mean values and ergodic algebras that will
be needed for the purposes of this paper. To begin with, we recall the notion of mean value for functions
defined in Rn.

Definition 2.1. Let g ∈ L1
loc(Rn). A number M(g) is called the mean value of g if

(2.1) lim
ε→0

∫
A

g(ε−1x) dx = |A|M(g)

for any Lebesgue measurable bounded set A ⊆ Rn, where |A| stands for the Lebesgue measure of A. This is
the same as saying that g(ε−1x) converges, in the duality with L∞ and compactly supported functions, to
the constant M(g). Also, if At := {x ∈ Rn : t−1x ∈ A} for t > 0 and |A| 6= 0, (2.1) may be written as

(2.2) lim
t→∞

1

tn|A|

∫
At

g(x) dx = M(g).

We will also use the notation
∫
Rng dx for M(g).

As usual, we denote by BUC(Rn) the space of the bounded uniformly continuous real-valued functions in
Rn.

We recall now the definition of algebra with mean value introduced in [28].

Definition 2.2. Let A be a linear subspace of BUC(Rn). We say that A is an algebra with mean value (or
algebra w.m.v., in short), if the following conditions are satisfied:

(A) If f and g belong to A, then the product fg belongs to A.
(B) A is invariant under the translations τy : Rn → Rn, x 7→ x + y, y ∈ Rn, that is, if f ∈ A, then

τyf ∈ A, for all y ∈ Rn, where τyf := f ◦ τy, f ∈ A.
(C) Any f ∈ A possesses a mean value.
(D) A is closed in BUC(Rn) and contains the unity, i.e., the function e(x) := 1 for x ∈ Rn.

Remark 2.1. Condition (D) was not originally in [28] but its inclusion does not change matters since any
algebra satisfying (A), (B) and (C) can be extended to an algebra satisfying (A)–(D) in an unique way
modulo isomorphisms.

For the development of the homogenization theory in algebras with mean value, as it is done in [28, 17]
(see also [7, 3]), in similarity with the case of almost periodic functions, one introduces, for 1 ≤ p <∞, the
space Bp as the abstract completion of the algebra A with respect to the Besicovitch seminorm

|f |p :=

( ∫
Rn
|f |p dx

)1/p

Both the action of translations and the mean value extend by continuity to Bp, and we will keep using the
notation τyf and M(f) even when f ∈ Bp. Furthermore, for p > 1 the product in the algebra extends to a
bilinear operator from Bp × Bq into B1, with q equal to the dual exponent of p, satisfying

|fg|1 ≤ |f |p|g|q.
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In particular, the operator M(fg) provides a nonnegative definite bilinear form on B2.
Since there is an obvious inclusion between elements of this family of spaces, we may define the space B∞

as follows:

B∞ = {f ∈
⋂

1≤p<∞

Bp : sup
1≤p<∞

|f |p <∞},

We endow B∞ with the (semi)norm

|f |∞ := sup
1≤p<∞

|f |p.

Obviously the corresponding quotient spaces for all these spaces (with respect to the null space of the

seminorms) are Banach spaces, and in the case p = 2 we obtain a Hilbert space. We denote by
Bp
=, the

equivalence relation given by the equality in the sense of the Bp semi-norm. We will keep the notation Bp
also for the corresponding quotient spaces.

Remark 2.2. A classical argument going back to Besicovitch [4] (see also [17], p.239) shows that the elements
of Bp can be represented by functions in Lploc(Rn), 1 ≤ p <∞.

We next recall a result established in [3] which provides a connection between algebras with mean value
and the algebra C(K) of continuous functions on a certain compact (Hausdorff) topological space. We state
here only the parts of the corresponding result in [3] that will be used in this paper.

Theorem 2.1 (cf. [3]). For an algebra A, we have:

(i) There exist a compact space K and an isometric isomorphism i identifying A with the algebra C(K)
of continuous functions on K.

(ii) The translations τy : Rn → Rn, τyx = x + y, induce a family of homeomorphisms T (y) : K → K,
y ∈ Rn, satisfying the group properties T (0) = I, T (x + y) = T (x) ◦ T (y), such that the mapping
T : Rn ×K → K, T (y, z) := T (y)z, is continuous.

(iii) The mean value on A extends to a Radon probability measure m on K defined by∫
K
i(f) dm :=

∫
Rn
f dx, f ∈ A,

which is invariant by the group of homeomorphisms T (y) : K → K, y ∈ Rn, that is, m(T (y)E) =
m(E) for all Borel sets E ⊆ K.

(iv) For 1 ≤ p ≤ ∞, the Besicovitch space Bp
/ Bp

= is isometrically isomorphic to Lp(K,m).

A function f ∈ B2 is said to be invariant if τyf
B2

= f , for all y ∈ Rn. More clearly, f ∈ B2 is invariant if

(2.3) M
(
|τyf − f |2

)
= 0, for all y ∈ Rn.

The concept of ergodic algebra is then introduced as follows.

Definition 2.3. An algebra w.m.v. A is called an ergodic algebra if any invariant function f belonging to
the corresponding space B2 is equivalent (in B2) to a constant.

A very useful alternative definition of ergodic algebra is also given in [17], p. 247, and shown therein to
be equivalent to Definition 2.3. We state that as the following lemma.

Lemma 2.1 (cf. [17]). Let A ⊆ BUC(Rn) be an algebra w.m.v.. Then A is ergodic if and only if

(2.4) lim
t→∞

My

(∣∣ 1

|B(0; t)|

∫
B(0;t)

f(x+ y) dx−M(f)
∣∣2) = 0 ∀f ∈ A.
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3. Regular algebras w.m.v. and the Fourier-Stieltjes space FS(Rn).

In this section we introduce the concept of regular algebra w.m.v. and recall the definition and some
basic properties of the Fourier-Stieltjes space introduced by the authors in [15], which is, to the best of our
knowledge, the largest known example of a regular algebra w.m.v..

For any f ∈ L∞(Rn), let us denote by f̂ the Fourier transform of f defined as the following distribution

〈f̂ , φ〉 :=

∫
f(x)φ̌(x) dx, for all φ ∈ C∞c (Rn),

where φ̌ denotes the usual inverse Fourier transform of φ, i.e.,

φ̌(x) =
1

(2π)
n
2

∫
φ(y)eiy·x dx.

Given an algebra w.m.v. A, let us denote by V (A) the subspace formed by the elements f ∈ A such that
M(f) = 0, namely,

V (A) := {f ∈ A : M(f) = 0}.

Also, let us denote by Z(A) the subset of those f ∈ A such that the distribution f̂ has compact support not
containing the origin 0, that is,

Z(A) := {f ∈ A : supp(f̂) is compact and 0 /∈ supp(f̂)}.

We collect in the following lemma some useful properties of the functions in Z(A), whose proof is found
in [17], p. 246.

Lemma 3.1 (cf. [17]). Let A be an algebra w.m.v. in Rn and f ∈ Z(A). Then:

(i) There exists u ∈ C∞(Rn) ∩ Z(A) such that ∆u = f , where ∆ is the usual Laplace operator in Rn;
u = f ∗ ζ for certain smooth function ζ, fast decaying together with all its derivatives, satisfying

ζ̂ ∈ C∞c (Rn) and 0 /∈ supp(ζ̂).
(ii) For any Borelian Q ⊆ Rn, with |Q| > 0, we have

(3.1) lim
t→∞

1

tn|Q|

∫
Qt

f(x+ y) dx = 0, uniformly in y ∈ Rn.

The fundamental result about ergodic algebras, proved by Zhikov and Krivenko [28], is the following.

Theorem 3.1 (cf. [28]). If A is an ergodic algebra, then Z(A) is dense in V (A) in the topology of the
corresponding space B2.

The following immediate corollary of Theorem 3.1, established in [3], will be used in Section 6 concerning
the homogenization of a porous medium type equation.

Lemma 3.2 (cf. [3]). Let A be an ergodic algebra in BUC(Rn) and h ∈ B2 such that M(h∆f) = 0 for all
f ∈ A such that ∆f ∈ A. Then h is B2-equivalent to a constant.

Theorem 3.1 also motivates the following definition.

Definition 3.1. An algebra w.m.v. A is said to be regular if Z(A) is dense in V (A) in the topology of the
sup-norm.

We have the following important fact about regular algebras w.m.v..

Proposition 3.1. If A is a regular algebra w.m.v., then A is ergodic.
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Proof. We are going to use the characterization of ergodic algebras provided by Lemma 2.1. Let f ∈ A.
Clearly, to prove (2.4), we may assume M(f) = 0. Now, since A is regular, given ε > 0, we may find
g ∈ Z(A) such that ‖f − g‖∞ < ε. Hence,

lim sup
t→∞

My

(∣∣ 1

|B(0; t)|

∫
B(0;t)

f(x+ y) dx
∣∣2) ≤ 2 lim

t→∞
My

(∣∣ 1

|B(0; t)|

∫
B(0;t)

g(x+ y) dx
∣∣2)+ 2ε2 = 2ε2,

where we used Lemma 3.1(ii) for the last equality. This implies (2.4). �

We next state a property of regular algebras w.m.v. which will be used in our application to homogenization
of porous medium type equations on bounded domains in the final part of this paper.

Lemma 3.3. Let A be a regular algebra w.m.v. If f ∈ V (A), then for any ε > 0 there exists a function
uε ∈ Z(A) satisfying the inequalities

f − ε ≤ ∆uε ≤ f + ε.(3.2)

Proof. This follows immediately from Lemma 3.1(i) and Definition 3.1. �

The space FS(Rn) introduced in [15] provides a very encompassing example of a regular algebra w.m.v..

Definition 3.2. The Fourier-Stieltjes space, denoted by FS(Rn), is the completion relatively to the sup-norm
of the space of functions FS∗(Rn) defined by

(3.3) FS∗(Rn) :=

{
f : Rn → R : f(x) =

∫
Rn
eix·y dν(y) for some ν ∈M∗(Rn)

}
,

where byM∗(Rn) we denote the space of complex-valued measures µ with finite total variation, i.e., |µ|(Rn) <
∞.

Recall that a subalgebra B ⊆ A is called an ideal of A if for any f ∈ A and g ∈ B we have fg ∈ B. Let
C0(Rn) denote the closure of C∞c (Rn) with respect to the sup norm. The following result was established
in [15].

Proposition 3.2 (cf. [15]). FS(Rn) ⊆ BUC(Rn) and it is an algebra w.m.v. containing C0(Rn) as an
ideal. Moreover, FS(Rn) is a regular algebra w.m.v. and the space PAP(Rn) of the perturbed almost periodic
functions, defined as

PAP(Rn) := {f ∈ BUC(Rn) : f = g + ψ, g ∈ AP(Rn), ψ ∈ C0(Rn)},
is a closed strict subalgebra of FS(Rn).

4. Two-scale Young Measures

In this section we recall the theorem giving the existence of two-scale Young measures established in [3].
We begin by recalling the concept of vector-valued algebra with mean value.

Given a Banach space E and an algebra w.m.v. A, we denote by A(Rn;E) the space of functions f ∈
BUC(Rn;E) satisfying the following:

(i) Lf := 〈L, f〉 belongs to A for all L ∈ E∗;
(ii) The family {Lf : L ∈ E∗, ‖L‖ ≤ 1} is relatively compact in A.

Theorem 4.1 (cf. [3]). Let E be a Banach space, A an algebra w.m.v. and K be the compact associated with
A. There is an isometric isomorphism between A(Rn;E) and C(K;E). Denoting by g 7→ g the canonical

map from A to C(K), the isomorphism associates to f ∈ A(Rn;E) the map f̃ ∈ C(K;E) satisfying

(4.1) 〈L, f〉 = 〈L, f̃〉 ∈ C(K) ∀L ∈ E∗.

In particular, for each f ∈ A(Rn;E), ‖f‖E ∈ A.
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For 1 ≤ p < ∞, we define the space Lp(K;E) as the completion of C(K;E) with respect to the norm
‖ · ‖p, defined as usual,

‖f‖p :=

(∫
K
‖f‖pE dm

)1/p

.

As a standard procedure, we identify functions in Lp that coincide m-a.e. in K.
Similarly, we define the space Bp(Rn;E) as the completion of A(Rn;E) with respect to the seminorm

|f |p :=

( ∫
Rn
‖f‖pE dx

)1/p

,

identifying functions in the same equivalence class determined by the seminorm | · |p. Clearly, the isometric
isomorphism given by Theorem 4.1 extends to an isometric isomorphism between Bp(Rn;E) and Lp(K;E).

