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Abstract

We prove that any diffeomorphism of a compact manifold can be approximated in topology
C! by another diffeomorphism exhibiting a homoclinic bifurcation (a homoclinic tangency or
a heterodimensional cycle) or by one which is essentially hyperbolic (it has a finite number of
transitive hyperbolic attractors with open and dense basin of attraction).
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1 Introduction

1.1 Mechanisms classifying the dynamics

In the direction to describe the long range behavior of trajectories for “most” systems (i.e. in a
subset of the space of dynamics which is residual, dense, etc.), a crucial goal is to identify any
generic dynamical behavior. It was briefly thought in the sixties that this could be realized by the
property of uniform hyperbolicity. Under this assumption, the limit set decomposes into a finite
number of disjoint (hyperbolic) transitive sets and the asymptotic behavior of any orbit is described
by the dynamics in those finitely many transitive sets (see [Sm]). Moreover, under the assumption of



hyperbolicity one obtains a satisfactory (complete) description of the dynamics of the system from
a topological and statistical point of view.

Hyperbolicity was soon realized to be a less universal property than what one initially thought:
the space of dynamics contains open sets of non-hyperbolic systems. We are now aimed to understand
how the space of systems can be organized according to the different kinds of dynamical behavior
they exhibit.

a- Characterization of non-hyperbolic systems. Dynamicists were lead to look for obstruc-
tions to hyperbolicity. For instance any non-hyperbolic diffeomorphism can be approximated in the
C'-topology by a system having a non-hyperbolic periodic orbit (see [M2], [A], [H]). Since Poincaré
we know that some very simple configurations (such that the existence of a homoclinic orbit) could
be the source of a widely complex behavior. One has identified two simple obstructions for hyper-
bolicity which generate rich dynamical phenomena and they have played a crucial role in the study
of generic non-hyperbolic behavior:

1. heterodimensional cycle: the presence of two periodic orbits of different stable dimension linked
through the intersection of their stable and unstable manifolds (see [AS], [Sh], [D]);

2. homoclinic tangency: the existence of a non-transversal intersection between the stable and
unstable manifolds of a periodic orbit (see [N1], [N2], [PT], [PV], [BD1]).

These obstructions are relevant due to several dynamical consequences that they involve: the first one
is related to the existence of non-hyperbolic robustly transitive systems (see [D], [BDPR], [BDP]);
the second one generates cascade of bifurcations, is related to the existence of residual subsets of
diffeomorphisms displaying infinitely many periodic attractors (see [N3]) and to the local variations
of entropy for surface diffeomorphisms (see [PS2]).

Another important property is that these obstructions are not isolated in the C'—topology,
and sometimes, there are not isolated in a strong way: i) among C2-surface diffeomorphisms, any
system with a homoclinic tangency is limit of an open set of diffeomorphisms having homoclinic
tangencies associated to hyperbolic sets (see [N3]); 4i) among C!-diffeomorphisms, any system with
a heterodimensional cycle is limit of an open set of diffeomorphisms having heterodimensional cycles
associated to hyperbolic sets of different indexes (see [BDKS] and section 2.10).

In the 80’s Palis conjectured (see [Pal, [PT]) that these two bifurcations are the main obstructions
to hyperbolicity:

Conjecture (Palis). Every C" diffeomorphism of a compact manifold can be C" approximated by
one which is hyperbolic or by one erhibiting a heterodimensional cycle or a homoclinic tangency.

This conjecture may be considered as a starting point to obtain a generic description of C”-
diffeomorphisms. If it turns out to be true, we may focus on the two bifurcations mentioned above
in order to understand the dynamics.

b- Mechanisms versus phenomena. To elaborate the significance of this conjecture, we would
like to recast it in terms of mechanisms and dynamical phenomena.

By a mechanism, we mean a simple dynamical configuration for one diffeomorphism (involving
for instance few periodic points and their invariant manifolds) that has the following properties:



— it “gemerates itself”: the system exhibiting this configuration is not isolated. In general the
mechanism is a co-dimensional bifurcation, but it produces a cascade of diffeomorphisms shar-
ing the same configuration;

— it “creates or destroys” rich and different dynamics for nearby systems (for instance horseshoes,
cascade of bifurcations, entropy’s variations).

Following this definition, homoclinic tangencies and heterodimensional cycles are mechanisms in any
C"—topology for r > 1.

In our context a dynamical phenomenon is any dynamical property which provides a good global
description of the system (like hyperbolicity, transitivity, minimality, zero entropy, spectral decom-
position) and which occurs on a “rather large” subset of systems.

We relate these notions and say that a mechanism is a complete obstruction to a dynamical
phenomenon when:

— it is an obstruction: the presence of the mechanism prevents the phenomenon to happen;

— it is complete: each system that does not exhibit the dynamical phenomenon is approximated
by another displaying the mechanism.

In other words, a mechanism (or a dynamical configuration) is a complete obstruction to a dynamical
phenomena, if it not only prevents the phenomenon to happen but it also generates itself creating rich
dynamics and it is common in the complement of the prescribed dynamical phenomenon. Following
this approach, Palis’s conjeture can be recasted:

Recasting Palis’s conjecture. Heterodimensional cycles and homoclinic tangencies are a complete
obstruction to hyperbolicity.

Let us give some examples where a dichotomy mechanism / phenomenon has been proved or
conjectured.

— Homoclinic bifurcations / hyperbolicity. This corresponds to the previous conjecture and is
known in dimensions 1 and 2 for the C''-topology, see [PS1].

— Transverse homoclinic intersection / robust zero topological entropy. It has been proved in any
dimension for the C'-topology, see [BGW], [C1].

— Trapping region / residual transitivity. Any C'-generic diffeomorphism f is either transitive
or sends a compact set into its interior, see [BC1].

— Homoclinic tangency / global dominated splitting. After a C'-perturbation any diffeomorphism
exhibits a homoclinic tangency or its limit dynamics holds a (robust) dominated splitting with
one-dimensional central bundles, see [CSY].



c- Main result. In the present paper, we prove the mentioned conjecture in the C'—topology for
a weaker notion of hyperbolicity.

Definition. A diffeomorphism is essentially hyperbolic if it has a finite number of transitive hyper-
bolic attractors and if the union of their basins of attraction is open and dense in the manifold.

The essential hyperbolicity recovers the notion of Axiom A: most of the trajectories (in the Baire
category) converge to a finite number of transitive attractors that are well described from a both
topological and statistical point of view. Moreover, the dynamics in those hyperbolic attractors,
govern the dynamics of the trajectories that converge to them. In fact, in an open and dense subset
the forward dynamics does not distinguish the system to an Axiom A diffeomorphism.

Now, we state our main theorem:

Main theorem. Any diffeomorphism of a compact manifold can be C'—approximated by another
diffeomorphism which:

1. either has a homoclinic tangency,
2. or has a heterodimensional cycle,
3. or is essentially hyperbolic.

Roughly speaking we proved that homoclinic tangencies and heterodimensional cycles are the
C'—complete obstructions for the essential hyperbolicity.

Remark 1.1. The proof gives a more precise result: inside the open set of diffeomorphisms that are
not limit in Diffl(M ) of diffeomorphisms exhibiting a homoclinic tangency or a heterodimensional
cycle, the essentially hyperbolic diffeomorphisms contain a Gg dense subset. As a consequence, one
may also require that these diffeomorphisms are also essentially hyperbolic for f=1.

d- Mechanisms associated to phenomena. In contrast to the previous dichotomies, a mecha-
nism could also be the key for a rich (semi-global) dynamics. We say that a mechanism is associated
to a dynamical phenomenon if the following holds:

— the systems exhibiting the dynamical phenomenon can be approximated by ones displaying
the mechanism;

— the ones exhibiting the mechanism generate (at least locally) the dynamical phenomenon.

As in the notion of complete obstruction, a mechanism is associated to a dynamical phenomenon
not only if it generates it but if any time that the phenomenon appears by small perturbations the
mechanism is created. Thus a goal would be to establish a dictionary between mechanisms and
(semi-global) dynamical phenomena.

Let us mention some known examples.

— Transverse homoclinic intersections / non-trivial hyperbolicity. On one hand, systems exhibit-
ing a transversal homoclinic point of a hyperbolic periodic point has horseshoes associated to
them; on the other hand horseshoes displays transversal homoclinic points (see for instance
[Bi] and [Sm]).



— Heterodimensional cycles / non-hyperbolic C*-robust transitivity. On the one hand, systems
displaying heterodimensional cycles are C'!' —dense in the interior of the set of non-hyperbolic
transitive diffeomorphisms (see for instance [GW]); on the other hand, the C"—unfolding of
a (co-index one) heterodimensional cycles creates maximal invariant robustly transitive non-
hyperbolic sets (see [D]).

Homoclinic tangencies / residual co-existence of infinitely many independent pieces. On the
one hand, the existence of a homoclinic tangency for C? surface diffeomorphisms, sectionally
dissipative tangencies in higher dimension or the existence of a homoclinic tangencies com-
bined with heterodimensional cycles for C! diffeomorphisms may imply locally residually the
co-existence of infinitely many attractors (Newhouse phenomenon), see [N3], [PV] and [BD1].
On the other hand, it is conjectured that any diffeomorphism exhibiting infinitely many at-
tractors can be approximated by a diffeomorphism which exhibits a homoclinic tangency (see
for instance [Bo]).

Related to the above conjecture in [Bo], it was proved in [PS4] that for smooth diffeomorphisms, the
co-existence of infinitely many attractors in a “sectionally dissipative region of the manifold” implies
the creation of sectionally dissipative tangencies by C! perturbations (see corollary 1.1 in [PS4] for
details). In a more general framework as a byproduct of the proof of the main theorem, we prove
the following.

Theorem. The co-existence of infinitely many attractors implies that either heterodimensional
cycles or homoclinic tangencies can be created by C' perturbations.

See item c- in section 1.2 for details and proof.

e- Robust mechanisms The mechanisms we presented are simple configurations of the dynamics
but as bifurcations are also one-codimensional. From the deep studies of the role of cycles and
tangencies, Bonatti and Diaz have proposed to enrich Palis’s conjecture and introduced the notion
of robust heterodimensional cycles and robust homoclinic tangencies, meaning that now the mecha-
nisms involve non-trivial transitive hyperbolic sets instead of periodic orbits so that the cycles and
tangencies may occur on an open set of diffeomorphisms.

From [BD2| the main theorem can be restated in the following way:

Main theorem revisited. Any diffeomorphism of a compact manifold can be C'—approzimated
by another diffeomorphism which either is essentially hyperbolic, or has a homoclinic tangency, or
has a robust heterodimensional cycle.

We also refer to [Bo| for a complementary program about the dynamics of C'!-diffeomorphisms.

1.2 TItinerary of the proof

The proof focuses on diffeomorphisms far from homoclinic bifurcations and consists in three parts.

e We first conclude that the quasi attractors (the Lyapunov stable chain-recurrence classes)
are “topologically hyperbolic”: they are partially hyperbolic homoclinic classes with a one-
dimensional “stable” center bundle and the union of their basin of attraction is dense in the
manifold.



e We then develop a series of perturbation techniques which ensure that topologically hyperbolic
quasi-attractors are uniformly hyperbolic attractors.

e At the end we prove that the union of the quasi-attractors is closed. With the second point
this gives the finiteness of the hyperbolic attractors.

A diffeomorphism which satisfies the first and the third property could be called “essentially topo-
logically hyperbolic”.

a- Topological hyperbolicity. From the start, we concentrate the study on quasi-attractors.
Following [C1, C2] (see theorems 2 and 3 below), it is concluded that C!'—far from homoclinic
bifurcations, the aperiodic chain-recurrent classes are partially hyperbolic with a one-dimensional
central bundl, and the homoclinic classes are partially hyperbolic with their central bundles being at
most two-dimensional (however the hyperbolic extremal subbundles may be degenerated). Moreover,
a special type of dynamics has to hold along the central manifolds: the center stable is chain-stable
and the center unstable is chain-unstable. We define a weak notion of topological hyperbolicity that
we call chain-hyperbolicity: this is suitable for our purpose since in some cases the chain-hyperbolicity
is robust under perturbations. (See definition 7 for details and justification of the names topological
hyperbolicity and chain-hyperbolicity).

From corollary 2.4 it is concluded that aperiodic classes can not be attractors and therefore they
are out of our picture. For homoclinic classes, whenever the partially hyperbolic splitting has two
extremal hyperbolic subbundles, corollary 2.3 concludes that the central bundle is one-dimensional
subbundle and chain-stable otherwise a heterodimensional cycle is created.

b- Uniform hyperbolicity. At this step, a first dichotomy is presented (see corollary 2.6): either
the quasi-attractor is contained in a normally hyperbolic submanifold (and from there one concludes
the hyperbolicity, see corollary 2.13) or the strong stable foliation is non-trivially involved in the
dynamic, meaning that at least two different points z,y in the class share the same local strong
stable leaf. In this second case (see theorem 10), we will perturb the diffeomorphism in order to
obtain a strong connection associated to a periodic point, i.e. a periodic point whose strong stable
and unstable manifolds intersect, see definition 9; in particular, assuming that the quasi-attractor is
not hyperbolic, a heterodimensional cycle can be created (see proposition 2.7).

To perform the perturbations, one has to discuss the relative position between two unstable leaves
after projection by the strong stable holonomy: the position types are introduced in definition 15.
In particular, by analyzing the geometry of quasi-attractors one can reduce to the case the points
x,y belong to stable or to unstable manifolds of some periodic orbits. Improving [Pul] and [Pu2],
three different kinds of perturbations may be performed. They correspond to the following cases:

— x,y belong to unstable manifolds and their forward orbits have fast returns close to x or y.
— x,y belong to unstable manifolds and their forward orbits have slow returns close to x or y.
— x,y belong to a stable manifold.

The two first cases are covered by theorem 12 and the last one by theorem 11. To perform these
perturbations one needs to control how the geometry of the class changes for any perturbed map; we



prove (see proposition 4.5) that whenever the perturbation of the homoclinic class does not display
strong connection associated to periodic points then it is possible to get a well defined continuation
for the whole class.

c- Finiteness of the attractors. The delicate point is to exclude the existence of an infinite
number of sinks. This is done by proving that for any non-trivial chain-recurrence classes, the
extremal subbundles are hyperbolic. We thus consider the splittings £* & E°“ or E* & E“° @ E,
where E°°, E°“ are one-dimensional, and in both cases we prove that E<* is hyperbolic. The first
case follows from results in [PS4]. In the second case, the hyperbolicity of the center unstable
subbundle follows for a more detailed understanding of the topological and geometrical structure of
the homoclinic class (see theorem 9). In fact, from being far from heterodimensional cycles, it is
concluded that the the class is totally disconnected along the center stable direction (see theorems
5) and from there a type of geometrical Markov partition is constructed (see proposition 8.14); this
allows to use C2—distortion arguments to conclude hyperbolicity of E* as in [PS1] and [PS4].

After it is concluded that the chain-recurrence classes are partially hyperbolic with non-trivial
extremal hyperbolic subbundles, the finiteness follows quite easily (see section 2.8).

Structure of the paper. In section 2 it is proved that the chain-recurrence classes for systems far
from homoclinic bifurcations are “topologically hyperbolic”. Moreover, we stated there all the theo-
rems (proved in the other sections) needed to conclude the main theorem, which is done in subsection
2.9. In section 3 we give a general study of the chain-hyperbolic classes and their topological and
geometrical structures. This allows to obtain the continuation of some partially hyperbolic classes
(done in section 4), and to introduce the notion of boundary points for quasi-attractors (done in
section 5). In sections 6 and 7 are stated and proved the new perturbations techniques that hold in
the C1T*—topology. In sections 8 and 9 are studied partially hyperbolic homoclinic classes with a
two-codimensional strong stable bundle, first analyzing their topological and geometrical structure
and latter their hyperbolic properties.

1.3 Some remarks about new techniques and C"—versions of the main theorem

We would like to highlight many of the new techniques developed in the present paper and that can
be used in other context.

1- Chain-hyperbolicity. We introduce the notion of chain-hyperbolic homoclinic class which gen-
eralizes the locally maximal hyperbolic sets. It allows to include some homoclinic classes having
hyperbolic periodic points with different stable dimensions, provided that at some scale, a stable
dimension is well-defined. We recover some classical properties of hyperbolic sets: the local product
structure, the stability under perturbation, the existence of (chain) stable and unstable manifolds.
See section 3.

