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1 Introduction

Uniform hyperbolicity has been a long standing paradigm of complete dynamical de-
scription: any dynamical system such that the tangent bundle over its Limit set (the
accumulation points of any orbit) splits into two complementary subbundles which are
uniformly forward (respectively backward) contracted by the tangent map can be com-
pletely described from a geometrical and topological point of view.

Nevertheless, uniform hyperbolicity is a property less universal than it was initially
thought: there are open sets in the space of dynamics containing only non-hyperbolic sys-
tems. Actually, Newhouse showed that for smooth surface diffeomorphisms, the unfolding
of a homoclinic tangency (a non transversal intersection of stable and unstable manifolds
of a periodic point) generates open sets of diffeomorphisms such that their Limit set is
non-hyperbolic (see [N1], [N2], [N3]).

To explain his construction, firstly we recall that the stable and unstable sets

W s(p) = {y ∈M : dist(fn(y), fn(p)) → 0 as n→ ∞},

W u(p) = {y ∈M : dist(fn(y), fn(p)) → 0 as n→ −∞}
are Cr-injectively immersed submanifolds when p is a hyperbolic periodic point of f .

Definition 1 Let f :M →M be a diffeomorphism. We say that f exhibits a homoclinic
tangency if there is a hyperbolic periodic point p of f such that the stable and unstable
manifolds of p have a non-transverse intersection.

It is important to say that a homoclinic tangency is (locally) easily destroyed by small
perturbation of the invariant manifolds. To get open sets of diffeomorphisms with per-
sistent homoclinic tangencies, Newhouse considers certain systems where the homoclinic
tangency is associated to an invariant hyperbolic set with large fractal dimension. In par-
ticular, he studied the intersection of the local stable and unstable manifold of a hyperbolic
set (for instance, a classical horseshoe), which, roughly speaking, can be visualized as a
product of two Cantor sets whose thickness are large. Newhouse’s construction depends
on how this fractal invariant varies with perturbations of the dynamics, and actually this
is the main reason that his construction works in the C2−topology. In fact, Newhouse
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argument is based on the continuous dependence of the thickness with respect to C2 per-
turbations. A similar construction in the C1−topology leading to same phenomena is
unknown (indeed, some results in the opposite direction can be found in [U] and [M]). In
this setting, it was conjectured by Smale that

Axiom A surface diffeomorphisms are open and dense in Diff1(M).

In the present paper, we consider a special set of maps acting on a two dimensional
rectangle. For this special type of systems, we show that, if one deals in C2−topology,
there are open set of diffeomorphisms which are not hyperbolic, while in the C1−topology,
the Axiom A property is open and dense.

A typical family where the Newhouse’s phenomena hold is the so called Hénon maps.
In fact, it was proved in [U2] that, for certain parameter of this family, the unfolding of
a tangency leads to an open set of non-hyperbolic diffeomorphisms.

Numerical simulations indicate that the attractor of the Hénon map (i.e., the closure
of the unstable manifold of its fixed saddle point) has the structure of the product of a
line segment and a Cantor set with small dimension (when a certain parameter b is close
to zero). Although it is a great oversimplification (and many of the later difficulties on the
analysis of Hénon attractors arise because of the roughness of such approximation), this
idea gives a very good understanding of the geometry of the Hénon map. As a guide to
what follows, it is worth to point out that Benedicks and Carleson [BC, section 3, p. 89]
have constructed a model where the point moves on a pure product space (−1, 1) × K
where K is the Cantor set obtained by repeated iteration of the division proportions
(b, 1− 2b, b) and the dynamics on (−1, 1) is given by a family of quadratic maps: in fact,
the dynamical system over (−1, 1) act as a movement on a fan of lines, where each line
has its own x-evolution, while it is contracted in the y-direction (see figure 1).

More precisely, consider a one parameter family {fy}y∈[0,1] such that

fy : [−1, 1] → [−1, 1]

is a Cr−unimodal map verifying that 0 is the critical point and fy(0) is the maximum
value of fy for all y ∈ [0, 1]. We denote by Dr the set of families of Cr−unimodal maps
satisfying the conditions stated above.

Let k : [0, a]∪[b, 1] → [0, 1] be a Cr function such that k(0) = 0 = k(1), k(a) = 1 = k(b)
and |k′| > γ > 1. Put

K(x, y) =

{
K+(y) if x > 0,
K−(y) if x < 0,

where K+ = (k/[0,a])
−1, K− = (k/[b,1])

−1.
The bulk of this article is the study of the dynamics of F : ([−1, 1] \ {0} × [0, 1]) →

[−1, 1]× [0, 1] given by

F (x, y) = (f(x, y), K(x, y)) = (fy(x), Ksgn(x)(y)). (1)

We denote by Dr the set of such maps F with the “usual” Cr-topology. Observe that
the line x = 0 is a discontinuity line of any F ∈ Dr, so that we are dealing with a one to one
maps F which are Cr−diffeomorphisms only on [−1, 1] \ {0} × [0, 1] → [−1, 1]× [0, 1]. In
particular, we should tell some few words about the precise definition of the Cr-topology
in this context:
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Figure 1: Dynamics of F.

Definition 2 Given F, F̃ ∈ Dr, consider {fy}y∈[0,1] and k : [0, a] ∪ [b, 1] → [0, 1] (resp.,

{f̃y}y∈[0,1] and k̃ : [0, ã] ∪ [̃b, 1] → [0, 1]) the functions associated to F (resp., F̃ ). We say

that F and F̃ are Cr-close if {fy}y∈[0,1] is Cr-close to {f̃y}y∈[0,1] in the usual manner, a

is close to ã, b is close to b̃ and k is Cr-close to k̃.

Now, let us recall that a set Λ is called hyperbolic for a dynamical system f if it
is compact, f -invariant and the tangent bundle TΛM admits a decomposition TΛM =
Es ⊕Eu invariant under Df and there exist C > 0, 0 < λ < 1 such that

|Dfn
/Es(x)| ≤ Cλn and |Df−n

/Eu(x)| ≤ Cλn ∀x ∈ Λ, n ∈ N.

Moreover, a diffeomorphism is called Axiom A if the non-wandering set is hyperbolic and
it is the closure of the periodic points. In the sequel, Ω(F ) denotes the non-wandering set
and L(F ) the limit set.