The next theorem gives the existence of two-scale Young measures associated with an algebra A. For the
proof, we again refer to [3].

Let Ω ⊆ Rn be a bounded open set and {uε(x)}ε>0 be a family of functions in L∞(Ω;K), for some
compact metric space K.

Theorem 4.2. Given any infinitesimal sequence {εi}i∈N there exist a subnet {uεi(d)
}d∈D, indexed by a

certain directed set D, and a family of probability measures on K, {νz,x}z∈K,x∈Ω, weakly measurable with
respect to the product of the Borel σ-algebras in K and Rn, such that

(4.2) lim
D

∫
Ω

Φ(
x

εi(d)
, x, uεi(d)

(x)) dx =

∫
Ω

∫
K
〈νz,x,Φ(z, x, ·)〉 dm(z) dx ∀Φ ∈ A (Rn;C0(Ω×K)) .

Here Φ ∈ C (K;C0(Ω×K)) denotes the unique extension of Φ. Moreover, equality (4.2) still holds for
functions Φ in the following function spaces:

(1) B1(Rn;C0(Ω×K));
(2) Bp(Rn;C(Ω̄×K)) with p > 1;
(3) L1(Ω;A(Rn;C(K))).

As in the classical theory of Young measures we have the following consequence of Theorem 4.2.

Theorem 4.3. Let Ω ⊆ Rn be a bounded open set, let {uε} ⊆ L∞(Ω;Rm) be uniformly bounded and let νz,x
be a two-scale Young measure generated by a subnet {uε(d)}d∈D, according to Theorem 4.2. Assume that U

belongs either to L1(Ω;A(Rn;Rm))) or to Bp(Rn;C(Ω̄;Rm)) for some p > 1. Then

(4.3) νz,x = δU(z,x) if and only if lim
D
‖uε(d)(x)− U(

x

ε(d)
, x)‖L1(Ω) = 0.

5. Some results about a porous medium type equation

In this section, we review some results about the Cauchy problem and an initial-boundary value problem
for a porous medium type equation which will be used later. More specifically, we consider the Cauchy
problem

∂tu−∆f(x, u) = 0, (x, t) ∈ Rn+1
+ := Rn × (0,+∞),(5.1)

u(x, 0) = u0(x), x ∈ Rn,(5.2)

and, for Ω ⊆ Rn open bounded with smooth boundary, we consider the initial-boundary value problem

∂tu−∆f(x, u) = 0, (x, t) ∈ Q := Ω× (0,+∞),(5.3)

u(x, 0) = u0(x), x ∈ Ω, u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞).(5.4)

For the purposes of this paper, we assume that f(x, u) satisfies the following hypotheses, where I is an
arbitrary compact interval of R:
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(f1) f : Rn × R → R (f : Ω × R → R, resp.) is continuous and, for each x ∈ Rn (x ∈ Ω, resp.),
f(x, ·) : R→ R is increasing and locally Lipschitz continuous uniformly in x.

(f2) Dα
xf(x, u) and Dα

xfu(x, u), |α| ≤ 2, are uniformly bounded for (x, u) ∈ Rn × I (resp., Ω× I).
(f3) There exists a constant θ0 > 0 such that

(5.5) −fu(x, u) + θ0

n∑
i=1

|fu,xi(x, u)| ≤ 0,

for all (x, u) ∈ Rn × I (resp., (x, u) ∈ Ω× I).

Observe that assumption (f3) is trivially satisfied by functions of the form f(x, u) = a(x)u|u|γ(x) + b(x),
with γ, a, b smooth, γ(x) > γ0 > 0 and a(x) > a0 > 0, x ∈ Rn (x ∈ Ω).

Specifically for the problem (5.3),(5.4) we also assume:

(f4) f(x, 0) = 0 for x ∈ ∂Ω.

Concerning the initial data, we assume

u0 ∈ L∞(Rn) (u0 ∈ L∞(Ω), resp.).

Because of our assumptions on f(x, u), namely the fact that f(x, ·) is increasing, for each x, equation (5.1)
is only mildly degenerate, in other words, it still belongs to the “non-degenerate” class, in the classification of
[5]. Nevertheless, it is degenerate in the sense that fu(x, ·) can vanish on a set N ⊆ R, provided N does not
contain a non-empty open interval. The simplest and prototypical example is the classical porous medium
equation, for which f(x, u) = u|u|γ , γ ≥ 1. We remark that for the latter, due to a comparison principle,
we can always guarantee that u(x, t) ≥ 0 if u0(x) ≥ 0, which is physically desirable. For this reason, we can
view f(u) = uγ+1, u ≥ 0, as defined in R, trivially extended as u|u|γ . This motivates our choice of taking
f(x, ·) as defined in the whole R, which is a matter of convenience.

The study of the well-posedness of the Cauchy problem for general quasilinear degenerate parabolic
equations starts with Volpert and Hudjaev [26], for initial data in BV , where the L1-stability was achieved
completely only in the isotropic case, that is, for a diagonal viscosity matrix. The results in [26] were
extended to the initial boundary value problem in [27]. Well-posedness in the isotropic case with initial data
in L∞ was established by Carrillo [5] in the homogeneous case where the coefficients do not explicitly depend
on (x, t). A purely L1 well-posedness theory for the homogeneous anisotropic case was established by Chen
and Perthame in [9]. The latter was extended to the non-homogeneous anisotropic case in [8]. We refer to
the bibliography in the cited papers for a more complete list of references on the subject.

Equation (5.1) is a particular case of a degenerate non-homegeneous isotropic equation and, as we said
above, its degeneration is of a mild type which makes its study a bit simpler than that of the general
degenerate equation. Here we will briefly sketch its analysis in order to introduce some notations and some
particular results that will be needed in our study of the homogenization of porous medium type equations
in Section 6. For the stability results, we follow closely the analysis in [5] and show which adaptations of
the results in [5] need to be made in order to handle the explicit dependence on x of f . For the existence
of solutions, which follows from the compactness of the sequence of solutions of regularized (nondegenerate)
problems, we use a method motivated by Kruzkhov [19]. We remark that recently Panov [24] has obtained a
very general compactness result that, in particular, would imply the one proved here. However the techniques
used in [24] are out of the scope of the present paper and we think it is appropriate here to provide a simple
and direct proof of this compactness result.

Definition 5.1. A function u ∈ L∞(Rn+1
+ ) is said to be a weak solution of the problem (5.1),(5.2) if the

following hold:

(1) f(x, u(x, t)) ∈ L2
loc((0,∞);H1

loc(Rn));
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(2) For any ϕ ∈ C∞c (Rn+1), we have

(5.6)

∫
Rn+1

+

uϕt −∇f(x, u) · ∇ϕdx dt+

∫
Rn
u0ϕ(x, 0) dx = 0.

Similarly, a function u ∈ L∞(Q) is said to be a weak solution of the problem (5.3),(5.4) if the following hold:

(3) f(x, u(x, t)) ∈ L2
loc((0,+∞);H1

0 (Ω)).
(4) Given ϕ ∈ C∞c (Ω× R), we have

(5.7)

∫
Q

u ∂tϕ−∇f(x, u) · ∇ϕdx dt+

∫
Ω

u0(x)ϕ(x, 0) dx = 0.

Let u be a weak solution of either (5.1),(5.2) or (5.3),(5.4). Denoting by 〈·, ·〉 the usual pairing between
H−1(U) and H1

0 (U) when U ⊆ Rn is open, we can conclude from (5.6) (resp., from (5.7)) that

∂tu ∈ L2
loc(R+;H−1

loc (Rn)), (resp., ∂tu ∈ L2
loc(R+;H−1

loc (Ω)))

so that the equality (5.6) is equivalent to

(5.8)

∫ ∞
0

〈∂tu, ϕ〉 dt+

∫
Rn+1

+

∇f(x, u) · ∇ϕdx dt−
∫
Rn
u0ϕ(x, 0) dx = 0,

for all ϕ ∈ C∞c (Rn+1), while (5.7) is equivalent to

(5.9)

∫ ∞
0

〈∂tu, ϕ〉 dt+

∫
Q

∇f(x, u) · ∇ϕdx dt−
∫

Ω

u0ϕ(x, 0) dx = 0.

Let Hδ : R→ R be the approximation of the function sgn given by

Hδ(s) :=


1, for s > δ,
s

δ
, for |s| ≤ δ
−1, for s < −δ

.

Given a nondecreasing Lipschitz continuous function ϑ : R→ R and k ∈ R, we define

Bkϑ(x, λ) :=

∫ λ

k

ϑ(f(x, r))dr.

Concerning the function Bkϑ, we will make use of the following lemma which is a version of a lemma in [5],
whose proof remains essentially the same and for which, therefore, we refer to [5].

Lemma 5.1. Let u ∈ L∞(Rn+1
+ ) be a weak solution of (5.1),(5.2). Then, for a.e. t ∈ (0,+∞), we have∫ t

0

∫
Rn
Bkϑ(x, u)ϕs ds dx+

∫
Rn
Bkϑ(x, u0)ϕ(x, 0) dx−

∫
Rn
Bkϑ(x, u(t))ϕ(x, t) dx

= −
∫ t

0

〈∂su, ϑ(f(x, u))ϕ〉 ds

∀k ∈ R and for all 0 ≤ ϕ ∈ C∞c (Rn+1).
Similarly, let u ∈ L∞(Q) be a weak solution of (5.3),(5.4). Then, for a.e. t ∈ (0,+∞), we have∫ t

0

∫
Ω

Bkϑ(x, u)ϕs ds dx+

∫
Ω

Bkϑ(x, u(x, 0))ϕ(x, 0) dx−
∫

Ω

Bkϑ(x, u(t))ϕ(x, t) dx

= −
∫ t

0

〈∂su, ϑ(f(x, u))ϕ〉 ds,

∀k ∈ R and ∀ 0 ≤ ϕ ∈ C∞c (Ω× R).
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Let us denote

ϑδ(λ; y) := Hδ(λ− f(y, k)) and Bϑδ(x, λ; y) := Bϑδ(·;y)(x, λ).

Next we state and prove a lemma which is also an adaptation of a similar result in [5].

Lemma 5.2 (Entropy production term). Let u be a weak solution of the Cauchy problem (5.1),(5.2), with
u0 ∈ L∞(Rn). Then ∫

Rn+1
+

Bkϑδ(x, u; y)ϕt −Hδ(f(x, u)− f(y, k))∇f(x, u) · ∇ϕdx dt(5.10)

=

∫
Rn+1

+

|∇f(x, u)|2H ′δ(f(x, u)− f(y, k))ϕdx dt,

for all k ∈ R and all 0 ≤ ϕ ∈ C∞c (Rn+1
+ ).

Similarly, let u ∈ L∞(Q) be a weak solution of (5.3),(5.4). Then,∫
Q

Bkϑδ(x, u; y)ϕt −Hδ(f(x, u)− f(y, k))∇f(x, u) · ∇ϕdx dt(5.11)

=

∫
Q

|∇f(x, u)|2H ′δ(f(x, u)− f(y, k))ϕdx dt

for all k ∈ R and all 0 ≤ ϕ ∈ C∞c (Q).

Proof. By the Lemma 5.1, we have

−
∫ +∞

0

〈∂tu,Hδ(f(x, u)− f(y, k))ϕ〉 dt =

∫
Rn+1

+

Bkϑδ(x, u; y)ϕt dx dt.

Since u is a weak solution and Hδ(f(x, u)− f(y, k))ϕ is a test function for each fixed y and k, we get

−
∫ +∞

0

〈∂tu,Hδ(f(x, u)− f(y, k))ϕ〉 dt−
∫
Rn+1

+

{∇f(x, u) · ∇(Hδ(f(x, u)− f(y, k))ϕ)} dx dt = 0.

This equality with the previous one gives∫
Rn+1

+

{Bkϑδ(x, u; y)ϕt −∇f(x, u) · ∇(Hδ(f(x, u)− f(y, k))ϕ)} dx dt = 0,

and this equality yields (5.10).
The proof of (5.11) follows similarly with obvious adaptations.

�

The following theorem, which follows from (5.10) (resp., (5.11)), by using doubling of variables, and the
trick of completing the square in [5], theorem 13, p. 339, will be used in our analysis of the homogenization
problem in Section 6. We give its proof here for the reader’s convenience.