2- Continuation of (non necessarily hyperbolic) homoclinic classes. It is well known that isolated
hyperbolic sets are stable under perturbation and have a well defined and unique continuation. We
extend this approach to certain partially hyperbolic sets which are far from strong connections. This



is done by extending the continuation of their hyperbolic periodic points to their closure, a technique
that resembles to the notion of holomorphic motion. See section 4.

3- Geometrical and topological properties of partially hyperbolic attractors. We study the geometri-
cal structure of partially hyperbolic attractors with a one-dimensional central direction in terms of
the dynamics of the strong stable foliation. For instance:

— It is presented a dichotomy proving that a homoclinic class is either embedded in a submanifold
of lower dimension of the ambient space or one can create a strong connection (maybe after a
perturbation). See theorems 5 and 10.

— In certain cases it is introduced the notion of stable boundary points of a partially hyperbolic
homoclinic class (extending a classical notion for hyperbolic surfaces maps) which permits us
to control the bifurcations that holds after perturbations. See proposition 5.2 and lemma 5.6.

— If they are no (generalized) strong connection, it is proved that the homoclinic class is totally
disconnected along its stable leaves. See theorem 5.

— The total disconnectedness mentioned above, allows us to introduce kind of Markov partitions
for non-hyperbolic partially hyperbolic classes. See proposition 8.14.

4- Hyperbolicity of the extremal subbundles. For invariant compact sets having a dominated splitting
E & F with dim(F) = 1, [PS1] and [PS4] have developed a technique which allows to prove that
F' is hyperbolic provided FE is either uniformly contracted or one-dimensional. We extend this
result for partially hyperbolic systems with a 2-dimensional central bundle, that is when FE is only
“topologically contracted”. See section 9.

5- New perturbation techniques. It is developed new perturbation techniques suitable for partially
hyperbolic sets with one-dimensional central directions. See theorems 12 and 11. We want to
point out, that these perturbations hold in the C''*®—topology. Those perturbation resemble the
C'—connecting lemma but since in the present context a better understanding of the dynamic is
available, then the perturbation can be perform in the C'*®—topology.

6- Consequences for hyperbolic dynamics. Previous highlighted techniques can be formulated for
hyperbolic attractors and have consequences in terms of topological and geometrical structure. See
theorems 5 and 10.

7- Generic structure of partially hyperbolic quasi-attractors. A byproduct of the proof shows (see
theorem 13) that for C'-generic diffeomorphisms, any quasi-attractor which has a partially hyper-
bolic structure with a one-dimensional central bundle contains periodic points of different stable
dimension.

We want to emphasize that many of the results contained in the present paper work in the
C"—category for any r > 1 or for r = 1 + « with o > 0 small. For instance, theorems 10, 12 and
11 hold in the C'*®—topology. This allows to prove (see the remark 2.5, item 4) a partial version



of Palis conjecture in the C'*®—category when one restricts to partially hyperbolic attractors with
one-dimensional center direction).

Theorem. For any C? diffeomorphism f of a compact manifold and any “topologically hyperbolic
attractor” H(p) (i.e. which satisfies the assumptions stated in theorem 10), there exists o > 0 with
the following property. For any & > 0, there exists C1T*-perturbations g of f such that

— either the homoclinic class H(pg) associated to the continuation py of p is hyperbolic,

— or there exists a periodic orbit O of g which has a strong homoclinic intersection and one of
its Lyapunov exponents has a modulus smaller than §.

We don’t know however if under the conclusions of this theorem it is possible to create a het-
erodimensional cycle by a C!'*@-perturbation of the diffeomorphism.

2 Chain-recurrence classes far from homoclinic bifurcations

We introduce in sections 2.1 and 2.2 the notion of trapped plaque families and chain-hyperbolic
homoclinic classes. Their basic properties will be studied systematically later in section 3, but we
will derive before (sections 2.2, 2.3 and 2.8) important consequences for the generic dynamics far
from homoclinic bifurcations. We also present (sections 2.7 and 2.9) the main results of the paper
that are proved in the next sections and explain how they imply the main theorem. In the last part
(section 2.10) we give other consequences of our techniques. We start this section by recalling some
classical definitions.

In all the paper M denotes a compact boundaryless manifold.

Definition 1. We say that f € Diff*(M) exhibits a homoclinic tangency if there is a hyperbolic
periodic orbit O and a point z € W*(O) N W*(O) with T,W*(0O) + T,W"(O) # T, M.

Definition 2. We say that f € Diff!(M) exhibits a heterodimensional cycle if there are two hyper-
bolic periodic orbits O and O’ of different stable dimension, such that W*(O) N W#(O') # 0 and
WO NnW*(0) # 0.

Definition 3. From now on, with Tang U Cycl it is denoted the set of diffeomorphisms that can be
C'—approximated by one exhibiting either a homoclinic tangency or a heterodimensional cycle. We
say that a diffeomorphisms f is C'—far from cycles and tangencies if f € Diff'(M) \ TangU Cycl

The global dynamics of a diffeomorphism may be decomposed in the following way. The chain-
recurrent set is the set of points that belong to a periodic e-pseudo orbit for any € > 0. This compact
invariant set breaks down into invariant compact disjoint pieces, called the chain-recurrence classes:
two points belong to a same piece if they belong to a same periodic e-pseudo orbit for any € > 0.
An invariant set is chain-transitive if it contains a e-dense e-pseudo-orbit for any € > 0.

Definition 4. A quasi-attractor is a chain-recurrence class which is Lyapunov stable, i.e. which
admits a basis of neighborhoods U satisfying f(U) C U.



For any diffeomorphism, we define another notion of “piece of the dynamics”. Associated to a
hyperbolic periodic point p, one introduces its homoclinic class H(p) which is the closure of the
transverse intersection points between the unstable and the stable manifolds W*(O), W#(O) of the
orbit O of p. It also coincides with the closure of the set of hyperbolic points q that are homoclinically
related to the orbit of p, i.e. such that W*(q) and W*(q) have respectively a transverse intersection
point with the stable and the unstable manifolds of the orbit of p. Note that for diffeomorphisms ¢
that are C'-close to f, the periodic point p has a hyperbolic continuation pg- This allows to consider
the homoclinic class H (pg).

For a C!-generic diffeomorphism, the periodic points are hyperbolic and [BC1] proved that a
chain-recurrence class that contain a periodic point p coincides with the homoclinic class H(p).
The other chain-recurrence classes are called the aperiodic classes. Those classes are treated in
subsections 2.2 and 2.3.

We state two other consequences of Hayashi’s connecting lemma and [BC1].

Lemma 2.1. For any C'-generic diffeomorphism f and any homoclinic class H(p),

— if H(p) contains periodic points with different stable dimensions, then f may be C'-approzi-
mated by diffeomorphisms having a heterodimensional cycle;

— H(p) is a quasi-attractor if and only if it contains the unstable manifold of p.

Quasi-attractor always exist but for a C'-generic diffeomorphism they attract most orbit.

Theorem 1 ([MP, BC1]). Let f be a diffeomorphism in a dense Gs subset of Diff'(M). Then the
w-limit set of any point x in a dense Gg subset of M is a quasi-attractor.

According to this result, the main theorem is a consequence of two independant properties of
C'-generic diffeomorphisms that are C'-far from cycles and tangencies:

— the union of the quasi-attractors is closed (see proposition 2.14);
— each quasi-attractor is a hyperbolic set (see theorem 10).

Indeed by the shadowing lemma, any quasi-attractor which is hyperbolic is transitive and attracts
any orbit in a neighborhood. In particular, the quasi-attractors are isolated in the chain-recurrence
set. Since their union is closed, they are finite.

2.1 Trapped tangent dynamics
Let f be a diffeomorphism and K be an invariant compact set.

A dominated splitting on K is a decomposition Tk M = F @ F of its tangent bundle into two
invariant linear sub-bundles such that, for some integer N > 1, any unitary vectors u € E,,v € F,
at points x € K satisfy

2D g < DS .

This definition does not depend on the choice of a Riemannian metric on M. In the same way, one
can define dominated splittings Tk M = E1 @ - - - @ E, involving more than two bundles.
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When the bundle E is uniformly contracted (i.e. when there exists N > 1 such that for any
unitary vector v € E one has ||Df".ul| < 271), the stable set of each point = contains an injectively
embedded sub-manifold W**(x) tangent to E, called the strong stable manifold of x, which is mapped
by f on the manifold W*(f(x)).

A partially hyperbolic splitting on K is a dominated splitting Tx M = E* & E¢® E" such that
E* and E" are uniformly contracted by f and f~! respectively.

Definition 5. A plaque family tangent to E is a continuous map W from the linear bundle F over
K into M satisfying:

— for each z € K, the induced map W,: E, — M is a C'-embedding which satisfies W, (0) =
and whose image is tangent to E, at x;

~ (Wa)zek is a continuous family of Cl-embeddings.

The plaque family W is locally invariant if there exists p > 0 such that for each x € K the image of
the ball B(0,p) C E, by f oW, is contained in the plaque Wy(,).

We often identify W, with its image. The plaque family theorem [HPS, theorem 5.5] asserts that
a locally invariant plaque family tangent to E always exists (but is not unique in general).

Definition 6. The plaque family is trapped if for each x € K, one has
fWe) C Wiy
It is thin trapped if for any neighborhood S of the section 0 in E there exist:

— a continuous family (¢,)zcx of C'-diffeomorphisms of the spaces (E,)zcx supported in S;

— a constant p > 0 such that for any « € K one has

f(Wx © ‘Pm(B(Ovp))) C Wf(x) ° (pf(z)(B([)?p))'

If a plaque family W is thin trapped, then it is also the case for any other locally invariant plaque
family W’ tangent to E (moreover there exists p > 0 such that for each z € K, the ball B(0,p) C E,
is sent by W, into W,, see lemma 2.2). One thus say that E is thin trapped.

Remark 2.1. Note also hat when F is thin trapped, there exist nested families of trapped plaques
whose diameter are arbitrarily small.

The two following properties are classical (see for instance [C2, Lemma 2.4]). On a small neigh-
borhood of K, we introduce a cone field C¥ which is a thin neighborhood of the bundle E.

Lemma 2.2. Let K be a compact invariant set endowed with a dominated decomposition T M =
E®F. There exists r > 0 such that if there exists a trapped plaque family WS tangent to CF whose
plaques have a diameter smaller than v, then the following properties hold.

- If WS is another locally invariant plaque family tangent to B, then there exists p > 0 such
that for each x € H(p) the image of the ball B(0, p) C E; by WS is contained in WEP.

~ There exists € > 0 such that for any points x,x’ € H(p) that are e-close with WS N WS # 0,

then f(WS) C Wil
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2.2 Homoclinic classes

Far from homoclinic bifurcations, the homoclinic classes of a generic diffeomorphism satisfy some
weak form of hyperbolicity.

Definition 7. A homoclinic class H(p) is said to be chain-hyperbolic if:

- H(p) has a dominated splitting T,y M = E° @& E into center stable and center unstable
bundles;

- there exists a plaque family (W;*).cn(p) tangent to E which is trapped by f and a plaque

family (W5")zen(p) tangent to £ which is trapped by f -1,

T

- there exists a hyperbolic periodic point g5 (resp. ¢,) homoclinically related to the orbit of p
whose stable manifold contains Wg* (resp. whose unstable manifold contains Wg!).

Such a class is topologically hyperbolic if its center stable and center unstable plaques are thin trapped
by f and f~! respectively.

One will see (lemma 3.5 below) that for any point = € H(p), the plaque WS® is contained in the
chain-stable set of H(p). This justifies the name “chain-hyperbolicity”: this definition generalizes
the hyperbolic basic sets endowed with families of stable and unstable plaques (in this case the
plaques W are the images of local stable manifolds by a backward iterate f~™). With additional
assumptions, the chain-hyperbolicity is a robust property: if H(p) is chain-hyperbolic for f, coincides
with its chain-recurrence class and if £, E“* are thin trapped by f and f~! respectively, then for
any ¢ that is C'-close to f the homoclinic class H (pg) associated to the continuation py of p is also
chain-hyperbolic (see lemma 3.8).

Theorem 2 ([C2]). Let f be a diffeomorphism in a dense Gs subset of Diff'(M) \ TangU Cycl.
Then, any homoclinic class of f is chain-hyperbolic. Moreover, the central stable bundle E° is thin
trapped. If it is not uniformly contracted, it decomposes as a dominated splitting E°° = E° & E°
where dim(E°) = 1 and E® is uniform; and there exist periodic orbits homoclinically related to p

and whose Lyapunov exponents along E° are arbitrarily close to 0. The same holds for the central
unstable bundle E“* and f~1.

Proof. The statement in [C2] is slightly different and we have to justify why the center stable
bundle £ is thin trapped. When E° is uniformly contracted, this is very standard. When E“
is not uniformly contracted, [C2, section 6] asserts that there exists a dominated splitting E =
E* @ E° such that dim(E€) = 1, E® is uniformly contracted and that the bundle E° has “type
(H)-attracting”: there exists a locally invariant plaque family D tangent to £ and arbitrarily small
open neighborhoods I of the section 0 in £ satisfying f(Dx(Iz)) C Dy()(If(y)) for each x € H(p).
The neighborhood I may be chosen as a continuous family of open intervals (1) e (p)-

Let us now consider a locally invariant plaque family W tangent to E°. Since I is small, one
has D,(I;) C Wy for any = € H(p) (see [C2, lemma 2.5]). One then builds for each z a small
open neighborhood V,, of D,(I,) in W, which depends continuously on x: this can be obtained by
modifying a tubular neighborhood of D, () in W,. Since E* is uniformly contracted one can still
require the trapping property f(V;) C V. Let U, C ES* be the backward image of V,, by W¢.
Since U, can be obtained by modifying the tubular neighborhood of a C'-curve, it can be chosen
diffeomorphic in £ to an open ball through a diffeomorphism as stated in definition 6. O
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One deduces that the tangent bundle over a non-hyperbolic homoclinic class as in theorem 2 has
a dominated splitting TM = E*® E°® E" or E° © Ef @ ES@® E* where each bundle E€ or EY, ES is
one-dimensional, E* is uniformly contracted and E" is uniformly expanded (however, one of them
can be trivial). Note that under perturbations the homoclinic class H(py) is still chain-hyperbolic
but its center stable bundle F“® is a priori not thin trapped.

We will focus on the invariant compact sets K that are Lyapunov stable, i.e. that have a basis
of neighborhoods U that are invariant by f (i.e. f(U) C U).

Corollary 2.3. Let f be C'-generic in TangUCycl". Then, for any Lyapunov stable homoclinic
class of f the center unstable bundle is uniformly expanded.

Proof. For any open set U C M and any integer d > 0, one considers the following property:
P(U,d): There exists a hyperbolic periodic orbit O C U whose stable dimension equals d.

This property is open: if P(U,d) is satisfied by f, then so it is by any diffeomorphism ¢ that is
C'-close to f. Let us fix a countable basis of open sets B, i.e. for any compact set and any open set
V satisfying K C V C M, there exists U € B such that K C U C V. Then, for any diffeomorphism
f in dense Gg subset Ry C Diff!(M), for any open set U € B and any d > 0, if there exists a
perturbation g of f such that P(U,d) holds for g, then the same holds for f.

We denote by R C U a dense Ggs subset of Diff! (M) \ TangU Cycl whose elements satisfy
theorem 2 and have hyperbolic periodic orbits are.

Let us consider f € R and a homoclinic class H(p) of f whose center unstable bundle E® =
ES® E™ is not uniformly expanded. Hence dim(ES) is one-dimensional, p is not a sink (and apriori E*
could be degenerated). By the theorem 2, there exists a hyperbolic periodic orbit O homoclinically
related to p having some Lyapunov exponent along E<* arbitrarily close to 0. By Franks lemma,
one can find a perturbation g of f such that O becomes a hyperbolic periodic orbit whose stable
space contains ES. Since f € Ry, one deduces that any neighborhood of H(p) contains a periodic
orbit whose stable dimension is d® + 1, where d° denotes the stable dimension of p.

Let us consider a locally invariant plaque families W tangent to E° over the maximal invariant
set in a neighborhood of H(p). Let us consider a periodic orbit O contained in a small neighborhood
of K, with stable dimension equal to d°* + 1. As a consequence, using the domination E° & E°, the
Lyapunov exponents along E° of O is smaller than some uniform constant —C' < 0. If the plaques
of the family W are small enough, the lemma 3.3 and the remark 3.1 below then ensure that at
some ¢ € O one has W, C W¥(¢g). By lemma 3.2 below, ¢ is close to a hyperbolic periodic point
z homoclinically related to p whose plaque WS is contained in the unstable set of z. The plaque
W, intersects transversally the plaque WS, This proves that the stable manifold of ¢ also intersects
transversally the unstable manifold of the orbit of p.

