Sets of exact approximation order by rational numbers III
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Abstract. For a function ¥ : R~y — R, let Exact(¥) be the set
of real numbers that are approximable by rational numbers to order
W, but to no order c¥ with 0 < ¢ < 1. When W is non-increasing
and satisfies ¥(x) = o(z~2), we establish that Exact(¥) has Hausdorff
dimension 2/X\, where \ is the lower order at infinity of the function
1/W. Furthermore, we study the set Exact(¥) when ¥ is not assumed
to be non-increasing and show that the set Exact(V) is uncountable for
a large class of functions W satisfying ¥(z) = o(x~2).

1. Introduction

For a function ¥ : R~g — R, let

K(P) = {feR:

£ — Q’ < U(q) for infinitely many rational numbers 2—)}
q q

denote the set of W-approximable real numbers and let
Exact(¥) := K(¥)\ | ) £((1-1/m)¥)
m>2
be the set of real numbers approximable to order ¥ and to no better order. In other words,
Exact(V) is the set of real numbers £ such that
& —p/q| < ¥(q) infinitely often
and
€ —p/al =2 c¥(q)  forany ¢ <1 and any ¢ = qo(c, ),

where qo(c, &) denotes a positive real number depending only on ¢ and on £. If ¥ is non-
increasing and satisfies ¥(x) = o(z~2), Jarnfk [11], Satz 6, used the theory of continued
fractions to construct explicitly real numbers in K(¥) which do not belong to any set
K(c¥) with 0 < ¢ < 1. His result can be restated as follows.
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Theorem J. Let ¥ : Rvo — R be a non-increasing function satisfying ¥(z) = o(x~2).
Then, the set Exact(¥) is uncountable.

In 1924, Khintchine [12] (see also his book [13]) used the theory of continued fractions
to prove that, if 2 +— 22¥(x) is non-increasing, then K(¥) has Lebesgue measure zero if the
sum ), «V¥(x) converges and has full Lebesgue measure otherwise. In the convergence
case, his result was considerably refined by Jarnik who established [11], Satz 5, that, if
®: R.yp — Ry is a positive continuous function such that ®(x)/x tends monotonically
to infinity with x, then the sets K(¥) \ (¥ o ®) and K(¥) have the same Hausdorff /-
measure for a general dimension function f. We refer the reader to [17, 8] for background
on the theory of Hausdorff measure. As usual, we denote by dim the Hausdorff dimension.

Jarnik’s statement implies that

2
dim £(¥) = R (1.1)
where A denotes the lower order at infinity of the function 1/¥ and the lower order at
infinity A(g) of a function g : R~ — R is defined by

. logg(x)
A = liminf ——2.
(9) :EIHJiEO log

This notion arises naturally in estimating the Hausdorff dimension of the sets K(¥), see
e.g., Dodson [6] and Dickinson [5].

Jarnik’s result is, however, not strong enough to imply that Exact(¥) and I(¥) have
the same Hausdorff dimension, a problem raised by Beresnevich, Dickinson and Velani at
the end of [1].

Problem 1. Let ¥ : R~q — R be a non-increasing function satisfying ¥(z) = o(x~2).
To compute the Hausdorff dimension of Exact(V).

Problem 1 was solved in [2] for a large class of functions W.

Theorem B1. Let ¥ : Rvg — Rq be such that x +— x?VU(x) is non-increasing. Assume
that thesum ) -, xV(x) converges. If A\ denotes the lower order at infinity of the function
1/, then -
dim Exact(¥) = dim (¥) = ;
Up to the extra assumption on ¥, namely the fact that x +— 2?¥(z) is non-increasing
(which implies that ¥ is decreasing), Theorem B1 provides a very satisfactory strengthen-
ing of Theorem J when the sum ) -, *¥(x) converges. When this sum diverges, Problem
1 was investigated in 1952 by Kurzweil [14], a student of Jarnik. Among other results,
he established that the set C(3W) \ IO(¥) has full Hausdorff dimension for a large class of
functions ¥, but his method does not seem to yield any result on Exact(¥). The following
statement, established in [3] following the method introduced in [2], answers Problem 1
for a class of functions ¥ such that the sum ) ., x¥(z) diverges.
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Theorem B2. Let ¥ : R.g — Rq be such that x +— x?V(x) is non-increasing. Assume
that the sum ) ., xW¥(x) diverges and that, for any positive real number €, we have