Theorem 5.1. Let u1, u2 be weak solutions of the Cauchy problem (5.1),(5.2) with initial data u01, u02 ∈
L∞(Rn). Then we have the following:

(i) For all 0 ≤ ϕ ∈ C∞c (Rn+1
+ ), we have

(5.12)

∫
Rn+1

+

|u1(x, t)− u2(x, t)|ϕt −∇|f(x, u1(x, t))− f(x, u2(x, t))| · ∇ϕdx dt ≥ 0.
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(ii) If u2 is a stationary solution, then∫
Rn+1

+

B
u2(x)
ϑδ

(x, u1(x, t))ϕt dx dt(5.13)

−
∫
Rn+1

+

Hδ(f(x, u1(x, t))− f(x, u2(x)))∇[f(x, u1(x, t))− f(x, u2(x))] · ∇ϕdx dt

=

∫
Rn+1

+

|∇[f(x, u1(x, t))− f(x, u2(x))]|2H ′δ(f(x, u1(x, t))− f(x, u2(x)))ϕdx dt,

for all 0 ≤ ϕ ∈ C∞c (Rn+1
+ ).

Similarly, if u1, u2 are weak solutions of the initial-boundary value problem (5.3),(5.4), with initial data
u01, u02 ∈ L∞(Ω), then we have the following:

(iii) For all 0 ≤ ϕ ∈ C∞c (Q), we have

(5.14)

∫
Q

|u1(x, t)− u2(x, t)|ϕt −∇|f(x, u1(x, t))− f(x, u2(x, t))| · ∇ϕdx dt ≥ 0.

(iv) If u2 is a stationary solution, then

−
∫
Q

B
u2(x)
ϑδ

(x, u1(x, t))ϕt dx dt(5.15)

+

∫
Q

Hδ(f(x, u1(x, t))− f(x, u2(x)))∇[f(x, u1(x, t))− f(x, u2(x))] · ∇ϕdx dt

= −
∫
Q

|∇[f(x, u1(x, t))− f(x, u2(x))]|2H ′δ(f(x, u1(x, t))− f(x, u2(x)))ϕdx dt,

for all 0 ≤ ϕ ∈ C∞c (Q).

Proof. We begin by proving the assertions concerning the Cauchy problem (5.1),(5.2). Let u1 = u(x, t) and
u2 = u2(y, s). By (5.10) applied to u1, we have∫

Rn+1
+

{Bkϑδ(x, u1; y)φt −Hδ(f(x, u1)− f(y, k))∇xf(x, u1) · ∇xφ} dx dt

=

∫
Rn+1

+

|∇xf(x, u1)|2H ′δ(f(x, u1)− f(y, k))φdx dt,

for all k ∈ R and for all 0 ≤ φ ∈ C∞c ((Rn+1
+ )2). Setting k = u2 and integrating in y, s, we obtain∫

(Rn+1
+ )2

{Bu2

ϑδ
(x, u1; y)φt −Hδ(f(x, u1)− f(y, u2))∇xf(x, u1) · ∇xφdx dt dy ds

=

∫
(Rn+1

+ )2

|∇xf(x, u1)|2H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds.(5.16)

Now, applying (5.10) to u2, taking k = u1 and integrating in x, t, we obtain∫
(Rn+1

+ )2

{
Bu1

ϑδ
(y, u2;x)φs +Hδ(f(x, u1)− f(y, u2))∇yf(y, u2) · ∇yφ

}
dx dt dy ds

=

∫
(Rn+1

+ )2

|∇yf(y, u2)|2H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds(5.17)
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Now, note that

0 =

∫
Rn+1

+

∇yf(y, u2) · ∇x[Hδ(f(x, u1)− f(y, u2))φ] dx dt

=

∫
Rn+1

+

{
∇yf(y, u2) · ∇xf(x, u1)H ′δ(f(x, u1)− f(y, u2))φ+Hδ(f(x, u1)− f(y, u2))∇yf(y, u2) · ∇xφ

}
dx dt

and so we have ∫
(Rn+1

+ )2

Hδ(f(x, u1)− f(y, u2))∇yf(y, u2) · ∇xφdx dt dy ds

= −
∫

(Rn+1
+ )2

∇yf(y, u2) · ∇xf(x, u1)H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds(5.18)

Analogously, ∫
(Rn+1

+ )2

Hδ(f(x, u1)− f(y, u2))∇xf(x, u1) · ∇yφdx dt dy ds

=

∫
(Rn+1

+ )2

∇yf(y, u2) · ∇xf(x, u1)H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds(5.19)

Adding (5.16) and (5.19) yields∫
(Rn+1

+ )2

{
Bu2

ϑδ
(x, u1; y)φt +Hδ(f(x, u1)− f(y, u2))∇xf(x, u1) · (∇x +∇y)φ

}
dx dt dy ds

=

∫
(Rn+1

+ )2

{
|∇xf(x, u1)|2 +∇xf(x, u1) · ∇yf(y, u2)

}
H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds(5.20)

Further, multiplying (5.17) by −1 and adding to (5.18) gives∫
(Rn+1

+ )2

{
Bu1

ϑδ
(y, u2;x)φs +Hδ(f(x, u1)− f(y, u2))∇yf(y, u2) · (∇x +∇y)φ

}
dx dt dy ds

=

∫
(Rn+1

+ )2

{
|∇yf(y, u2)|2 −∇xf(x, u1) · ∇yf(y, u2)

}
H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds.(5.21)

Now, adding (5.20) and (5.21) we obtain∫
(Rn+1

+ )2

{
Bu2

ϑδ
(x, u1; y)φt +Bu1

ϑδ
(y, u2;x)φs

−Hδ(f(x, u1)− f(y, u2))(∇x +∇y)(f(x, u1)− f(y, u2)) · (∇x +∇y)φ

}
dx dt dy ds

= +

∫
(Rn+1

+ )2

|(∇x +∇y)(f(x, u1)− f(y, u2))|2H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds.(5.22)

We then use test functions as φ(x, t, y, s) := ϕ(x+y
2 , t+s2 )ρk(x−y2 )θl(

t−s
2 ), where 0 ≤ ϕ ∈ C∞c (Rn+1

+ ), and
ρk, θl are classical approximations of the identity in Rn and R, respectively, as in the doubling of variables
method. Hence, letting k →∞ first, later δ → 0 and then letting l→∞, we obtain (5.12).

To obtain (5.13), we observe that if u2 is stationary solution then Bu1

ϑδ
(y, u2;x) and Bu2

ϑδ
(x, u1; y) are

independent of s and so, we can write the trivial equality where both members are null∫
(Rn+1

+ )2

Bu1

ϑδ
(y, u2;x)φs dx dt dy ds =

∫
(Rn+1

+ )2

Bu2

ϑδ
(x, u1; y)φs dx dt dy ds



12 HERMANO FRID AND JEAN SILVA

Combining the previous equality in (5.22), we have∫
(Rn+1

+ )2

{
Bu2

ϑδ
(x, u1; y)(φt + φs)

−Hδ(f(x, u1)− f(y, u2))(∇x +∇y)(f(x, u1)− f(y, u2)) · (∇x +∇y)φ

}
dx dy dt ds

=

∫
(Rn+1

+ )2

|(∇x +∇y)(f(x, u1)− f(y, u2))|2H ′δ(f(x, u1)− f(y, u2))φdx dt dy ds.

Now, using test functions as above and letting k, l→∞, we get (5.13).
The relations (5.14) and (5.15) concerning problem (5.3),(5.4) are proved in an entirely similar way.

�

Remark 5.1. As usual, we denote (s)± := {±s, 0}. The same arguments in the above proof lead to an
inequality similar to (5.12) (resp., (5.14)) with |u1−u2|, |f(x, u1)−f(x, u2)| replaced by (u1−u2)±, (f(x, u1)−
f(x, u2))±, respectively, just by using Bk(ϑδ)± , (Hδ)±, instead of Bkϑδ , Hδ, respectively. We thus obtain

(5.23)

∫
Rn+1

+

(u1(x, t)− u2(x, t))±ϕt −∇(f(x, u1(x, t))− f(x, u2(x, t)))± · ∇ϕdx dt ≥ 0.

in the case of problem (5.1),(5.2), and

(5.24)

∫
Q

(u1(x, t)− u2(x, t))±ϕt −∇(f(x, u1(x, t))− f(x, u2(x, t)))± · ∇ϕdx dt ≥ 0,

in the case of problem (5.3),(5.4), where we mean one inequality holding with (·)+ and another holding for
(·)−. Moreover, in the latter case, to obtain (5.14) and (5.24) we only need that ui ∈ L∞(Q) satisfies (5.7)
and f(x, ui(x, t)) ∈ L2

loc((0,∞);H1(Ω)) instead of f(x, ui(x, t)) ∈ L2
loc((0,∞);H1

0 (Ω)), i = 1, 2, as can be
easily checked.

Concerning the Cauchy problem (5.1),(5.2), we now consider the following weight function Λ : Rn → R
defined by

(5.25) Λ(x) := e−
√

1+|x|2 .

The relevance of the weight function Λ for our purposes is that

(5.26) |DiΛ(x)| ≤ Λ(x), for i = 1, . . . , n, and |∆Λ(x)| ≤ (n+ 1)Λ(x), for x ∈ Rn.

Concerning the initial-boundary value problem (5.3),(5.4), we let ξ ∈ H1
0 (Ω) be the eigenfunction of −∆

associated with the eigenvalue λ1 > 0 such that ξ > 0 in Ω (see, e.g., [14]).

Theorem 5.2 (Uniqueness). Let u1, u2 be weak solutions of the Cauchy problem (5.1),(5.2) with initial data
u01, u02 ∈ L∞(Rn). Then, there exists C > 0 such that for a.e. t > 0, we have

(5.27)

∫
Rn
|u1(t)− u2(t)|Λ(x) dx ≤ eCt

∫
Rn
|u01(x)− u02(x)|Λ(x) dx.

Similarly, let u1, u2 be weak solutions of the initial-boundary value problem (5.3),(5.4) with initial data
u01, u02 ∈ L∞(Ω). Then, there exists C > 0 such that for a.e. t > 0, we have

(5.28)

∫
Ω

|u1(t)− u2(t)|ξ(x) dx ≤ eCt
∫

Ω

|u01(x)− u02(x)|ξ(x) dx.
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Proof. Taking ϕ(x, t) = δh(t)Λ(x), with 0 ≤ δh ∈ C∞c ((0,+∞)) in (i) of Theorem (5.1), we obtain∫
Rn+1

+

{
− |u1 − u2|δ′h(t)Λ(x)− |f(x, u1)− f(x, u2)|δh(t)∆Λ

}
dx dt ≤ 0.

Observe that

−
∫
Rn+1

+

|u1 − u2|δ′h(t)Λ(x) dx dt ≤
∫
Rn+1

+

{
|f(x, u1)− f(x, u2)|δh(t)|∆Λ|

}
dx dt

≤ C
∫
Rn+1

+

|u1 − u2|δh(t)Λ(x) dx dt,

where we use that |∆Λ| ≤ (n+ 1)Λ and the Lipschitz condition on f(x, u). We define

β(s) :=

∫
Rn
|u1(x, s)− u2(x, s)|Λ(x) dx.

Then, using a suitable sequence of functions δh and letting h→ 0, we arrive at

β(t) ≤
∫
Rn
|u01(x)− u02(x)|Λ(x) dx+ C

∫ t

0

β(s) ds.

Hence, we may apply Gronwall’s lemma to conclude the proof of (5.27).
The proof of (5.28) is entirely similar starting now by taking ϕ(x, t) = δh(t)ξ(x) in (iii) of Theorem 5.1. �

Remark 5.2. Noting that (f(x, u1) − f(x, u2))± ≤ C(u1 − u2)±, respectively, and using Remark 5.1 we see
that the same arguments show that

(5.29)

∫
Rn

(u1(t)− u2(t))±Λ(x) dx ≤ eCt
∫
Rn

(u01(x)− u02(x))±Λ dx

and

(5.30)

∫
Ω

(u1(t)− u2(t))±ξ(x) dx ≤ eCt
∫

Ω

(u01(x)− u02(x))±ξ(x) dx

for a.e. t > 0 for weak solutions of problems (5.1),(5.2) and (5.3),(5.4), respectively. Moreover, as a conse-
quence of Remark 5.1, for the problem (5.3),(5.4), to obtain (5.30) we only need that ui ∈ L∞(Q) satisfies
(5.7) and f(x, ui(x, t)) ∈ L2

loc((0,∞);H1(Ω)) instead of f(x, ui(x, t)) ∈ L2
loc((0,∞);H1

0 (Ω)), i = 1, 2, pro-
vided

(f(x, u1(x, t))− f(x, u2(x, t)))±|∂Ω ≡ 0, a.e. t ∈ (0,∞), respectively,

the latter meaning the trace for functions in H1(Ω).