Since H(p) is Lyapunov stable, it contains W¥(z),q and W"(q). As for H(p), the point ¢ is
not a sink. This proves that E* is non trivial. Let y € W*¥(q) \ {¢}. Since y belongs to H(p), the
stable manifold of the orbit of p accumulates on , hence by a C'-small perturbation produced by
Hayashi’s connecting lemma, one can create an intersection between the unstable manifold of ¢ and
the stable manifold of the orbit of p. The intersection between W*"(p) and W?*(q) persists hence we
have built a heterodimensional cycle, contradicting our assumptions. We have proved that if H(p)
is Lyapunov stable, the bundle E“* is uniformly expanded. O
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2.3 Aperiodic classes

Far from homoclinic bifurcations, the aperiodic classes have also a partially hyperbolic structure.

Theorem 3 ([C2]). Let f be a diffeomorphism in a dense Gs subset of Diff! (M)\Tang U Cycl. Then,
any aperiodic class of f is a minimal set and holds a partially hyperbolic structure E° @ E¢ ® E“.
Moreover, there exists a continuous familly of center stable plaques W€ tangent to E“° = E°* @& E°¢
which are trapped by f. Similarly, there exists a continuous family of center unstable plaques VW
tangent to E°* = E° ® E* which are trapped by f~!.

Corollary 2.4. Let f be generic in Diff!(M) \ TangUCycl. Then, for any aperiodic class, the
bundles E* and E® are non-degenerated.

The strong unstable manifolds of points of the class are not contained in the class. In particular,
the class is not Lyapunov stable.

Proof. Let us consider an aperiodic class K and a locally invariant plaque family VW tangent to E*
over the maximal invariant set in a small neighborhood of K. There exists a sequence of periodic
orbits that accumulate on K. A trapped plaque family W over K whose plaques have small
diameters are contained in the plaques W by lemma 2.2 below. One deduces that one can extend
the plaque family W over the maximal invariant set in a small neighborhood of K as a trapped
plaque family.

Since K is a minimal set and f is C'-generic, Pugh’s closing lemma (the general density theorem)
implies that K is the Hausdorff limit of a sequence of periodic orbits. For any 7-periodic point p
whose orbit is close to K, the plaque W;* is mapped into itself by f7. Since the plaque W is
tangent to the bundle £ = E°*® E° where E€ has dimension 1 and E? is uniformly contracted, the
orbit of any point in W;* accumulates in the future on a periodic orbit.

If E* is degenerate, the union of the plaques Wy* cover a neighborhood of K, hence the orbit of
any point in K converges towards a periodic orbit, which is a contradiction.

If E* is not degenerate, the strong unstable manifold W*"*(x) tangent to E* of any point z € K
intersects the plaque Wp* of a periodic point p. One deduces that theres exists an orbit that
accumulates on K in the past and on a periodic orbit O in the future. If W*%(x) is contained in K,
the periodic orbit O is contained in K, contradicting the fact that K is an aperiodic class. O

Remark 2.2. Actually, a stronger result can be proved. For any C'-generic diffeomorphism and
any apertodic class K endowed with a partially hyperbolic structure TueM = E°* & E° @& E* with
dim(E") = 1, the class is not contained in a locally invariant submanifold tangent to E* & E°.
Indeed, otherwise, one could work in this submanifold and get a contradiction as in the previous
proof. See also section 2.4.

2.4 Reduction of the ambient dimension

Let us consider an invariant compact set K with a dominated splitting Tk M = E® @ F such that
E? is uniformly contracted. The dynamics on K may behave like the dynamics inside a manifold of
smaller dimension. This motivates the following definition.
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Definition 8. A C''-submanifold ¥ containing K and tangent to F is locally invariant if there exists
a neighborhood U of K in ¥ such that f(U) is contained in X.

More generally, when K admits a partially hyperbolic splitting Tx M = E®* ® E¢ @& E* one may
define the notion of locally invariant submanifold tangent to E¢. The next proposition state that
the property defined above is robust by C'—perturbations.

Proposition 2.5 ([BC2]). Let K be an invariant compact set endowed with a dominated splitting
TxM = E* ® F such that E® is uniformly contracted. If K is contained in a locally invariant
submanifold tangent to F, then the same holds for any diffeomorphism C-close to f and any compact
set K' contained in a small neighborhood of K.

There exists a simple criterion for the existence of a locally invariant submanifold.

Theorem 4 ([BC2]). Let K be an invariant compact set with a dominated splitting E° ® F such
that E® is uniformly contracted. Then K is contained in a locally invariant submanifold tangent to
F if and only if the strong stable leaves for the bundle E?® intersect the set K in only one point.

One can deduce a generic version of previous theorem.

Corollary 2.6. Let f be C'-generic and H(p) be a homoclinic class having a dominated splitting
E* & F such that E° is uniformly contracted.

Then, either H(p) is contained in a locally invariant submanifold tangent to F or for any dif-
feomorphism g that is C'-close to f, there exist two different points x # y in H(py) such that
W (a) = W(y).

Proof. By [BC1], there exists a dense G subset R C Diff! (M) of diffeomorphisms whose homoclinic
classes are chain-recurrence classes. In particular, for any f € R and any homoclinic class H(p) for f,
the class H(pgy) for g Cl-close to f is contained in a small neighborhood of H(p). By proposition 2.5,
one deduces that if H(p) has a dominated splitting E* @ F and is contained in a locally invariant
submanifold tangent to F', then the same holds for the classes H(pg).

As a consequence, for any f in a dense G subset of Diff!(M), and any homoclinic class H(p)
of f, either for any diffeomorphism g close to f the class H(py) is contained in a locally invariant
submanifold tangent to F' or for any diffeomorphism g close to f the class H(py) is not contained in
such a manifold. The theorem 4 ends the proof.

O

The previous result raises an important question for us:

Question. When H (p) is not contained in a locally invariant submanifold tangent to F', is it possible
to find a periodic point ¢ homoclinically related to the orbit of p whose strong stable manifold
W#5(q) \ {¢q} intersects H(p)?

Such an intersection is called a generalized strong homoclinic intersection in the next section.
We will provide answers for this problem in some particular cases, see theorems 5 and 10 below.
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2.5 Strong homoclinic intersections

Inside a homoclinic class, some periodic points exhibit a transverse intersection between their stable
and unstable manifolds. If this intersection holds along strong stable and unstable manifolds of the
periodic orbit we say that there is a strong homoclinic connection. More precisely, we introduce the
following definition:

Definition 9. Given a hyperbolic periodic orbit O with a dominated splitting ToM = E & F such
that the stable dimension of O is strictly larger (resp. strictly smaller) than dim(E) it is said that
O exhibits a strong stable homoclinic intersection (resp. a strong unstable homoclinic intersection)
if the invariant manifold of O tangent to F and the unstable manifold of O (resp. the invariant
manifold of O tangent to F' and the stable manifold of O) have an intersection point outside the

orbit O.
This definition can be generalized for homoclinic classes.

Definition 10. A homoclinic class H(p) has a strong homoclinic intersection if there exists a hyper-
bolic periodic orbit orbit O homoclinically related to p which has a strong homoclinic intersection.

The strong homoclinic intersections allow sometimes to create heterodimensional cycles. The
following statement generalizes [Pul, proposition 2.4]. The proof is similar and we only sketch it.

Proposition 2.7. Let H(p) be a homoclinic class for a diffeomorphism f such that:
~ H(p) has a dominated splitting E & F and the stable dimension of p is dim(E) + 1;

— there exist some hyperbolic periodic orbits homoclinically related to p having some negative
Lyapunov exponents arbitrarily close to 0.

If there exist some diffeomorphisms g Ct-close to f such that H(pgy) has a strong homoclinic in-
tersection, then there exist some C'-close perturbations of f that have an heterodimensional cycle
between a hyperbolic periodic orbit homoclinically related to p and a hyperbolic periodic orbit of stable
dimension dim(E).

Before proving this proposition, we explain how it is possible by a C"-perturbation to transport
the strong homoclinic intersection to another periodic orbit.

Lemma 2.8. Let H(p) be a homoclinic class for a C"-diffeomorphism f with r > 1 such that:
— H(p) has a dominated splitting E ® F and the stable dimension of p is dim(E) + 1;
— H(py) has a strong homoclinic intersection.

Then for any periodic point ¢ homoclinically related to p there exist some C"-close perturbations of f
that have a periodic point ¢ homoclinically related to the orbit of p which exhibit a strong homoclinic
intersection and whose minimal Lyapunov exponents along F' are close to the one of q.
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Proof. Let us consider a transverse intersection point z; between W#(0) and W*(q) and a trans-
verse intersection point z, between W*(O) and W#(q) where O is the orbit of p. There exists a
transitive hyperbolic set K which contains zg, z,,, O and which is included in a small neighborhood
U of {f™(zs)}}nez U {f™(zu) }nez. One deduces that there exists a sequence of periodic points (gy)
converging to p and whose orbit is contained in U and homoclinically related to p. One may choose
these orbits in such a way that they spend most of their iterates close to the orbit of ¢q. Note that
K has a dominated splitting of the form E & E°® F’ where E°¢ is one-dimensional and E & E°¢, F’
respectively coincide with the stable and the unstable bundle. As a consequence the minimal Lya-
punov exponents of ¢, along F are arbitrarily close to the corresponding exponent of ¢ when n is
large.

For a small C" perturbation g supported in a small neighborhood of ¢ (hence disjoint from
K), one can first ensure that T W*(O) @ E¢ is one-codimensional and then consider a small arc of
diffeomorphisms (g;) which coincides with ¢ when ¢ = 0 and which unfolds the strong intersection: in
a neighborhood of ¢ the strong homoclinic intersection has disapeared for ¢t # 0. The local unstable
manifold and the local manifold tangent to E for ¢, accumulate on the local unstable manifold and
the local manifold tangent to E for O respectively. One thus deduces that for a diffeomorphism
C" close to g and n large enough, the strong stable and the unstable manifolds of the orbit of g,
intersect. This gives the conclusion for ¢’ = g,,. ]

Sketch of the proof of proposition 2.7. Let us fix € > 0 and a periodic point ¢ homoclinically related
to the orbit of p and whose minimal Lyapunov exponent along F' belongs to (—&,0). Let g be a
diffeomorphism C'-close to f and O be a periodic orbit homoclinically related to the continuation
pg of p for g which exhibits a strong homoclinic intersection y between its unstable manifold and its
invariant manifold tangent to E. By lemma 2.8, one can find a small C'-perturbation ¢g; having a
periodic point g1 homoclinically related to py,, whose minimal Lyapunov exponent along F' belongs
to (—¢,0) and which exhibits a strong homoclinic intersection.

Let us consider a local stable manifold D of ¢;. Since ¢; has a stable exponent close to 0, one
can by Cl-perturbation ¢’ (as small as one wants if one chooses ¢ and ¢ accordingly) create inside
D a hyperbolic periodic point ¢’ of stable dimension dim(FE). Since D has dimension dim(E) + 1,
one can also require that D contains finitely many periodic points of stable dimension dim(FE) + 1,
close to g1, whose stable sets cover a dense subset of D. If the perturbation is realized in a small
neighborhood of ¢, the manifold W*(p,) intersects transversally D, hence one can ensure that the
unstable manifold of py intersects transversally the stable manifold of a periodic point ¢”, so that
¢" and py are homoclinically related. The stable manifold of ¢” intersects the unstable manifold
of ¢’ along an orbit contained in D. Since the local invariant manifolds of ¢/, ¢” are close to those
of ¢q1, one can by a small perturbation close to the strong homoclinic intersection of ¢ create an
intersection between W*(¢') and W#(¢"”). This gives a heterodimensional cycle associated to the
periodic orbit ¢” that is homoclinically related to pg. O

If a homoclinic class H(p) contains two hyperbolic periodic points ¢, ¢’ homoclinically related to
p such that the strong stable manifold W*°(q) \ {¢} and the unstable manifold W*(¢’) intersect, one
can create a strong homoclinic intersection by a C"-perturbation, for any » > 1. We have a more
general result.
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Lemma 2.9. Let f be a C"-diffeomorphism, r > 1 and let q,p.,p, be three periodic points whose
orbits are homoclinically related such that

~ the homoclinic class H(q) has a dominated splitting Ty M = E° © F' and dim(E®) is strictly
smaller than the stable dimension of O;

— there are two distinct transversal intersection points v € W"(py) N W*(q), y € W*(py) N W*(q)
sharing the same strong stable leaf.

Then for any r > 1, there is g C"-close to f such that H(qy) has a strong homoclinic intersection.

Proof. One can assume that y is distinct from g. There is a transitive hyperbolic set A that contains
Pz, Py, © and ¢ but not y. So, it follows that there is a periodic point ¢ homoclinically related to
p arbitrarily close to x and whose orbit is close to A in the Hausdorff topology. One deduces that
the local strong stable manifold of ¢ and the local unstable unstable manifold of the orbit of ¢ are
close to y. By a C"-perturbation, one can thus create an intersection at y, hence a strong connection
between these manifolds, keeping the transverse homoclinic orbits with p. This shows that H(qy)
has a strong homoclinic intersection for this new diffeomorphism g. O

We generalize again the definition of strong homoclinic intersection.

Definition 11. A homoclinic class H(p) has a generalized strong homoclinic intersection if there
exists a hyperbolic periodic orbit orbit O homoclinically related to p, having a dominated splitting
ToM = E @ F such that the stable dimension of O is strictly larger (resp. strictly smaller) than
dim(F), and whose invariant manifold tangent to E (resp. to F') contains a point z € H(p) \ O.

Using the C''—connecting lemma due to Hayashi, the following result holds immediately.

Proposition 2.10. Let H(p) be a homoclinic class for a diffeomorphism f which has a generalized
strong homoclinic intersection. Then, there exist some C'-close diffeomorphisms g such that H(pg)
has a strong homoclinic intersection.

One may wonder if this last result still holds in C"-topologies for > 1. We have a result in this
direction under stronger assumptions. The proof is much less elementary than the previous ones
and will be obtained as a corollary of theorem 11 at the end of section 6.

Proposition 2.11. For any diffeomorphism fy and any homoclinic class H(p) which is a chain-
recurrence class endowed with a partially hyperbolic structure E* @& E°¢ @ E*, dim(E°) = 1, such
that E° ® E° is thin trapped, there exists oy > 0 and a C'-neighborhood U of fy with the following
property.

For any o € [0,a0] and any CYte-diffeomorphism f € U such that H(ps) has a generalized
strong homoclinic intersection, there exists a diffeomorphism g arbitrarily C'*®-close to f such that
H(py) has a strong homoclinic intersection.
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2.6 Total disconnectedness along the center-stable plaques

Let us consider a chain-hyperbolic homoclinic class H(p). In certain part of the proof of the main
theorem, we need a better understanding on the geometrical properties of the class in order, for
instance, to build analogs of Markov partitions. To do that, we need to ensure that the intersection
of H(p) with its center-stable plaques is totally disconnected. By lemma 2.2 this property does not
depend on the choice of a center-stable plaque family. It is provided by the following result proved
in section 8.

Theorem 5. Let f be a diffeomorphism and H(p) be a chain-hyperbolic homoclinic class with a
dominated splitting E°° & E* = (E** & EY) & ES such that E$, ES are one-dimensional and E and
E" are thin trapped. Then, one of the following cases holds.

e The strong stable manifolds (tangent to E*®) intersect the class in at most one point.

e There exists a periodic point q in H(p) whose strong stable manifold W*5(q) \ {q} intersects
H(p).

o The class is totally disconnected along the center-stable plaques.

Under this general setting the point ¢ is not necessarily homoclinically related to p. Note that
this theorem also applies and may be interesting for locally maximal hyperbolic sets K having a
dominated splitting Tk M = E° @ E* = (E° @ E°) @ E" such that E¢, E* are one-dimensional.

2.7 Extremal bundles

Theorems 2 and 3 show that the chain-recurrence classes K of a C'-generic diffeomorphism far
from homoclinic bifurcations have a partially hyperbolic splitting Tx M = E°* ® E¢ ® E" with
dim(E€) < 2. We now prove that the extremal bundles are non-degenerated. This will ensure that
the diffeomorphisms considered in the main theorem have only finitely many sinks.

For aperiodic classes this has already been obtained with corollary 2.4. For homoclinic classes
one can apply the following result.