1 1
<y < ———
x2te — (z) < 10022 log x’

for any sufficiently large x. Then we have
dim Exact(¥) = dim K(¥) =

One of the purposes of the present note is to extend Theorem B2 to all non-increasing
functions ¥ : Ryyg — Ry such that ¥U(z) = ( ) and, for every positive ¢, there
are arbitrary large values of x such that ¥(z) > =~ (hence in particular, to all non-
increasing functions ¥ : R<y — R~ such that U(z ) o(z~?) and the sum > ., z¥(z)
diverges). This is contained in our Theorem 1. a

The combination of Theorems B1 and 1 provides a satisfactory answer to Problem 1,
except that z — 22¥(z) is assumed to be non-increasing in Theorem B1. However, by
combining the strategy developed in [2] with the arguments used in the proof of Theorem
1, we are able to remove this assumption. This is contained in our Theorem 3. Thus, we
give a complete answer to Problem 1 and strengthen Theorem J, see Theorem 4 below.

One may, however, wish to strengthen Theorem J in another direction, that is, by
relaxing the hypothesis on the function ¥, which is assumed to be non-increasing. This
assumption is needed to avoid the following situation. For a number £ in Exact(¥), there
are rational numbers p/q with arbitrarily large denominators such that

’g _ g' < U(q). (1.2)

Furthermore, by definition of the set Exact(W), for every positive real number e and every
positive integer d, we have

's—%] _ ]s—j—g > (1— )u(dg),

if ¢ is sufficiently large in terms of e. This gives a contradiction with (1.2) when (1—¢)¥(dgq)
exceeds ¥(q). Clearly, this situation cannot happen when W is non-increasing.

A second purpose of the present paper is to investigate whether Theorem J extends
to non-monotonic functions W. As far as we are aware, Problem 2 has not been studied
yet.

Problem 2. Let ¥ : Rog — R~ be a function satisfying ¥(z) = o(x~2). Is the set
Exact(¥) non-empty? To compute the Hausdorff dimension of Exact(V).

Let us note that the study of Exact(z — cz~2) for a positive real number ¢ amounts
to the study of the Lagrange spectrum, see [15, 4, 3, 16]. About this, we just mention that,
for every positive ¢, the Hausdorff dimension of Exact(x +— cx~2) is strictly smaller than
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one (and this set can even be empty; this is the case for many values of ¢, for instance for
every ¢ in (\/%_3’ \/%)) This justifies the hypothesis ¥(z) = o(x~2) of our main results.

Theorems 1, 2 and 3 give a partial answer to Problem 2. They are proved in Section 4,
while Section 3 gathers auxiliary lemmas. Theorem 4, which is an immediate consequence
of Theorems 1 and 3, gives a complete answer to Problem 1.

2. Statements

Motivated by a theorem of Duffin and Schaeffer [7], see Corollary 1 on page 27 of [9],
for a function ¥ : R~y — R+, we say that U satisfies assumption (k) if

The function ¥ satisfies ¥(x) = o(x~2) and there exist real numbers c, é and ng with
1 < ¢ < 4 such that, if the positive integers m, n satisfy m > n > ng, then ¥(m)m¢ <
cU(n)n.

We emphasize that the real number ¢ occurring in (x) may be negative.

Our main result is a first step towards the resolution of Problem 2.

Theorem 1. Let ¥ : R.g — R~ be a function satisfying assumption (). Suppose that,
for every positive ¢, there are infinitely many positive integers n such that ¥(n) > n=27¢,
Then, the set Exact(¥) has full Hausdorff dimension.

By (1.1), for any given positive real number e, the Hausdorff dimension of the set
K(z — 2727¢) is equal to 2/(2 + ¢). This explains the latter assumption on the function
¥ in Theorem 1.

The proof of Theorem 1 rests on an idea from [16], which was also used in [18]. We
construct a large subset of Exact(V) by suitably modifying sets of continued fractions with
bounded partial quotients and arbitrarily large (albeit less than 1) Hausdorff dimension.

With the same method as for the proof of Theorem 1, we are able to give a partial
answer to Problem 2 for every function ¥ : R~y — R+ satisfying assumption (x).

Theorem 2. Let ¥ : Ry — R<o be a function satisfying assumption (x). Then, the set
Exact(¥) is uncountable.