At this point, we are ready to state our main results:

Theorem A. For r ≥ 2, there exists an open set U ⊂ Dr such that, for any F ∈ U , the
limit set L(F ) of F is not a hyperbolic set. Moreover, there exists a residual set R ⊂ U
such that any F ∈ R has infinitely many periodic sinks.

On the other hand, in the C1−topology, the opposite statement holds:

Theorem B. There exists an open and dense set V ⊂ D1 such that Ω(F ) is a hyperbolic
set (and F is Axiom A) for any F ∈ V.

Concerning the proof of these results, a fundamental role will be played by certain
points in the line {x = 0}:

Definition 3 Given F ∈ Dr, consider k : [0, a]∪ [b, 1] → [0, 1] the Cantor map related to
F and denote by K0 the Cantor set induced by k. For any y ∈ K0, we call

c±y = (0±, y)

a critical point of F .

The relevance of this concept becomes clear from the following simple remark:

3



Remark 1.1 It follows from the definition that, if c±y ∈ L(F ) and c±y is not a periodic
sink, then L(F ) is not hyperbolic.

Closing this introduction, we give the organization of the paper:

• In section 2, we follow the same ideas of Newhouse to construct a C2-open set U
where the critical points can not be removed from the limit set, so that the proof of
theorem A can be derived from the combination of this fact and the remark 1.1.

• In section 3, the proof of theorem B is presented. Morally speaking, our basic
idea is inspired by a proof of Jakobson’s theorem [J] (of C1-density of hyperbolicity
among unimodal maps of the interval) along the lines sketched in the book of de
Melo and van Strien [dMvS]: namely, in the one-dimensional setting, one combines
Mañé’s theorem [M1] (giving the hyperbolicity of compact invariant sets far away
from critical points of a C2 Kupka-Smale interval map) with an appropriate C1-
perturbation to force the critical point to fall into the basin of a periodic sink. In
our two-dimensional setting, we start by showing that the points of the limit set
staying away from the critical line {x = 0} belong to a hyperbolic set; this is done
by proving that any compact set disjoint from the critical line exhibits a dominated
splitting and then it is used theorem B in [PS1] (which is the two-dimensional
generalization of Mañé’s theorem [M1]) to conclude hyperbolicity. Next, we exploit
a recent theorem of Moreira [M] about the non-existence of C1-stable intersections
of Cantor sets plus the geometry of the maps F ∈ D1 to prove a dichotomy for the
critical points of a generic F : either critical points fall into the basins of a finite
number of periodic sinks or they return to some small neighborhood of the critical
line. Finally, we prove the critical points returning close enough to the critical
line can be absorbed by the basins of a finite number of periodic sinks after a C1-
perturbation; thus, we conclude that the limit set of a generic F ∈ D1 is the union
of an hyperbolic set with a finite number of periodic sinks, i.e., a generic F ∈ D1 is
Axiom A.

Acknowledgements. The authors are thankful to IMPA, Collège de France and Institut
Mittag-Leffler (and their staff) for the excellent ambient during the preparation of this
manuscript. Also, we are grateful to Sylvain Crovisier for several discussions (who helped
to clarify the arguments below). Moreover, we would like to acknowledge Sylvain Crovisier
and Jean-Christophe Yoccoz for their interest in this work and their constant support.

2 Proof of theorem A

The strategy is similar to the arguments of [N1] (see also [PT]).
Given 0 < t < 1 and m ≥ m0 = m0(t) (where m0(t) is a large integer to be chosen

later), we put δm := 1/(2m − 1), ǫm := sin(πδm/2) and we select a parameter ρm such
that 1− cos(πδm) < tρm/2 < 1− cos(π(1− δm)/2

m−1) (e.g., ρm := 2(1− cos(3πδm/2))/t
works for m0(t) sufficiently large). Next, we take µm : [0, 1] → [0, 1] a C2-map such that
µm(y) = µm(1− y) and µm(y) = 1−

√
1− ρmy/2 for every y ∈ [0, t

2
] and we define

F t(x, y) = (fǫm(x, y), K
t(x, y)), (2)
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with

Kt(x, y) :=

{
(kt

/[0, t
2
]
)−1(y) if x > 0,

(kt
/[1− t

2
,1]
)−1(y) if x < 0,

where kt is the map

kt(y) =

{
2y/t if 0 ≤ y ≤ t/2,
2(1− y)/t if 1− t

2
≤ y ≤ 1.

and fǫm(x, y) is a C
2 family of unimodal maps such that

fǫm(x, y) =

{
1− 2x2 if |x| ≥ ǫm,
1− µm(y) at x = 0,

Also, let K0 = Kt
0 be the Cantor set induced by k = kt. See figure 2.
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Figure 2: Dynamics of Kt.

To simplify the exposition, firstly we consider the proof of theorem A only for maps
F = F t of the form (2). Then, we explain how the general case follows from the previous
one (at the end of this section).

We begin by recalling some classical facts about dynamically defined Cantor sets and
their thickness. For a more detailed explanation, see [PT].

Definition 4 We say that a Cantor set K ⊂ R is dynamically defined if it is the maximal
invariant set of a C1+α expanding map with respect to a given Markov partition.

Definition 5 A gap (resp. bounded gap) of a Cantor set K is a connected component
(resp., bounded connected component) of R−K. Given U a bounded gap of K and u ∈ ∂U ,
we call the bridge C of K at u to the maximal interval such that u ∈ ∂C and C contains
no point of a gap U ′ with |U ′| ≥ |U |. The thickness of K at u is τ(K, u) = |C|/|U | and
the thickness τ(K)of K is the infimum over τ(K, u) for all boundary points u of bounded
gaps.

Remark 2.1 For the Cantor sets Kt
0 induced by the maps kt above, it is not hard to see

that 0 < τ(Kt
0) = t/2(1− t) <∞.
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Remark 2.2 The quadratic map f2(x) := 1−2x2 has arbitrarily thick dynamically defined
Cantor sets. In fact, using the fact that 1− 2x2 is conjugated to the complete tent map

T2(x) :=

{
2x if 0 ≤ x ≤ 1/2,
2− 2x if 1/2 ≤ x ≤ 1,

via the explicit conjugation h(x) = − cos(πx), we can exhibit thick Cantor sets as follows.

Denote by Ĩ
(m)
2 := [h(2δm), h((1 − δm)/2

m−2)] and put Ĩ
(m)
i := f2(Ĩ

(m)
i−1 ) for i = 3, . . . , m.