Theorem 6. Let f be a diffeomorphism in a dense Gs subset of Diff' (M) and let H(p) be a ho-
moclinic class endowed with a partially hyperbolic splitting Ty, M = E* @& Ef ® E5 & E*, with
dim(E{) <1 and dim(ES) < 1. Assume moreover that the bundles E® & Ef and ES & E" are thin
trapped by f and [~ respectively and that the class is contained in a locally invariant submanifold
tangent to E° © E{ ® ES.

Then one of the two following cases occurs:

— either H(p) is a hyperbolic set,
— or there exists diffeomorphisms g arbitrarily C'-close to f with a periodic point ¢ homoclinically
related to the orbit of py and exhibiting a heterodimensional cycle.

Remark 2.3. We will see in section 2.10 that the result can be improved: the second case of the
theorem never appears.

The proof relies on techniques developed in [PS1, PS2, PS4] for C2-diffeomorphisms that extend
a result in [M1] for one-dimensional endomorphisms. We list different settings that have been already
studied.
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a) The surface case. For C?-maps, the non-hyperbolic transitive sets which have a dominated
splitting contain either a non-hyperbolic periodic point or a curve supporting the dynamics of an
irrational rotation.

Theorem 7 ([PS1]). Let f be a C? diffeomorphism of surface and K be a compact invariant set
having a dominated splitting Tk M = E & F, dim(F') = 1 whose periodic orbits are all hyperbolic.
Then, one of the following cases occur.

— K contains a sink or a compact invariant one-dimensional submanifold tangent to F.
— F is uniformly contracted by f~1.
One deduces the following generic result.

Corollary 2.12. Let f be a C'-generic diffeomorphism and K be a partially hyperbolic set endowed
with a dominated splitting Tk M = E* & E{ & E§ & E*, with dim(EY) = dim(ES) = 1.

If K is contained in a locally invariant surface tangent to E{® ES and does not contain a periodic
orbit of stable dimension dim(E®) or dim(E?®) + 2, then K is hyperbolic.

Note that a periodic orbit of stable dimension dim(E?®) or dim(E?®) 4 2 is a source or a sink in the
surface. If K is transitive and non trivial, it does not contain such a periodic orbit.

Proof. By proposition 2.5 and theorem 4, the property for a partially hyperbolic set to be contained
in a locally invariant surface tangent to Ef & ES is robust. It is thus enough to consider open sets
U C Diff'(M), U ¢ M and a (non necessarily invariant) compact set A C U such that for each f € U
any invariant compact set K contained in U has a dominated splitting Tk M = E° © E{ © E5 © B
and is contained in a locally invariant surface tangent to Y @ ES: we have to obtain the conclusion
of the theorem for an open and dense subset of diffeomorphisms in ¢/ and invariant compact sets
contained in A. A standard Baire argument then concludes that the theorem holds for C' generic
diffeomorphisms.

Let us fix a diffeomorphism fy € U/ and consider the maximal invariant set Ky in a small closed
neighborhood of A. By assumption it is contained in a locally invariant surface ¥ tangent to E{® ES.
One can conjugate fo by a diffeomorphism which sends g on a smooth surface ¥ and approximate
the obtained diffeomorphism f; by a smooth diffeomorphism. By this new diffeomorphism, the
smooth surface Y is mapped on a smooth surface f1(¥) which is C'-close to X. As a consequence,
there exists a smooth diffeomorphism fo that is C'-close to f; which preserves ¥. One deduces
that the maximal invariant set Ko for fo in a small neighborhood of A is contained in 3. One
can perturb the restriction of fy to a neighborhood of K3 in ¥ and obtain a smooth Kupka-Smale
diffeomorphism without any invariant one-dimensional submanifold supporting the dynamics of an
irrational rotation. This perturbation can be extended to a smooth diffeomorphism of M: indeed
the compactly supported diffeomorphism close to the identity in > are isotopic to the identity and
can be extended in a trivializing neighborhood of ¥ as a compactly supported diffeomorphism close
to the identity.

At this point we have built a smooth diffeomorphism f3 that is C'-close to f and an invariant
smooth surface ¥ which contains the maximal invariant set K3 of f3 in a small neighborhood of
A. Moreover all the periodic orbits in K3 are hyperbolic and the dynamics inside any invariant
one-dimensional submanifold of K3 is Morse-Smale. Theorem 7 then shows that any orbit in Kj

20



accumulates on a hyperbolic set. Now, for any diffeomorphism C'-close to f3, the dynamics contained
in a small neighborhood of A is hyperbolic: it contains a hyperbolic set L of stable dimension
dim(E®) + 1, a finite collection of hyperbolic periodic orbits Oy, ..., O of stable dimension dim(E?)
or dim(E®)+ 2 and any other orbit accumulates in the future and in the past on LUO1U...O;. O

b) The one-codimensional case. This has been considered for homoclinic classes.

Theorem 8 ([PS4]). Let f be a C? diffeomorphism and H(p) be a homoclinic class endowed with a
partially hyperbolic splitting E° @ E¢ with dim(E€) = 1 whose periodic orbits are hyperbolic. Then
H(p) is hyperbolic.

As before, this gives the following generic result (which is a particular case of theorem 6).
Corollary 2.13. For any C'-generic diffeomorphism, any homoclinic class H(p) that is

— endowed with a partially hyperbolic splitting E° & E¢ @ E*, dim(E°) = 1,

— contained in a locally invariant submanifold tangent to E° @ E*,
1s hyperbolic.

Proof. Consider a C'-generic diffeomorphism f and a homoclinic class H(p) as stated in the corollary
and ¥ the locally invariant submanifold tangent to E® @ E° containing H (p). By genericity, one can
suppose that the class H(p) is a chain-recurrence class and that for any diffeomorphism ¢ close to
f, the class H(py) is contained in a small neighborhood of H(p). Moreover, if for some arbitrarily
close diffeomorphisms g the chain-recurrence class containing py is hyperbolic, then the class H(p)
for f is also hyperbolic.

Let us consider a C2-diffeomorphism g arbitrarily close to f in Diff! (M) and whose periodic orbits
are hyperbolic. By proposition 2.5, the chain recurrence class A containing p, is still contained in
a locally invariant submanifold ¥,. As in the proof of corollary 2.12, one may have chosen g so
that ¥, is a smooth submanifold. Let us assume by contradiction that A is not hyperbolic: there
exists an invariant compact set K C A that is not hyperbolic and that is minimal for the inclusion.
Since K coincides with the support of an ergodic measure whose Lyapunov exponent along E° is non-
positive, the set K is transitive. The set K cannot be a sink, nor contain an invariant one-dimensional
submanifold tangent to E°, since by transitivity the set K would be reduced to a sink or a union
of normally attracting curves in ¥, contradicting the fact that A is chain-transitive and contains
pg- One can thus apply [PS4, lemma 5.12] and conclude that K is contained in a homoclinic class
H(q). Since H(q) is contained in a small neighborhood of H (p), it is contained in ¥,. By theorem 8
applied for g inside ¥4, one deduces that H(q) is a hyperbolic set. This contradicts the fact that K
is non hyperbolic. As a consequence, the chain-recurrence class containing p, is hyperbolic, hence
coincides with H(p). This proves that the homoclinic class H(p) is hyperbolic. O

c) The 2-codimensional case. For homoclinic classes with two-codimensional strong stable
bundle, one can replace the uniformity of the center stable bundle by the thin trapping property
and the total disconnectedness along the center stable plaques. This theorem is proved in section 9.
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Theorem 9. Let fy be a diffeomorphism and H(py,) be a chain-recurrence class which is a chain-
hyperbolic homoclinic class endowed with a dominated splitting E° ® E“ such that E* is one-
dimensional and E, E°* are thin trapped (for fo and fy ! respectively). Assume moreover that the
intersection of H(py,) with its center-stable plaques is totally disconnected.

Then, for any C? diffeomorphism f that is close to fo in Diff'(M) and for any f—invariant
compact set K contained in a small neighborhood of H(py,) and whose periodic orbit are hyperbolic,
one of the following cases occurs.

— K contains a sink or a compact invariant one-dimensional submanifold tangent to E.

— E s uniformly contracted by f~1.

We can now prove that for C'-generic diffeomorphisms far from homoclinic bifurcations, the
extremal sub-bundles of the homoclinic classes are non-degenerated.

Proof of theorem 6. As before, one can assume that, for g close to f, the class H(pgy) is contained in
a small neighborhood of H(p). Moreover, if for some arbitrarily close diffeomorphisms ¢ the chain-
recurrence class containing pg is hyperbolic, then the class H(p) for f is hyperbolic. The following
several cases have to be considered.

Note first that when the bundle Ef or E is degenerated, corollary 2.13 implies that H(p) is a
hyperbolic set.

When the strong stable leaves intersect the class in at most one point, theorem 4 implies that
the class is contained in a locally invariant submanifold tangent to Ef @& ES. By corollary 2.12 the
class is then hyperbolic.

When the intersection of the class with the center stable plaques is totally disconnected, one can
apply theorem 9. For any C? diffeomorphisms g C'-close to f in Diff!(M) with hyperbolic periodic
orbits, the chain-recurrence class containing p, is hyperbolic. As a consequence H (p) is hyperbolic.

It remains the case that both bundles Ef, ES are one-dimensional, EY{ is not uniformly contracted,
the class contains two different point in a same strong stable leaf and the intersection of the class
with the center stable plaques is not totally disconnected. One can then apply theorem 5 when the
dynamics is restricted to a locally invariant submanifold tangent to £* @& E{ @ ES and one deduces
that the class has a generalized strong homoclinic intersection.

By lemma 3.14 and remark 3.3 the class contains hyperbolic periodic orbits homoclinically related
to p and whose Lyapunov exponent along EY is arbitrarily close to zero. One concludes applying
the propositions 2.10 and 2.7 and creating a heterodimensional cycle associated to a periodic orbit
homoclinically related to p. O

2.8 Finiteness of quasi-attractors

We now consider the quasi-attractors and prove one part of the main theorem.

Proposition 2.14. For any C'-generic diffeomorphism that is far from homoclinic tangencies and
heterodimensional cycles, the union of all the quasi-attractors is closed.
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Proof. Consider a sequence of quasi-attractors (A, ) which converges towards a (chain-transitive) set
L. By theorem 2, they are homoclinic classes A, = H(p,) and one can assume that all the periodic
orbits p, have the same dimension.

Claim 1. L is a contained in a homoclinic class H(p).

Proof. If L is contained in an aperiodic class, by theorem 3 it has splitting Ty M = E°* & E¢ ¢ E*
with dim(E€) = 1. So, this is the same for the classes A4,,. Since the classes A,, are quasi-attractor,
they are saturated by strong unstable leaves, and therefore the same holds for L. This contradicts
corollary 2.4. O

By theorem 2, the class H(p) has a dominated splitting E® & E{ & ES @ E" where Ef and ES
have dimension 0 or 1. We assume by contradiction that H(p) is not a quasi-attractor.

Claim 2. The stable dimension of the periodic points p, is strictly larger than the stable dimension
of p.

Proof. Let us consider some plaque families W W over the maximal invariant set in a neighbor-
hood of L and tangent to E* ® Ef and ES ® E" respectively, as in the definition of chain-hyperbolic
class. Let us assume by contradiction that the stable dimension of p, is smaller or equal to the
stable dimension of p.

We claim that for any periodic point g, homoclinically related to the orbit of p;,, one has Wi C
W"(q,). Indeed if it is not the case, using that W* is trapped by f~!, there would exists a periodic
point g;, € Wg¥, in the closure of W*(g,) and whose stable dimension is dim(W;") — 1. Since H (py)
is a quasi-attractor it contains ¢/, and by lemma 2.1, there exist C''-perturbations of f which exhibit
a heterodimensional cycle. This is a contradiction.

In particular, one has Wg* C H(py) and, passing to the limit, the set L contains all the plaques
WS, x € L. Let us consider any periodic point ¢ homoclinically related to the orbit of p and
close to L such that Wg* C W?(g). This exists by lemma 3.2. The plaques Wg* and Wi* for
some x € L intersect transversally, hence the forward iterates of W;" accumulate Wy'. One thus
deduces that H(p) contains W*(q). By lemma 2.1 H(p) is thus a quasi-attractor, contradicting our
assumption. O

We are thus reduced to consider the case that on the union of the A, and H(p) there exists a
dominated splitting TM = E“° @& E°® E" such that E° is one-dimensional, £°° & E° is thin trapped
by f over each quasi-attractor A, and E¢ @ E“ is thin trapped by f~! over H(p). We also fix a
point z € L and a small neighborhood U of z.

Claim 3. In each set A, there exists a periodic orbit O, which avoids U.

Proof. By theorem 6, the bundle E“ is non-degenerated and the set A, is saturated by strong
unstable leaves. By a standard argument (see for instance [M1, lemma 5.2]), each class A,, contains
an invariant compact set K, which avoids U. Then one can reduce K,, and assume that it is minimal.

Let us consider two plaque families We WY tangent to £ @ E° and E* with arbitrarily small
diameter, above the maximal invariant set in a small neighborhood of A,, and whose restriction to
A, satisfy the definition of chain-hyperbolic classes. By the closing lemma, there exists a periodic
orbit O,, arbitrarily close to K,, in the Hausdorff topology. By lemma 3.2, there exists a point ¢
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homoclinically related to the orbit of p such that W; is contained in W*(q) and intersects Wgs for
some y € O, at a point ¢. One deduces that ¢ converges toward a periodic orbit O,, contained in
the plaques of the family W€ above O,,. Since A, is a quasi-attractor, it contains ¢ and O,. By
construction O, is included in an arbitrarily small neighborhood of K,,, as required. O

Claim 4. There exists N > 1 such that fN(W (p)) intersects transversally Wi (Oy,) for each n
large. Moreover, this property is stable under C*-perturbations with supports avoiding a neighborhood

of Oy,.

Proof. Since the stable space of O, is E“° ® E° and since E° is non-degenerate, all the exponents of
O,, along E° are bounded away from zero. By lemma 3.3 and remark 3.1, the orbit O,, contains a
point g, such that W C W (gn). For N large, N (W (p)) is close to any point of L. For n large,
O, is contained in a small neighborhood of L. One thus deduces that f~ (W (p)) and W (gn)
intersect transversally and this property is robust under perturbations with supports avoiding a
neighborhood of O, O

Conclusion. Since W*(O,,) is dense in A,,, and A,, converges towards L, the unstable manifold of
O,, has a point close to z for n large. Since z is in H(p), the stable manifold of p has a point
close to z. Observing that the orbits of O, are far from the neighborhood U of z, there exists
small perturbations given by the connecting lemma in a small neighborhood of a finite number of
iterates of z, such that W*(p) and W*(O,,) intersect. The orbit of O, has been preserved and the
intersection W*(0O,,) N W*"(p) is still non empty. This gives a heterodimensional cycle and therefore
a contradiction. As a consequence H(p) is a quasi-attractor. O

Remark 2.4. In the case the quasi-attractors A, are non-degenerated, E* coincides with the un-
stable dimension of the periodic points in the sets A,; hence we already know that E" is non-
degenerated. Theorem 6 is thus needed only to guarantee that the sinks of f accumulate on quasi-
attractors.

2.9 Hyperbolicity of quasi-attractors: proof of the main theorem

It remains now to prove that for any C'-generic diffeomorphism that is far from homoclinic tangencies
and heterodimensional cycles, the quasi-attractors are hyperbolic. The proof is independent from
proposition 2.14.

Let us consider a quasi-attractor and let us assume by contradiction that it is not hyperbolic.
From sections 2.2 and 2.3, the quasi-attractor is a homoclinic class H (p) with a splitting E*@® E°G E"
where E€ is one-dimensional, £°@® E° is thin-trapped and it contains arbitrarily weak periodic orbits
homoclinically related to p. From theorem 6 and corollary 2.6, for any diffeomorphism ¢ that is C'-
close to f the homoclinic class H(py) associated to the continuation of p for g contains two different
points z,y such that W*(x) = W*%(y). The end of the proof is based on the next theorem. The
first case of the dichotomy is not satisfied in our setting and in the second case, one can create
a heterodimensional cycle in H(p), by proposition 2.7. This contradicts our assumptions on the
diffeomorphism f and concludes the proof of the main theorem.
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Theorem 10. Let H(p) be a homoclinic class of a diffeomorphism f which is a quasi-attractor
endowed with a partially hyperbolic structure E*@® E°® E" such that dim(E€) =1 and E* = E*® E°
is thin trapped. Assume also that all the periodic orbits in H(p) are hyperbolic. Then, there ezists
a >0 (which is positive if f is C" for some r > 0) and C'T*—small perturbations g of f such that
the homoclinic class associated to the continuation py of p satisfies one of the following cases.

