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Abstract

We propose and analyze numerical methods for the long-term integration of stochastic differential equations
(SDEs) with additive noise. By focusing on a linear stochastic oscillator as a test equation, it is shown
that these methods are able to reproduce key features related to the long term behavior of this system:
they mimic the linear growth of the second moment of the solution, an infinitely-oscillation property and
the symplectic structure of this Hamiltonian system. We show the advantages over long periods of time
of the proposed integrators in comparison with commonly-used methods for the integration of SDEs. The
theoretical findings are illustrated by computer experiments.

Keywords: Stochastic differential equations, numerical methods, linear stochastic oscillator, long-term
integration, local linearization method.

1. Introduction

There are many physical applications and practical problems arising in different fields of science and
engineering, such as celestial mechanics, quantum physics, biology, finance, neurosciences and statistical
physics that require the long term simulation of stochastic differential equations (SDEs). Since in general
analytic solutions of these equations are not known or are computationally unfeasible to simulate, efficient
numerical schemes capable of preserving as much as possible the key features of the original equation over
very long integration intervals are then required.

Numerical integrators commonly used to solve SDEs are traditionally designed over a relative short time
interval (cf. [9], [13], [15]). Consequently these integrators may perform poorly for long-time computations
and not explain the complete range of behaviour that can be observed in the SDE as the integration time
goes to infinity.

In order to investigate the ability of numerical methods to mimic the asymptotic behaviour of SDEs
under discretization, one useful idea has been to study the numerical method on a simple test problem
whose important traits can be analyzed and which retains key features present in more complex problems
of interest. In this spirit two main type of equations have been considered in the literature (see e.g., [5], [7],
[9], [11], [15], [16], [17]):

i) the linear equation
dX (t) = AX (t) dt+ dWt, t ∈ R, (1)

where the matrix A has eigenvalues with negative real part and W is a (two-sided) standard Wiener process;
and more recently

ii) the linear stochastic oscillator with additive noise

..

X (t) + X (t) = σ
.

W t, σ > 0. (2)
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where W is a standard Wiener process.
The equation (1) has an asymptotically stable solution and from a random dynamical viewpoint it has a

random attractor of the flow of solutions, which is determined by its unique stationary solution [1]. Under
the consideration that this system can be decoupled, i.e., the matrix A is diagonalisable, the numerical
preservation of these features has been studied by mean of the absolute stability (A−stability) property of
numerical integrators. It is well known that in general standard explicit integrators do not fulfill the stability
assumptions and a large number of implicit methods neither. In [4] a new approach for the construction of
A−stable explicit integrators was recently proposed.

On the other hand, the stochastic oscillator equation (2) has distinctive long-term properties and also
provides a good (simple) model for more general nonlinear stochastic oscillators [10]. This equation can be
written as the bidimensional SDE

dX (t) = AX (t) dt+ bdWt (3)

with

A =

(
0 1
−1 0

)
, b =

(
0
σ

)
, σ > 0.

From the initial point X (t0) =

(
X1 (t0)
X2 (t0)

)
=

(
x0

y0

)
there exists a unique solution over [t0,∞) which is given

by (see for example [13])

X1 (t) = x0 cos (t) + y0 sin (t) + σ

t∫
t0

sin (t− s) dWs, (4)

X2 (t) = −x0 sin (t) + y0 cos (t) + σ

t∫
t0

cos (t− s) dWs. (5)

This solution has important properties related to the long-term behaviour and symplectic structure. Namely,
it satisfies a linear growth property for the second moment [16],

P1) E
(
‖X (t)‖2

)
= x0 + y0 + σ2 (t− t0)

and the oscillatory property [10]

P2) X1 (t) has infinitely many zeros, on [t0,∞) .

On the other hand, since the oscillator (3) is a Hamiltonian system with additive noise, it preserves symplectic
structure (cf. [12]). That is, it possess the property

P3) dX1 (t) ∧ dX2 (t) = dx0 ∧ dy0, ∀t ≥ 0.

In recent papers, [16], [17], [6], [7], the effect of using different kinds of numerical methods to solve
the system (3) have been studied. In parallel, numerical schemes especially devised for approximating this
stochastic oscillator were also proposed. In [16] it is shown that the widely used Forward and Backward
Euler-Maruyama methods fail to capture the second moment growth rate property P1, and from [18] it is
also deduced that they do not fulfill the property P3. The partitioned Euler-Maruyama method [16] and
the Midpoint rule [6], despite inheriting properties P2, P3, have rates of growth that are not exact and thus
the property P1 is not correctly reproduced. Similar results are obtained in [7] for the Predictor-Corrector
methods, where different combinations based on the methods presented in [16] and [6] are studied.

All in all, the proposed methods in the above mentioned references in general do not replicate exactly
one or more of the above three properties of (3), the only exception being the EX method, which gives exact
reproduction of all these properties. This method is constructed in [17] by rather heuristic considerations.
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Even though the EX method behaves very well when integrating the stochastic oscillator, it must be un-
derlined that the complete applicability of this method for more general SDEs could be limited since the
computation of the inverses of matrices is required in its numerical implementation.

In this work we propose new numerical methods for the long-term simulation of SDEs with additive noise.
Specifically we construct computationally viable integrators that, when applied to (3), result in symplectic
methods that reproduce the properties P1−P3 and are optimal in the sense that they use only increments
of the Brownian path in its formulation. Remarkably, we go beyond previous finite-time convergence results
by showing that the proposed methods have good mean square error propagation over long time intervals
of integration.