As it is explained in the section 2 of chapter 6 of Palis-Takens book [PT], the intervals

h−1(Ĩ
(m)
2 ), . . . , h−1(Ĩ

(m)
m ) form a Markov partition of a dynamically defined Cantor set

Km of thickness τ(Km) = 2m−1 − 3 associated to the tent map T2(x), and, a fortiori,

K̃m := h(Km) are dynamically defined Cantor sets associated to f2 (and Markov partition

Ĩ
(m)
2 , . . . , Ĩ

(m)
m ) such that τ(K̃m) → ∞ (as m→ ∞).

Remark 2.3 Let K(ψ) be the dynamically defined Cantor set associated to a C1+α ex-
panding map ψ. If φ is C1+α-close to ψ, then the thickness of K(φ) is close to the
thickness of K(ψ). In other words, the thickness of dynamically defined Cantor sets K
depend continuously on K (with respect to the C1+α-topology). See [PT].

Now we state Newhouse’s gap lemma ensuring that two linked Cantor sets with large
thickness should intersect somewhere:

Lemma 2.1 (Gap Lemma [N1]) Given two Cantor sets K1 and K2 of R such that

τ(K1)τ(K2) > 1,

then one of the following possibilities occurs:

• K1 is contained in a gap of K2;

• K2 is contained in a gap of K1;

• K1 ∩ K2 6= ∅.

For later reference, we recall the following definition:

Definition 6 We say that K1 and K2 are linked if neither K1 is contained in a gap of
K2 nor K2 is contained in a gap of K1.

After these preliminaries, we can complete the discussion of this section as follows.

End of the proof of theorem A:

We observe that, since F = F t is the product map F t(x, y) = (1 − 2x2, Kt
sgn(x)(y))

at the region ([−1, ǫm] ∪ [ǫm, 1])× [0, 1], it follows that Λǫm := K̃m ×Kt
0 is a hyperbolic

set of F t. Moreover, the stable lamination W s(Λǫm) is composed by vertical lines passing

through K̃m ×{0} and the unstable lamination W u(Λǫm) is composed by horizontal lines
passing through {0} ×Kt

0. We divide the construction of U into three steps.
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Step 1: From remarks 2.1 and 2.2, given 0 < t < 1, we can choose m0(t) ∈ N large
such that, for every m ≥ m0(t), it holds

τ(K̃m)τ(K
t
0) > 1.

Step 2: Consider the following line segment:

L+ := F 2({0+}× [0, t/2]) = {(1−2(1−µm(y))
2,
t2

4
y)}y∈[0,t/2] = {(−1+ ρmy,

t2

4
y)}y∈[0,t/2].

In the sequel, L+ plays the role of a line of tangencies : more precisely, we introduce

K̃s = (f−1
2 (Ĩ

(m)
2 ∩ K̃m)× [0, 1]) ∩ L+, K̃u = F 2({0+} ×Kt

0) = W u
loc(Λǫm) ∩ L+.

We claim that K̃s∩K̃u 6= ∅. In fact, since L+ is a straight line segment transversal to both
horizontal and vertical foliations, we obtain that τ(K̃s) = τ(K̃m) and τ(K̃u) = τ(Kt

0),
so that τ(K̃s)τ(K̃u) > 1 (by step 1). Hence, by Newhouse gap lemma 2.1, it suffices to
show that K̃s and K̃u are linked. However, it is not hard to see that this follows from
our choice of ρm. Indeed, from the definitions of K̃s and K̃u, we get that K̃s and K̃u

are linked if and only if the vertical projection K
s
:= f−1

2 (Ĩ
(m)
2 ∩ K̃m) of K̃s is linked

to the vertical projection K
u
of K̃u. On the other hand, K

s
and K

u
are linked because

their convex hulls are linked: more precisely, the convex hull Is of K
s
is f−1

2 (Ĩ
(m)
2 ) =

[− cos(πδm),− cos(π(1 − δm)/2
m−1)] and the convex hull Iu of K

u
is [0,−1 + tρm/2], so

that our choice of ρm verifying

1− cos(πδm) < tρm/2 < 1− cos(π(1− δm)/2
m−1)

implies that Is and Iu are linked.
Next, we notice that K̃s ∩ K̃u 6= ∅ means that F 2(c+y ) ∈ W s

loc(Λǫm) for some critical
point c+y , y ∈ Kt

0. It follows that c
+
y is a non-periodic critical point belonging to the Limit

set L(F ). Therefore, from remark 1.1, the Limit set is not hyperbolic.

Step 3: Finally, we claim that any sufficiently small C2 neighborhood U ⊂ D2 of the
map F = F t constructed above fits the conclusion of the first part of theorem A. Indeed,
this is a consequence of the following known facts:

1. The hyperbolic basic set Λǫm has a continuation to an invariant hyperbolic basic set
Λǫm(G) of G;

2. The Cantor sets K̃s and K̃u have unique continuations to Cantor sets K̃s(G) and
K̃u(G). Moreover, these Cantor sets are C1+α−close to K̃s and K̃u respectively;

3. Thus, the Cantor sets K̃s(G) and K̃u(G) have thickness close to the thickness of
K̃s and K̃u respectively; by continuity of the thickness (see remark 2.3), it follows
that τ(K̃u(G))τ(K̃u(G)) > 1;

4. From Newhouse gap lemma 2.1, it follows that K̃s(G) ∩ K̃u(G) 6= ∅;

5. Hence, there are (non-periodic) critical points contained in the Limit set of G, and
so, by remark 1.1, it is not hyperbolic.
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At this point, it remains only to prove the second part of theorem A, namely, the
existence of a residual set R ⊂ U such that any F ∈ R has infinitely many sinks.

Let Un ⊂ U be the (open) subset of maps F ∈ U with n attracting periodic orbits (at
least) and R =

⋂
n∈N

Un. In this notation, our task is reduced to show the next proposition.

Proposition 2.1 Un is dense for every n ∈ N.

We start our argument with the following notion.

Definition 7 We say that F ∈ Dr exhibits a “heteroclinic tangency” if there are two
periodic points p and q of F such that

1. there exists c± = (0±, yp) ∈ W u(p);

2. there exists k > 0 such that F k(c±) ∈ W s
loc(q) and F j(c±) does not intersect the

critical line for j < k;

3. the unstable manifold of q intersects transversally the stable manifold of p.