In the course of the proof of Theorem 1, it is apparent that Problem 2 is connected
with a well-known conjecture of Zaremba claiming that there exists a positive integer M
such that, for every integer ¢ > 2, there is a positive integer p coprime with ¢ and such
that the partial quotients of the rational number p/q are all less than M.

A suitable combination of the strategy developed in [2] with the arguments used in
the proof of Theorem 1 allows us to extend Theorem B1 as follows.

Theorem 3. Let ¥ : Ry — Ry be a function satisfying assumption (x). If A\ denotes
the lower order at infinity of the function 1/W, then

) ) 2

dim Exact(¥) = dim (V) = %

The next theorem directly follows from Theorems 1 and 3, since every non-increasing
function ¥ with ¥(z) = o(x~2) satisfies assumption (x).
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Theorem 4. Let ¥ : R~y — R~ be a non-increasing function satisfying ¥(z) = o(x~2).
If X\ denotes the lower order at infinity of the function 1/¥, then
2

dim Exact(¥) = dim £(¥) = %

Theorem 4 gives a complete answer to Problem 1.
3. Auxiliary lemmas

The key auxiliary lemma for the proof of Theorem 1 relates the Hausdorff dimension

of a set and that of its image under an Hélderian map. We reproduce below Proposition
2.3 from [8].

Lemma 1. Let F' be a subset of R. Let f : F — R be a map for which there exist ¢ > 0
and o« with 0 < o« < 1 such that

F@) = f@)| < cle—yl*, forall 2,y in F.

Then we have
dim F' > adim f(F).

For positive integers ay, ..., a,, we recall that the continuant K(aq,...,a,) denotes
the denominator of the rational number [0;aq,...,a,|. Next lemma is used in the proofs
of Theorems 1 and 4.

Lemma 2. Let N be a positive integer. For any 6 > 0, there is Ko = Ko(d) > 0 such
that, for any positive integers a,...,a, such that K(ai,...,a,) < N/Kj, the interval
(N/(1+44),N) contains at least one integer q of the form

g=K(a1,...,0n,ny1y-- - Qnim), With ant1,...,anem € {1,2}.

Proof. We will choose two large positive integers r, s, and take m = r + s, a,4; = 1 for
l1<j<randapy; =2forr+1<j<r+s=m. Let g = K(a,as,...,a;), for
1<k<n+m.

We have gr+1 = qx +qp—1, forn <k <n-+r—1, and so ¢,+; = Fj+1q9, + Fjg,—1, for
0 <j <r, where

(- (5) 22059

is the j-th term of Fibonacci’s sequence, for j > 1. So gn,1; = (1 + 0(1))0(#)7'% for

large j, where ¢ = 1+2—‘/5 + qg—:. On the other hand, we have qx+1 = 2qr + qr—1 for
n+r <k<n+m-—1, and S0 @nirt; = Ujt1qn+r + UjGn+r—1, Where (u;);>0 is the
sequence given by ug = 0,u; = 1 and ug42 = 2ugy1 + ug, for k£ > 0. Since

L - _ 1+ or
uk—2\/§((1—|—\/§)k (1-V2)k) = o (14+V2)%, for k>0,



we get

An+4r+j = 1;_7\;;1) ((1 + \/§)Qn+r + Qn—i—r—l)(l + \/5)3

= 1;7\%1)(1+\/§+ \/52_ 1)6(1+\/§)j(1+2\/5)rqn

— (1+0(1)2F @* V214 vy (1 +2\/5)

n»

provided that j and r are large.

Since log(1 + v/2)/ log(1+—2\/5) is irrational, the statement of the Lemma follows (by
taking logarithms) from the elementary fact below:
Given «, > 0 such that «/f is irrational, € > 0 and r > 0, there is 2y > 0 such that, for
every x € R,z > xq, there are positive integers m,n > r such that |ma+nfs —z| <e. O

Under the notation of Lemma 2, with positive integers a1, ..., a, and a positive real
J, we associate integers a1, ..., @ntm in {1,2} in such a way that

N/(146) < K(at,...,any Qni1y---Gnim) < N.
There may be multiple choices, but we select one of them and define in this way a map ©.

Remark. Replacing (N/(1+6),N) by (N —§(N), N) for a function § satisfying §(N) =
o(N) would allow us to weaken the assumption (*) in Theorems 1 and 4. We may even
hope that there exist positive integers M and @ such that, under the assumption of Lemma
2, for every sufficiently large integer ¢, at least one of the integers ¢q,q + 1,...,q9+ Q is of
the form

K(at, .y QnyGpitye ey QGuim)y  Qpgls--eyGuim € {1,2,..., M}.
We cannot exclude that every sufficiently large integer can be written under this form.