The technique presented here to devise these integrators is widely applicable, and we use it to show that
the performance of some of the methods reported recently can be notably improved by following the used
procedure. We were closely influenced by the papers [3] and [4], where similar ideas were used to construct
A-stable higher order numerical integrators for ordinary and stochastic differential equations.

This paper is organized as follows: In Section 2 the ability of some widely-used methods to reproduce
properties P1−P3 is discussed. In Section 3 we present the approach followed for the construction of the
integrators proposed in this work. Some particular methods are constructed and their mean-square rate of
convergence is studied. In Section 4, general theorems relating the long-term behavior of these methods,
when applied to (3), are proved and mean-square error estimates for long time intervals are obtained. Section
5 illustrates the practical performance of these methods through computer experiments. We conclude with
some remarks in Section 6.

2. Standard numerical integrators for the stochastic oscillator

For the purpose of completeness and comparison, in this section we review the performance of different
commonly-used methods when applied to the stochastic oscillator (3). These methods were studied in [16],
[17], [6], [7].

Let {tn}, n = 0, 1, . . ., denote a sequence of equally spaced grid points in time of stepsize h. Results for
the long time behavior of the stochastic θ−method [9] when applied to (3) i.e., for the discretization,

Xn+1 = (I−θhA)
−1

(1 + (1− θ)hAXn) + (I−θA)
−1

b∆Wn,

were reported in [16] for Forward Euler (θ = 0), Backward Euler (θ = 1) and in [6] for the midpoint rule
which coincide with the θ−method (for θ = 1

2 ). Other methods were also proposed and studied in [16],
and in [17]. In general when integrating the equation (3), all the resulting iteration maps are given by the
recurrence

Xn+1 = PXn + q∆Wn.

The particular expression for P and q for these integrators are:

Forward Euler-Maruyama (EM):

P =

(
1 h
−h 1

)
, q =

(
0
σ

)
.

Backward Euler-Maruyama (BE):

P =

( 1
1+h2

h
1+h2

− h
1+h2

1
1+h2

)
, q =

(
h

1+h2σ
1

1+h2σ

)
.

Midpoint Rule (MR):

P =

(
4−h2

4+h2
4h

4+h2

− 4h
4+h2

4−h2

4+h2

)
, q =

(
2h

4+h2σ
4

4+h2σ

)
.
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Partitioned Euler Method (PE):

P =

(
1 h
−h 1− h2

)
, q =

(
0
σ

)
.

Exponential method (EX):

P =

(
cos (h) sin (h)
− sin (h) cos (h)

)
, q =

(
0
σ

)
.

In [7], predictor-corrector methods (named P(EC)1 methods) were proposed by choosing predictor and
corrector integrators from combinations of the different methods above. Specifically the following methods
were studied:

P(EC)1 with PM as predictor and MR as corrector:

P =

(
1− h2

2 h
(

1− h2

2

)
−h 1− h2

2

)
, q =

(
h
2σ
σ

)
.

P(EC)1 with EM as predictor and MR as corrector:

P =

(
1− h2

2 h

−h 1− h2

2

)
, q =

(
h
2σ
σ

)
.

P(EC)1 with EM as predictor and BE as corrector:

P =

(
1− h2 h
−h 1− h2

)
, q =

(
hσ
σ

)
.

P(EC)1 with MR as predictor and PE as corrector:

P =

(
1 h

−h 4−h2

4+h2
4−3h2

4+h2

)
, q =

(
0

2−h2

2 σ

)
.

In fact many other P(EC)1 methods there could arise by applying additional combinations of predictor-
corrector methods. In [7] further predictor corrector methods for improving the P(EC)1 methods were also
analyzed.

It is proved that the strong order of convergence of each of the methods above is 1. Let us see their
ability to replicate of properties P1−P3 of the solution to (3).

Concerning the Property P1 it is proved that the EM produces a second moment with an exponential
growth, i.e.,

E
(
‖Xn+1‖2

)
≥ exp

(
1

2
σtn+1

)
,

and the BE also fails in reproducing the right behavior, showing a second moment bound

E
(
‖Xn+1‖2

)
≤ x0 + y0 +

σ2

h
.

On the other hand, the other above mentioned methods, although reproducing the linear growth property,
do not do it with the required rate. The only exception is the EX method which gives the exact growth

E
(
‖Xn+1‖2

)
= x0 + y0 + σ2t.

Concerning Property P2, with the exception of the P(EC)1 method (with predictor FE, corrector MR)
and the FE, BE (which satisfy a weaker oscillatory property), Property P2 is correctly reproduced by the
rest of the methods. Property P3 is also peculiar, since most of the methods are not exactly symplectic
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when integrating (3). The exception being PE, MR and EX. We must mention here that for the P(EC)1

methods, this property is approximately preserved, but with certain degree of error.
Summarizing, we can conclude that for the different methods eventually one or more of the properties

of the stochastic oscillator is not exactly replicated. Only the EX has a perfect reproduction of all these.
In the next section we formulate the approach that will allow us to construct new integrators with, in

general, better properties than the above mentioned methods. We follow [4] for the presentation.