The relevance of the heteroclinic tangencies becomes apparent in the next lemma.

Lemma 2.2 Let F ∈ Dr with a heteroclinic tangency. Then, there exists G ∈ Dr arbi-
trarily Cr close to F having an attracting periodic point near the heteroclinic tangency.

Proof: From the facts that c± ∈ W u(p) and the unstable manifold of q intersects
transversally the stable manifold of p, it follows that there exists c±n = (0±, yn) such
that F−kn(c±n ) → F k(c±) (for some appropriate sequence kn) and c±n → c±. Hence, we
can take a Cr small perturbation G of F such that Gk(c±n ) = F−kn(c±n ) and G = F along
the orbit F−j(c±n ) for j = 1, . . . , kn (provided that n is large enough). In particular, we
have that c±n = Gk+kn(c±n ) is a super-attracting periodic point of G of period k + n. This
ends the proof.

On the other hand, heteroclinic tangencies are frequent inside U .
Lemma 2.3 Let F ∈ U . Then, there exists G Cr close to F exhibiting a heteroclinic
tangency.

Proof: This is an immediate consequence of the construction of U : given F ∈ U , we can
find x1, x2 ∈ Λǫm and a critical point c± ∈ W u

loc(x1) such that F k(c±) ∈ W s
loc(x2); let p

and q be periodic points in Λǫm close to x1 and x2 (resp.) so that their local unstable and
stable manifolds are close to the corresponding invariant manifolds of x1 and x2 (resp.),
and they are homoclinically related; in this situation, after a proper small perturbation,
we can find G Cr-close to F such that G has a heteroclinic tangency involving p and q.
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Finally, the proof of the desired proposition follows from a direct combination of the
two previous lemmas.

Proof of proposition 2.1: It is proved by induction. Given F ∈ Un, we can use the
lemma 2.3 to find G Cr close to F keeping the same number n of attracting periodic
points of Gn such that Gn+1 has a heteroclinic tangency. By lemma 2.2, we can unfold
this tangency to create a new sink, i.e., we can find H ∈ Un+1 C

r close to G. The result
follows.

This completes the proof of theorem A.

3 Proof of theorem B

Before giving the proof of theorem B, we briefly outline the strategy. Given ǫ > 0, let us
take Uǫ = ([−1,−ǫ] ∪ [ǫ, 1])× [0, 1] and

Λǫ = Ω(F ) ∩
⋂

n∈Z

F n(Uǫ).

Strategy of the proof.

1. For any ǫ > 0, we show that, C1-generically, the set Λǫ is composed by a locally
maximal hyperbolic set and a finite number of periodic attracting points. This is
performed in subsection 3.1 (see theorem 3.1).

2. We show that, C1-generically, any critical point either it is contained in the basin
of attraction of the sinks (of step 1 above) or it returns to [−ǫ, ǫ] × [0, 1]. This is
performed in subsection 3.2.

3. Later, we produce a series of C1−perturbations (of size proportional to ǫ) in the
way to create a finite number of periodic sinks such that their basins contain the
critical points. This is performed in subsection 3.3.

4. From items 1, 2 and 3, it follows that Ω(F ) ⊂ Λǫ ∪ {p1, ...., pk}, where each pi is a
periodic attracting point (i = 1, . . . , k), and therefore it is concluded that Ω(F ) is
hyperbolic (and F is Axiom A).

3.1 Hyperbolicity of Λǫ

Theorem 3.1 Let ǫ > 0 be a positive constant. Then, for a C1-generic F ∈ D2, Λǫ

contains a finite number of periodic attracting points and the complement of the basin
of attraction of them Λ̂ǫ exhibits a hyperbolic splitting T Λ̂ǫ = Es ⊕ Eu such that Es is
contractive, Eu is expansive (and, in fact, Eu = R · (1, 0)).

The proof of this result uses the notion of dominated splitting and theorem B in [PS1].
Firstly, we revisit the definition of dominated splittings:
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Definition 8 An f -invariant set Λ has a dominated splitting if we can decompose its
tangent bundle into two invariant subbundles TΛM = E ⊕ F such that:

‖Dfn
/E(x)‖ · ‖Df−n

/F (fn(x))‖ ≤ Cλn, for all x ∈ Λ, n ≥ 0. (3)

with C > 0 and 0 < λ < 1.

Secondly, we recall that Pujals and Sambarino [PS1] proved that any compact invariant
set exhibiting dominated splitting of a generic C2 surface diffeomorphism is hyperbolic:

Theorem 3.2 ([PS1]) Let f ∈ Diff2(M2) be a C2-diffeomorphism of a compact surface
and Λ ⊂ Ω(f) a compact invariant set exhibiting a dominated splitting. Assume that
all periodic points in Λ are hyperbolic of saddle type. Then, Λ can be decomposed into
a hyperbolic set and a finite number of normally hyperbolic periodic closed curves whose
dynamical behaviors are C2-conjugated to irrational rotations.

We claim that it suffices to prove the next proposition in order to conclude the proof
of theorem 3.1:

Proposition 3.1 Let ǫ > 0 be a positive constant. Then, for a C1-generic F ∈ D2, the
set Λǫ contains a finite number of periodic attracting points, the complement of the basins
of attraction of them Λ̂ǫ exhibits a dominated splitting T Λ̂ǫ = Es ⊕ F such that Es is
contractive (after n0 = n0(ǫ) iterations), F is spanned by (1, 0), and all periodic points in
Λ̂ǫ are hyperbolic of saddle type.

In fact, since it is immediate that there are no periodic closed curves inside Λǫ whose
dynamical behavior are conjugated to irrational rotations1, we can put proposition 3.1
and theorem 3.2 together so that the hyperbolicity of Λǫ follows.

Thus, we devote most of the rest of this subsection to the proof of this proposition.
Let us begin with some useful notation. Given (x0, y0), we denote by (xi, yi) := F i(x0, y0);
also, we write the derivative of a map F (x, y) = (f(x, y), K(x, y)) of the form (1) as

DF =

(
fx fy
0 Ky

)
.

In particular, it follows that

DF n(x0, y0) =

(
An Bn

0 Dn

)
,

where
An := Πn−1

i=0 fx(xi, yi) , Dn := Πn−1
i=0Ky(xi, yi),

Bn =

n−1∑

j=0

fy(xj , yj) Π
j−1
i=0Ky(xi, yi) Π

n−1
i=j+1fx(xi, yi).