We also need the following elementary facts about continued fractions:

Lemma 3. i) Given an irrational real number o = [ag; a1, as,...|, the sequence of its
convergents py /g, = [ag; a1, az, . ..,a,| (where ¢, = K(a1,as,...,a,)) satisfies

1
(an—i—l + 2>Q721

Dn
o — —

an

1 1

< < < -
an

an+1q%

ii) For any finite sequences (a1, as, ..., am), (b1,be,...,b,) of positive integers, we have

K(al,ag,...,am)K(bl,bg,...,bn) S K(al,ag,...,am,bl,bg,...,bn)
< 2K(a1,a2,...,am)K(bl,bg,...,bn).

iii) If o = [ag;a1,az,...],&' = lag;ay,as,...] are such that a; = a},0 < j < n and
/ ! 1
Unt1 # Qy 41, then ja—a| > (ant1+1D)(al +1)(max{an 2,0, ,}+1)q2

: : / ! / 1
In particular, if anq1, 05,41, Gny2, 0y, 9 < m then | —of| > [CESIETE
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Proof. i) and ii) are well-known facts. In order to prove iii), we use that

o An+1Pn +pn71 O/ . O‘;hLlpn +pn71

Qn+1qn + gn—1 , 05;7,+1Qn + qn—1 ,
where
_ . / . / o /
Unt1 = [Ant1; g2, Gnys, -, Qi1 = [an+17 Ayt Qg 3s - J-
So we have
|Oé _ Oz/‘ _ (annfl _pnfl(bz)(anqu - O/n+1) _ Opyt1 — 05;1.1_1
(an+1Qn + anl)(agﬂ_l%z + anl) (an+1Qn + anl)(agﬂ_l(hz + anl)

Qg1 — Oy
(@1 + 1) (a5 11 +1)g3

On the other hand, assuming, without loss of generality, that a,1 > aj_,, we have
g1 < apyq +1 < apgr and apqr > apgr + 1/(apge +1), and so oy — o, | =
Qg1 — Qpyq > 1/(apg2 +1) > 1/(max{a,42,a;, 5} + 1), which implies the result. O

4. Proofs

Proof of Theorem 1.

Let ¥ be a function as in the statement of Theorem 1 (in particular W satisfies as-
sumption (x) for some real numbers ng, ¢ and ¢). We use a method applied successfully in
[16] (see also [18]), that consists in slightly perturbating continued fractions with bounded
coefficients to construct many real numbers in Exact(V).

For a given integer m > 8, let C,,, be the set of real numbers in (0, 1) whose partial
quotients are at most equal to m. Jarnik [10] established that dim C,,, > 1 —1/(mlog2).
We construct a suitable map h,,, from C,,, to Exact(¥) such that, for any o with 0 < o < 1,
we have [ —&'| = O(|hm(§) —hm(£)]|¢). By Lemma 1 and Jarnik’s aforementioned result,
this implies that

dim Exact(¥) > dimC,, > 1 — ——,
mlog 2
for every integer m > 8, and so dim Exact(¥) = 1, which is the conclusion of Theorem 1.
Let § be a positive real number such that

(14 6)l+2 < 2 (4.1)

c

Let us, from now on, fix an integer m > 8. In all what follows, [z] denotes the smallest
integer greater than or equal to x.

We construct inductively a rapidly increasing sequence (ny)x>1 of integers satisfying
ny = [(m+ 1)Ky(0)], where K(6) is the constant given by Lemma 2,

ng >ny_q, (k>2), (4.2)
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1
STk (k> 2), (4.3)

k

\I'(nk) >

and
r2U(r) < niW(ng) for allr >ng, (k>2). (4.4)

In order to do this, for each £ > 2, we define nj, as the smallest positive integer n such
that n > n3_, and ¥(n) > n=271/* (which is possible since for every positive ¢, there are
infinitely many positive integers n such that ¥(n) > n=27¢), and then define n;, as

ng = max{r >ngr \I’( ) i \I!(ﬁk)}a

which is possible since ¥(x) = 0( —2).

Notice that ni¥(ny) > ni¥(n) > ﬁ,:l/k > np =Yk so W(ng) > n,
every r > ng, we have r2¥(r ) 2 () < niv(ng).