3. Formulation of the approach

Let (Ω,F , P ) be a complete probability space, and (Ft)t≥0 be an increasing right continuous family of
complete σ-sub-algebras of F . Consider the d-dimensional SDE with additive noise

dX(t) = f (X(t)) dt+

m∑
j=1

gj (t) dW j
t , t ∈ [t0, T ] , (6)

X(t0) = Xt0 , (7)

where W j
t , j = 1, . . . ,m are Ft-adapted, uncorrelated standard Wiener processes. It is assumed that the

Rd-valued measurable functions f ,gj , satisfy the standard conditions to ensure existence and uniqueness of
a strong solution to the problem (6)-(7) [9]. That is, there exists a constant C > 0 such that for all x1, x2

∈ Rd, t ∈ [t0, T ]:
‖f (x1)− f (x2)‖ ≤ C ‖x1−x2‖ , (8)

‖f (x1)‖2 ≤ C
(

1 + ‖x1‖2
)
, (9)

Furthermore, let us suppose that f ∈ C1
(
Rd,Rd

)
and denote by fx the Jacobian of the function f

Let (t)h = {tn : n = 0, 1, . . . , N} be a partition of the time interval [t0, T ], with maximum stepsize h,
defined as a sequence of times t0 < t1 < . . . < tN = T such that sup

n
(tn+1 − tn) ≤ h < 1 for n = 0, ..., N −1.

The approach for approximating the solution of (6)-(7) is obtained as follows.
Starting on the initial value X0 = Xt0 , the approximations {Xi} to {X (ti)}, (i = 1, 2, . . . , N) are

obtained recursively as follows:
For each time interval of the partition Λn = [tn, tn+1] we consider the stochastic local problem

dX(t) = f (X(t)) dt+

m∑
j=1

gj (t) dW j
t , t ∈ Λn, (10)

X(tn) = Xn,

and the associated deterministic local problem

dY(t) = f (Y(t)) dt, t ∈ Λn, (11)

Y(tn) = Xn.

The solution of (11) can be approximated by one step of the Local Linearization method for ODEs (also
known as exponential fitted method) [8]. This is a exponential integrator defined for t ∈ Λn by

yLL (t) = Xn + Φ(t; tn,Xn) (12)

with

Φ(t; tn,Xn) =

∫ t−tn

0

e(t−tn−s)fx(Xn)f(Xn)ds. (13)

Let us consider now the stochastic local problem (10). In order to approximate its solution X(t), we will
add a stochastic correction term R(t) to the LL approximation (12). Thus,

X(t) = yLL (t) + R(t). (14)
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Since yLL (t) satisfies the linear equation

dY(t) = (fx (Xn) (Y(t)−Xn) + f (Xn))dt, t ∈ Λn,

Y(tn) = Xn,

it is not hard to see that R(t) satisfies

dR (t) = qtn,Xn (t,R(t)) dt+

m∑
j=1

gj (t) dW j
t , t ∈ Λn, (15)

R(tn) = 0, (16)

where

qtn,Xn (t,R) = f(yLL (t) + R)−fx (Xn)
(
yLL (t)−Xn

)
− f (Xn) (17)

= f(Xn + Φ(t; tn,Xn) + R)−fx (Xn) Φ(t; tn,Xn)− f (Xn) .

Thus, by using any existing numerical method for the integration of the SDE (15)-(16), an approximation
Zn (t) to R (t) in Λn is obtained. Then, Xn+1 follows from Xn (n = 0, 1, . . . , N − 1) by the recursion

Xn+1 = Xn + Φ(tn+1; tn,Xn) + Zn (tn+1) . (18)

It should be noted that an important problem in the evaluation of expression (18) is the efficient evalu-
ation of the integral (13) defining Φ(t; tn,Xn). This problem was successfully solved in [8] by reducing the
evaluation of Φ to compute an appropriate matrix exponential. That is,

Φ(t; tn,Xn) = vn(t), (19)

where vn(t) is the d−dimensional vector defined by the block matrix identity[
· · · vn(t)
0 1

]
= e(t−tn)Cn (20)

with

Cn =

[
fx(Xn) f(Xn)

0 0

]
∈ R(d+1)×(d+1).

Thus, because of (19), we get the following scheme for the numerical implementation of the method (18):

Xn+1 = Xn + vn(tn+1)+Zn (tn+1)

= Xn + [Id−1×d−1 0d−1×1] exp

([
fx(Xn) f(Xn)

0 0

]
(tn+1 − tn)

)
[01×d−1 1]

T
+Zn (tn+1) . (21)

A number of algorithms may be applied to compute the exponential in (20), See the review in [14]. In
particular, those algorithms based on rational (p, q)-Padé approximation ( p ≤ q ≤ p + 2) combined with
the “scaling and squaring” strategy, provide stable approximations to the matrix exponential.

3.1. New numerical integrators

Clearly, from the mechanism described above, a variety of numerical methods can be constructed for
solving equation (6)-(7) by applying a one-step numerical integrator to the auxiliary problem (15)-(16).
Thus, we could apply any of the methods of Section 2 for devising new integrators.

For instance, when the Forward Euler-Maruyama method is used to integrate the auxiliary equation
(15)-(16), it is qtn,Xn (tn,R(tn)) = qtn,Xn (tn,0) = 0, thus the corresponding resulting method is

Xn+1 = Xn + Φ(tn+1; tn,Xn)+

m∑
j=1

gj (tn) ∆W j
n, (22)
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with ∆W j
n = W j

tn+1
−W j

tn .
Note that this method is just the exponential scheme (EX) proposed in [17], when the evaluation of Φ is

done by direct integration of the integral in (13); i.e., by taking Φ(tn+1; tn,Xn) = (fx(Xn))
−1

(exp (fx(Xn)h)− I) f(Xn)
in (22). We point out that for the ill conditioned Jacobian matrix fx(Xn) the EX scheme eventually fails
in doing a good integration. In contrast with the scheme (21), where this integral Φ is computed with high
stability.