— FEither one has W**(x) # W?**(y) for any = # y in H(py) and therefore the class H(py) is
contained in a C'-submanifold N C M tangent to E¢ @& E* which is locally invariant.

— Or one has W#(x) = W*5(y) for some hyperbolic periodic point x homoclinically related to
the orbit of py and some y # x in H(py) N W*(z) and therefore the class H(pg) has a strong
homoclinic intersection.

Remark 2.5. We want to emphasize some features of theorem 10.

1. The result does not require any generic assumption.
2. It holds in the C'*®—category for a > 0 small.

3. The theorem can also be applied to the context of hyperbolic attractors whose stable bundle
has a dominated splitting E* = E* @ E° such that dim(E¢) = 1. This can have important
consequences in terms of the Hausdorff dimension of the attractor: if the the attractor is
contained in a submanifold, the Hausdorff dimension is smaller than 14+u (where u = dim(E"));
if there is a strong connection, the dimension could jump close to 1+u+s (where s = dim(E*?))
(see [BDV]). Note that the proof in the hyperbolic case is simpler since we can use the
hyperbolic continuation of any point in the attractor.

4. In the case the bundle E° is not uniformly contracted, one can assume that the periodic point
x has an arbitrarily small Lyapunov exponent. Indeed by lemma 3.14 and remark 3.3, for any
€ > 0, there exists a periodic point ¢ homoclinically related to the orbit of p and whose central
Lyapunov exponent is contained in (—¢,0). Let us consider a perturbation g having a periodic
point z homoclinically related to p, and exhibiting a strong homoclinic intersection. By another
C"-small perturbation (see lemma 2.8), one can obtain a periodic point 2/ homoclinically
related to the orbit of p, with a strong connection and a central Lyapunov exponent close to
the exponent of q.

The proof of theorem 10 is based on the following proposition whose proof is postponed to
section 5 and uses the notion of stable boundary point (see section 3) and of continuation of a
homoclinic class (see section 4). As before W’* (x) and W} (x) denote local stable and unstable
manifolds tangent to E; and EY respectively for the points x € H(p,). Note that this result holds
in any C"-topology, r > 1.

Proposition 2.15. Given a C" diffeomorphisms under the assumptions of theorem 10, for any
a € [0,7 — 1] one of the following cases occurs.

1. There exists g, C1T%-close to f, such that for any x #y in H(p,), one has W (z) # W*(y).

2. There exists g, C'T-close to f, such that H(py) exhibits a strong homoclinic intersection.
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3. There exist a neighborhood V C DiﬂHa(M) of f and some hyperbolic periodic points q and
pE,ph for n € N such that:

— the continuations qg,pflvg,p%,g exist on 'V and are homoclinically related to the orbit of py;
~ (Pi.g); (ph.g) converge towards two distinct points x4, yq in H(pg) "W (gq) for any g € V;
~ the map g — x4,y4 5 continuous at f;

~ yg € Wii(zg) for any g € V.

4. There exist two hyperbolic periodic points p,p, homoclinically related to the orbit of p and an
open set V C Diff! (M) whose closure contains f, such that for any g € V the class H(pg)
contains two different points x € W*(py 4) and y € W*(py.4) satisfying W**(x) = W5 (y).

One concludes the proof of theorem 10 by discussing the two last cases of the proposition 2.15.
The two following theorems, proved in sections 6 and 7 give a strong homoclinic intersection.
In the first case, the points x,y belong to the stable manifold of a periodic point q.

Theorem 11. For any diffeomorphism fo and any homoclinic class H(p) which is a chain-recurrence
class endowed with a partially hyperbolic structure E* & E€ @ E*, dim(E€) = 1, such that E* ® E¢
is thin trapped, there exists oy > 0 and a C'-neighborhood U of fo with the following property.

For any a € [0, a9], any diffeomorphism f € U and any C1t%-neighborhood V of f, if there exist:

— some hyperbolic periodic points qy and pfl’f,pflvf with n € N for f whose hyperbolic continua-
tions qgjpfl’g,p%,g exist for g € V and are homoclinically related to the orbit of pgy,

~ two maps g — x4,Yq defined on 'V, continuous at f, such that for any g € V the points x4,y
belong to W?(qq), are the limit of (py, ;) and (ph.g) respectively and satisfy yg, € WS (),

then, there exist C'T®-small perturbations g of f such that the homoclinic class H(py) exhibits a
strong homoclinic intersection.

In the second case, the points x,y belong to the unstable manifold of periodic points p;, py.

Theorem 12. For any diffeomorphism fy, for any homoclinic class H(p) which is a chain-recurrence
class endowed with a partially hyperbolic structure E* @ E€@® E", dim(E€) = 1, such that E*® E° is
thin trapped there exists ag > 0 and for any hyperbolic periodic points p,, p, homoclinically related
to the orbit of p, there exists a C'-neighborhood U of f with the following property.

Given any o € [0, 0] and any C'T-diffeomorphism f € U, if there exist two different points
x € Wpy s) andy € W¥(py. ¢) in H(ps) satisfying W**(z) = W*(y), then, there exist C1T®-small
perturbations g of f such that the homoclinic class H(py) exhibits a strong homoclinic intersection.

Some weaker results similar to theorems 12 and 11 were obtained in [Pu2] for attracting homo-
clinic classes in dimension three and assuming strong dissipative properties.
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2.10 Other consequence on quasi-attractor. Main theorem revisited

As it was mentioned in the introduction, for C'-generic diffeomorphisms one obtains a stronger
version of theorem 10. We point out that what follows in this section is not used in the proof of our
main theorem.

Theorem 13. Let f be a diffeomorphism in a dense Gs subset of Diffl(M) and let A be a quasi-
attractor endowed with a partially hyperbolic splitting TAM = E*® E€® E* with dim(E°) = 1. If E€
is not uniformly contracted and not uniformly expanded, then A is a homoclinic class which contains
hyperbolic periodic points of both stable dimensions dim(E®) and dim(E?®) + 1.

The proof uses the following result from [BDKS].

Theorem 14 ([BDKS]). Let f be a diffeomorphism that exhibits a heterodimensional cycle between
two hyperbolic periodic points p,q whose stable dimensions differ by 1.

Then, there exist a C'-perturbation g of f and two transitive hyperbolic sets K, L - the first
contains the hyperbolic continuation py, the second has same stable dimension as q - that form a
robust cycle: for any diffeomorphism h that is C'-close to f, there exists heteroclinic orbits that join
the continuations K, to Ly and Ly to K.

A consequence of this result is that for any C'-generic diffeomorphism and any hyperbolic point
p of stable dimension ¢ > 2, if there exists some small perturbations g of f which exhibits a het-
erodimensional cycle between a periodic point homoclinically related to py and a periodic orbit of
stable dimension 7 — 1, then the homoclinic class H(p) for f contains periodic points of indices i — 1.

Proof of theorem 13. The existence of the dominated splitting implies that there is no diffeomor-
phism C'-close to f which exhibits a homoclinic tangency in a small neighborhood of A.

Step 1. We first prove that A is a homoclinic class H (p) which contains periodic orbits whose central
exponents are arbitrarily close to 0. This uses the following.

Claim. If A contains an invariant compact set K such that any invariant measure supported on K
has a Lyapunov exponent along E¢ equal to 0, then A contains periodic orbits whose central Lyapunov
exponent is arbitrarily close to 0.

Proof. The proof is similar to the proof of theorem 9.25 in [C3] and uses proposition 9.23 also in
[C3]. See also [Y]. O

Since E¢ @ E" is not uniformly expanded, the trichotomy given by [C2, theorem 1] and the
previous claim imply that the class A contains periodic orbits whose central exponent is negative
or arbitrarily close to 0. Similarly, since E* @ E¢ is not uniformly contracted, the class A contains
periodic orbits whose central exponent is positive or arbitrarily close to 0. In any case A is a
homoclinic class H(p) which contains for any 6 > 0 some periodic orbits O(;,O(;r whose central
exponent is respectively smaller than § and larger than —J. From the results in [ABCDW] follows
that that H(p) contains periodic orbits whose central exponents are arbitrarily close to 0.

Step 2. We then show that one can find a diffeomorphism C'-close to f and a periodic orbit
homoclinically related to p, which exhibits a heterodimensional cycle.
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Using the center models introduced in [C1], the dynamics along the central bundle E° can be
classified into chain-recurrent, chain-neutral, chain-hyperblic and chain-parabolic (see [C2, section
2.2] for details). Since H(p) contains hyperbolic periodic orbits, some types can not occur (the neutral
and the parabolic ones). Note that since H(p) contains periodic orbits whose central exponent is
close to 0 and since f is Cl-generic, the class H(p) is the limit of periodic orbits of both indices
dim(E®) and dim(E®) + 1 for the Hausdorff topology. When the central dynamics has the chain-
recurrent type, [C2, proposition 4.1], this implies that these periodic orbits are contained in H(p),
hence both indices appear in the class.

It reminds to consider a central dynamics which has the chain-hyperbolic type: equivalently two
cases are possible: either E* @ E° is thin trapped by f or E¢ @ E" is thin-trapped by f~'. In
any case it follows that there exists a diffeomorphism g that is C''-close to f and a periodic point
homoclinically related to the continuation p, which exhibits a heterodimensional cycle: in the first
case, this is a direct consequence of theorem 10, corollary 2.6, theorem 6 and proposition 2.7; in the
second case, one argues as on the proof of corollary 2.3.

Step 3. We then concludes with theorem 14 that the class H(p) contains hyperbolic periodic points
of different stable dimension. O

Theorem 6 can be combined with theorem 14 to get the following improvement.

Theorem 6’. Let f be a diffeomorphism in a dense Gs subset of Diff'(M) and let H(p) be a
homoclinic class endowed with a partially hyperbolic splitting Ty, M = E* ® EY ® E5 © B, with
dim(EY{) <1 and dim(ES) < 1. Assume moreover that the bundles E° @& Ef and ES & E" are thin
trapped by f and f~1 respectively and that the class is contained in a locally invariant submanifold
tangent to E° @ E{ ® ES. Then H(p) is a hyperbolic set.

Proof. Arguing by contradiction, from theorem 6 it would be possible to create a heterodimensional
cycle involving points of different indexes and from theorem 14 it is get a robust heterodimensional
cycle, then for generic diffeomorphisms the center dynamics it is not trapped neither for f nor for
f~1: a contradiction.

O

3 Properties of chain-hyperbolic homoclinic classes

Let H(p) be a homoclinic class which is chain-hyperbolic for a diffecomorphism f. We consider as in
the definition 7 the two periodic points g¢s, ¢, € H(p) and the plaque families W W respectively
tangent to the bundles E¢, E.

3.1 Periodic points with large stable manifold

We first give an immediate consequence of the trapping property.

Lemma 3.1. Let O be a periodic orbit in H(p). If there exists a point qo € O such that Wao
18 contained in the stable manifold of qo, then this property holds for any point ¢ € O and more
generally for any point z € W*(qo) N H(p).
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Proof. Any point ¢ € O can be written as ¢ = f~"(qp) with n > 0. By the trapping property, Wg®
is contained in f~"(Wg), hence in f~"(W?*(qo)) = W*(q). Any point z € W*(qo) has large forward
iterates f™(z), n > ng which remain close to O. By continuity and the coherence (lemma 2.2) one
deduces that WC;";( 2) is also contained in the stable manifold of O. By the trapping property this

also holds for z. O

The homoclinic class H(p) contains a dense set of “good” periodic points, in the sense which is
defined in the next lemma:

Lemma 3.2. For any 6 > 0 small, there exists a dense set Py C H(p) of periodic points homoclini-
cally related to the orbit of p with the following property.

— The modulus of the Lyapunov exponents of any point q € Py are larger than 6.

— The plaques Wg* and W for any point q € Py are respectively contained in the stable and in
the unstable manifolds of q.

Proof. Let us choose § > 0 such that the modulus of the Lyapunov exponents of ¢; and ¢, are larger
than 29. Let U and U, be some small disjoint neighborhoods of the orbits of ¢; and ¢, respectively:
there exist some constant j > 1 such that for any segment of orbit {x,..., f/"(x)} contained in
H(p) NUs or in H(p) N Uy, one has for any u € E, and v € Fy,

n—1 n—1

. —o8mi . Sni
LT ID s gyul < e |ju]l and TT IDf0ll = €2 |o].
=0 =0

We fix € > 0 small and consider the periodic orbits O that are homoclinically related to the
orbit of p with the following combinatorics: there are at least %(1 — ¢€).7 consecutive iterates in Us
and at least %(1 — £).7 consecutive iterates in U,, where 7 is the period of O. In particular, the
maximal Lyapunov exponent of O along E is smaller than —§ and the minimal Lyapunov exponent
of O along E is larger than J. Let us write the orbit O = {z,..., f7"1(2)} as the concatenation
of a segment of orbit {z,..., ™ 1(2)} in Us, a segment of orbit {f™*4(2),..., f2"*+1=1(2)} in
U., and two other segments of orbit {f™(2),..., f?T071(2)} and {2+ (z),..., fPmthtl=1(x)),
such that m > 3(1 —¢).7, and ¢1,¢, < 57. Provided ¢ is small, at any iterate z, = f*(z) with
0 <k <m/2, one has for any u € Epx(,) and any n > 0,

n—1

[T 1D Fs oyl < €75 ]
=0

One deduces that there exists p > 0 such that the ball centered at z; with radius p in W7 is
contracted by forward iterations so that it is contained in the stable set of z.

Since the stable set of g5 contains W¢*, there exists N > 2 such that N (Wy?) has a radius
smaller than p/2. If 7 is large enough, since {z,..., f™ 1(z)} is contained in the neighborhood U
of the hyperbolic orbit of ¢, there exists an iterate 2z, = f¥(2), 0 < k < % — N arbitrarily close
to ¢s. By continuity of the plaque family W¢, one deduces that f~¥ (W) has radius smaller than
p, hence is contained in the stable set of fV(z;). Consequently the plaque W;7 is contained in the
stable manifold of z;. By lemma 3.1 for any point ¢ in the orbit O, the plaque Wg* is contained in
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the stable manifold of g. Similarly the unstable manifold of ¢ contains the plaque Wi*. In order
to prove the lemma, it remains to show that the union of the orbits O we considered is dense in
H(p): Indeed any point z in H(p) can be approximated by a hyperbolic periodic point ¢ whose
orbit is homoclinically related to the orbit of g5 and ¢,. Then there exists a transitive hyperbolic
set which contains the points ¢, gs, gy, p. One deduces by shadowing that there exists a hyperbolic
periodic orbit O having a point close to  which is homoclinically related to the orbit of p and has
the required combinatorics. O

When the central bundles are one-dimensional, one can control the size of the invariant manifolds
of the periodic orbits whose Lyapunov exponents are far from 0.

Lemma 3.3. Let us assume that there is a dominated splitting E°° = E & E° such that E° has
dimension 1. For any § > 0, there exists p > 0 with the following property: let O C H(p) be a
periodic orbit whose Lyapunov exponents along E are smaller than —&. Then, there exists ¢ € O
whose stable set contains the ball centered at q with radius p.

Proof. Let O C H(p) be a hyperbolic periodic orbit whose Lyapunov exponents along E are smaller
than —¢: since F° is one-dimensional this implies that there exists gy € O such that for each n > 0
one has ||D]“|%C (00| =TT D fipe(f(q0))|| < e™°. The domination E & E® then implies that for

each n > 0, one has
n—1

[T D e (F N (o)) < Ce™™, (3.1)
i=0
where C, N > 0 are some uniform constants given by the domination. One deduces from (3.1) that
a uniform neighborhood of gy in W7 is contained in W*(qo). O

Remark 3.1. The previous lemma still holds if one replaces g by a diffeomorphism C'-close to f
and if one considers a periodic orbit O of g contained in a small neighborhood of H(p) and a locally
invariant plaque family of g over O whose plaques are C'-close to the plaques of W€,

Lemma 3.4. Let us assume that E° and E* are thin trapped by f and f~! respectively. Then, all
the hyperbolic periodic orbits contained in H(p) are homoclinically related together.

Proof. First, observe that all the hyperbolic periodic points in H(p) have the same stable index. Let
us take a periodic point ¢ in the class. By lemma 3.2, there exists a periodic orbit O homoclinically
related to p and having a point ¢ arbitrarily close to ¢ such that Wg* C W*(¢') and Wit € W*(q').
One deduces that the plaques W7 intersects W*(q) and W, intersects W* (¢). As a consequence
O and ¢ are homoclinically related.