Now we describe the map h,, from C,, to Exact(¥). Let & = [0;a1,as2,...] be in
Cpn. We will have h,,,(§) = [0;b1, ba, bs, ...], where the continued fraction [0; by, ba, b3, .. .|
is obtained from the continued fraction [0;ay, as,as,...|] of £ by conveniently inserting in
it a sequence of finite blocks of coefficients, in order to create, for each positive integer k,
a convergent Py, /qm, of hy, (&) with

2Lk and, for

nk/(l + 5) < @m,, < Ng. (4.5)
Each of these blocks will end by a term of the type b,,, +1 = (WL which makes
mp mp
|hm (&) = Py, /@m,,| very close to U(gm,, ).
More precisely, we will put
him(§) = [0;b1,b2,b3,...] =[0;a1,a9, ..., a4, cgl), cgl), ...... ,cg),cglll,arﬁl,
2
Qri425- -5 Ay, Cg )7 ( )7 R gz)a CgQ)Jrla Qrot1y Ary+2, - - ']7
where, for each j > 1, r; is the smallest r such that
K(ala az, .. arlacgl)a ( )7 ey Cgll)a CgllLla Ari 41, Ar 425+ -+ arj_1+1a arj_1+27 teey ar)

> m¥ 1)K0(6)'

By the minimality of r; and since a,, < m, it follows from Lemma 3 that

(1) (1) 1 (1)
K(a17a27" aT‘17C]_ 7C2 7"‘70‘(91)70314—]_7&7‘1-{-17&7‘1-{-27"‘7a’7‘j,1+17a7'j,1+27'"7aT'j)

< nj/K()( )

Now, we use Lemma 2 and the map © defined after the proof that lemma to find integers
R cgj),.. cg‘g) in {1,2} such that n;/(1 4 6) < gm, < nj, where m; == r; + s; +
Zl§z<] (s; +1).



Then we take cg )+1 = [m}, and we continue this construction for each j.
Since ¥(z) = o(x~2) and the only coefficients of the continued fraction [0; by, bo, bs, . . .]
of hy, (€) which can be larger than m are the coefficients ngj )+17 the inequality |h.,, (§)—p/q| <
U(q), with ¢ large, implies that p/q = py, /qm, for some k.

Now, since we have, by Lemma 3,

= 1 -
W) < < ]hm@ _ P
1 1 ’
gl e . e
Sk+1qu qu\P(Q’mk) Mg

for large k, it is enough to show that, for k large, the approximations le "k of by, (€) for
k
integers d > 2 do not satisfy |h,,(§) — jzﬂ| < ¥(dgm,, ) in order to conclude that h,,(§) is
mp
in Exact(0).
Since 2¢,,, exceeds ny, we infer from (4.4) that, for every integer d > 2, we have

(dqu )Q\I’(dqu) < "i‘l’(”kz)a

thus, using (4.1), (4.5) and the assumption (x), we get

) < ( » )QW(nk) <& 25)2 W (qm,) (qg;)

A

ka

(1+ 5)|C|+2 (@my) < g\y(qu)'

»Jklm

So, for large k, we get from (4.6) that

U(dgm,) < ~—U (g, < hm (&) — 22
(am.) < 3 ¥lam) <y < [fnl®)

which concludes the proof that h,,(£) is in Exact().
We will check now that, for any &,¢ in C,, and any « with 0 < o < 1, we have

‘5 - 5/‘ = O(‘hm(g) - hm(§/)|a)'

Let £ = [0;a1,az,as,...] and & = [0;d}, d), a,
positive integer i such that a; # a;.
We have

..] be in Cy,, and let 7 be the least

him (&) = [0;b1,b2,b3,...] = [0;a1,a2,... am,cgl), (1 ),.. , gll),cglll,amﬂ,
(2)

( ) 2) (2)
Qri425---5,0ry,C1 7, C 7"'7022)7632+17GT2+17ar2+27'"]
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and

hm (&) = [0; 61,05, 05, ...] = [0;@3,&’2,...,@, c’(l) c’(l) ...,c(}),c(})ﬂ, /TJrl,

/ 1(2) 1(2) 1(2) 1(2)
Gpr gy e s Qs €15 Cy e, C g 7Cs’+17ar’2+1var;+27"']'