Other examples of explicit methods can be obtained by using predictor-corrector methods (P(EC)1) to
integrate (15)-(16). In this way, explicit methods are constructed by taking the (explicit) Euler method as
predictor and any θ−method as corrector (e.g., θ = 1 for the Backward Euler method and θ = 1

2 for the
Trapezoidal method as correctors). Hence the corresponding integrator in this case is:

Xn+1 = Xn + Φ(tn+1; tn,Xn)+θ

qtn,Xn

tn+1,

m∑
j=1

gj (tn) ∆W j
n

+

m∑
j=1

gj (tn) ∆W j
n. (23)

The flexibility of the proposed formulation allows us to select the appropriate method to combine with, in
concrete situations.

3.2. Convergence

In this subsection, we study the rate of convergence of the methods (18). To facilitate the exposition,
for y ∈ Rd and s ≤ t ≤ ∞, X (t; s,y) will denote the solution to the original equation (6) at time t which
starts from y ∈ Rd at time s. Similarly, R (t; s,0) will denote the solution to the auxiliary equation (15)
with initial condition 0 at time s. At first, we recall the following theorem concerning the order of strong
convergence of numerical methods [11]. For details of the concepts of order of convergence for SDEs see, for
example, [9, 11].

Theorem 1 (Milstein [11]). Assume for a one-step discrete time approximation Xn that the local mean
error and the local mean square error satisfy, for all n = 0, 1, . . . , N − 1, the estimates

‖E (X (tn+1; tn,Xn)−Xn+1)‖ ≤ K
(

1 + ‖Xn‖2
)1/2

hγ1 , (24)

and (
E
(
‖X (tn+1; tn,Xn)−Xn+1‖2

))1/2
≤ K

(
1 + ‖Xn‖2

)1/2
hγ2 , (25)

with γ2 ≥ 1
2 and γ1 ≥ γ2 + 1

2 . Then

max
0≤k≤N

(
E ‖X (tk; t0,Xt0)−Xk‖2

)1/2
≤ C (T )

(
1 + ‖Xt0‖

2
)1/2

hγ2−1/2

where the constant C (T ) depends on the length of the integration interval. That is, the global order of
convergence of the discretization Xn is γ = γ2 − 1/2.

We note that the various constants throughout the text have been and will be given the same letter K.
Concerning the rate of convergence of the methods (18) we have the following theorem:

Theorem 2. Let Xn be the discretization (18) for the SDE (6)-(7) corresponding to some one-step ap-
proximation Zn(t) to the solution R (t; tn,0) of the auxiliary equation (15). If the corresponding local mean
error (24) and local mean square error (25) of the numerical method Zn(t) are such that its global order of
convergence is γ. Then, the global order of convergence of Xn is also γ. That is,

max
0≤k≤N

(
E ‖X (tk; t0,Xt0)−Xk‖2

)1/2
≤ C (T )

(
1 + ‖Xt0‖

2
)1/2

hγ .
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Proof. The proof is immediate. From (14) and (18) it follows that

X (tn+1; tn,Xn)−Xn+1 = R (t; tn,0)− Zn(tn+1)

for each n = 0, 1, . . . , N − 1. Since Zn(t) is a one-step approximation of R (t; tn,0) in Λn satisfying the
conditions (24)-(25) of Theorem 1, then Xn also satisfies such conditions. Consequently, the order of converge
is the same as Zn, i.e., γ.

3.3. The new methods in the integration of the stochastic oscillator

For simplicity of the exposition, in the sequel we consider a uniform partition (t)h with stepsize h.
Applying the numerical time-stepping scheme (21) to the SDE (3), it produces the discrete approximation

Xn+1 = Xn + [Id−1×d−1 0d−1×1] exp

([
A AXn

0 0

]
h

)
[01×d−1 1]

T
) + Zn (tn+1) ,

where, from (17), Zn(t) is an approximation to the linear stochastic initial value problem

dR (t) = AR (t) dt+ bdWt, (26)

R(tn) = 0.

The expression

vn(tn+1) = [Id−1xd−1 0d−1x1] exp

([
A AXn

0 0

]
h

)
[01xd−1 1]

T

can be explicitly obtained as follows: since[
Ah AhXn

0 0

]k
=

[
(Ah)

k
(Ah)

k
Xn

0 0

]
,

then

vn(tn+1) = [Id−1×d−1 0d−1×1]

( ∞∑
k=0

1

k!

[
Ah AhXn

0 0

]k)
[01×d−1 1]

T
)

=

∞∑
k=0

1

k!
[Id−1×d−1 0d−1×1]

[
(Ah)

k
(Ah)

k
Xn

0 0

]
[01×d−1 1]

T
)

=

(( ∞∑
k=0

1

k!
(Ah)

k

)
− I

)
Xn

= (exp (Ah)− I) Xn.

Since

Ah =

(
1 i
i 1

)(
ih 0
0 −ih

)(
1 i
i 1

)−1
,

then

exp (Ah) =

(
1 i
i 1

)(
exp (ih) 0

0 exp (−ih)

)(
1 i
i 1

)−1
(27)

=

(
cos (h) sin (h)
− sin (h) cos (h)

)
.