1Because in this case F = R · (1, 0) should be a tangent line of such closed curve C at some point.
Combining this fact with the minimality of the dynamics on C and the continuity of dominated splitting
(besides the invariance of R · (1, 0)), we obtain that the whole curve C is tangent to the line field F , a
contradiction.
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In the sequel, we fix two positive constants λ0, λ1 such that λ0 < λ1 < 1 and

|Ky| < λ0.

Concerning the proof of proposition 3.1, we observe that (1, 0) is an invariant direction
by DF and, moreover, it is the natural candidate to be the expansive one. Therefore, the
existence of a dominated splitting follows once we build up an invariant cone field around
(1, 0). To perform this task, first we need the next lemma.

Lemma 3.1 For any F ∈ D1, there exist a finite number of attracting periodic points
with trajectory in Λǫ and a positive integer n0 = n0(ε) such that, for any (x0, y0) ∈ Λǫ

outside the basins of attraction of those periodic points, it holds

|An| = Πn−1
i=0 |fx(xi, yi)| > λn1 ,

whenever n > n0.

In order to do not interrupt the flow of ideas, we postpone the proof of the lemma.
Assuming momentarily this lemma, we are able to prove the desired proposition.

Proof of proposition 3.1. Let b be a positive constant such that

|fy| < b.

Take n0 the integer provided by lemma 3.1 and let R0 be a positive constant2 such that,
for any m < n0 and any point (x0, y0) ∈ Λǫ, it holds

Πm
i=0|fx(xi, yi)| > R−1

0 .

Now, for all (x0, y0) ∈ Λǫ outside the basins of the attracting points of lemma 3.1, let us
bound Bn for n > n0:

|Bn| ≤
n−1∑

j=0

|fy(xj , yj)|Πj−1
i=0 |Ky(xi, yi)|Πn−1

i=j+1|fx(xi, yi)| (4)

=

n−1∑

j=0

|fy(xj , yj)| · |Dj| ·
|An|
|Aj+1|

< R0bn0|An|
1

1− λ0
+ b|An|

n−1∑

j=n0

λj0
λj1

< R0bn0|An|
1

1− λ0
+ b|An|

1

λ1 − λ0
.

Using this estimate, we claim that the cone field C(γ0) = C(R · (1, 0), γ0) is a forward
invariant cone field for sufficiently small γ0 > 0. In fact, take γ0 > 0 small and let us
consider

vn = DF n(1, γ) = (An + γBn, γDn),

2Such a constant R0 always exists since f(x, y) ∈ Ur is a family of unimodal maps whose (unique)
critical point is x = 0 and (xi, yi) ∈ Uǫ implies |xi| ≥ ǫ.

11



where |γ| < γ0. The slope of vn with respect to (1, 0) is

|slope(vn, (1, 0))| =
|γDn|

|An + γBn|
.

Note that the estimate (4) implies

|An + γBn| > |An| − γ0|Bn| > |An|
(
1− γ0b(R0n0 + 1) · (λ1 − λ0)

−1
)
.

Hence, if γ0 is small so that

1− γ0b(R0n0 + 1)(λ1 − λ0)
−1 >

1

2
,

using lemma 3.1, we conclude that

slope(vn, (1, 0)) < γ0
2|Dn|
|An|

< 2

(
λ0
λ1

)n

· γ0.

Thus, assuming n0 large so that (λ0/λ1)
n0 < 1/4 and taking γ1 = 2(λ0/λ1)

n0γ0, we see
that, for any n > n0,

DF n(C(γ0)) ⊂ C(γ1) ⊂ C(γ0/2).

In other words, C(γ0) is a forward invariant cone field and the existence of a dominated
splitting Es ⊕ R · (1, 0) is guaranteed (over the set Λ̂ǫ of points outside the basins of the
attracting points of lemma 3.1).

Next, we show that Es is uniformly contracted: for every (x0, y0) ∈ Λǫ, we fix e
(s)
0 =

(us0, v
s
0) ∈ Es

(x0,y0)
with ‖e(s)0 ‖ = 1 and we put DF n(x0, y0) · e(s)0 := ±λsn · e(s)n ∈ Es

(xn,yn)
.

Next, we compute the determinant of DF n:

|An ·Dn| = | detDF n| = |DF n · (1, 0) ∧DF n · e(s)0 |
|(1, 0) ∧ e(s)0 |

=
|An| · |λ(s)n | · |v(s)n |

|v(s)0 |
,

where |u∧v| denotes the area of the rectangle determined by the vectors u and v. Because

the direction Es does not belong to the cone field C(γ0) and |v(s)0 | ≤ ‖e(s)0 ‖ = 1, we get

|λ(s)n | = |Dn|
|v(s)0 |
|v(s)n |

≤ 1

γ0
|Dn|.

Since |Dn| ≤ λn0 for all n ∈ N, this proves that for all F ∈ D1 of the form (1) such that
|Ky| < λ0 and for any λ0 < λ1 < 1, the set Λǫ is the union of a finite number of sinks and

a set Λ̂ǫ exhibiting a dominated decomposition Es ⊕ F where Es is contractive (after n0

iterates) and F = (1, 0) · R satisfies DF n(1, 0) = (An, 0) where |An| > λn1 (for n > n0).
Finally, it remains only to see that, for a C1-generic F ∈ D2, it is possible to take

Λ̂ǫ such that all periodic points in Λ̂ǫ are hyperbolic of saddle type. However, this is
a consequence of a simple argument (compare with [PS1, p. 966]): recall that, by the
transversality theorem, all periodic points hyperbolic of a C1-generic F ∈ D2 are hyper-
bolic; it follows that for such a F ∈ D2, the compact invariant subset Λ

(0)
ǫ := Λǫ − {p ∈

12



Λǫ : p is a periodic sink} ⊂ Ω(F ) only contains hyperbolic periodic points of saddle type.

Furthermore, Λ
(0)
ǫ admits a dominated splitting (since Λ

(0)
ǫ ⊂ Λ̂ǫ). Thus, we obtain from

theorem 3.2 that Λ
(0)
ǫ is a hyperbolic set. We claim that Pǫ(F ) := Λǫ − Λ

(0)
ǫ is finite (so

that Λ
(0)
ǫ = Λ̂ǫ and, a fortiori, all periodic points of Λ̂ǫ are hyperbolic of saddle-type).