The above remark immediately implies the following result.

Corollary 5.1 (Monotonicity). Let u1, u2 to be as in the Theorem 5.2. Suppose that u01 ≤ u02 a.e. in Rn
(resp., in Ω). Then,

u1 ≤ u2, a.e. in Rn (resp., a.e. in Ω).

Remark 5.3. We remark that so far we have only used that f(x, u) satisfies (f1). In particular, for the
stability and monotonicity results it sufficies (f1). The assumptions (f2), (f3) and (f4) will be only needed
for the subsequent discussion on the existence of solutions.

Our next goal is to prove the existence of a weak solution for (5.1),(5.2) and for (5.3),(5.4).
Before we begin properly the discussion about the existence question, we state a well known result on the

compactness in the space L1, which will be needed. The proof, which we ommit here, follows in a standard
way by mollification and application of Arzela-Ascoli theorem.
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Lemma 5.3. Let U ⊆ Rn be an open set and F ⊆ L1
loc(U) be a family uniformly bounded in L1(B), for any

closed ball B ⊆ U . Suppose that for any ε > 0 there exists δ > 0 such that for |y| < δ we have∫
B

|u(x+ y)− u(x)| dx < ε, ∀u ∈ F.

Then, F is relatively compact in L1
loc(U).

We consider the following regularized version of (5.1),(5.2),

∂tu−∆fε(x, u) = 0, (x, t) ∈ Rn+1
+ ,(5.31)

u(x, 0) = u0(x), x ∈ Rn,(5.32)

where fε(x, λ) := f(x, λ) + ελ and, for the moment, we assume

(5.33) u0 ∈W 2,∞(Rn).

Similarly, we also consider the regularized version of (5.3),(5.4),

∂tu−∆fε(x, u) = 0, (x, t) ∈ Q,(5.34)

u(x, 0) = u0(x), x ∈ Ω, u|∂Ω× (0,∞) = 0,(5.35)

where fε is as above and, again, for the moment, we assume

(5.36) u0 ∈W 2,∞
0 (Ω).

The existence and uniqueness of a classical solution of (5.31),(5.32) (resp., (5.34),(5.35)) for ε > 0 having
bounded derivatives is proved, for example, in [21].

Motivated by [19] we now establish the following result.

Theorem 5.3. Let uε be the solution of the regularized problem (5.31),(5.32). Then, for |y| < δ < 1 and
t ∈ [0, T ], we have

(5.37)

∫
Rn
|uε(x+ y, t)− uε(x, t)|Λ(x) dx ≤ c0δ,

where the constant c0 is independent of ε. Moreover, for some constant M > 0 independent of ε, we have

(5.38)

∫
Rn
|uε(x, t+ s)− uε(x, t)|Λ(x) dx ≤ min

0<δ<1

{
(2c0 + ‖∇Λ‖1)δ + sM

(
1

δ2
+

2

δ
+ 1

)
‖Λ‖1

}
s→0−→ 0.

Similarly, if uε is the solution of (5.34),(5.35), then for any 0 ≤ ϕ ∈ C∞c (Ω) and |y| < δ, with δ sufficiently
small,

(5.39)

∫
Ω

|uε(x+ y, t)− uε(x, t)|ϕ(x) dx ≤ c1δ,

where the constant c1 is independent of ε. Moreover, for some constant M > 0 independent of ε, we have

(5.40)

∫
Ω

|uε(x, t+ s)− uε(x, t)|ϕ(x) dx ≤ min
0<δ<1

{
(2c1 + ‖∇Λ‖1)δ + sM

(
1

δ2
+

2

δ
+ 1

)
‖ϕ‖1

}
s→0−→ 0.

Proof. 1. To deduce (5.37), for each k = 1, · · · , n define vk := ∂xkuε and observe that

(5.41) ∂tv
k −∆(fεu(x, u)vk)−∇ · (fεxku(x, u)∇u)−

(
∇fεxku

)
(x, u) · ∇u = −

(
∆fε

)
(x, u),

where, for simplicity of notation, we denote uε by u,
(
fεx1xku

(x, u), · · · , fεxnxku(x, u)
)

by
(
∇fεxku

)
(x, u) and∑n

i=1 f
ε
xixi(x, u) by

(
∆fε

)
(x, u).

We fix a number T > 0 and let gk ∈ C∞([0, T ]×Rn) be such that gk(t) ∈ C∞c (Rn) for all t ∈ [0, T ]. Now,
taking 0 < t0 ≤ T , multiplying the equation (5.41) by gk, integrating by parts and summing over k from 1
to n, we get
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∫ t0

0

∫
Rn
−

n∑
k=1

{
∂tg

k + fεu(x, u)∆gk −
n∑
i=1

(
fεxiu(x, u)gixk − f

ε
xixku

(x, u)gi
)}
vk dx dt

+

∫
Rn

n∑
k=1

vk(t0)gk(t0) dx =

∫
Rn

n∑
k=1

{
vk(0)gk(0)− (∆f)(x, u)gk(t0)

}
dx.(5.42)

For k = 1, · · · , n and g = (g1, · · · , gn), we define

(5.43) Lk(g) := ∂tg
k + fεu(x, u)∆gk −

n∑
i=1

(
gixkf

ε
xiu(x, u)− fεxixku(x, u)gi

)
.

Let ϕkh, k = 1, · · · , n be the solution of the Cauchy problem

(5.44)

{
Lk(ϕh) = 0, (x, t) ∈ Rn × (0, t0),

ϕkh(t0) = sgn(vk(t0)) ∗ ρh e−|x|, x ∈ Rn,

where ρh = h−nρ(h−1x), and 0 ≤ ρ ∈ Cc(Rn) is a standard symmetric mollifier satisfying supp ρ ⊆ {x :
|x| ≤ 1} and

∫
Rn ρ dx = 1.

Now, observe that

0 = 2Lk(ϕh)ϕkh = ∂t(ϕ
k
h)2 + fεu(x, u)∆(ϕkh)2 − 2fεu(x, u)|∇ϕkh|2

− 2

n∑
i=1

fεxiu(x, u)ϕih,xkϕ
k
h + 2

n∑
i=i

fεxixku(x, u)ϕihϕ
k
h

Summing over k, using the Cauchy inequality with δ, the fact that fεxju(x, u) = fxju(x, u) and (5.5), we have

0 ≤ ∂t|ϕh|2 + fεu(x, u)∆|ϕh|2 + 2

(
− fu(x, u) + θ0

n∑
i=1

|fxiu(x, u)|
) n∑
k=1

|∇ϕkh|2 + c(θ0)|ϕh|2(5.45)

≤ ∂t|ϕh|2 + fεu(x, u)∆|ϕh|2 + c|ϕh|2.

2. In this step, we prove that

|ϕh|2 ≤ c(θ0, T ) e−
|x|
M ,

for all (x, t) ∈ Rn × [0, t0].
We begin by defining L(v) := ∂tv+fεu(x, u)∆v, w := ect|ϕh|2, and observing that (5.45) implies L(w) ≥ 0.

From the latter, it follows by the maximum principle that |ϕh(x, t)| ≤ 1 for all (x, t) ∈ Rn × [0, t0]. In
particular, given q0 > ne2cT , we obtain that |w| ≤ q0 for all (x, t) ∈ Rn × [0, t0].

Now, set

q(x, t) := q0 e
1
M

(
t0−t−|x|

)
,

with M > supRn×I fu(x, u), I ⊃ [−‖uε‖∞, ‖uε‖∞] for 0 < ε < 1, and note that

L(q) = −q
{

1

M

(
1− fεu(x, u)

M

)
+
fεu(x, u)

M

n− 1

|x|

}
≤ 0,

which yields L(w − q) ≥ 0. It is easily seen that

w − q|{0≤t≤t0; |x|=t0−t} = w − q0 ≤ 0, w(x, t0)− q(x, t0) ≤ 0.

Then, the claim follows by the maximum principle (cf., e.g., [25]).
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3. Let 0 ≤ ρ ∈ C∞c (R) with supp ρ ⊆ [−1, 1] and
∫
R ρ dx = 1. Set

ηm(λ) := 1−
∫ λ

−∞
ρ(s−m) ds,

for m ∈ N, and take

gk(x, t) := ϕkh(x, t) ηm(|x|)

as a test function in (5.42). Hence

∫
Rn

n∑
k=1

vk(t0) sgn(vk(t0)) ∗ ρh e−|x|ηm(|x|) dx =

n∑
k=1

∫ t0

0

∫
Rn

{
2fε(x, u)∇ϕkh · ∇ηm(|x|)

+ fε(x, u)ϕkh∆ηm(|x|)−
n∑
i=1

fεxiu(x, u)∂xkηm(|x|)ϕkh
}
dx dt

+

∫
Rn

n∑
k=1

{
vk(0)ϕkh(x, 0) +−(∆f)(x, u)ϕkh(x, t0)

}
ηm(|x|) dx.(5.46)

Thus, letting m→∞ first and then letting h→ 0, we obtain an estimate of the form∫
Rn

n∑
k=1

|vk(t0)| e−|x| dx ≤ c(T, θ0, ‖∇u0‖∞, ‖∇h‖∞) <∞,

for all t0 ∈ [0, T ], where, in particular, the right-hand side does not depend on ε. Consequently∫
Rn
|uε(x+ y, t)− uε(x, t)|Λ(x) dx ≤ c0|y|,

for some c0 independent of ε, which gives (5.37).
4. To deduce (5.38), we first note that from the maximum principle and the hypotheses on f , we know

that there exists M > 0 such that |fε(x, uε(x, t))| ≤M for all (x, t) ∈ Rn+1
+ and for all ε > 0. Now, fix t, s, ε

and set w(x) := uε(x, t+ s)− uε(x, t). Given ϕ ∈W 2,∞(Rn), we obtain

∫
Rn
w(x)ϕ(x)Λ(x) dx =

∫
Rn

∫ t+s

t

∂tuε(x, τ)ϕΛ dτ dx =

∫
Rn

∫ t+s

t

∆fε(x, uε)ϕΛ dτ dx

=

∫
Rn

∫ t+s

t

fε(x, uε)∆(ϕΛ) dτ dx

=

∫
Rn

∫ t+s

t

{
fε(x, uε)∆ϕΛ + 2fε(x, uε)∇ϕ · ∇Λ + fε(x, uε)ϕ∆Λ

}
dτ dx,

and this implies

∣∣∣∣ ∫
Rn
w(x)ϕ(x)Λ(x) dx

∣∣∣∣ ≤M{‖∆ϕ‖∞ + 2‖∇ϕ‖∞ + ‖ϕ‖∞
}
‖Λ‖1s.(5.47)

Taking ϕ = (sgn w) ∗ ρδ and observing that ‖∇ϕ‖∞ ≤ c
δ , ‖∆ϕ‖∞ ≤

c
δ2 and ‖ϕ‖∞ ≤ 1, where c only

depends on the dimension, we get
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∫
Rn
|w(x)|Λ(x) dx =

(∫
Rn
w(x) sgn(w(x)) Λ(x) dx

)∫
Rn
ρ(y) dy

=

∫
Rn×Rn

w(x− δy) sgn(w(x− δy)) Λ(x− δy)ρ(y) dx dy

and

∫
Rn
w(x)ϕ(x)Λ(x) dx =

∫
Rn
w(x)Λ(x)

(∫
Rn

sgn(w(y)) ρδ(x− y) dy

)
dx

=

∫
Rn
w(x)Λ(x)

(∫
Rn

sgn(w(x− δy))ρ(y) dy

)
dx

=

∫
Rn×Rn

w(x) Λ(x) sgn(w(x− δy)) ρ(y) dx dy.