Let j be the smallest index such that 7 < ;1. We have, for every i < j, aj, = ay, for all

k<riri=rls =s;forali<j and ¢ —c’(z) for all i < j,r <s;+1=s,+1 (recall

that we have used the map © in the construction of h,,). This means that b; = b for all

i < mj + i — rj, where m; = r; + s; + Zl§i<j(8i + 1), and we have by, f1173—r, = a7 7
b;anLlJrn Tt

Let k=1,...,j. We infer from (4.1), (4.3), (4.5) and ¥(gm, )q5,, > Y(nk)nj,/c that

1 \If(nk) 1 1
V(g ) > =(1+6)" 10 (ng) > > >

The latter inequality holds since nk2 L/k > (1+ 6)_2_1/kq7§i_1/k > (14 6)3qms Lk

and (14 0)3 < (2/V@)3/? < 3/V/¢.

In particular, we have

(k) 1 1/k
¢! ] <6¢)/F +1,
L (Q?nkll’(qu)w

and so
Gmp+1 < (61 F +2) g, < 8qh /.

Furthermore, from the construction of h,,(§), we get that ¢, /qm,—s, < (m+ 1)Ky(6).
Moreover, using Lemma 3, item ii), we can conclude that
Am+1 < S(m + 1)K0(6)qm/k dmy,—sy,
< S(m + 1)K0(6)nk/ my—sy,
< 16(m + 1)K0(5)nk/ K(a’rkflJrl? Qrp_ 1425+ ark)qufl*i’l‘

for k < 5.
Finally, we have

Gmjtii—r; < 2K(Qr;41,0r, 42, .., QG2—1)Gm,+1,

with the convention that K(a,;1,a,,) = 1.
Therefore, setting 7o = 0, we deduce from the preceding estimates that g, +7—r, is
smaller than

(16(m + 1)}(0((5))‘71—15C 1( i/k . K(ark71+1, Arp_ 1425+ -+, ark)) . K(arj+1, arj+2, ey aﬁfl)
< (16(m + 1) Ko(8))' T _ n)/* - K (a1, a2, ..., a5_1).
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Since IT] _ n,i/k = exp(Y]

_,(logng)/k), and logng—1 < (logng)/3, for k < j, we get
10 _ 1ni/k <n 3/(23) Using that n; > ((m+ 1)Ko(6))* ", we deduce that
m + 0 =(n; , and so
(16(m -+ 1) Ko(8))7 = (7)1, and
(16(m + 1) Ko(8))T1,_ /¥ < nl3To/20 = q@+o)/27 = go1) — 4oV

qm] +n— T’

. 1
Summarizing, we have g, 17—, < quj) AP K(ayi,as,...,a5_1), and so
1—o0(1)
Uiy < K(ay,az,...,a7-1).

From Lemma 3, item i), we have

1 1
¢!
‘5 5 ‘ < K(CLlaCLQ?"'aaﬁfl)Q = 727£1+7?L(17)‘) ’
and, by Lemma 3, item iii),
/ 1 — 1
1P (§) — hm(&)| > = 2To()

(m + 1)3%2;1] +T~L—T‘j

m;i+n—r;

We then conclude that | — | < |hp (@) — hp (8)]* ). This finishes the proof of Theo-
rem 1. O

Proof of Theorem 2.

Let ¥ be a function satisfying assumption (x) for some real numbers ng and c. Let
Ny be such that ¥(n) < 1/n? for n > Np.

We construct inductively a rapidly increasing sequence (g )x>1 of integers defined by
11 = max{ Ny, [3Ko(J)]}, where Ky(J) is the constant given by Lemma 2, and

fr41 = min{n positive integer : n > [1/¥(7g)] and n®¥(n) > r>¥(r), for every r > n},

for k > 1 (this is possible since ¥(x) = o(x~2)). We construct a continuous injective map
h from the set Cy of real numbers with partial quotients in {1,2} to the set Exact(V),
which implies the result. Let £ = [0; a1, as,...] be in Cy and write

B(ﬁ) = [0;b1,b2, b3,...] = [0;a1,as, .. arl,cgl), (1 ), ey, cgl)Jrl,aﬁJrl,

S1 )
(2) ( ) 2) (2)
Ar 425+ .,Qry,C1 7, C gy 22)7052+17a7‘2+17a7‘2+27~-~]7

where, for each j > 1, the integer r; is the smallest r such that
1 1
K(ay,as,.. arl,cg ), (1 ), e cgl), Cg1)+1’ Apy 41 Gy 425+ 5y 415 Ay 425+ - - G

nj

” 3Ko(0)’
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By the minimality of r; and since a,, < 2, we have