Indeed, if #Pǫ(F ) = ∞, we have ∅ 6= Pǫ(F ) − Pǫ(F ) ⊂ Λ
(0)
ǫ . However, since Λ

(0)
ǫ is hy-

perbolic, we can select a compact neighborhood U of Λǫ such that the maximal invariant
of U is hyperbolic. Thus, we get that, up to removing a finite number of periodic sinks,
Pǫ(F ) ⊂ U , a contradiction with the hyperbolicity of the maximal invariant subset of U .
This completes the proof of the proposition 3.1.

Closing the proof of the hyperbolicity of Λǫ, we prove the statement of lemma 3.1.

Proof of lemma 3.1. It is enough to apply the following lemma due to Pliss (see [Pl],
[M2]).
Lemma 3.2 (Pliss) Given 0 < γ0 < γ1 < 1 and a > 0, there exist n0 = n0(γ0, γ1, a)
and l = l(γ0, γ1, a) > 0 such that, for any sequences of numbers {ai}0≤i≤n with n0 < n,
a−1 < ai < a and Πn

i=0ai < γn0 , there are 1 ≤ n1 < n2 < . . . < nr ≤ n with r > ln and
such that

Πk
i=nj

ai < γ
k−nj

1 nj ≤ k ≤ n.

In fact, let us consider the set of points (z, w) ∈ Λǫ such that

lim inf
n→∞

1

n
log |An(z, w)| < log

√
λ1. (5)

Since, for any (zi, wi) = F i(z, w) ∈ Λǫ, it holds |zi| ≥ ǫ, we can use the lemma 3.2 twice
to obtain that there exists a subsequence of forward iterates of (z, w) accumulating on
some point (x0, y0) which has a subsequence of forward iterates

{(xnj
, ynj

)}j>0 = {F nj(x0, y0)}
such that any (xnj

, ynj
) satisfies

|An(xnj
, ynj

)| <
√
λn1 , ∀ n > 0.

Using the same type of calculation of estimative (4), we get, for any j > 0,

Πn
i=0||DF (xi+nj

, yi+nj
)|| < (1 + b(

√
λ1 − λ0)

−1)
√
λn1 , ∀ n > 0.

By standard arguments it follows that, for any
√
λ1 < λ2 < 1, there exists γ = γ(λ1, λ2)

such that
F n(Bγ(xnj

, ynj
)) ⊂ Bλn

2
γ(F

n(xnj
, ynj

))

for all j, n > 0. Taking q0 an accumulation point of {(xnj
, ynj

)}, it is not hard to see that

F j(B γ
2

(q0)) ⊂ Bλj
2

γ
2

(F j(q0))

for any j > 0 and there exists a positive integer m = m(q0) such that

Fm(B γ
2

(q0)) ⊂ Bλm
2

γ
2

(q0).

Therefore, it follows that:

13



1. there is an unique attracting periodic point3 p0 inside B γ
2

(q0),

2. the basin of attraction of p0 contains B γ
2
(q0),

3. the point (x0, y0) and the initial point (z, w) verifying (5) belong the basin of at-
traction p0;

Since the number of attracting periodic point with local basin of attraction with radius
larger than γ

2
is finite, we conclude that there are a finite number of periodic attracting

points whose basins contain the points of Λǫ verifying (5). This concludes the proof of
the lemma.

Remark 3.1 For later use, we observe that the hyperbolic sets Λǫ can be assumed to be
locally maximal. More precisely, we claim that there exists a locally maximal hyperbolic
set Λǫ ⊂ Λ̃ǫ ⊂ Uǫ/2. Indeed, fix γ = γ(ǫ) > 0 a positive small constant such that the
local stable manifold W s

γ (p) of any point p ∈ Λǫ/2 is the graph of a real function of the
y-coordinate defined over an interval of length δ = δ(ǫ) > 0. Next, we take k = k(ǫ) > 0

a large integer so that the lengths of the 2k intervals I
(k)
1 , . . . , I

(k)

2k
of the kth stage of the

construction of the Cantor set K0 are < δ/2. Note that we can suppose that W s
γ (p) ⊂ Uǫ/2

for any p ∈ Λǫ/2 ∩ U3ǫ/4. Now, for each j = 1, . . . , 2k, we consider the stable lamination

F s
j,± = {W s

γ (p) ∩ [−1, 1] × I
(k)
j }p∈Λ̂ǫ/2∩U3ǫ/4

. Given ℓ ∈ F s
j,±, we denote by R

(k)
j,±(ℓ) the

rectangle delimited by the four lines {±1}× [0, 1], [−1, 1]×∂I
(k)
j and ℓ. Given ℓ, ℓ̃ ∈ F s

j,±,

we say that ℓ ≺ ℓ̃ if and only if R
(k)
j,±(ℓ) ⊂ R

(k)
j,±(ℓ̃). Observe that ≺ is a total order4 of

F s
j,±. Thus, for each j = 1, . . . , 2k, we can define ℓj,± ∈ F s

j,± the outermost stable leaf of

Λ̂ǫ/2 ∩ U3ǫ/4 ∩ [−1, 1]× I
(k)
j as the unique leaf of F s

j,± such that ℓ ≺ ℓj,± for all ℓ ∈ F s
j,±.

Consider the family of rectangles R
(k)
j,±(ǫ) := R

(k)
j,±(ℓj,±). Finally, let Λ̃ǫ be the maximal

invariant set associated to this family of rectangles. It follows that Λ̃ǫ has local product
structure (becauseW s

loc(p)∩W u
loc(q) ∈ R

(k)
j,±(ǫ) when p, q ∈ Λ̃ǫ∩R(k)

j,±(ǫ)) and Λǫ ⊂ Λ̃ǫ ⊂ Uǫ/2

(because Λǫ ∩ [−1, 1]× I
(k)
j ⊂ R

(k)
j,± ⊂ Uǫ/2). This proves our claim.