O

3.2 Local product stability

For any invariant compact set K, we define the chain-stable set of K as the set of points x € M
such that for any € > 0, there exists a e-pseudo-orbit that joints x to K. The chain-unstable set of
K is the chain stable set of K for the map f~1.
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Lemma 3.5. For any point x € H(p), the plaque Wg* (resp. Wy*) belongs to the chain-stable set
(resp. the chain-unstable set) of H(p).

Proof. By lemma 3.2, the point z is the limit of periodic points p, € Py such that W;* is contained
in the stable set of p, for each n > 0. By definition of a plaque family, any point of W¢* is limit of
a sequence of points x, € Wy’ , proving that x is contained in the chain-stable set of H(p). O

Lemma 3.6. For any points x,y € H(p), any transverse intersection point between Wg* and W
is contained in H(p).

Proof. By lemma 3.2, there exist two periodic points p, and p, close to x and y respectively whose
orbits are homoclinically related to p such that Wy C W¥(p,) and Wy C W*(py). By continuity of
the plaque families W and W, one deduces that W;* and ng intersect transversally at a point
z' € H(p) close to z. Hence z belongs to H(p). O

3.3 Robustness

Let us consider a compact set K having a dominated splitting Tk M = E & F for f. If U C M and
U C Diff' (M) are some small neighborhoods of K and f, then for each g € U the maximal invariant
set Ky = (,ez9"(U) has a dominated splitting E, & F, such that dim(E,) = dim(E). Moreover
the maps (g,x) — Eg 4, Fy . are continuous. Hence one may look for a plaque family tangent to the
continuation K, of E for g.

A collection of plaque families (Wjy)gecys tangent to the bundles (E,)gecy over the sets (Kg)geu
is continuous if Wy.)geucck, is a continuous family of Cl-embeddings. It is uniformly locally
invariant if there exists p > 0 such that for each ¢ € U and z € K,, the image of the ball

B(0,p) C Eg . by go W, is contained in the plaque W, 4,)-

Lemma 3.7. Let K be an invariant compact set for a diffeomorphism f having a dominated splitting
E @ F. Then, there exist some neighborhoods U of K and U C Diff!(M) of f and a continuous
collection of plaque families (Wy)gcu tangent to the bundles (Eq)gcy over the mazimal invariant
sets (Kg)geu in U, which is uniformly locally invariant.

Proof. Let exp be the exponential map from a neighborhood of the section 0 in TM to M. Each
diffeomorphism g close to f induces a diffeomorphism § on T'M, which coincides for each z € K with
the map expg_é) og oexp, on a small neighborhood of 0 € T;; M and with the linear map 7,g outside
another small neighborhood of 0; moreover, § is arbitrarily close to the linear bundle automorphism
Tg over the map g. The proof of the plaque family theorem [HPS, theorem 5.5] associates to each
r € K, the graph 'y, in T, M of a C'! map Vgz: Egr — Fy, tangent to By, at 0 € T, M and
satisfying

!?(Fg,x) = Fg,g(m)‘ (3.2)

The graphs I'y , are uniformly Lipschitz and are characterized for some constant C' > 0 by

Fg,x = ﬂ g_n({(ylva) € Eg,g_"(x) X Fg,g—”(z)vcHylH > ”yQH})
n>0

One thus deduces that they depend continuously on (g,z) for the C-metric. On the other hand,
each map g has a dominated splitting £ ® E* inside the spaces T, M and each graph I'y, is
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tangent to the bundle E*s. The bundle E¢ depends continuously on (g, z), hence the graphs Iy,
depend continuously on (g, ) also for the C''-metric.

The plaque W, ; is defined as the image by the exponential exp, of a uniform neighborhood of
0 € I'y ;. For instance, one may choose € > 0 small and define for any z € E, ,,

arctan ||ZH
Waa(2) = exy (s e (), where y = e == 20z,

By construction and the invariance (3.2), the plaque families (J/,) are uniformly locally invariant. [

Lemma 3.8. Let us assume that E and E° are thin trapped by f and f~' respectively and that
H(p) coincides with its chain-recurrence class. Then, there exist some neighborhoods U of K and
U C Diff!(M) of f and two continuous collections of plaque families (Wg?)geus Wg*)geu tangent to
the bundles (Eg%), (Eg") over the mazimal invariant sets (Kg)gey in U, which are trapped by g and
by g~ respectively.

The plaques may be chosen arbitrarily small. As a consequence, for any diffeomorphism g that
is Cl-close to f, the homoclinic class H(py) of g associated to the continuation pg of p is still

chain-hyperbolic.

Proof. Let us consider a continuous collection of plaque families (W) tangent to the bundles (£g°)
over the sets (K,) as given by lemma 3.7. Since E is thin trapped for f over H(p), there exists a
constant p > 0 and a continuous family of embedding (¢2) of (ES%) supported in a small neighborhood
S of the section 0 in E and satisfying for each = € H(p),

FWra 0 (B0, ) C Wy j(a) © €30y (B(0, p)).- (3.3)

One may find a continuous family of embeddings (¢, ) that is close to (¢2) for the C'-topology and
that extends to any point x in a neighborhood of H(p): one fixes a finite collection of points z; in
H(p) and using a partition of the unity one defines ¢, as a barycenter between gpgi associated to
points z; that are close to z. One deduces that there exist a neighborhood U of H(p) in M, and a
continuous family of embeddings (¢.) of (ES®) over U, such that (3.3) still holds for g, € K, and
(¢z). One can thus define Wg% as the embedding

T

.arctan ||z
Z Wgw ° Pg.z (F’HHZ>

121l

By construction the plaque family Wg® is trapped by g and the collection (Wgcs )g is continuous.
The plaques Wg* may have been chosen arbitrarily small and in particular much smaller than
the stable manifold W*(g, ) of the continuation ¢, 4 of ¢;. The trapping property thus implies that
Wg: , 1s contained in the stable manifold of gs 4. One builds similarly the plaques W', and proves
that ngg is contained in the unstable manifold of ¢, 4 for any g close to f. We have thus shown

that H (p:q) is chain-hyperbolic. O

Remark 3.2. Under the setting of lemma 3.8. One can check that the numbers r, p, e that appear
in lemma 2.2 for the coherence and the uniqueness of the plaque families can be chosen uniform in

g.
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3.4 Quasi-attractors

Lemma 3.9. If the chain hyperbolic class H(p) is a quasi-attractor and if the bundle E" is uni-
formly expanded, then for any diffeomorphism g C'—close to f and any hyperbolic periodic point q
homoclinically related to the orbit of py, the unstable manifold W"(q) is contained in the homoclinic
class H(pg).

Proof. Since H(p) is a homoclinic class, there exists a dense set of points € H(p) that belong to
the stable manifold of p. Moreover by the trapping property, WS contains f _”(W}:i(x)) for any
n > 0, hence is contained in the stable manifold of the orbit of p.

If H(p) is a quasi-attractor and E“ is uniformly expanded, it is the union of the unstable
manifolds W*"(z) of the points € H(p). If one fixes p > 0 then any disk D of radius p contained in
an unstable manifold W*(x) intersects transversally the stable manifold of p. Hence, by compactness
there exists N > 1 uniform such that ¥ (D) intersects transversally the local stable manifold W} (O)
of the orbit O of p. This property is open: since H(p) is a chain-recurrence class, for any g close to
f, the class H(pgy) is contained in a small neighborhood of H(p), hence for any disk D of radius p
contained in W*(x) for some x € H(p), the iterate f(D) intersects transversally W _(O,).

Moreover since H(p) is a quasi-attractor, there exists an arbitrarily small open neighborhood
U of H(p) such that f(U) C U. Hence for g close to f one still has g(U) C U and the unstable
manifold W*(Oy) is contained in U. Since U is a small neighborhood of the set H(p), the partially
hyperbolic structure extends to the closure of W"(Oy); in particular the dynamics of g uniformly
expands along the manifold W*(O,).

One deduces that for any g close to f, for any point x € W*(O,), for any neighborhood V' of z
inside W*(Oy), there exists an iterate ¢g" (V') with n > 1 which contains a disk of radius p, so that
gtV (V) € W¥(O,) intersects transversally Wi _(O,). One deduces that H(p,) meets g™ (V),
hence V. Since V' can be chosen arbitrarily small and H(pg) is closed, the point = belongs to H (py).
We have proved that W«(O,) C H(py).

Let ¢ be any hyperbolic periodic point homoclinically related to py. The unstable manifolds of
the orbit of p and ¢ have the same closure. In particular W"(q) C H(py). O

3.5 Stable boundary points

We now discuss the case the center stable bundle has a dominated decomposition E“ = E* @ E°
with dim(E€) =1 and E* is uniformly contracted.

Half center-stable plaques. Any point z € H(p) has a uniform strong stable manifold which
is one-codimensional inside Wg°. A neighborhood of x intersects Wg* \ W;° (x) into two connected
components. The choice of an orientation on Ef allows to denote them by 5t and W™, One
can then consider if z is accumulated inside Wg* \ W (x) by points of H(p) in one or in both

components. Note that this does not depend on the choice of the plaque family . Note also that
the same case will occur all along the orbit of x.

If one considers a point y € H(p) N W;* close to x, one gets an orientation of Ey that matches
with the orientation of ES. The points of H(p) N WS® close to x projects on W,? through the
holonomy along the center unstable plaques, but there is no reason that the projection of the points
in H(p)N W are contained inside W;S’+. However the following can be proved.
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Lemma 3.10. Consider any periodic point q homoclinically related to p and any point x € H(p)
close to q such that W' _(q) intersects W3 (x) at a point z. If q is accumulated by H(p) N W:;S’*
then z is accumulated by H(p) N Ws>". More precisely, there exists y € H(p) N W5t arbitrarily
close to q such that W} (y) intersects H(p) N We> ™ close to z.

Proof. Let us consider a point gy € chs’+ close to g; it belongs to W*(q). Let D be a neighborhood
of z in W and Dt a neighborhood of z in W, By the A-lemma, the sequence f~"(D), n > 0
converges toward W#(q). Observe that the strong stable manifolds of z and z coincide. By continuity
of the strong stable lamination, the sequence f~"(W.(z)) converges toward W?*°(¢q). Hence Wy
intersects f~"(D™) close to ¢ for n large enough. The intersection is transversal, hence belongs to
H(p) by lemma 3.6. One thus deduces that D" intersects H(p). By taking DT arbitrarily small,
one has proved that z is accumulated by H(p) N Ws>". Also the local unstable manifold Wi (y) of
the point y = f™(yo) intersects D, giving the conclusion. O

Lemma 3.11. Let us assume that H(p) does not contains periodic points q,q" homoclinically related
to the orbit of p such that W55(q)\{q} and W*(q') intersect. Then any point x € H(p) is accumulated
by H(p) in We \ Wi (z).

loc

Proof. Let us assume by contradiction that there exists a point x € H(p) which is not accumulated
by points in (WS N H(p)) \ Wii(x). Let ¢ € H(p) be a periodic point close to z and homoclinically
related to the orbit of p. Its unstable manifold intersects transversally WS at a point z € H(p).
Since z can be chosen arbitrarily close to z, it belongs to W% (x) and it is not accumulated by points
in Wg N H(p) \ Wi(xz). By lemma 3.10, W _(q) \ W**(q) is disjoint from H(p). In particular

the point ¢ is not accumulated by points in (Wg* N H(p)) \ Wji.(g). One can thus repeat for ¢ the
argument we have made for z and find a periodic point ¢’ # ¢ homoclinically related to the orbit of

p such that W"(¢’) intersects W5%(q). This contradicts our assumption. O

We now introduce the definition of the stable boundary points, generalizing the notion of stable
boundary points for uniformly hyperbolic set whose stable bundle is one-dimensional (see [PT,
appendix 2]). This notion plays an important role and it is extensively studied in section 5.

Definition 12. A point z € H(p) is a stable boundary point if it is not accumulated inside both
components of WS \ W () by points of H(p).

loc

Observe that if z is a stable boundary point, then any iterate of x is also. Note that if F is
one-dimensional, a stable boundary point x € H(p) is a point which is not accumulated by points
of H(p) in both components of WS* \ {z}.

Naturally in the same way, if the center unstable subbundle split £ = E§ @& E*, where ES is
one-dimensional and E" is uniformly expanded, it can be defined the notion of unstable boundary
point.

The next lemma about stable boundary points is a version of a classical one for hyperbolic
systems. A more general proposition about stable boundary points is provided in section 5.

Lemma 3.12. Let f be a diffeomorphism and H(p) be a chain-recurrence class which is a chain-
hyperbolic homoclinic class endowed with a dominated splitting E¢° @& E* = E* & (ES & E") such
that B, ES are one-dimensional, E*°, E“* are thin trapped (for f and 1 respectively) and E* is
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uniformly expanded. Then any stable boundary point of H(p) belong to the unstable set of a periodic
point.

Proof. Let x be a stable boundary point of H(p). Let us introduce three backward iterates x; =
%), 2o = fY(x) and x3 = f~™(z) arbitrarily close with & < [ < m. If the center-unstable
plaques of two of those three points (for instance z1,z3) intersect, from the coherence (lemma 2.2)
it follows that the center-unstable plaque W is mapped into itself by fF=t. Since E splits as
ES ® E", one deduces that the backward orbit of x1 belongs to the unstable set of a periodic point
of Wg¥ (this point is not necessarily hyperbolic).

If the center unstable plaques of the three points do not intersect, we can assume that the center
stable plaque of namely xo intersects the center unstable plaques of the other two points in different
connected components of Wgs \ {z2}. By lemma 3.6 those points of intersection belong to H(p)
and using that F° is thin trapped, the forward orbits of those points remain arbitrarily close to x
(provided that the points x1, z2, x3 were sufficiently close) and contained in different components of
WS\ {x2}; a contradiction. O

2

The following proposition is not needed in the context of the present paper, however we provide
it since it helps to understand the notion of boundary point.

Proposition 3.13. Using [C2, proposition 3.2], one can prove that if the homoclinic class H(p) is
endowed with a partially hyperbolic structure E°® E¢® E" with dim(E°€) = 1 such that E** = E*® E*¢
1s thin trapped, then,

— either any stable boundary point x € H(p) belongs to the unstable manifold of a periodic point,

- or there exists a diffeomorphism g that is C'-close to f and a periodic orbit contained in a
small neighborhood of H(p) which has a strong homoclinic intersection.

One will use instead a similar result for quasi-attractors, see section 5.2 below.

Sketch of the proof. Let z be a strong boundary point. Let us take the sequence {x,, = f~"(z)}n>0.
Since E is thin trapped, one may take a small plaque family W which is trapped and such that
for each n > 0, one connected component U, of Wg* \ W (x,,) is disjoint from H(p). In particular:

(*) For any two close iterates ,,, Ty, the unstable manifold W (x,) does not meet U,,.

We consider two cases: either the orientation of the center manifolds of all close backward iterates is
preserved or not. Equivalently, the tangent map D f preserves or not a continuous orientation of the
bundle E° over a(z), the a-limit set of z. One can assume that «(x) is not reduced to a periodic orbit
since otherwise, z belongs to the unstable manifold of a periodic orbit and the statement follows.

- The orientation preserved case. From property (*), any two close iterates x,,x,, are in twisted
position (see [C2, section 3]), implying that «(x) is twisted. If «(z) contains a periodic orbit
O, it contains points in W**(0) \ O and in W*(O) \ O; as a consequence, one can apply the
Hayashi connecting lemma and get a strong homoclinic intersection for O by an arbitrarily small
Cl-perturbation. Otherwise a(z) contains a non-periodic minimal set and from [C2, proposition
3.2], there exists a diffeomorphism ¢ that is C''-close to f and a periodic orbit contained in a small
neighborhood of H(p) which has a strong homoclinic intersection.
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- The orientation reversed case. Let us consider a sequence of arbitrarily close points x, , Zm, such
that D f™+~" reverse the local orientation on E¢ at x,,. One may assume that they converge
toward a point y € a(z). Property (*) now implies that H(p) N W is contained in W**(y). This
contradicts lemma 3.11 above. O

3.6 Non-uniformly hyperbolic bundles
When the bundle £ is not uniformly contracted, the class may contain weak periodic orbits.