Hence,∫
Rn

|w(x)|Λ(x) dx−
∫
Rn
w(x)ϕ(x)Λ(x) dx

=

∫
Rn×Rn

{
w(x− δy) sgn(w(x− δy)) Λ(x− δy)− w(x) Λ(x) sgn(w(x− δy))

}
ρ(y) dx dy

=

∫
Rn×Rn

{[
w(x− δy)− w(x)

]
sgn(w(x− δy))Λ(x) +

[
Λ(x− δy)− Λ(x)

]
sgn(w(x− δy))w(x− δy)

}
ρ(y) dx dy.

Therefore,

(5.48)

∣∣∣∣ ∫
Rn
|w(x)|Λ(x) dx−

∫
Rn
w(x)ϕ(x)Λ(x) dx

∣∣∣∣ ≤ (2c0 + ‖∇Λ‖1)δ.

Thus, we conclude from (5.48) and from (5.47) that∫
Rn
|w(x)|Λ(x) dx ≤ (2c0 + ‖∇Λ‖1)δ + sM

{
1

δ2
+

2

δ
+ 1

}
‖Λ‖1,

for all 0 < δ < 1, which completes the proof of the assertions concerning the Cauchy problem (5.31),(5.32).
5. As to the proof of the assertions concerning the initial-boundary value problem (5.34),(5.35) we have

the following. The proof of (5.39) is achieved following the same lines as the proof of (5.37) with the following
small adaptations. We first get the analogue of equation (5.42),∫ t0

0

∫
Ω

−
n∑
k=1

{
∂tg

k + fεu(x, u)∆gk −
n∑
i=1

(
fεxiu(x, u)gixk − f

ε
xixku

(x, u)gi
)}
vk dx dt

+

∫
Rn

n∑
k=1

vk(t0)gk(t0) dx =

∫
Ω

n∑
k=1

{
vk(0)gk(0)− (∆f)(x, u)gk(t0)

}
dx.(5.49)

Now we define ϕkh, k = 1, · · · , n, as the solution of the initial-boundary value problem

(5.50)


Lk(ϕh) = 0, (x, t) ∈ Ω× (0, t0),

ϕkh(t0) =
(

sgn(vk(t0))χ
Ω2h

)
∗ ρh, x ∈ Ω,

ϕkh(x, t) = 0, (x, t) ∈ ∂Ω× (0, t0),
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where χ
A

denotes, as usual, the indicator function of the set A, and Ω2h := {x ∈ Ω : dist(x, ∂Ω) > 2h }.
Again we have inequality (5.45) from which we deduce by the maximum principle that |ϕh| ≤ 1. Since now
we are in a bounded domain Ω, the latter inequality for |ϕh| is enough and we may skip step 2.

In (5.49), we now take gk(x, t) = ηδ(x)ϕkh(x, t) where ηδ ∈ C∞c (Ω), ‖ηδ‖∞ ≤ 1 and ηδ → χ
Ω

pointwise as
δ → 0. We obtain the analogue of equation (5.46)∫

Ω

n∑
k=1

vk(t0)
(

sgn(vk(t0))χ
Ωh

)
∗ ρhηδ(x) dx =

n∑
k=1

∫ t0

0

∫
Ω

{
2fε(x, u)∇ϕkh · ∇ηδ(x)

+ fε(x, u)ϕkh∆ηδ(x)−
n∑
i=1

fεxiu(x, u)∂xkηδ(x)ϕkh

}
dx dt

+

∫
Ω

n∑
k=1

{
vk(0)ϕkh(x, 0)− (∆f)(x, u)ϕkh(x, t0)

}
ηm(|x|) dx.(5.51)

We use integration by parts to move the derivatives from ηδ to the product of remaining functions in the
integrals of the first three terms inside the integral sign on the right-hand member of (5.51). We then make
δ → 0, use Gauss-Green (divergence) theorem and the fact that ϕh(x, t) and fε(x, uε(x, t)) vanish for x ∈ ∂Ω
to conclude that those three integrals converge to 0 as δ → 0. We then make h → 0, and the remaining of
the proof of (5.39) is entirely similar to the corresponding part of the proof of (5.37).

The proof of (5.40) is totally similar to the one of (5.38) given above.
�

Theorem 5.4 (Existence). Let uε be the unique solution of (5.31),(5.32). There exists u ∈ L∞(Rn+1
+ ) such

that, passing to a suitable subsequence if necessary, uε → u a.e. in Rn+1
+ as ε → 0. Moreover, u is the

unique weak solution of (5.1),(5.2). Finally, we may relax (5.33), take u0 ∈ L∞(Rn), and still obtain a weak
solution for (5.1),(5.2), which is unique.

Similarly, if uε be the unique solution of (5.34),(5.35), there exists u ∈ L∞(Q) such that, passing to
a suitable subsequence if necessary, uε → u a.e. in Q as ε → 0. Moreover, u is the unique weak solution
of (5.3),(5.4). Finally, we may relax (5.36), take u0 ∈ L∞(Ω), and still obtain a weak solution for (5.3),(5.4),
which is unique.

Proof. We only prove the part concerning the Cauchy problem (5.1),(5.2). The assertions concerning the
problem (5.3),(5.4) are proved in an entirely similar (even easier) way.

1. Let us first prove the case where (5.33) holds. By Theorem 5.3, {uε}ε>0 satisfies the hypotheses of

Lemma 5.3. Therefore, there exists u ∈ L∞(Rn+1
+ ) such that, passing to a subsequence if necessary, uε → u

in L1
loc(R

n+1
+ ).

2. Multiplying (5.31) by fε(x, uε)Λ and integrating by parts, we get∫ T

0

∫
Rn

{
∂tuεf

ε(x, uε)Λ +∇fε(x, uε) · ∇(fε(x, uε)Λ)

}
dx dt = 0.

This yields the equality∫ T

0

∫
Rn

Λ ∂t

[ ∫ uε

0

fε(x, s)ds

]
dx dt+

∫ T

0

∫
Rn
|∇fε(x, uε)|2Λ +∇fε(x, uε) · ∇Λfε(x, uε)

}
dx dt = 0,

which gives∫ T

0

∫
Rn
|∇fε(x, uε)|2Λ dx dt = −

∫ T

0

∫
Rn
∇fε(x, uε) · ∇Λfε(x, uε) dt dx+

∫
Rn

Λ(x)

∫ uε(T )

u0

fε(x, s) ds dx

≤ n
∫ T

0

∫
Rn
|∇fε(x, uε)||fε(x, uε)|Λ dx dt+

∫
Rn

Λ(x)

∣∣∣∣ ∫ uε(T )

u0

fε(x, s) ds

∣∣∣∣ dx,
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where we have used that |∇Λ| ≤ nΛ. The Cauchy inequality with δ gives

∫ T

0

∫
Rn
|∇fε(x, uε)|2Λ dx dt

≤
∫ T

0

∫
Rn

{
2nδ|∇fε(x, uε)|2Λ +

n

4δ
(fε)2(x, uε)Λ

}
dx dt+

∫
Rn

Λ(x)

∣∣∣∣ ∫ uε(T )

u0(x)

fε(x, s) ds

∣∣∣∣ dx.
taking δ =

1

4n
in the previous inequality, we obtain

1

2

∫ T

0

∫
Rn
|∇fε(x, uε)|2Λ dx dt ≤ n2

∫ T

0

∫
Rn

(fε)2(x, uε)Λ dx dt+

∫
Rn

Λ(x)

∣∣∣∣ ∫ uε(T )

u0(x)

fε(x, s) ds

∣∣∣∣ dx.
Therefore, ∫ T

0

∫
Rn
|∇fε(x, uε)|2Λ dx dt ≤ c(‖u0‖∞, T )

∫
Rn

Λ(x) dx,

for all 0 < ε < 1. Given R > 0, it follows that

Λ(R)

∫ T

0

∫
BR

|∇fε(x, uε)|2 dx dt ≤
∫ T

0

∫
BR

|∇fε(x, uε)|2Λ(x) dx dt ≤ c
∫
Rn

Λ(x) dx

and so ∫ T

0

∫
BR

|∇fε(x, uε)|2 dx dt ≤
c

Λ(R)

∫
Rn

Λ(x) dx,

for any 0 < ε < 1.
Thus,

‖fε(x, uε)‖L2(0,T ;H1(BR)) ≤ c(R, T, ‖u0‖∞),

uniformly in ε. Hence, there exists v ∈ L2
loc(R+;H1

loc(Rn)) such that fε(x, uε)→ v weakly. Since fε(x, uε)→
f(x, u) a.e., then v = f(x, u) and for this reason we conclude that f(x, u) ∈ L2

loc(R+;H1
loc(Rn)).

3. Finally, when u0 ∈ L∞(Rn), we may approximate u0 in L1
loc(Rn) by a sequence u0k ∈ W 2,∞(Rn)

obtaining a sequence uk of weak solutions of (5.1),(5.2), with initial data u0 = u0k, and then use the
stability Theorem 5.2 to deduce that uk is a Cauchy sequence in L1

loc(Rn+1
+ ). We then easily conclude that

the limit u ∈ L∞(Rn+1
+ ) of the sequence uk is a weak solution of (5.1),(5.2).

�

6. Homogenization of Porous Medium Type Equations: The Cauchy problem

In this section, we consider the following homogenization problem

(6.1)

{
∂tu = ∆f(xε , u), (x, t) ∈ Rn+1

+ ,

u(x, 0) = u0(xε , x), x ∈ Rn,

where f : Rn×R→ R satisfies (f1), (f2), (f3) of Section 5, and is such that for each u ∈ R, f(·, u) : Rn → R
belongs to a given ergodic algebra A(Rn). Further, there exists a continuous function g : Rn × R → R
such that, for each z ∈ Rn, g(z, f(z, u)) = u and f(z, g(z, v)) = v, for all u, v ∈ R, and, for each v ∈ R,
g(·, v) ∈ A(Rn).

In (6.1) we assume that u0 satisfies

(6.2) u0 ∈ L∞(Rn;A(Rn)).
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Let f̄ : R→ R be given by

(6.3) p =

∫
g(z, f̄(p)) dz.

Also, let

(6.4) ū0(x) =

∫
u0(x, z) dz,

and let K be the compact space given by Theorem 2.1 such that A(Rn) ∼ C(K), and m be the associated
invariant probability measure on K. For each α ∈ R, define

ψα(·) := g(·, α),

and notice that ψα is a steady solution of (6.1).

Theorem 6.1. Let uε(x, t) be the weak solution of (6.1). Suppose that

(6.5) u0(x, z) = g(z, ϕ0(x))

for some ϕ0 ∈ L∞(Rn). Then uε weak star converge in L∞(Rn+1
+ ) to ū(x, t), where the latter is the weak

solution to the Cauchy problem

(6.6)

{
∂tū = ∆f̄(ū), (x, t) ∈ Rn+1

+ ,

ū(x, 0) = ū0(x), x ∈ Rn.

Moreover, we have

(6.7) uε(x, t)− g
(x
ε
, f̄(ū(x, t))

)
→ 0, as ε→ 0 in L1

loc(R
n+1
+ ).

Proof. 1. First, we observe that the weak solutions uε, ε > 0, of (6.1) are bounded uniformly with respect
to ε in L∞(Rn+1

+ ). For this, we note that if α1, α2 are such that α1 ≤ ϕ0(x) ≤ α2 for x ∈ R, we have

g(
x

ε
, α1) ≤ u0(

x

ε
, x) ≤ g(

x

ε
, α2) for all x ∈ Rn.

By the monotonicity of the solution operator of (6.1) (see Corollary 5.1), we get

g(
x

ε
, α1) ≤ uε(x, t) ≤ g(

x

ε
, α2) for all (x, t) ∈ Rn+1

+ .

Thus, in the sequel, we denote by K a compact interval containing the image of all the functions uε, ε > 0.
Let νz,x,t ∈ M(K), with (z, x, t) ∈ K × Rn+1

+ , be the two-scale space time Young measures associated
with a subnet of {uε}ε>0 with test functions oscillating only on the space variable. Following [13], [2] and
[3], the theorem will be proved by adapting DiPerna’s method in [11], that is, by showing that νz,x,t is a

Dirac measure for almost all (z, x, t) ∈ K×Rn+1
+ . Since we are going to show that νz,x,t does not depend on

the chosen subnet (so that, a posteriori, a full limit as ε → 0 occurs), in order to simplify our notation we
will use the notation limε→0, with no reference to the subnet.