Thus,

vn(tn+1) =

(
cos (h)− 1 sin (h)
− sin (h) cos (h)− 1

)
.
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Finally, the discrete approximation is

Xn+1 =

(
cos (h) sin (h)
− sin (h) cos (h)

)
Xn+Zn (tn+1) .

We are now in conditions to analyze the long time features of the new integrators resulting from approx-
imating the auxiliary equation (15)-(16) by any of the different numerical methods presented in Section 2.

Note that, when applied to the stochastic oscillator, the schemes (21) can be written as

Xn+1 = MXn+q∆Wn, (28)

where

M =

(
cos (h) sin (h)
− sin (h) cos (h)

)
,

and q is given for the different methods as in Section 2.
In the next section, the long-time behavior of these methods in the integration of (3) will be studied.

4. Long-time behavior of the proposed integrators

The following theorem deals with second moment behavior of the proposed methods when solving the
stochastic oscillator (3). The result shows that the growth property P1 of the stochastic oscillator is
reproduced when applying these methods. Throughout this and the following sections the symbol (., .)
denotes the euclidean scalar product associated to the euclidean vector norm ‖.‖.

Theorem 3. The numerical schemes (28), arising from the schemes (21), when applied to the stochastic
oscillator (3) with initial condition X (t0) = (x0,y0) satisfies:

E
(
‖Xn+1‖2

)
= x0 + y0 + ‖q‖2 tn+1.

Proof. We have

E
(
‖Xn+1‖2

)
= E(‖MXn‖2 + 2(MXn,Rn) + ‖Rn‖2).

Since E(Rn) = 0 =⇒ E(2(MXn,Rn)) = 0, we get that

E
(
‖Xn+1‖2

)
= E(‖MXn‖2 + ‖Rn‖2)

= E(‖Xn‖2) + E(‖Rn‖2)

= E(‖Xn‖2) + ‖q‖2 (tn+1 − t0) .

Hence, by induction we conclude that

E
(
‖Xn+1‖2

)
= x0 + y0 + ‖q‖2 (tn+1 − t0) .

The oscillatory property of the proposed methods is stated in the following theorem:

Theorem 4. The numerical schemes (28), arising from the schemes (21), when applied to the stochastic
oscillator (3) with initial condition X (t0) = (x0,y0) will switch signs infinitely many times as n → ∞,
almost surely for all step-time integration.
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Proof. It can be derived from (3) that

Xn+1 = M (Xn−1 + Zn−1) + Zn

= M2Xn−1 + MZn−1 + Zn

= . . . (29)

= Mn+1X0 +

n∑
k=0

MkZn−k. (30)

From (27),

Mk =

(
cos kh sin kh
− sin kh cos kh

)
.

Let q =

(
q1

q2

)
, then

X1
n+1 = cos ((n+ 1)h) x0 + sin ((n+ 1)h) y0 +

n∑
k=0

(q1 cos kh+ q2 sin kh)4Wn−k

= cos ((n+ 1)h) x0 + sin ((n+ 1)h) y0 +

n∑
k=0

Vk,

with Vk = (q1 cos kh+ q2 sin kh)4Wn−k. Obviously Vk are independent random variables with distribution

N
(
0, σ2

k

)
, with σ2

k = (q1 cos kh+ q2 sin kh)
2
h. Let us compute

s2n =

n∑
k=0

σ2
k.

First note that σ2
k can be rewritten as

σ2
k = ‖q‖2 cos2 (kh− α) , with α = arctan

(
q2

q1

)
for q1 6= 0, and α =

π

2
for q1 = 0.

Then,

s2n = ‖q‖2 h
n∑
k=0

cos2 (kh− α)

=

(
‖q‖2

2

)
h

(
n+

n∑
k=0

cos (2 (kh− α))

)

=

(
‖q‖2

2

)
h

(
n+ Re

{
n∑
k=0

e2(kh−α)i

})

=

(
‖q‖2

2

)
h

(
n+ Re

{
e−2αi

n∑
k=0

e2khi

})

=

(
‖q‖2

2

)
h

(
n+ Re

{
e2(n+1)hi − 1

e2(h+α)i − e2αi

})
.

After some algebraic manipulations, we conclude that

s2n =

(
‖q‖2

2

)
h

(
n+

sin (nh+ h) cos (nh− 2α)

sin (h)

)
.
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Since limn→∞ s2n =∞ and σ2
n ≤ ‖q‖

2
h, then

lim
n→∞

σ2
n

s2n
= 0.

It follows from Theorem 1 in [2] that the Law of the Iterated Logarithm may be applied to the sequence
n∑
k=0

Vk. Then,

i) P

lim sup
n→∞


n∑
k=0

Vk

√
2sn (log log sn)

1
2

 = 1

 = 1,

ii) P

lim inf
n→∞


n∑
k=0

Vk

√
2sn (log log sn)

1
2

 = −1

 = 1.

From i) for 0 < ε < 1,

n∑
k=0

Vk > (1− ε)
√

2sn (log log sn)
1
2 a.s for infinite values of n

i,e.

X1
n+1 = cos ((n+ 1)h) x0 + sin ((n+ 1)h) y0 +

n∑
k=0

Vk > 0 a.s, infinitely often.

Similarly from ii) for 0 < ε < 1,

n∑
k=0

Vk < (−1 + ε)
√

2sn (log log sn)
1
2 a.s for infinite values of n

i,e.,

X1
n+1 = cos ((n+ 1)h) x0 + sin ((n+ 1)h) y0 +

n∑
k=0

Vk < 0 a.s, infinitely often.