(1) ( ) n (1)
K(a17a27~- y@ry,C1 75 C 7"'7021)7csl+17arl+17arl+27'"7a7‘j_1+17a7‘j_1+27"'7arj)
< TLj/Ko( )

Now, we use Lemma 2 to find cm U ), cg) in {1,2} such that
/(14 0) < qm, <y,

where m; :=rj+s;+3,.;;(s;+1). Then we take cg)ﬂ = (ﬁ(qﬂ, and we continue
=~ m; m;

this construction for each j. R

By the construction, the map h is clearly continuous and injective, and, as in the proof
of Theorem 1, we can show that h(&) is in Exact(¥) for £ in Cy. This establishes Theorem
2. O

Proof of Theorem 3.

Let ¥ be a function satisfying assumption (x) for some real numbers ng and ¢, such
that the function 1/¥ has lower order A at infinity. In view of Theorem 1, we may assume
without loss of generality that A > 2. A classical covering argument shows that the
Hausdorff dimension of the set (W) (which contains Exact(¥)) is at most equal to 2/\.
To prove that this is the exact value of the dimension is more difficult. In order to do this,
we will combine the technique of the proofs of the previous theorems with ideas of [2]. We
will assume from now on that A is finite.

Let Ny be such that W(n) < 1/n? for n > Ny. Let m > 8 be an integer. We
construct inductively a rapidly increasing sequence (7)r>1 of integers defined by n; =
max{No, [(m + 1)Ky(5)]}, where Ky(9) is the constant given by Lemma 2,

7iy, = min{n positive integer : n >max{[1/¥ ()], 2} }
and W(n) > n - A"Vk},

and
M1 = max{r > g : r2U(r) > 72V ()},

for k > 1 (this is possible since ¥(x) = o(z~?)).

Let £ = [0;aq,as,...] be in C,,. We will construct continued fractions of the type
1
5 = [0, bl,bg, b3, . ] = [0 ai,a,.. CLrl,Cg ), ( ), ey S), gl)Jrl, CLT1+1,
2
Apry42;5 -5 Qry, Cg )7 S )7 . 7622)7 22)+17 Aro15 ry+2; - - ']7

where, for each j > 1, the integer r; is the smallest r such that

(1)

(1 (1) 1
K(ai,az2,...,ar,,¢] ", cy ,...,cgl),csl+1,ar1+1,arl+2,...,arj_1+1,arj_1+2,...,ar)
77’/.
> —J
(m +1)Ko(9)
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By the minimality of r; and since a,; < m, we have

K(ay,as,.. arl,cgl), (1 ), e g), gl)Jrl, Apy 41 Gy 42y ey 415 Gy 425+ -5 G
< TLj/Ko( )
Now, we use Lemma 2 to find ¢\, ¢§?), .. cg]]) in {1,2} such that

1/ (1+0) < gm, <7 ,

where m; = r; +s; + >1;;(s; +1). Then we take for cgj)ﬂ an (arbitrary) integer
between (ﬁ} and [(1+ l)ﬁ}, and we continue this construction for each
‘ Y (gm;) 3745 (gm;)

J-

We can show as in the proof of Theorem 1 that any real number £ constructed in
this way is in Exact(W). The set C of possible real numbers ¢ constructed in this way is a
Cantor set whose Hausdorff dimension will be estimated below.

Let us recall the statement of Proposition 1 of [2] (which is Example 4.6 of [8]).
Consider a decreasing sequence of sets [0,1] = Ey D E; D FEy D ... such that each Ej
is a finite disjoint union of closed intervals. Assume that for each k > 1, each interval of
F;._1 contains at least mjy > 2 intervals of F; which are separated by gaps of size at least
€k, where 0 < €41 < €;. Then the Hausdorff dimension of the Cantor set C := N3 Ey
satisfies

o R
dim C > liminf g - 1i—1)
k—4o00 — log(mkek)

We will describe sets Ek, which are disjoint unions of closed intervals, satisfying C =
Ek, which allow us to use the above proposition to estimate dimC. In order to do
thls, we will describe, for each £ € C, and each £ > 1, the component interval Ik(S)

of E) which contains &. For each finite sequence of positive integers by, b, ..., 0., let
J() (b1, by, ..., b,) be the interval {[0; by, by, ..., b,, x]; x € [2E2 m + 1]}

m1’