Observe that, for every α ∈ R, the weak solutions uε and ψα(xε ) satisfy (see Theorem 5.1)
(6.8)∫
Rn+1

+

|uε(x, t)− ψα(
x

ε
)|φt + |f(

x

ε
, uε(x, t))− f(

x

ε
, ψα(

x

ε
))|∆φdx dt+

∫
Rn
|u0(

x

ε
, x)− ψα(

x

ε
)|φ(x, 0) dx ≥ 0,

for all 0 ≤ φ ∈ C∞c (Rn+1). In (6.8), we take φ(x, t) = ε2ϕ(xε )ψ(x, t) with 0 ≤ ψ ∈ C∞c (Rn+1
+ ), ϕ, ∆ϕ ∈

A(Rn) and ϕ ≥ 0. Observe that

∆φ = ∆ϕ(
x

ε
)ψ(x, t) + 2ε∇ϕ(

x

ε
) · ∇ψ(x, t) + ε2ϕ(

x

ε
)∆ψ(x, t).
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Letting ε→ 0 and using Theorem 4.2, we get∫
Rn+1

+

∫
K
ψ(x, t)〈νz,x,t, |f(z, ·)− f(z, ψα(z)|〉∆ϕ(z) dm(z) dx dt ≥ 0.

Now apply the inequality above to ‖ϕ‖∞ ± ϕ to obtain

(6.9)

∫
Rn+1

+

∫
K
ψ(x, t)〈νz,x,t, |f(z, ·)− α|〉∆ϕ(z) dm(z) dx dt = 0,

for all ϕ such that ϕ,∆ϕ ∈ A(Rn) and all 0 ≤ ψ ∈ C∞c (Rn+1
+ ).

2. As in [13], we define a new family of parametrized measures µz,x,t supported on a compact set
K ′ ⊃ {f(z, λ) : (λ, z) ∈ K × Rn} by

(6.10) 〈µz,x,t, θ〉 := 〈νz,x,t, θ(f(z, ·))〉, θ ∈ C(R).

In this way, the equation (6.9) can also be rewritten as

(6.11)

∫
Rn+1

+

∫
K
ψ(x, t)〈µz,x,t, θ〉∆ϕ(z) dm(z) dx dt = 0,

where θ(λ) = |λ− α|.
On the other hand, inserting in the integral equation defining weak solution of (6.1) with a test function

as above, we easily get, letting ε→ 0, that (6.11) holds when θ is any affine function. Therefore, we deduce
that (6.11) holds for finite linear combinations of affine functions and functions of the form | · −α|, α ∈ R.
Since these combinations generate the piecewise affine functions, we finally conclude that (6.11) holds for all
θ ∈ C(R).

Set F (z) :=
∫
Rn+1

+
ψ(x, t)〈µz,x,t, θ〉 dx dt and observe that

∫
K F (z)∆ϕ(z) dm(z) = 0, for all ϕ such that

ϕ, ∆ϕ ∈ A(Rn). Then, we can apply Lemma 3.2 to obtain that F is equivalent to a constant for all θ ∈ C(R).
Using this fact and defining

µx,t :=

∫
K
µz,x,t dm(z) ∈M(K ′),

we have, in particular,∫
Rn+1

+

ψ(x, t)〈µz,x,t, θ〉 dx dt =

∫
K

∫
Rn+1

+

ψ(x, t)〈µz,x,t, θ〉 dx dt dm(z) =

∫
Rn+1

+

ψ(x, t)〈µx,t, θ〉 dx dt,

for a.e. z ∈ K, for all θ ∈ C(R).
Hence, ∫

Rn+1
+

〈
µx,t,

∫
K
W (z, ·) dm(z)

〉
ψ(x, t) dx dt =

∑
i

m(Ki)
∫
Rn+1

+

〈µx,t, θi〉ψ(x, t) dx dt(6.12)

=
∑
i

m(Ki)
∫
Rn+1

+

〈µz,x,t, θi〉ψ(x, t) dx dt =
∑
i

∫
K

∫
Rn+1

+

〈µz,x,t, θi〉χKi(z)ψ(x, t) dx dt dm(z)

=

∫
Rn+1

+

∫
K
〈µz,x,t,W (z, ·)〉ψ(x, t) dm(z) dx dt

for any function W (λ, z) =
∑
i θi(λ)χKi(z), where θi ∈ C(K ′), Ki is any Borelian subset of K, and χKi is

the characteristic function of Ki. By approximation (6.12) holds for any W ∈ C(K ×K ′).
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3. From (6.8), taking the limit as ε→ 0, passing to a subnet if necessary, we get∫
Rn+1

+

∫
K
〈νz,x,t, | · −ψα(z)|〉ϕt + 〈νz,x,t, |f(z, ·)− f(z, ψα(z))|〉∆ϕ(z) dm(z) dx dt(6.13)

+

∫
Rn

∫
K
|u0(z, x)− ψα(z)|ϕ(x, 0) dm(z) dx ≥ 0

for all α ∈ R and for all 0 ≤ ϕ ∈ C∞c (Rn+1).
We define I(ρ, α) and G(ρ, α) by

I(ρ, α) :=

∫
K
|g(z, ρ)− g(z, α)| dm(z),(6.14)

G(ρ, α) := |ρ− α|.(6.15)

Now, setting θ(ρ) = |g(z, ρ)− g(z, α)|, we have∫
Rn+1

+

∫
K
〈νz,x,t, | · −ψα(z)|〉ϕt dm(z) dx dt =

∫
Rn+1

+

∫
K
〈νz,x,t, θ(f(z, ·))〉ϕt dm(z) dx dt

=

∫
Rn+1

+

∫
K
〈µz,x,t, |g(z, ·)− g(z, α)|〉ϕt dm(z) dx dt.

Using (6.12), we obtain∫
Rn+1

+

∫
K
〈νz,x,t, | · −ψα(z)|〉ϕt dm(z) dx dt(6.16)

=

∫
Rn+1

+

∫
K
〈µz,x,t, |g(z, ·)− g(z, α)|〉ϕt dm(z) dx dt

=

∫
Rn+1

+

〈
µx,t,

∫
K
|g(z, ·)− g(z, α)| dm(z)

〉
ϕt dx dt

=

∫
Rn+1

+

〈µx,t, I(·, α)〉ϕt dx dt.

Analogously,

(6.17)

∫
Rn+1

+

∫
K
〈νz,x,t, |f(z, ·)− f(z, ψα(z))|〉∆ϕ(x, t) dm(z) dx dt =

∫
Rn+1

+

〈µx,t, G(·, α)〉∆ϕ(x, t) dx dt.

Using (6.16) and (6.17) in (6.13), we have∫
Rn+1

+

〈µx,t, I(·, α)〉ϕt + 〈µx,t, G(·, α)〉∆ϕdx dt(6.18)

+

∫
Rn

∫
K
|u0(z, x)− ψα(z)|ϕ(x, 0) dm(z) dx ≥ 0,

for all 0 ≤ ϕ ∈ C∞c (Rn+1) and all α ∈ R.

Now, choosing ϕ(x, t) = δh(t)φ(x), with 0 ≤ φ ∈ C∞c (Rn) and δh(t) = max
{h−|t|

h , 0
}

for h > 0 in (6.18),
we obtain

(6.19) lim
h→0

1

h

∫ h

0

∫
Rn
〈µx,t, I(·, α)〉φdx dt ≤

∫
Rn

∫
K
|u0(z, x)− ψα(z)|φdm(z) dx.

Using the flexibility provided by φ in (6.19), we deduce that the same inequality holds if α ∈ L∞(Rn) and
φ = χBR , R > 0.
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We have that ϕ0(x) = f(z, u0(z, x)) is independent of z. Taking α(x) = ϕ0(x) and recalling that u0(z, x) =
g(z, α(x)), we have α(x) = f̄(ū(x, 0)). Using this and ψα(z) = g(z, α) in (6.19), we obtain that

(6.20) lim
h→0

1

h

∫ h

0

∫
BR

〈µx,t, I(·, f̄(ū(x, 0)))〉 dx dt = 0, ∀R > 0.

4. By using the Theorem 5.1 with u1 = uε and u2(x) = ψα(xε ), for all 0 ≤ ϕ ∈ C∞c (Rn+1
+ ) we get∫

Rn+1
+

B
ψα( xε )

ϑδ
(
x

ε
, uε(x, t))ϕt dx dt(6.21)

−
∫
Rn+1

+

Hδ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψα(

x

ε
)))∇[f(

x

ε
, uε(x, t))− f(

x

ε
, ψα(

x

ε
))] · ∇ϕdx dt

=

∫
Rn+1

+

|∇[f(
x

ε
, uε(x, t))− f(

x

ε
, ψα(

x

ε
))]|2H ′δ(f(

x

ε
, uε(x, t))− f(

x

ε
, ψα(

x

ε
)))ϕdx dt.

Now, we let α = ξ(y, s) := f̄(ū(y, s)), take 0 ≤ φ ∈ C∞c ((Rn+1
+ )2), integrate in y, s, and send δ → 0, to get∫

(Rn+1
+ )2

|uε(x, t)− ψξ(y,s)(
x

ε
)|φt −∇x|f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))| · ∇xφdx dt dy ds

= lim
δ→0

∫
(Rn+1

+ )2

{
|∇x[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))]|2

×H ′δ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
)))φ

}
dx dt dy ds.

Then we use Theorem 4.2 on multiscale Young measures to obtain, as ε→ 0,∫
(Rn+1

+ )2

〈µx,t, I(·, ξ(y, s))〉φt + 〈µx,t, G(·, ξ(y, s))〉∆xφdx dt dy ds(6.22)

= lim
ε→0

lim
δ→ 0

∫
(Rn+1

+ )2

{
|∇x[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))]|2

×H ′δ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
)))φ

}
dx dt dy ds.

5. Observe that ∇y[f(xε , ψξ(y,s)(
x
ε ))] = ∇yξ(y, s). Hence

0 =

∫
Rn+1

+

∇y[f(
x

ε
, ψξ(y,s)(

x

ε
))] · ∇x[Hδ(f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))φ] dx dt,

which implies that∫
Rn+1

+

{
∇y[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))] · ∇x[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))]

×H ′δ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
)))φ

}
dx dt

= −
∫
Rn+1

+

{
∇y[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))] · ∇xφ

×Hδ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
)))

}
dx dt.
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Integrating in y, s and letting δ → 0, we have∫
(Rn+1

+ )2

|f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))|div y∇xφdx dt dy ds

= lim
δ→0

∫
(Rn+1

+ )2

{
∇y[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))] · ∇x[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))]

×H ′δ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
)))φ

}
dx dt dy ds.

By Theorem 4.2, as ε→ 0, we get∫
(Rn+1

+ )2

〈µx,t, G(·, ξ(y, s))〉div y∇xφdx dt dy ds(6.23)

= lim
ε→0

lim
δ→0

∫
(Rn+1

+ )2

{
∇y[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))] · ∇x[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]

×H ′δ(f(
x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
)))φ

}
dx dt dy ds.

Similarly, we have also that f(xε , uε(x, t))− f(xε , ψξ(y,s)(
x
ε )) = f(xε , uε(x, t))− ξ(y, s) and thus

∇x[f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))] = ∇xf(

x

ε
, uε(x, t)),

is independent of y. Hence, by integrating first in (y, s) and then (x, t), proceeding as above in obtain-
ing (6.23), yields the equality∫

(Rn+1
+ )2

〈µx,t, G(·, ξ(y, s))〉div x∇yφdx dt dy ds(6.24)

= lim
ε→0

lim
δ→0

∫
(Rn+1

+ )2

{
∇x[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))] · ∇y[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]

×H ′δ(f(
x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
)))φ

}
dx dt dy ds

where uε and ξ are functions of x, t and y, s, respectively.
6. Let ū be the weak solution of (6.6). From (5.10) in Lemma 5.2, we have∫

Rn+1
+

|l − ū(y, s)|φs + sgn(f̄(l)− f̄(ū(y, s)))∇y f̄(ū) · ∇yφdy ds(6.25)

= lim
δ→0

∫
Rn+1

+

|∇y f̄(ū)|2H ′δ(f̄(l)− f̄(ū(y, s)))φdy ds, for all l ∈ R.

Now, let k := f̄(l) and notice that l =
∫
K g(z, f̄(l)) dm(z) and that ū(y, s) =

∫
K g(z, ξ(y, s)) dm(z). Thus,∫

Rn+1
+

|l − ū(y, s)|φs dy ds =

∫
Rn+1

+

∣∣∣∣ ∫
K

(g(z, k)− g(z, ξ(y, s)) dm(z)

∣∣∣∣φs dy ds
=

∫
Rn+1

+

(∫
K
|g(z, k)− g(z, ξ(y, s))| dm(z)

)
φs dy ds =

∫
Rn+1

+

I(k, ξ(y, s))φs dy ds.