With this the result follows.

The theorem below deals with the symplecticity property of the proposed methods:

Theorem 5. The numerical schemes (28), arising from the schemes (21), when applied to the stochastic
oscillator (3) with initial condition X (t0) = (x0,y0), preserve the symplecticity structure of this Hamiltonian
system. That is,

dX1
n+1 ∧ dX2

n+1 = dx0 ∧ dy0 for all n ∈ N.

Proof. Let us consider the differential 2-form dX1
n+1 ∧ dX2

n+1. From (28) it is derived that

dX1
n+1 ∧ dX2

n+1 = det (M)
(
dX1

n ∧ dX2
n

)
.

Since det (M) = 1, the result is obtained immediately.

As a direct consequence of the above theorems, it can be seen that the proposed methods give better
asymptotic integration than widely-used ones. Let us analyze now their error propagation for long time
intervals.

11



4.1. Mean square error propagation for long time intervals

We are going to study the mean-square error estimates of the methods (28) for long time intervals of
integration. This analysis is important since standard estimates of the global error of discretization contains
factors depending of the length of the integration interval, therefore traditional convergence theory does not
work in this scenario of asymptotic integration.

From (4)-(5) we have that the solution X (t) =

(
X1 (t)
X2 (t)

)
of (3) satisfies

X (tk+1) = MX (tk) + ηk,

with M as in (28) and

ηk =


σ

t∫
t0

sin (t− s) dWs

σ

t∫
t0

cos (t− s) dWs

 .

Hence, we get that
X (tN ) = MNX (t0) + MN−1η0 + . . .+ ηN−1.

On the other hand, from (30) we have for our proposed methods that

XN = MNX0 + MN−1q∆W0 + . . .+ q∆WN−1.

Then, the error eN = X (tN )−XN in the last point T of the integration interval satisfies:

E ‖eN‖2 = E

∥∥∥∥∥
N∑
i=1

MN−i (ηi−1 − q∆Wi−1)

∥∥∥∥∥
2

= E

((
N∑
i=1

MN−i (ηi−1 − q∆Wi−1) ,

N∑
i=1

MN−i (ηi−1 − q∆Wi−1)

))

Since E (ηi−1 − q∆Wi−1) = 0 and because of the random variables (ηi−1 − q∆Wi−1), i = 1, 2, . . . N are
independent,

E ‖eN‖2 = E

(
N∑
i=1

(
MN−i (ηi−1 − q∆Wi−1)

)T (
MN−i (ηi−1 − q∆Wi−1)

))

= E

(
N∑
i=1

(ηi−1 − q∆Wi−1)
T (

MN−i)T MN−i (ηi−1 − q∆Wi−1)

)
.

In addition, as
(
MN−i)T MN−i = I, we find that

E ‖eN‖2 =

N∑
i=1

E ‖(ηi − q∆Wi)‖2 .

For i = 1, 2, . . . , N , we have

E ‖(ηi − q∆Wi)‖2 = E
(
‖q‖2 ∆W 2

i + ‖ηi‖2 − 2
(
ηTi ,q∆Wi

))
=
(
‖q‖2 + σ2

)
h− 4q1 sin2

(
h

2

)
σ − 2q2 sin (h)σ.
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The last equality is obtained from the relations:

E
(
‖q‖2 ∆W 2

i

)
= ‖q‖2 h,

E
(
‖ηi‖2

)
= hσ2,

E
(
−2
(
ηTi ,q∆Wi

))
= −2q1E

(
∆Wiη

1
i

)
− 2q2E

(
∆Wiη

2
i

)
= −4q1 sin2

(
h

2

)
σ − 2q2 sin (h)σ.

Thus,

E ‖eN‖2 =

((
‖q‖2 + σ2

)
h− 4q1 sin2

(
h

2

)
σ − 2q2 sin (h)σ

)
N. (31)

Now, we use the result in (31) to compute the mean-square error estimates of the proposed methods:
For the methods constructed by integrating the auxiliary equation (15) by the FE and the PE methods

is q =

(
0
σ

)
. Substituting in (31), it is obtained

E ‖eN‖2 = N (2h− 2 sin (h))σ2

= 2N

(
h3

3!
+O

(
h5
))

σ2

= (T − t0)

(
2h2

3!
+O

(
h4
))

σ2.

Therefore, (
E ‖eN‖2

) 1
2

= O
(

(T − t0)
1
2 h
)
.

Let us consider now the methods constructed by integrating the auxiliary equation (15) by the BE method.

In this case q =

(
σ h

1+h2

σ 1
1+h2

)
. From (31) and by algebraic manipulation of trigonometric series, it is obtained

that

E ‖eN‖2 = N

(
h3 + 2h cos (h)− 2 sin (h)

1 + h2

)
σ2

= 2N

(
O

(
h3

1 + h2

))
σ2.

Hence, (
E ‖eN‖2

) 1
2

= O
(

(T − t0)
1
2 h
)
.

We can continue in the same way with the rest of the methods. We get the following result:

Proposition 6. The mean square global error for the schemes (21) in the interval [t0, T ], can be estimated

as O
(

(T − t0)
1
2 h
)

. That is, if the length L = (T − t0) of the integration interval and the stepsize h are

such that L
1
2h is small, then the global error remain small too.