Remark 3.2 We claim that Λ̃ǫ is the maximal invariant set of Uǫ ∪ R̃ǫ, where R̃ǫ =
{R(k)

j,±(ℓj,±)} is the family of rectangles introduced in the previous remark. Indeed, given z

a point whose orbit O(z) stays in Uǫ ∪ R̃ǫ, we note that z ∈ Λǫ/2 (since Uǫ ∪ R̃ǫ ⊂ Uǫ/2).
On the other hand, we have two possibilities:

• O(z) ⊂ R̃ǫ: this means that z ∈ Λ̃ǫ;

• there exists y ∈ O(z) − R̃ǫ: this means that y ∈ (Uǫ ∩ Λǫ/2) − R̃ǫ, a contradiction

(since, by definition, Uǫ ∩ Λǫ/2 ⊂ U3ǫ/4 ∩ Λǫ/2 ⊂ R̃ǫ).

3Actually, using that (xnj
, ynj

) = Fnj (x0, y0) → q0, it can be concluded that q0 is the periodic point.
4Because any two distinct stable leaves are disjoint and ∂ℓ ⊂ [−1, 1]× ∂I

(k)
j for any ℓ ∈ Fs

j,±.
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In particular, it follows that the positive orbit O+(p) of every point p /∈ W s(Λ̃ǫ) escapes

any sufficiently small neighborhood of Uǫ ∪ R̃ǫ. In fact, if the positive orbit of a given
point p stays forever inside a small neighborhood W of Uǫ ∪ R̃ǫ, its accumulation points
always belong to the maximal invariant set Λ(W ) of W . However, since the maximal

invariant Λ̃ǫ of Uǫ ∪ R̃ǫ is locally maximal (by remark 3.1), Λ(W ) = Λ̃ǫ for any small

neighborhood W of Uǫ ∪ R̃ǫ. Hence, p ∈ W s(Λ̃ǫ), an absurd.

Before proceeding further, we use a fundamental result of C. G. Moreira to improve
the geometry of the isolating neighborhood of Λ̃ǫ.

Theorem 3.3 ([M]) Generically in the C1-topology, a pair of C1−dynamically defined
Cantor sets are disjoint. In particular, the arithmetic difference of a C1 generic pair of
C1−dynamically defined Cantor sets has empty interior (so that it is also a Cantor set).

More precisely, combining our theorem 3.1 with this theorem, we have the following
consequence:

Corollary 3.1 Fix ǫ > 0. Then, for a C1-generic F ∈ D2, the maximal invariant set Λǫ

of Uǫ is a locally maximal hyperbolic set such that int(Uǫ) is an isolating neighborhood of
Λǫ.

Proof: Let F ∈ D2 a C1-generic map verifying theorem 3.1. We consider a finite Markov
partition {Pi}Mi=1 of Λ̃ǫ/2 with small diameter. We take pi ∈ Pi ∩ Λ̃ǫ/2 and we define
Ei := Es(pi). Since the stable foliation of F restricted to Pi is C

1+α-close to the foliation
of Pi by straight lines with direction Ei when the diameter of the Markov partition is
small, we can assume, up to performing a C1+α-perturbation of the unimodal family
f(x, y), that the stable foliation of F restricted to Pi is the foliation by straight lines
parallel to Ei. Recall that the angle between the stable directions Ei and the unstable
(horizontal) directions is uniformly bounded away from zero. In particular, we also have
a system of coordinates on each Pi (given by the horizontal foliation and the foliation by

lines parallel to Ei) where we can write F |Pi
(x, y) = (fi(x), Ksgn(x)(y)) and Λ̃ǫ/2 ∩ Pi is a

product of two dynamically defined Cantor sets, i.e., Λ̃ǫ/2 ∩ Pi = Ks
i · (1, 0) +Ku

i · (µi, 1)
with Ks

i , K
u
i dynamical Cantor sets of the real line and (µi, 1) ∈ Ei.

In this context, the fact that the verticals {±ǫ}×[0, 1] don’t intersect Λ̃ǫ/2 is equivalent
to ±ǫ /∈ Ks

i +µi ·Ku
i for every i = 1, . . . ,M . However, this property can be achieved by a

C1-typical perturbation F̂ of F ∈ D2: by Moreira’s theorem 3.3, we can choose, for each i,
a (K̂s

i , f̂i) C
1-dynamically defined Cantor set C1-close to (Ks

i , fi) so that ±ǫ /∈ K̂s
i +µi·Ku

i ,

and, consequently, F̂ |Pi
(x, y) := (f̂i(x), Ksgn(x)(y)) ∈ D2 has the desired property.

3.2 (Quasi) Critical points eventually return

Definition 9 Given ǫ > 0, we call any point (±ǫ, y) with y ∈ K0 a ǫ-quasi-critical point
(or simply quasi-critical point).
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Now we’ll use again C. G. Moreira’s fundamental result (theorem 3.3) to show that,
for a C1 generic F ∈ D2, any quasi critical point returns to the “critical region”. In other
words, roughly speaking, the next result states that we can avoid in the C1 topology the
thickness obstruction (responsible for C2 Newhouse phenomena).

Lemma 3.3 Let ǫ > 0 be a positive constant. Then, for a C1 generic F ∈ D2, there
exists m0 ∈ N such that any quasi-critical point (±ǫ, y) ∈ {±ǫ} ×K0 satisfies

Fmy(±ǫ, y) ∈ Rǫ := (−ǫ, ǫ)× [0, 1], Fm(±ǫ, y) /∈ (−ǫ, ǫ)× [0, 1], 0 < m < my

for some positive integer my ≤ m0 or it is contained in the basin of attraction of some of
the (finitely many) attracting periodic points of theorem 3.1.

Proof: Take F ∈ D2 with the properties described during the proof of corollary 3.1.
Since the maximal invariant set Λǫ of Uǫ is the union of a finite number of periodic sinks
and a hyperbolic set Λ̂ǫ of saddle type, we see that our task is equivalent to show that

(
⋃

k≥0

F k({±ǫ} ×K0)

)
⋂

W s
loc(Λ̂ǫ) = ∅

for a C1-typical F ∈ D2. Keeping this goal in mind, given N ∈ N, we define

GN := {F ∈ D2 :

(
N⋃

k=0

F k({±ǫ} ×K0)

)
⋂

W s
loc(Λ̂ǫ) = ∅}.