HOMOGENIZATION OF DEGENERATE POROUS MEDIUM TYPE EQUATIONS 25

Also, ∫
Rn+1

+

sgn(f̄(l)− f̄(ū(y, s)))∇y f̄(ū) · ∇yφdy ds

= −
∫
Rn+1

+

∇y|f̄(l)− f̄(ū(y, s))| · ∇yφdy ds =

∫
Rn+1

+

|k − ξ(y, s)|∆yφdy ds

=

∫
Rn+1

+

G(k, ξ(y, s))∆yφdy ds.

Besides, since ∇yξ(y, s) = ∇y[f(xε , ψξ(y,s)(
x
ε ))], we have∫

Rn+1
+

|∇y f̄(ū)|2H ′δ(f̄(l)− f̄(ū(y, s)))φdy ds =

∫
Rn+1

+

|∇yξ(y, s)|2H ′δ(k − ξ(y, s))φdy ds

=

∫
Rn+1

+

|∇yf(
x

ε
, ψξ(y,s)(

x

ε
))|2H ′δ(k − ξ(y, s))φdy ds.

Using the two previous equalities in (6.25) we obtain∫
Rn+1

+

I(k, ξ(y, s))φs +G(k, ξ(y, s))∆yφdy ds = lim
δ→0

∫
Rn+1

+

|∇yf(
x

ε
, ψξ(y,s)(

x

ε
))|2H ′δ(k − ξ(y, s))φdy ds.

for all k ∈ R and all 0 ≤ φ ∈ C∞c ((Rn+1
+ )2).

We take k = f(xε , uε(x, t)) in the above equality and integrate in x, t to get∫
(Rn+1

+ )2

I(f(
x

ε
, uε(x, t)), ξ(y, s))φs +G(f(

x

ε
, uε(x, t)), ξ(y, s))∆yφdx dt dy ds(6.26)

= lim
δ→0

∫
(Rn+1

+ )2

{
|∇y[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))]|2

×H ′δ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
)))φ

}
dx dt dy ds.

Applying Theorem 4.2, letting ε→ 0, we obtain

lim
ε→0

∫
(Rn+1

+ )2

I(f(
x

ε
, uε(x, t)), ξ(y, s))φs dx dt dy ds

=

∫
(Rn+1

+ )2

∫
K
〈νz,x,t, I(f(z, ·), ξ(y, s))〉φs dm(z) dx dt dy ds

=

∫
(Rn+1

+ )2

∫
K
〈µz,x,t, I(·, ξ(y, s))〉φs dm(z) dx dt dy ds =

∫
(Rn+1

+ )2

〈µx,t, I(·, ξ(y, s))〉φs dx dt dy ds

Similarly

lim
ε→0

∫
(Rn+1

+ )2

G(f(
x

ε
, uε(x, t)), ξ(y, s))∆yφdx dt dy ds =

∫
(Rn+1

+ )2

〈µx,t, G(·, ξ(y, s))〉∆yφdx dt dy ds.
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Using the last two equalities in (6.26), we get∫
(Rn+1

+ )2

〈µx,t, I(·, ξ(y, s))〉φs + 〈µx,t, G(·, ξ(y, s))〉∆yφdx dt dy ds(6.27)

= lim
ε→0

lim
δ→0

∫
(Rn+1

+ )2

{
|∇y[f(

x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
))]|2

×H ′δ(f(
x

ε
, uε(x, t))− f(

x

ε
, ψξ(y,s)(

x

ε
)))φ

}
dx dt dy ds.

7. We now prove that

(6.28)

∫
Rn+1

+

〈µx,t, I(·, ξ(x, t))〉ϕt + 〈µx,t, G(·, ξ(x, t))〉∆ϕdx dt ≥ 0,

for all 0 ≤ ϕ ∈ C∞c (Rn+1
+ ).

By adding (6.22) and (6.23), we deduce that∫
(Rn+1

+ )2

〈µx,t, I(·, ξ)〉φt + 〈µx,t, G(·, ξ)〉
(
∆xφ+ div y∇xφ

)
dx dt dy ds(6.29)

= lim
ε→0

lim
δ→0

∫
(Rn+1

+ )2

{
|∇x[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]|2

+∇y[f(
x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))] · ∇x[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]

}
×H ′δ(f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
)))φdx dt dy ds,

where uε = uε(x, t), ξ = ξ(y, s).
The sum of (6.27) and (6.24)) gives∫

(Rn+1
+ )2

〈µx,t, I(·, ξ)〉φs + 〈µx,t, G(·, ξ)〉
(
∆yφ+ div x∇yφ

)
dx dt dy ds(6.30)

= lim
ε→0

lim
δ→0

∫
(Rn+1

+ )2

{
|∇y[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]|2

+∇y[f(
x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))] · ∇x[f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]

}
×H ′δ(f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))φdx dt dy ds.

Finally, taking the sum between (6.29) and (6.30) we obtain∫
(Rn+1

+ )2

〈µx,t, I(·, ξ)〉(φt + φs) + 〈µx,t, G(·, ξ)〉
(
∆x + div y∇x + div x∇y + ∆y

)
φdx dt dy ds(6.31)

= lim
ε→0

lim
δ→0

∫
(Rn+1

+ )2

{∣∣∇x[f(
x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]

+∇y[f(
x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
))]
∣∣2H ′δ(f(

x

ε
, uε)− f(

x

ε
, ψξ(

x

ε
)))φ

}
dx dt dy ds ≤ 0.

Now, we take φ(x, t, y, s) := ϕ(x+y
2 , t+s2 )ρj(

x−y
2 )θj(

t−s
2 ), where 0 ≤ ϕ ∈ C∞c (Rn+1

+ ), and ρj , θj are
classical approximations of the identity in Rn and R, respectively, as in the doubling of variables method,
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and observe that(
∆x + div y∇x + div x∇y + ∆y

)
φ = ρj(

x− y
2

)θj(
t− s

2
)∆xϕ(

x+ y

2
,
t+ s

2
).

Substituting such test function in the inequality in (6.31) and letting j →∞, we obtain (6.28), proving the
assertion.

8. To conclude the proof, we set ϕ(x, t) = δh(t)Λ(x) in (6.28), with 0 ≤ δh ∈ C∞c (R+) and Λ given by
(5.25). Hence,

−
∫
Rn+1

+

〈µx,t, I(·, ξ(x, t))〉δ′h(t)Λ(x) dx dt ≤
∫
Rn+1

+

〈µx,t, G(·, ξ(x, t))〉δh(t)∆Λ(x) dx dt(6.32)

≤ (n+ 1)

∫
Rn+1

+

〈µx,t, G(·, ξ(x, t))〉δh(t)Λ(x) dx dt

≤ C
∫
Rn+1

+

〈µx,t, I(·, ξ(x, t))〉δh(t)Λ(x) dx dt,

where we use that G(·, ·) ≤ CI(·, ·). Defining

γ(t) :=

∫
Rn
〈µx,t, I(·, ξ(x, t))〉Λ(x) dx,

and using (6.32), we get

−
∫ ∞

0

γ(s)δ′h(s) ds ≤ C
∫ ∞

0

γ(s)δh(s) ds.

Let t > 0 to be a Lebesgue point of the function γ and taking

δh(s) =
s− h
h

χ[h,2h](s)−
s− t− h

h
χ(t,t+h](s) + χ(2h,t](s),

we note that

δ′h =
1

h
χ[h,2h] −

1

h
χ(t,t+h].

Hence,

(6.33)
1

h

∫ t+h

t

γ(s) ds− 1

h

∫ 2h

h

γ(s) ds ≤ C
∫ ∞

0

γ(s)δh(s) ds.

Furthermore, due to the monotonicity of g(z, ·) for all z, we have

γ(s) =

∫
Rn
〈µx,s, I(·, ξ(x, s))〉Λ(x) dx

=

∫
Rn

{
〈µx,s, I(·, ξ(x, 0))〉+ 〈µx,s, I(·, ξ(x, s))− I(·, ξ(x, 0))〉

}
Λ(x) dx

≤
∫
Rn

{
〈µx,s, I(·, ξ(x, 0))〉+ |ū(x, s)− ū(x, 0)|

}
Λ(x) dx.

Letting h→ 0, taking into account (6.20) and that ū is a weak solution, we see that

lim
h→0

1

h

∫ h

0

γ(s) ds = 0.

Thus, making h→ 0 in (6.33), we arrive at

γ(t) ≤ C
∫ t

0

γ(s)ds for a.e. t ≥ 0.
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Hence, Gronwall’s lemma implies γ(t) = 0 for a.e. t ≥ 0 which, by the definition of γ, means that
〈µx,t, I(·, ξ(x, t))〉 = 0 for a.e. (x, t) ∈ Rn+1

+ , and so 〈µx,t, G(·, ξ(x, t))〉 = 0 for a.e. (x, t) ∈ Rn+1
+ . Therefore,

µx,t is the Dirac mass concentrated at ξ(x, t) for a.e. (x, t) ∈ Rn+1
+ . Recalling the definition of µx,t we have

also that µz,x,t is the Dirac mass concentrated at ξ(x, t) for a.e. (z, x, t), and thus, νz,x,t is the Dirac mass
concentrated at g(z, f̄(ū(x, t))) for a.e. (z, x, t). Hence, we can apply Theorem 4.2 to conclude (6.7).

Finally, the fact that the whole sequence uε converges in the weak star topology of L∞(Rn+1
+ ) to ū follows

from (6.7) observing that, for any ϕ ∈ Cc(Rn+1
+ ), we have

lim
ε→0

∫
Rn+1

+

g(
x

ε
, f̄(ū(x, t)))ϕ(x, t)dxdt =

∫
Rn+1

+

∫
K
g(z, f̄(ū(x, t)))ϕ(x, t)dm(z) dx dt

=

∫
Rn+1

+

(∫
K
g(z, f̄(ū(x, t)) )dm(z)

)
ϕ(x, t) dx dt

=

∫
Rn+1

+

ū(x, t)ϕ(x, t) dx dt,

by the definition of f̄ .
�

7. Homogenization of Porous medium type equations on bounded domains

In this section we consider a homogenization problem for a porous medium type equation, similar to the
one analyzed in the previous section, but now in a bounded domain. Because of boundary constraints, we

consider a flux function of the form f(x,
x

ε
, u), depending also on the “slow variable” x, instead of simply

f(
x

ε
, u). Here, we will use a completely different approach to address the homogenization problem, which

will allow us to consider more general initial data, namely, initial data that are not necessarily of the form
(6.5). On the other hand, our approach here will require that we restrict ourselves to the case where A(Rn) is
a regular algebra w.m.v. instead of a general ergodic algebra. As it was shown in Section 3, FS(Rn) provides
a very encompassing example of regular algebra w.m.v., and it is not even known so far whether there are
ergodic algebras that are not regular algebras w.m.v., neither whether there are regular algebras w.m.v. that
are not subalgebras of FS(Rn). Also, here, for our result on the existence of oscillatory profiles correcting
the weak convergence into a strong convergence, we need to ask the flux function to be convex, which was
not necessary for the corresponding result in Theorem 6.1. The discussion in this section largely extends
the corresponding one in [15] concerning the homogenization of a particular type of the general equation
considered here, in the nondegenerate case.

So, let Ω be a bounded open subset of Rn with smooth boundary. We consider the initial-boundary value
problem

(7.1)


∂tu = ∆f(x, xε , u), (x, t) ∈ Q,
u(x, 0) = u0(xε , x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞),

where f(x, z, u) is such that, if we set fε(x, u) := f(x,
x

ε
, u), for each fixed ε > 0, then fε(x, u) satisfies (f1),

(f2), (f3) of Section 5. Also, f(x, z, 0) = 0 for all (x, z) ∈ ∂Ω×Rn (cf. (f4) in Section 5). Further, for each
(x, u) ∈ Ω × R, f(x, ·, u) ∈ A(Rn), where now A(Rn) is a given regular algebra w.m.v., and there exists a
continuous function g : Ω×Rn×R→ R such that g(x, z, f(x, z, u)) = u, f(x, z, g(x, z, v)) = v, and, for each
(x, u) ∈ Ω× R, g(x, ·, u) ∈ A(Rn).
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Define f̄ : Ω× R→ R by

p =

∫
g(x, z, f̄(x, p)) dz.