Remark 7. The results above show that the proposed methods have good mean square error propagation

over long time intervals [t0, T ], provided that (T − t0)
1
2 h is small. In this way the mean square error of

commonly-used methods when solving the stochastic oscillator can be improved significantly by following the
ideas presented in this paper. In order to exemplify this, let us consider the Euler method. In [12], it is

showed that the Euler method has a good error propagation in the interval [t0, TE ] if (LE)
3
2 h is small with

LE = (TE − t0). Hence, due to Proposition 6, we can easily conclude that by combining the scheme in (21)

with the EM method, the resulting method has a good global error over a larger interval of length (LE)
3
.

That is, for the same stepsize h, this integrator is applicable on longer times intervals than the Euler method.
Numerical experiments in the next section confirm the worth of these results.
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5. Numerical experiments

In this section different numerical experiments are reported. We start by illustrating the practical
performance of the proposed methods in solving the stochastic oscillator, corroborating in practice to the
theoretical results of the above sections. After this, some numerical tests with nonlinear SDEs are presented.
For each one of the methods in Section 2, the corresponding proposed method as defined in (21) will be
referred to as LL “method”, where the word to be replaced in the place of “method” depends on the specific
integrator used in the construction. For instance, LL Euler is understood as the integrator (21) obtained
by combination with the Euler method. In what follows, we will check the ability of the methods given
in (21) to replicate the properties P1, P2, and P3 and in each test we will compare our schemes with
the conventional standard counterpart. For the sake of comparison, in each figure below, we use the same
generated sample path of the Wiener processes in all the involved computations.

5.1. Experiments with the stochastic oscillator

Figure 1 shows a comparison (with respect the second moment evolution of the solution) between the
methods LL BE with BE, LL P(CE)1 with P(CE)1 (with predictor PE, corrector MR), and LL P(CE)1 with
P(CE)1 (with predictor EM, corrector MR), when integrating the system (3) with σ = 1 and initial condition

X (0) = [1, 0] over the time interval [0, 1000]. The columns correspond to approximation of E ‖X (t)‖2
obtained with different stepsizes h1 = 2−3, h2 = 2−2, h3 = 2−1. For each scheme 1000 independent
realizations of the solution were carried out and E ‖Xn‖2 was calculated by taking the mean of these
solutions in the discretization points along these trajectories. For reference a straight line with slope σ2 = 1,
representing the linear growth of the second moment of the exact solution (Property P1) of (3) in [0, 1000],
is also plotted in each case. We see that the standard methods fail to reproduce correctly the property
P1 of the exact solution for all the stepsizes. On the contrary, their corresponding LL standard methods
provide a much better reproduction of this long time behavior, even for the larger stepsize h3 = 2−1, so the
proposed methods with the LL approach preserve the linear growth property with high accuracy, even for
large stepsize and for long time of integration

Figure 2 and 3 concern the oscillatory behavior of the numerical solution of the equation (3). In both
cases the parameter was chosen as σ = 0.2, the initial condition as X (0) = [1, 0], and the integration
interval [0, 3000]. Figure 2 shows the trajectories obtained by the MR and the LL MR method for the
stepsizes h1 = 2−3 (first row) and h2 = 2−2 (second row). Figure 3 shows the trajectories obtained by
the PE and the LL PE method with the same stepsizes h1 and h2. For comparison purposes, the exact
solution (solid line) was also plotted. For a convenient visualization of the trajectories and analysis of the
results, in each row, i.e., for each stepsize, we plot the solutions on two subintervals representative of the full
integration interval [0, 3000]. The results clearly demonstrate that for the standard methods the simulated
amplitudes of oscillation are, depending on the interval in consideration, greater or lower than the exact
one. In contrast, the LL MR, and LL PE methods reproduce the oscillations of system (3) quite accurately.
It turns out that the approximate solutions with the LL approach adequately reproduce the right dynamics
of the amplitudes of these oscillations.

For the next experiments we consider a numerical test similar to that used in [12]. Figure 4 and 5 present
the evolution in the phase plane of system (3) with σ = 1 and for different initial conditions which are taken
over the unit circle with centre at the origin. In Figure 4 the exact solution (which is simulated as indicated
in [12]), the solution obtained by the BE, and the solution obtained by the LL BE method are plotted at
three time moments T1 = 30, T2 = 50 and T3 = 70. We have used the stepsize h = 0.05. It is known (and
can be observed in the figure) that for the linear stochastic oscillator, the exact images of the unit circle are
circles with the unit radius shifted from the origin due to the influence of noise. For the numerical methods
we are testing, the images also keep this shape, but for the standard BE method the approximation worsens
as the time of integration grows. Remarkably, the LL BE, which by Theorem 5 is a symplectic method,
reproduces the exact image much better for every the moment of time.

In Figure 5 we consider even bigger time moments T1 = 30, T2 = 70, T3 = 100 and the numerical
integrators to be tested are the P(EC)1 method (with EM as predictor, BE as corrector) and the symplec-
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Figure 1: Second moment growth of the numerical approximations of the solution to (3) obtained by standard methods
(trajectory of circles) and their LL counterparts (trajectory of triangles) with stepsizes h1 = 2−3, h2 = 2−2 and h3 = 2−1.
The lower row shows the performance of the BE and the LL BE method. The central row shows the methods P(CE)1 and
LL P(CE)1 (with predictor PE, corrector MR), and the upper row the methods P(CE)1 and LL P(CE)1 (with predictor EM,
corrector MR). For reference the linear growth of the exact solution is represented in each case by a straight line.
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Figure 3: Sample trajectories (in different parts of the integration interval) of the numerical solutions to (3) obtained by the
PE method (trajectory of circles) and the LL PE method (trajectory of triangles) for the stepsizes h1 = 2−3 (first row) and
h2 = 2−2 (second row). The trajectory of the exact solution is shown in each case by a solid line.

tic LL P(EC)1 method. The results, once again, confirm the effectiveness of proposed methods and the
improvement they give over the classical ones.