Since dim C,,, > 1—#%2, putting d,,, := 1—#%2, there is 7,,, > 0 such that, for each
n with 0 < n < 7,,,, we need at least n~% intervals of length at most 47 to cover C,,. For
each j > 0, we take tm := 0, and, while K (a1, .. .,cgjj)ﬂ,arjﬂ, .. .,arﬁtgj)) %,
we put

tl(-i)l := min{t > tgj);K(al, cee, cgj,)ﬂ, Qrjglye ey Qrygt) >
—1/2 j
(m~+ 172K (ay ...,cgi_zrl,arjﬂ,...,aerrtEj))}.

We define the positive integer ¢, as the largest integer ¢ for which ) was defined above.
J 7

We then have

Tm T < K(a ) a )) < 7'r1n/2ﬁj

(m+1)2Ky(0) — Do S Ol oo By ) (m+1)2Ky(0)
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Let up =0 and, for j > 1, u; = 20§i<j(£i + 2). We take, for j > 0,

IAUj(f):J(m)(al,a2"_‘ (J) (J) );

’SJ’SJ

for 1 <i <,

A

Iuj+i(§) = J(m)(al,@, “ g‘z)a gzr1a@rj+1,-~-,arj+t£j>)

andfuj+g.+1(§) Jm )(al,ag,...,arj+l).

Since Ny = nk(ﬁ, for large k, we have, for large j,

1 1 1
My, = 1+ _,) 7—‘ — ’77“ qu 2+0(1) =1 q2/\ 2+0(1)
’ [( J C]%@j‘I’(Qmj) q,%,bj\lf(qmj) i /

(which follows from the estimates of Lemma 3), and

~

A~ 2d
My .. .My, —1 > qmjm,

SO
log(my ... 770, — 2d
g( 1 _ U5 1) m 0(1).
- log(muj5Uj) A
On the other hand, for 1 <1 < /;, we have
A -1 -2
Moy +i = O(1>7 Cuj+i = O(qmj+1+t(j))a
and A—2+2d,, 2d
_ 2dm A— 2+2d —2d (A—1)—0(1)
= qm +1+tu>qmj
= g (2dpm —1)(A—2)—0(1)

- +1+tu>qmj
2dm —(2dm —1)(A=2)/(A=1)—0(1) _ _(2dm+A—-2)/(A=1)—0(1)
m; +1+t(]) mj-f—].-i—tgj)

Y

(the estimates of Mo+, +1,5u] +¢;+1 and My ... 1My, ¢, are roughly the same as those of
M40, Euyte; aNd 101 o 1Ty 1 _1) which gives

log(my ..My 4i-1) _ 2dm + A —2

—o(1).
— log(1u, +i€u;+i) 2(A—1) ol

By Proposition 1 of [2], it follows that

dimézmin{zdm 2dm+)\—2}: 2d,,

X200 - 1)
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and, letting m tend to infinity, we conclude that dim Exact(¥) > 2/, and so dim K(¥) =
dim Exact(¥) = 2/X. This proves Theorem 3. O

Remark. In the proof of Theorem 3, our aim was to construct a Cantor type set, whose
Hausdorff dimension could be bounded from below by means of the mass distribution prin-
ciple, as in [2]. The basic strategy was to construct real numbers £ whose continued fraction
expansion has scattered big partial quotients (which guarantee that £ is in Exact(V)) and
whose other partial quotients are at most equal to m. The method developed in [2] is quite
complicated and makes use of the assumption that x +— z2¥(z) is non-decreasing, which
is much stronger than our assumption (x), to allow the partial quotients to be unbounded,
but ‘not too big’. The advantage is that it also gives, see Theorem 2 of [2], precise infor-
mation on the Hausdorff measure of sets related to Exact(¥). In the present paper, our
mere goal is simply to compute the Hausdorff dimension of Exact(W¥). To do this, it was
sufficient to take the ‘small’ coefficients bounded, say by a large integer m. Comparing
our result with the construction of [2], what we obtain is analogous to show, with the
notation of [2], page 182, that there exists €(m) which tends to 0 as m tends to infinity

and is such that, at step k, each interval U; gives birth to Qi:j(m)\lf(Qk) intervals, which
are approximately evenly spaced. Letting then m tend to infinity gave us the expected
dimension. However, this approach is too crude to give any information on the Hausdorff

measure of Exact(WV).
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