It is easy to see that f̄ satisfies (f1) and (f4). Nevertheless, in general, it may not satisfy (f3), and it is not
clear whether it inherits from f the verification of all the conditions in (f2). Therefore, we cannot use the
Theorem 5.4 to assert the existence of a weak solution for the initial-boundary value problem

(7.2)


∂tu = ∆f̄(x, u), (x, t) ∈ Q,
u(x, 0) =

∫
u0(z, x) dz, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞).

That is the reason why, in the next theorem, we characterize the homogenized limit ū in a different way.
However, since the existence of a weak solution to (7.2) follows from the general compactness result in [24]
and (f4), and for uniqueness we only need (f1) and (f4), we actually could characterize ū as the unique
weak solution of (7.2).

We next state and prove the main result of this section. We will use the concept and some basic facts
about viscosity solutions of fully nonlinear parabolic equations. We refer to [10] for a general exposition of
the theory of viscosity solutions of fully-nonlinear elliptic and parabolic equations.

Before stating the theorem, let us introduce the following notation. Given a function h ∈ L∞(Ω), we
denote by ∆−1h the solution of the boundary value problem

(7.3)

{
∆v(x) = h(x), x ∈ Ω,

v(x) = 0, x ∈ ∂Ω.

Theorem 7.1. Let uε(x, t) be the weak solution of (7.1). Then, as ε → 0, uε weak star converges in
L∞(Ω× [0,∞)) to ū(x, t), which is uniquely defined as follows. Let Ū be the viscosity solution of

(7.4)


∂tU = f̄(x,∆U), (x, t) ∈ Q,
U(x, 0) = Ū0(x) := ∆−1

{∫
u0(z, x)

}
, x ∈ Ω,

U(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞).

Then Ū ∈ L∞((0,∞);W 2,p(Ω)), for any 1 < p <∞, and

ū(x, t) := ∆Ū , a.e. (x, t) ∈ Ω× (0,∞).

Moreover, assuming the existence of a weak solution to (7.2), ū is the weak solution of (7.2), and if
f(x, z, ·) is strictly convex, for all (x, z) ∈ Ω× Rn, then

(7.5) uε(x, t)− g
(
x,
x

ε
, f̄(x, ū(x, t))

)
→ 0 as ε→ 0 in L1

loc(Ω× [0,∞)).

Proof. 1. The fact that the solutions of (7.1) form a uniformly bounded sequence in L∞(Q) follows from the
last part of Remark 5.2. To see this, take α1 < 0 < α2 such that ψα1(x, xε ) ≤ u0(x, xε ) ≤ ψα2(x, xε ). Hence,
using (5.30), once for (uε − ψα1)+ and again for (uε − ψα2)−, we obtain

ψα1
(x,

x

ε
) ≤ uε(x, t) ≤ ψα2

(x,
x

ε
),

which proves the uniform boundedness of the family {uε}.
2. Now, let us make a general observation concerning problem (5.3)–(5.4), under assumptions (f1)–(f4)

on f . So, let u be the weak solution of (5.3)–(5.4) and, for each t ∈ [0,∞), let U(·, t) := ∆−1u(·, t). We
claim that U is the viscosity solution of

(7.6)


∂tU − f(x,∆U) = 0, (x, t) ∈ Q,
U(x, 0) = U0(x), x ∈ Ω,

U(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞),
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where U0 = ∆−1u0. Indeed, let uσ be the smooth solution of the corresponding regularized problem (5.34)–
(5.35), where we replace ε by σ since here we use ε as the homogenization parameter. For each t ∈ [0,∞),
let Uσ(·, t) := ∆−1uσ(·, t). Since uσ and Uσ are smooth, it is clear that the latter is the (viscosity) solution
of

(7.7)


∂tUσ − fσ(x,∆Uσ) = 0, (x, t) ∈ Q,
Uσ(x, 0) = U0(x), x ∈ Ω,

Uσ(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞).

Since {uσ(x, t)}0<σ<1 is uniformly bounded in L∞(Ω×[0,∞)), we easily see that the Uσ(x, t) form a uniformly
bounded sequence in L∞([0,∞);W 2,p(Ω)) for all p ∈ (1,∞). On the other hand, from (7.7) we easily deduce
that |Uσ(x, t) − Uσ(x, s)| ≤ C|t − s| for all x ∈ Ω for some constant C > 0, independent of σ. Hence, we
see that Uσ is uniformly bounded in W 1,∞(Q̄). In particular, there is a subsequence Uσi of Uσ converging
locally uniformly in Q̄ to a function U ∈W 1,∞(Q̄) which satisfies U = ∆−1u.

It follows in a standard way that U is the viscosity solution of (7.6). Indeed, given any (x0, t0) ∈ Q, we
consider ϕ ∈ C2(Q) such that U − ϕ has a strict local maximum at (x0, t0). Since Uεi − ϕ converges locally
uniformly in Q̄ to the function U − ϕ, we may obtain a sequence (xi, ti) ∈ Q such that (xi, ti) is a point of
local maximum of Uεi − ϕ and (xi, ti)→ (x0, t0) as i→∞. Thus, we have

∂tϕ(xi, ti)− fεi(xi,∆ϕ(xi, ti)) ≤ 0,

from which follows, as i→∞,

(7.8) ∂tϕ(x0, t0)− f(x0,∆ϕ(x0, t0)) ≤ 0.

To relax the assumption of a strict local maximum to just a local maximum we proceed as usual replacing
ϕ by, say, ϕ̃(x, t) := ϕ(x, t) + δ(|x− x0|2 + (t− t0)2) obtaining (7.8) with ϕ̃ instead of ϕ and that we obtain
again (7.8) for ϕ passing to the limit when δ → 0. In an entirely similar way we prove the reverse inequality
when U − ϕ has a local minimum at (x0, t0), so proving that U is a viscosity solution of (7.6).

3. Next we shall study the homogenization of (7.9) using a method motivated by [16]. We define Uε(x, t)
in Ω × [0,∞) by Uε := ∆−1uε where uε is the weak solution of (7.1). By step 2, we have that Uε is the
viscosity solution of

(7.9)


∂tUε − f(x, xε ,∆Uε) = 0, (x, t) ∈ Q,
Uε(x, 0) = U0,ε(x), x ∈ Ω,

U(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞).

where U0,ε = ∆−1u0,ε, with u0,ε(x) = u0(
x

ε
, x). The same argument used in previous step shows that

Uε ∈ L∞((0,∞);W 2,p(Ω))
⋂

Lip((0,∞);L∞(Ω)),

and so there is a subsequence Uεi of Uε converging locally uniformly in Q̄ to a function

Ū ∈ L∞((0,∞);W 2,p(Ω))
⋂

Lip((0,∞);L∞(Ω)),

in particular, Ū ∈W 1,∞(Q̄).
4. We claim that Ū(x, t) is the viscosity solution of the initial-boundary value problem

(7.10)


∂tU − f̄(x,∆U) = 0, (x, t) ∈ Q,
U(x, 0) = Ū0(x), x ∈ Ω,

U(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞).

where

Ū0 := ∆−1

∫
u0(z, x) dz.
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5. Indeed, let (x̂, t̂) ∈ Q and let ϕ ∈ C2(Q) be such Ū − ϕ has a local maximum at (x̂, t̂). Also, let
vδ ∈ A(Rn) be a smooth function satisfying

(7.11) g
(
x̂, z, f̄(x̂, p)

)
− p− δ ≤ ∆zvδ ≤ g

(
x̂, z, f̄(x̂, p)

)
− p+ δ,

with p = ∆ϕ(x̂, t̂), whose existence is asserted by Lemma 3.3. In particular, given any δ′ > 0 we can find
δ > 0 sufficiently small such that

f̄(x̂,∆ϕ(x̂, t̂))− δ′ ≤ f(x̂, z,∆ϕ(x̂, t̂) + ∆vδ(z)) ≤ f̄(x̂,∆ϕ(x̂, t̂)) + δ′.

Take ρ > 0 and let xj ∈ Ω be a point of maximum of

Uj(x, t̂)− ϕ(x, t̂)− ε2
jvδ(

x

εj
)− ρ|x− x̂|2 + ρ,

where we denote Uj = Uεj , such that xj → x̂ as j →∞. Such sequence (xj) exists since Uj converges locally

uniformly to Ū and vδ is bounded. We have

ϕt(xj , t̂)− f
(
xj ,

xj
εj
,∆ϕ(xj , t̂) + ∆vδ(

xj
εj

) + ρ

)
≤ 0,

and

f

(
x̂,
xj
εj
,∆ϕ(x̂, t̂) + ∆vδ(

xj
εj

)

)
≤ f̄(x̂,∆ϕ(x̂, t̂)) + δ′,

which, after addition, gives

ϕt(xj , t̂)− f̄(x̂,∆ϕ(x̂, t̂)) ≤ O(|xj − x̂|) +O(ρ) + δ′.

Hence, letting j →∞ first, and then letting ρ, δ′ → 0, we obtain

ϕt(x̂, t̂)− f̄(x̂,∆ϕ(x̂, t̂)) ≤ 0.

The reverse inequality, when Ū − ϕ has a local minimum at (x̂, t̂), follows in an entirely similar way, which
concludes the proof of the claim.

6. By the uniqueness of the viscosity solution of (7.10)(see for instance [10], Theorem 8.2), we conclude
that the whole sequence Uε(x, t) converges uniformly to Ū(x, t). Let ū := ∆Ū . Given any ϕ ∈ C∞c (Q), we
have ∫

Q

uε(x, t)ϕ(x, t) dx dt =

∫
Q

∆Uεϕdx dt =

∫
Q

Uε∆ϕdx dt
ε→0−→∫

Q

Ū∆ϕdx dt =

∫
Q

ūϕ dx dt.

Consequently, uε(x, t) converges in the weak-∗ topology of L∞(Q) to ū = ∆Ū(x, t), which concludes the
proof of the first part of the theorem.

7. Now, let us assume the existence of a weak solution ũ of (7.2), which actually follows from the

compactness result in [24]. Let Ũ := ∆−1ũ. As it was done above, we easily prove that Ũ is the viscosity

solution of (7.10). Therefore, Ũ ≡ Ū , and so ũ = ū.
8. We are going to prove (7.5) under the additional assumption that f(x, z, ·) is strictly convex for all

(x, z) ∈ Ω× Rn. We first observe that the identity

∂tUε − f(x,
x

ε
,∆Uε) = 0,

holds in the sense of distributions in Q. Indeed, for any ϕ ∈ C∞0 ((0,∞);H1
0 (Ω)), we have

(7.12)

∫
Q

uεϕt −∇f(x,
x

ε
, uε) · ∇ϕdx dt = 0.
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Given φ ∈ C∞0 (Q), we take ϕ = ∆−1φ in (7.12), use uε = ∆Uε and integration by parts, to obtain that

(7.13)

∫
Q

Uεφt + f(x,
x

ε
,∆Uε)φdx dt = 0,

holds for any φ ∈ C∞0 (Q). Similarly, since ū is the weak solution of (7.2), we have

(7.14)

∫
Q

Ūφt + f̄(x,∆Ū)φdx dt = 0,

for any φ ∈ C∞0 (Q).
Using φ(x, t)ϕ(xε ) with φ ∈ C∞0 (Q) and ϕ ∈ A(Rn), as the test function φ in (7.13), which is clearly

possible, and taking the limit along a suitable subnet ε(d), d ∈ D, we obtain by Theorem 4.2∫ ∞
0

∫
Ω

∫
K
{〈νx,t,z, f(x, z, ·)〉 − f̄(x,∆Ū)}φ(x, t)ϕ(z) dm(z) dx dt = 0,

where K is the compactification of Rn associated with A(Rn), and we have used (7.14). Since φ and ϕ are
arbitrary, we have

〈νx,t,z, f(x, z, ·)〉 = f̄(x,∆Ū) = f
(
x, z, g(x, z, f̄(x,∆Ū))

)
, for a.e. (x, t, z) ∈ Q×K.

Since f(x, z, ·) is strictly convex for all (x, z) ∈ Ω× Rn, we conclude that

νx,t,z = δg(x,z,f̄(x,∆Ū)), for a.e. (x, t, z) ∈ Q×K.
and this implies through Theorem 4.3 that (7.5) holds. �
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