5.2. Nonlinear examples

The first nonlinear example is the pendulum without damping perturbed by additive noise. This is
described by the system

dX1 (t) = X2 (t) dt, (32)

dX2 (t) = − sin
(
X1 (t)

)
dt+ σdWt.

This system was integrated on the interval 0 ≤ t ≤ 50, the initial condition was chosen as [1.4; 0], and the
diffusion parameter σ = 1. Figure 6 shows the trajectories in the phase portrait obtained by a P(EC)1

method (with predictor the Euler method and corrector the Backward method) as well as the trajectories
obtained by the corresponding LLP(EC)1 method. It is evident that there is no significant difference between
the trajectories of these schemes for the smallest stepsize h = 2−11, which may be practically regarded as
the exact solution for visualization purposes. However this is not the case for larger stepsizes. We observe
that for h = 2−2 and h = 2−1, the numerical solutions of the P(EC)1 method spiral inwards, showing the
wrong qualitative behavior. In contrast, the LLP(EC)1 method gives a numerical solution that replicates
the correct qualitative behavior of the original system.

The next example illustrates the behavior of the proposed methods in the integration of a Lotka-Volterra
model with additive noise. Namely

dX1 (t) = X1 (t)
(
X2 (t)− 2

)
dt (33)

dX2 (t) = X2 (t)
(
1−X1 (t)

)
dt+ σdWt.
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Figure 4: Trajectories in the phase plane of the exact solution and of the numerical approximation to the system (3) obtained
by the BM method and the symplectic LL BM method. The trajectories are obtained from different initial conditions, which
are taken over the unit circle centred at the origin, in three moments of time, T1 = 30, T2 = 50 and T3 = 70. The stepsize
h = 0.05 is used for both integrators.

The effect of the length of the integration interval on the performance of the standard and the proposed
integrators is shown in Figure 7. Here, the stepsize is fixed at h = 0.01 for the Euler method, and a bigger
stepsize h = 0.2 is considered for the LLEuler method. The simulations are carried out at three moments of
time, T1 = 10, T2 = 35, and T3 = 50 and the initial condition was chosen as [4; 2]. As expected, the quality
of the numerical approximations get worse as the time of integration increases. For the highest times T2
and T3 the standard Euler method results in explosive trajectories (for visualization purposes, in plotting
the figure, coordinate axes were conveniently bounded in such a way that explosive behavior is reflected by
trajectories reaching the bounding frames).

In contrast, it is observed that the proposed methods (exemplified by the LLEuler) work perfectly,
preserving the qualitative behavior of the exact flow (the top row of the figure can be thought of as the
actual solution). Even though a higher stepsize h = 0.2 was used for the simulations in this case.

6. Concluding Remarks

In this paper we proposed an approach which takes advantage of the suitable compromise between
stability and computational reliability of the Local Linearization method to devise numerical schemes for
the long-term integration of SDEs. In particular, key asymptotic features of a linear stochastic oscillator
can be correctly replicated by the integrators obtained via the ideas presented here.

In most of the previous reported works, only implicit methods behaved well with respect to the long-term
integration of the test equation (3). However it is well known that from the view point of efficiency, for
general SDEs, implicit methods are inappropriate, since, in general, they involve the numerical solution of
a system of nonlinear algebraic equations at each integration step. The situation is even worse when the
integration is done over large intervals. One of the advantages of the approach used here, is that it suggests
a systematic way of constructing explicit integrators (i.e., that do not require the solution of any algebraic
equation) with desirable properties in this respect. For instance the Euler methods, and any P(EC)1 (with
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Figure 5: Trajectories in the phase plane of the exact solution and of the numerical approximation to the system (3) obtained
by the P(EC)1 method (with EM as predictor, BE as corrector) and the symplectic LL P(EC)1 method. The trajectories are
obtained from different initial conditions, which are taken over the unit circle centred at the origin, at three moments of time,
T1 = 30, T2 = 70 and T3 = 100. The stepsize h = 0.05 is used for both integrators.

an explicit predictor), can be combined as shown in Section 3 to obtain new explicit methods (see e.g.,
schemes (22) and (23)). The theoretical results in Section 3 and the numerical experiments in Section 5
confirm the superiority of the proposed methods over the corresponding standard ones.

According with the main results of this work and the confirmation of the experimental tests, in our
opinion, it makes sense to follow the strategy presented here when the numerical integration of SDEs over
long periods of time is required. As we believe, these methods would be useful for many physical applications
mainly where integration is required with moderate computational cost. In specific practical situation, the
numerical integrator to be chosen among those proposed in this work would depend on the characteristics
of the specific problem under consideration.
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Figure 7: Trajectories in the phase plane obtained from numerical integration of equation (33) at three moments of time,
T1 = 10, T2 = 35 and T3 = 50. The Euler method and the corresponding LLEuler method were used in this comparison. The
stepsizes h = 0.01 and h = 0.2 were used by the Euler and the LLEuler integrator respectively. Trajectories in the top row
were computed by the Euler method with a very small stepsize h = 2−11 and can be thought of as the actual solution.
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