It follows that the proof of the lemma is complete once we show that GN is C1-dense
(because it is clearly C1-open). Observe that G0 is C

1 dense because Λǫ is locally maximal
with isolating neighborhood Uǫ for a C

1-typical F (in view of the corollary 3.1). Assuming
that GN−1 is C1-dense for some N ≥ 1, we claim that GN is also C1-dense. In fact,
given F ∈ GN−1, we can refine the Markov partition {Pi}Mi=1 (appearing in the proof of
corollary 3.1) so that F j({±ǫ} ×K0) ∩ Pi = ∅ for every 0 ≤ j ≤ N − 1. Next, for every
p ∈ {±ǫ}× [0, 1], we denote by E(p) the tangent line of the C2 curve FN({±ǫ}× [0, 1]) at
the point p. Note that E(p) is a C1 function of p ∈ {±ǫ}× [0, 1]. Therefore, since K0 is a
C2 dynamical Cantor set of Hausdorff dimension HD(K0) < 1, we see that, without loss
of generality, one can assume the directions Ei of the (straight lines) stable foliations of
Pi∩W s

loc(Λ̂ǫ). Furthermore, by compactness, we can also fix a Markov partition I1, . . . , Ik
of K0 of sufficiently small diameter so that the directions Ei are still transversal to the
finite collection of C2 curves FN({±ǫ} × Il) for every i = 1, . . . ,M and l = 1, . . . , k. At
this stage, we write

Pi ∩ FN({±ǫ} ×K0) = Pi ∩
a(i)⋃

b=1

FN({±ǫ} × Il(b,i))

and we observe that, by transversality, the projection of each FN({±ǫ} × (Il(b,i) ∩ K0))
along the direction Ei gives a C1+α dynamical Cantor set Lb,i. Moreover, we note that

Pi∩FN({±ǫ}×K0)∩W s
loc(Λ̂ǫ) 6= ∅ if and only ifKs

i ∩(∪a(i)
b=1Lb,i) 6= ∅ (whereKs

i is the stable
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Cantor set introduced during the proof of corollary 3.1). Using Moreira’s theorem 3.3, we

obtain (K̃s
i , f̃i) dynamical Cantor sets C1-close to (Ks

i , fi) such that K̃s
i ∩ (∪a(i)

b=1Lb,i) = ∅
for every i. It follows that F̃ |Pi(x, y) := (f̃i(x), Ksgn(x)y) (in the linearizing coordinates

inside each Pi) is C
1-close to F ∈ GN−1 and Λ̃ǫ ∩ Pi = K̃s

i ×K0 (in the same linearizing

coordinates). In particular, by construction, we have F̃ ∈ GN . This ends the argument.

Remark 3.3 In the previous statement, we deal with the returns to the critical strip of
“quasi-critical” points (±ǫ, y), y ∈ K0, instead of critical points c±y . The technical reason
behind this procedure will be clear in the next section (when we perform the “flatness”
perturbation to force critical points to fall into the basins of sinks).

3.3 Creating sinks whose large basins contain all critical points

Lemma 3.4 For a C1-generic F ∈ D2, the critical points c±y ∈ {0±} ×K0 belong to the
union of the basins of a finite number of periodic sinks of F .

Proof: Fix F ∈ D2 be a C1-generic map satisfying the properties of the lemma 3.3.
Given δ > 0, we’ll find a C1-perturbation of F with size δ whose critical points belong
to the basins of finitely many critical points. In this direction, we take ǫ > 0 sufficiently
small such that |f ′

y(x)| < δ/2 for every |x| ≤ ǫ and y ∈ [0, 1]. Now, we perturb F to make

it “flat” in the critical strip Rǫ := [−ǫ, ǫ]× [0, 1], i.e., we define

g(x, y) =

{
f(x, y) if |x| ≥ ǫ
f(±ǫ, y) if |x| ≤ ǫ

and G(x, y) := (g(x, y), Ksgn(x)(y)). Observe that, although G /∈ D1 because g(x, y) is
not unimodal, G is δ/2-close to F in the Lipschitz norm and G = F outside the critical
strip Rǫ. In particular, the pieces of orbits of F and G are equal while they stay outside
Rǫ. Hence, since F satisfies the lemma 3.3, we have that G satisfies the same properties,
namely, its quasi-critical points {±ǫ}×K0 return to the critical region Rǫ (after a bounded
number of iterates) or they fall into the basins of finitely many periodic sinks (inside Λǫ).
We claim that the quasi-critical points returning to Rǫ belong to the basins of finitely
many super-attracting periodic sinks of G. Indeed, by compactness and continuity, we
can take a Markov partition I1, . . . , Ik of K0 of small diameter and some integers r1, . . . , rk
so that every quasi-critical point p ∈ {±ǫ} × Il return to Rǫ or fall into the basin of a
sink after exactly rl iterates. Since the pieces of orbits of F and G outside Rǫ are the
same, and the piece of the G-orbit outside Rǫ of a point (x, y) ∈ Rǫ equals to the piece
of F -orbit outside Rǫ of the point (±ǫ, y), we obtain that G send the boxes [−ǫ, ǫ] × Il
strictly inside another (a priori different box) [−ǫ, ǫ]× Ij or inside the basin of a periodic
sink after rl iterates (exactly), so that our claim follows. Finally, we complete the proof
by noticing that, although G /∈ D1, one can slightly “undo” the “flat” perturbation in
order to get a H ∈ D2 such that its critical points belong to the basin of finitely many
periodic sinks and H is δ/2-close to G in the Lipschitz norm (and, a fortiori, H ∈ D2 is
δ-close to F ∈ D2 in the C1-topology).
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3.4 End of the proof of theorem B

By combining the corollary 3.1 and the lemma 3.4, we get that the non-wandering set
Ω(F ) of a C1-typical F ∈ D2 can be written as Ω(F ) = Λǫ ∪{p1, . . . , pk} where p1, . . . , pk
are periodic sinks of F whose (large) basins contain a ǫ-neighborhood of the critical set,
i.e., Ω(F ) is a hyperbolic set.

Thus, the proof of theorem B will be complete once we can show the following claim:
a Kupka-Smale F ∈ D1 such that Ω(F ) is hyperbolic is Axiom A. However, this is
a consequence of the following argument of Pujals and Sambarino [PS1, p. 966]: Ω(F )
hyperbolic implies L(F ) hyperbolic, so that the results of Newhouse [N4] say that periodic
points are dense in L(F ) and we can do spectral decomposition of L(F ). Hence, we can
show that Ω(F ) = L(F ) whenever we can verify the no-cycles condition. Since our phase
space is two-dimensional, a cycle can only occur among basic sets of saddle-type. However,
since F is Kupka-Smale, the intersections of invariant manifolds involved in this cycle are
transversal, an absurd.
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