Lemma 3.14. Let us assume that H(p) is a chain-recurrence class and that there exists a dominated
splitting E°° = E° & E° where E€ is one-dimensional, E is thin-trapped and E° is uniformly
contracted. Then, there exists some hyperbolic periodic orbits in H(p) whose Lyapunov exponent
along E° is arbitrarily close to zero.

Remark 3.3. If one assumes that all the periodic orbits in H(p) are hyperbolic, then one can ensure
that the obtained periodic orbits are homoclinically related to p. Indeed, since E is thin-trapped,
all the periodic orbits in H(p) have the same stable dimension and by lemma 3.4 are homoclinically
related to p.

Proof. One can consider an invariant compact set K C H(p) such that the restriction of E€ to K is
not uniformly contracted and K is minimal for the inclusion and these properties. Since the bundle
E‘CK is one-dimensional, thin trapped and not uniformly contracted, K coincides with the support
of an ergodic measure p whose Lyapunov exponent along E€ is zero. The exponent of any other
measure supported on K is non-positive.

In the case there exists ergodic measures u supported on K whose Lyapunov exponent along E*¢
is negative and arbitrarily close to zero, the domination E% ® E° implies that these measures are
hyperbolic and the C'-version of Anosov closing lemma (see [C2, proposition 1.4]) ensures that the
chain-recurrence class H(p) contains hyperbolic periodic orbits whose Lyapunov exponent along E¢
is arbitrarily close to zero.

In the case there exists ergodic measures supported on K with negative Lyapunov exponent along
E€ but never contained in a small interval (—d,0), one can argue as in the proof of [C2, theorem 1]
and apply Liao’s selecting lemma. Once again, the chain-recurrence class H(p) contains hyperbolic
periodic orbits whose Lyapunov exponent along E° is arbitrarily close to zero.

In the remaining case, all the measures supported on K have a Lyapunov exponent along E° that
is equal to zero. In particular, E* is uniformly expanded on K. We have also assumed that E° is
thin trapped. As a consequence, one can choose over the maximal invariant set in a neighborhood
of K some plaques D and D with arbitrarily small diameter and that are trapped by f and f~!

respectively.
For any € > 0 there exists a periodic e-pseudo-orbit =g, z1, ..., T, = zg contained in K such that
the quantity
1 n—1
- > “log || D fige ()|
k=0

is arbitrarily close to zero. By the weak shadowing lemma [C2, lemma 2.9], there exists a periodic
orbit Op contained in an arbitrarily small neighborhood of K and whose Lyapunov exponent along
E*€ is close to zero.
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The unstable manifold of a point z € K close to Og intersects a center-stable plaque of Ogy. Since
these plaques are trapped and E€ is one-dimensional, this implies that the center-stable plaques of
Oy contains a periodic orbit O whose stable manifold intersects W*(z). On the other hand W*(0’)
intersects a center-unstable plaque of a point of H(p). As a conclusion O’ is contained in the chain-
recurrence class of p. Since the plaques D have a small diameter, the Lyapunov exponent of O’
along ¢ is close to the Lyapunov exponent of O, hence is close to zero.

The conclusion of the lemma has been obtained in al the cases. O

4 Continuation of chain-hyperbolic homoclinic classes

Let H(p) be a homoclinic class of a diffeomorphism f and assume that it is a chain-recurrence class
endowed with a partially hyperbolic structure E* @& E€@® E* such that dim(E¢) = 1 and the bundle
E® = E° @ E° is thin trapped. By lemma 3.8, the homoclinic class H(p,) is still chain-hyperbolic
for the diffeomorphisms g close to f. We explain here, how in certain sense, the points in H(p) can
be continued in H(py). If f is far from strong homoclinic intersections, proposition 4.5 shows that
the points of H(py) are in correspondence with the continuation of the points of H(p) up to some
identifications and blow-ups in the central direction (that can be compared with the blow-up of an
Anosov diffeomorphism during the construction of a “derived from Anosov” map).

4.1 Preliminary constructions

Local central orientation. The bundle E€ on H(p) is one-dimensional and locally trivial. More-
over it depends continuously on the dynamics f. One deduces that for any g, ¢’ close to f, the
orientations of £y  and E;,@, for two points # € H(py) and 2’ € H(py ) can be compared provided
and =’ are close (say at distance less than €). To make this precise, one can cover a neighborhood of
H(p) by a finite number of open sets U; endowed with non-singular one-forms «; such that «; never
vanishes on the bundle E¢. Two close points x, 2’ belong to a same open set U;. Two orientations
on Eg . and Eg,’w, match if they both coincide with the class of «; or the class of —a;. If x, 2’ are
close enough, this does not depend on the open set U; containing {z,z’}. If one considers another
collection of pairs (U], o;), the orientations on Ef , and EY, o still match if the distance between

and 2’ is small and g is close enough to f.

Plaque families. In the following one fixes § > 0 small which is a lower bound for the modulus
of the Lyapunov exponents of p, for g close to f. One chooses some continuous collections of plaque
families (Wg*) for the diffeomorphisms g close to f as given by lemma 3.8. Since E° is thin trapped,
the plaques may be chosen with a small diameter so that the properties stated in lemma 2.2 hold.
Also, by lemma 3.3, for ¢ that is C''-close to f and for any periodic point ¢ € H(py) whose Lyapunov
exponents along E° are smaller than —3/2, the plaque Wy 1s contained in the stable set of g.
One will consider local manifolds W5,.(z) and W', ,.(z) for € H(p,) with a small diameter so

g
that W;l oc(®) intersects a plaque W’ in at most one point and the intersection is always transversal.

Shadowing. Then, one chooses ¢ > 3¢’ > 0 so that the following lemma holds and so that for any

g, ¢ close to f and any x € H(py) and y € H(py ) satisfying d(z,y) < e the local manifold W;loc(m)
intersects Wg7 .
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Lemma 4.1. There exists € > 3¢’ > 0 small such that any diffeomorphisms g,q’ close to f satisfy:

—ifx,y € H(pgy) are two points such that the forward orbit of x is e-shadowed by the forward

orbit of y, then y € Wg%.;

— if x,y € H(py) are two points €'-close such that y belongs to WS3,, then the forward orbit of x

9,27
is 5-shadowed by the forward orbit of y;

— for any periodic orbit O C H(py) of g whose central Lyapunov exponent is smaller that —0,
any periodic orbit of g’ that e-shadows O also £’'-shadows O, has a central Lyapunov exponent
smaller than §/2 and is homoclinically related to pgy; moreover any point x € H(py) whose
backward orbit e-shadows O belongs to the unstable manifold of O.

Proof. We prove the first item. Let us consider the intersection point z between Wg7, and Wg, el W)
By uniform local invariance of Wg*, one checks inductively that the point g"(z) is ‘the mtersectlon
point between Wgcfg”(x) and W loc( "(y)) for n > 0. If z # y, since z and y belong to the same
unstable leaf, the distance d(g ( ),9"(y)) increases exponentially and becomes much larger than e,
contradicting that the distance between ¢"(x) and ¢"(y) is bounded by €. One deduces that y = z,
hence y belongs to W,

Now we choose &’ << ¢ and prove the second item. Since E“ and E" are thin trapped by f and
f71, lemma 3.8 associates some continuous trapped plaque families WCS and Wc“ over H(py) for
g close to f with diameter smaller than £/3. From lemma 2.2 if ¢’ is small enough then for any
z,y € H(py) such that y € W¢7, and d(z,y) < €', the point y belongs to )7\/\531 By the trapping
property, g"(y) belongs to WCS n(z) for any n > 0, hence d(¢g"(x), 9" (y)) < £/3 as required.

We then prove the propertles of the third item. We first note that if g, ¢’ are close to f and ¢ is
small enough, then any periodic orbit O’ of ¢’ that e-shadows a periodic orbit O of H(p) still has a
partial hyperbolic structure and has Lyapunov exponents close to those of O. This proves that the
central Lyapunov exponent of O’ is smaller than —d/2.

One deduces from lemma 3.3 that for some point ¢’ € O’ the stable manifold of ¢ has uniform
size inside ng e From lemma 3.2, there exists a dense set of periodic points z € H(py) whose
stable manifold has a uniform size. If € is small enough and g, ¢’ close enough to f, one thus deduces
that ¢’ is close to a point of H(py ). From the uniformity of the invariant manifolds, we deduce that
the stable and unstable manifolds of ¢’ intersect the stable and unstable manifolds of a hyperbolic
periodic orbit homoclinically related to pg. In particular, O" is homoclinically related to py.

Let us consider again, as given by lemma 3.8, some continuous plaque families Wﬁs and W,‘iu
over H(py) for h close to f with diameter much smaller than . From lemma 2.2 there exists p > 0
such that for any g close to f and any = € H(py), the ball B(z,p) in W?, is contained in Wgsx

From the trapping property, the following holds for 9,9 g close to f: if éIH(pg) and y € H(py)
such that d(z,y) < e satisfy that W, ,.(y) intersects Wgsx, then the same holds for g(z) and ¢'(y).
Using the estimate (3.1) in the proof of lemma 3.3, there exists a uniform integer N > 1 and an
iterate ¢ € O such that g (Wg3,) has radius smaller than p, hence is contained in W;ng (@) Let us
choose ¢’ € O’ such that d(¢'"(¢’), ¢"(q)) < € for each n € Z. Provided that g, ¢’ have been chosen
close enough to f, the intersection z, between W, (¢"(¢’)) and Weiin(g for 0 <n < N are close

to the N first iterates of zg under g, hence zy is contained in W N Q) By our construction, one
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deduces that W4

g’ loc

(¢'"(q")) intersects W\gsgn @ for any n > N, hence any n € Z. With the same
argument, ng o) intersects W;Zn (q)? for any n € Z. Since the diameter of the plaques We and

We is much smaller than &', one deduces that ¢"(¢) and ¢'"(¢') are at distance smaller than &’. We
have proved that O is e’-shadowed by O'.

Let us now consider a point € H(p,) whose backward orbits e-shadows the backward orbit of
a point ¢ € O. Let us introduce for each n > 0 the intersection point 2, between W;,.(97"(x)) and
ngg_n (@ By construction one has ¢g(z,+1) = 2z, and in particular zg is contained in the intersection

of the g”(Wgsg_n(q)). By assumption gcsg_n(q) is contained in the stable manifold of ¢g~"(q). This

proves that zg coincides with ¢q. As a consequence zg belongs to W;fl ocl@)- ]

4.2 Continuation of uniform periodic points

The periodic points with uniform Lyapunov exponents have a uniform hyperbolic continuation.
Lemma 4.2. There exists a simply connected open neighborhood U C Diﬁl(M) of f such that:
— The hyperbolic continuation of p exists for any g € U and the class H(py) is chain-hyperbolic.

~ For any g € U and any periodic orbit O C H(py) of g whose central Lyapunov exponent is
smaller than —9§, the hyperbolic continuation Oy of O exists for any ¢ € U and is homoclin-
ically related to py. Moreover its central Lyapunov exponent is still smaller than —§/2, and
Oy is 5-shadowed by O.

Proof. Lemma 3.8 gives the existence of an open set U satisfying the first item.

Let us consider a path (7¢):ejo,1] in U between g and ¢’ and the maximal interval I containing 0
where the hyperbolic continuation O; of O is defined and ¢/2-shadows O. If I = [0,tg) with 9 < 1,
one can consider a periodic orbit Oy, for g, that is the limit of a sequence of orbit O; for t < ty. By
construction Oy, e-shadows O, hence Oy, has a central Lyapunov exponent smaller than —¢/2 and
also ¢’-shadows O by lemma 4.1. Since &’ < €/3, we have contradicted the definition of t;. Hence,
the orbit O has a hyperbolic continuation Oy for ¢’. Since U is simply connected, this continuation
is unique. We have shown that O is &’-shadowed by Oy, hence by lemma 4.1, Oy is homoclinically
related to py, has a central Lyapunov exponent smaller than —d/2. Since ¢’ < ¢/3, all the properties
stated in the second item are satisfied. O

This justifies the following definition.

Definition 13. Let us denotes with P, the set of hyperbolic periodic points ¢ € H(p) homoclinically
related to the orbit of p whose continuation g, exists for any diffeomorphism g € ¢/ and such that
for some g € U the central Lyapunov exponent of g, is smaller than —d.

Since for any g € U the central Lyapunov exponents of p, is smaller than —d, there exists a dense
set of periodic points in H(py) whose central Lyapunov exponent is smaller than —4. By lemma 4.2,
one deduces that the continuations g, of points in ¢ € P are dense in H(p).

Note also that by lemma 4.2 the central Lyapunov exponent of ¢, for ¢ € P is smaller than —¢§/2;
hence the plaque W7, is contained in Wg (gq)-
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4.3 Pointwise continuation of H(p)

Definition 14. For any g,¢' € U, one says that two points © € H(py) and 2’ € H(py) have the
same continuation if there exists a sequence of hyperbolic periodic points (p,) in P such that (pn g)
and (py, 4) converge toward x and 2’ respectively.

This implies that ¢*(x) and ¢’*(2') have the same continuation for each k € Z.

By compactness and density of the points g, with ¢ € P, one sees that, for any g,¢' € U, any
point & € H(pgy) has the same continuation as some 2’ € H(py). In general 2’ is not unique. The
following implies that if 2/, 2 € H(py) have the same continuation as z, then x4 belongs to e

£31

Lemma 4.3. For any g,¢9' € U, let us consider v € H(py) and ' € H(py) such that x and x’ have
the same continuation. Then, the orbits of x by g is §-shadowed by the orbit of ' by g

As a consequence, if v1,72 € H(py) are €'-close and satisfy o2 € W7, , then for any 7,25 €
H(pg) such that x;,x} have the same continuation for i = 1,2, one still has x4 € W;;Sx,l.

Proof. Let us consider a sequence (p,) € P whose continuations (pp g), (pn,g) for g and g’ converges
toward x and ' respectively. From lemma 4.2, the orbit of (p4) by g is §-shadowed by the orbit
of (pn,g) by ¢'. Taking the limit, one deduces that the orbit of 2 by g is §-shadowed by the orbit of
' by ¢'.

If z1,z0 € H(py) are e’-close and satisfy zo € Wg%,» by lemma 4.1 the forward orbit of z3 is
s-shadowed by the forward orbit of z1. By the first part of the lemma, one deduces that for any
xh, x5 € H(py) such that z;, 2} for ¢ = 1,2 have the same continuation, then the forward orbit of z

by ¢’ is e-shadowed by the forward orbit of 2, by ¢’. By lemma 4.1, this implies that 2, € e O
T

One then shows that if z is a hyperbolic periodic point in P, then 2’ coincides with its hyperbolic
continuation (hence is unique). This is also true for the unstable manifold of points in P.

Lemma 4.4. For any g € U, let g4 be the hyperbolic continuation of some point ¢ € P and let
us consider some point x € W' (qq) N H(pg). Then, for any ¢ € U, there exists a unique point
' € H(py) which has the same continuation as x; moreover x’ belongs to W*(qy) and varies
continuously with ¢'. In particular the hyperbolic continuation qg of qq is the unique point in H(py)
such that q4 and qy have the same continuation (in the sense of the definition 14).

Proof. Let us consider any 2’ € H(py) which has the same continuation as x. From lemma 4.2, the
3

orbit of gy by ¢’ is §-shadowed by the orbit of g, by g and from lemma 4.3, the orbit of x by g is
5-shadowed by the orbit of 2’ by ¢'. There exists N > 1 such that the backward orbit of g~V (z) is

¢-shadowed by the backward orbit of g~ (g,). Hence the backward orbit of ¢’ N(a) is e-shadowed

by the backward orbit of ¢’ _N(qg/). By lemma 4.1, = belongs to the unstable manifold of g~ (gq)- Tt
remains to prove that «’ is the only point in H(p,) which has the same continuation as « € H(py).

Let o, x5 € H(py) be two points that have the same continuation as z € H(py). By lemma 4.3
their orbits under g’ both £-shadow the orbit of x under g. By lemma 4.1, ¢""(x5) belongs to
W ey for each n € Z. When n goes to —oo, the points g"(xh) and ¢'""(z)) are contained in
a small local unstable manifold of the orbit of g, . Since the plaques W}, and W intersect in at

most one point, this implies that =} = 5.
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Let us denote by x, the point which has the same continuation as z. In order to prove the
continuity of the map ¢’ — x4, one considers any limit point z’ of points 2, when ¢’ goes to g. As
before, the orbit of x by g is e-shadowed by the orbit of 2/, so that ¢"(z’) belongs to the unstable
manifold of the orbit of ¢ and to W;fgn (2) for each n € Z. This implies x = 2. O

Remark 4.1. Lemma 4.4 also implies that definition 14 does not depend on the choice of § and U.
Indeed, if one considers §e (0,0) and U C U another neighborhood of f, then one gets two sets of
periodic points P C P. Let us consider g,9 € U and two points x € H(py), ' € H(py) which have
the same continuation on U with respect to ﬁ; we claim that they also have the same continuation
with respect to P. Indeed one considers a sequence (p,) in P such that (Pn,g) converges toward .
Then, for each n there exists p, € P such that p, 4 is close to p, 4. By lemma 4.4, p, o is close
to Dn,g/, hence one can obtain a sequence (p,) in P such that (p,4) converges toward x and (py,¢)
converges toward x/, as wanted.

4.4 Continuations far from strong homoclinic intersections

For g € U we define H(p,) as the set of pairs £ = (z,0) where z € H(p,) and o is an orientation of
E¢,, such that z is accumulated in H(p,) N Wy5" where W5%" is the component of Wes \ Wi ()

g9, T loc
determined by the orientation ¢ as introduced in section 3.5.

—_——

One can view H (py) as a subset of the unitary bundle associated to £ over H(pg). The dynamics

of g can thus be lifted to H(py) and defines a map §. One also defines the projection my: H(py) —
H(pgy) such that my(z,0) = .

Proposition 4.5. Let H(p) be a homoclinic class of a diffeomorphism f € Diff" (M) such that
— it 1s not a periodic orbit,

— 18 a chain-recurrence class endowed with a partially hyperbolic structure E° & E° @ E" such
that dim(E°) =1 and E° = E* & E° is thin trapped.

In a C-small neighborhood U of f in Diff' (M) we consider a C"-open connected setV C U such that
there is no diffeomorphism g € V whose homoclinic class H(pg) has a strong homoclinic intersection.
Then, for each g,g' € V, the following holds:

—_—

a) (Lifting). The map my: H(py) — H(pg) is surjective and semi-conjugates g to g.

b) (Continuation of the lifting). For any &, = (z4,0) € H(py), there is a unique Ty = (zy,0') €

H(py) such that xg = my(Z4) and xy = my(Zy) have the same continuation and such that the

P

orientations o on Ej, and o’ on Eg/’zg/ match; this defines a bijection ®4 o : H(py) — H(py).
We denote @, := &y ,.

c) (Continuation of the projection). For any x4, € H(py) and xy € H(py) having the same contin-

P

uation, there exists T € H(p) such that my(®y(Z)) = x4 and 7y (Py(T)) = x4 .
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Remarks 4.2. One may consider on H(p,) the topology induced by E7. This set is in general not
compact since a sequence of points x,, € H(p,) that are accumulated in H (pg) ﬂWﬁSx: may converge
toward a point x € H(p,) which is not accumulated in Wy, %, One can show however that the map
(9,Z) — ®4(Z) is semi-continuous.

The next lemma is used in the proof of the proposition 4.5 and of lemma 4.7.

Lemma 4.6. Let us consider qi,q2 € P and g,g' € V such that d(q1,4,q2,4) < €/3. If W, loc(ng)
cs,+

intersects Wygy ,, then Wi . (q1,4) does not intersect Wg g

Proof. By lemma 4.2 and our choice of ¢, one has d(qi 4,q2,1) < € for any h € U, hence W}, (q1,n)

intersects WCS . Now, Wp5 oe@2,n) is one-codimensional in Wﬁsq” and varies continuously with
h. Let us assume that W, .(q1,4) intersects WSS G2, and that Wi, (q1) intersects Wg oy

By connectedness of V, one deduces that for some hg € V the local manifolds Wy, .(q15,) and
Wit 10e(@2,h0) \ {q1,no} intersect. By using lemma 2.9 one gets a diffeomorphism h € V having a
strong homoclinic intersection in H (py), giving a contradiction. O

Lemma 4.7. Under the setting of proposition 4.5, if (gn) converges in V toward g and (&) toward
Z in I?Z;), then any limit T of (®g, (Tn)) satisfies my(T) € Wgs, \ Wyt where x4 = m4(Z).

Proof. Let us assume by contradiction that Z belongs to Wgsg,;g There exists a sequence (p,) in P
that converges toward xy = m;(Z) such that W} _(p,) intersects Wg7 " and (pp.g, ) converges towards
z. By proposition 4.5, the sequence (p, 4) converges toward xz,. Hence, one can consider n large
such that p, 4 is close to z4. By continuity of the map h + p,, j, the point p,, j is still close to xj, for
a diffeomorphisms h nearby. For m large enough, p, 4, is close to x4 and py, g4, is close to Z. One
deduces that Wit (pn.g,,) meets Wg . On the other hand, since W} (p,) meets W57, the

local manifold W} (pn,g) meets Wg . The lemma 4.6 below contradicts our assumption that f is
far from homoclinic intersections. O

msPm,gm

Proof of proposition 4.5. We introduce the open set U and the collection of periodic points P as in
the previous sections.

The item a) of the proposition is a direct consequence of lemmas 3.11 and 2.9. The item b) is
first proved in the case x4 is the hyperbolic continuation g4 of a periodic point ¢ € P. In this case
there is only one possible continuation z,. We are thus reduced to prove.

Claim 1. Consider any periodic point ¢ € P and an orientation o on Eg. If q4 is accumulated by
H(pg) N Wy q’+ for some g € V, then the same holds for any g.

Proof. Let us consider g € V such that ¢, is accumulated by H(pg) N Wgs *. In particular, there
exists a sequence (p,) in P such that (pyq) converges toward ¢, and W zoc(p” ) intersects W;

By lemma 4.4, the sequence (p, ) converges toward qy. Moreover W ' 1oc(Dn,g') does not 1nter—
sect W77 oc(dg’) since this would contradict our assumptions by lemma 2.9. Also by lemma 4.6,

Wi 10c(Pn,g’) does not intersects W;,‘i’q_g,. One thus deduces that W, .(pn,g) intersects )/VCS’Jr The

intersection point belongs to H(py) by lemma 3.6, hence ¢ is accumulated by H (py) N Wgs q+ O
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We now prove the item b) in the general case.

Claim 2. Let us consider x4 € H(py) and xg € H(py) and a sequence (pn) in P such that (pp,g)

converges toward xg and (pn.g) converges toward xy. If the local unstable manifolds W, loc(pnyg)

intersect Wgsf, then there exists another sequence (py) in P having the same properties as (pn) and

which satisfies furthermore that the local unstable manifolds W;,loc(ﬁn,g’) intersect Wg r,

r°

Proof. We first remark that each point (Pn,g), with n large enough, is accumulated by H (pg) "Wy .

9,Pn,g*

Indeed, W', .(p14) intersects Wesr , for n large at some point y, which belongs to H(py) by

lemma 3.6. By lemma 3.3, WCZ): , is contained in the stable manifold of p, 4, hence the forward
orbit of y,, accumulates the orbit of p, 4, proving the announced property. From claim 1, the points

Pno are also accumulated by H(p,) N WS
g 9 9" \Pr, g

Now we note that W loc(pn ¢) does not intersect Wg}s’;,. Indeed, if this occurs, one would
g
deduce that for m > n the manifold W, .(py,¢) intersects W;f,’l);g, and that W',,.(pn,g) intersects

Wg:}; ,+ By lemma 4.6 this would contradict our assumptions. If W;,’loc(pn,g/) intersects ng; ’;;/ for a

subsequence (pp) of (py), the claim holds. We thus reduced to consider the case W . .(pp,g’) intersect

. . . . +
7 10c(Tg). We denote by 2, the intersection. Since py gy is accumulated by H(py) N W;,S Pyt

lemma 3.10 implies that there exists p, € P such that
~ Dn,g is close to py, o (hence (py) has the same properties as (py)),
= W5 10e(Pn,g) intersects Wcs J;/ as announced.

O

e~

The last claim implies the existence statement of the item b): if Z, belongs to H(pg4), one may
approximate the points of H(py) N Wgs by periodic points that are the continuations for g of
points in P. Hence, there exists a sequence (p,) in P such that W, .(pn,g) intersects Wg for
each n. Taking a subsequence, one may also assume that the points p,, , converge toward a pomt
zy € H(py). One defines Ty = (x4,0) such that o is the orientation with matches with the
orientation of Z,. By the previous claim, one can replace the sequence (p,) by another one (py)
such that (py,g) still converges toward xy and furthermore Wi, .(Dn,g/) intersects Wgc,s ’;;/ for each

—_~—

n. The intersection point belongs to H(py) by lemma 3.6, hence &, belongs to H(p, ), as required.

Claim 3. For any g1,92 € V, let us consider x1 € H(pg,) and xo € H(pg,) having the same
continuation. Then, there exist two matching orientations on Eg . . Eg .. and a sequence (pn)
in P such that (py,g,) converges toward z; and the local unstable manifolds W! ,.(pn.g,) intersects

Cf;t fori=1,2.

Proof. By assumption, there exists a sequence (pQ) in P such that (p? g) converges toward z;
for i = 1,2. We first replace (p!)) by a sequence (p.) so that Wy 1o (PE 1) does mnot intersect

ss
gi,loc

(pL); otherwise, one can assume that W 1oe (P2 ) intersects W7s, (z1) for each n > 0. From

(w1): if there exists a subsequence of (p¥) which has this property, we get the subsequences
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lemma 3.10, there exists y € WCS arbitrarily close to p! g such that its unstable manifold
g,p. n 91 )

intersects Wgy \ W, .(z1). One can approximate y by a point p}l’gl with p. € P. Doing this for
each n, one gets a required sequence (pl.) such that (p,lhgl) still converges toward x1. By lemma 4.4,

one can ensure that the sequence (p}, 92) converges toward z2. By choosing the orientations on Ef .

one can now assume that W, Oc(pn 1) intersects Wy :1 By the claim 2, one can modify again the

sequence (pl) and replace it by a sequence (p,) having the required properties. O

One can now conclude the uniqueness part of the item b). Let us assume by contradiction that

P

Zy € H(pgy) has two distinct continuations :E;,,ig, in H(py) as stated in item b). By lemma 4.3,

one may assume that :c1, belongs to Wcs’f . Claim 3 provides us with two sequence (pf), i = 1,2.

Tyt
On the one hand W“loc(png) intersects W5 4, » hence for n > 1 and m > n, W“loc(png) intersects
W T . On the other hand x , € WC,S’ 2 5 hence W loc(png ) intersects W R By lemma 4.6,

m,g! Tyt m,g’

this contradicts our assumptions.

The item c) is a direct consequence from the claim 3. U

P

Corollary 4.8. Under the assumptions of proposition 4 5, let us consider g € V and T,y € H(py)
such that the projections x = mg(Z) and y = m4(y) are €’'-close and satisfy y € 7 70e(T)-
Then, for any g’ € V the projections ' = 7y (Z') and y' = 7wy (§'), associated to the continuations

i',g € H(py) of T,7, still satisfy y' € W, and the open region in W, bounded by Wi (z) U
WEE(y') does not meet H(p). When the omentatwns of & and § match, one also has y' € Wi ,.(2').

Proof. Let us consider two points Z,4 whose projections are £’-close and satisfy y € Wy Then,
the same holds for ¢’ and the continuations 2/, 4y’ by lemma 4.3.

The point z is the limit of a sequence (pp) with p, € P such that W} (p, ,) intersects Ws™™"
We claim that 3’ does not belong to W;,S’Jr. Let us assume by contradiction that this is not the
case. On the one hand y does not meet Wgs’+ whereas W, (pn,g) intersects WS . this implies
that W} _(pn,g) intersects the component of W \ 770c(y) corresponding to the orientation of Z.
On the other hand for m large p,, , is close to x, hence W (Pm,g) intersects the component of

\ Wi .(y') corresponding to the reversed orientation of . There exists ¢ € P such that g,
and qg are arbltrarily close to y and 3/ respectively. Hence, W lOC(Pn ¢) intersects one component of
W \Wiiee(dg) and Wi, .(pn,g) intersects the component of W ¢ \ W5 10e(dg) which corresponds
to the other orlentatlon From lemma 4.6, this implies that there ex1sts h € U such that H(py) has
a strong homoclinic intersection, contradicting our assumptions.

Similarly, 2’ does not belong to ch’; for the orientation on E¢ induced by .

When the orientations of & and § match, this implies that ¢’ belongs to Wi oe(@'). When the

orientations differ, W, .(z') and W%, (y') bound the open region WCS +n WCS . If there exists
apoint z € H (p) whose projection by 7, belongs to this region, the discussion above proves that
the projection of its continuation for g also belongs to Wy N Wy . But for g this open region is

empty since y € W5, (x). This is a contradiction. Hence the open region bounded by W 7 10c(T")
and W*,,.(v) in W7, does not meet H(py). O
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Corollary 4.9. Under the assumptions of proposition 4.5, let us consider a diffeomorphism g € V
and a hyperbolic periodic point q4 whose hyperbolic continuation qg is defined and homoclinically
related to the orbit of py for each g’ € V.

Then, for g €V, qg is the unique point in H(py) which has the same continuation as qq.

Proof. 1t is enough to prove that in a small neighborhood of g, the point g4 is the unique point
in H(py) which has the same continuation as gg. Let us consider a sequence (p,) in P such that
Pn,g accumulates on gg and W', (pn,g) intersects ng]’j. One may also choose the p, such that

W;floc(qg) intersects Wgp, .. By lemma 4.2, for any ¢’ € V, the limit gy of (p,,¢) is a periodic point

in W, \ Woa,, - Also Wi, (g, ) intersects W;f,’p_n’g,.
For n large and ¢’ close to g, the points p, » and g, are close: this implies that g, is contained
in a small neighborhood of ¢y . Since gy is uniformly hyperbolic for any ¢’ close to g, this implies

that g, and g, coincide, as claimed. 0

5 Boundary points of quasi-attractors

We discuss the properties of chain-hyperbolic homoclinic classes as in the previous section that are
furthermore quasi-attractors. In particular, we conclude the proof of proposition 2.15. The following
slightly more general setting will be considered.

— Let V. C M be an invariant open set which is a trapping region f(V) C V.

— Assume that the maximal invariant set in V' is endowed with a partially hyperbolic splitting
E* @ E°® E" such that dim(E°) = 1.

— Let H(p) C V be a chain-hyperbolic homoclinic class with the splitting £ @& E* = (E* @
E°) @ E* and containing the unstable manifold of p.

In particular, H(p) is saturated by the unstable leaves, tangent to E*, and U is foliated by a forward
invariant foliation which extends the strong stable lamination tangent to E?°.

5.1 Comparison of unstable leaves through the strong stable holonomy
Let us assume that H(p) satisfies the following property.
Strong intersection property: there exist v,y € H(p) with y € W*5(z) \ {z}.

As explained in section 2.4, this property prevents the class to be contained in a lower dimensional
submanifold tangent to E¢ ® EY.

For any point « € H(p), we fix arbitrarily some plaque D transverse to W;’* (x) and define for any
z close to W% () the projection II**(z) € D through the strong stable holonomy. When z belongs
to H(p), the map II* is a homeomorphism from a neighborhood of z in W" to a neighborhood
of TI**(2) in D. Hence, the projection IT**(W}* (2)) is a one-codimensional topological submanifold
of D. In particular, in a neighborhood of z, the set D \ II**(W}*.(2)) has locally two connected
components.

Definition 15. Let us fix g > 0 small. The following situations can occur.
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— The transversal case. There exists z,y € H(p) with y € W (z) \ {«} such that II**(W2_(y))
intersects both components of I1°°(B(z, g9)) \ II**(W}%.(2)).

— The jointly integrable case. There exists z,y € H(p) with y € W (x) \ {«} such that
15 (W (x)) and IT°* (W} (y)) coincide in IT**(B(z, o).
— The strictly non-transversal case. For any x,y € H(p) with y € W% (z)\ {2}, the projection

1% (W .(y)) intersects one of the components of II**(B(x,ep)) \ II**(W}%.(x)) and is disjoint
from the other.

Note that these definitions do not depend on the choice of the plaque D. Clearly one of these three
cases happen. The transversal and the jointly integrable cases may occur at the same time. The
strictly non-transversal case is quite particular.

Lemma 5.1. Let us assume that H(p) does not satisfy the transversal case and consider two points
x,y € H(p) withy € W2 (x)\{x}. Fore small, if II°* (W} (y)) intersects 11°°(B(x, ) \II**(W} .(x)),
then x and y are not accumulated by H(p) in the same component of Ws* \ W (x).

Proof. Note that if € is small enough and if II**(W}%_(y)) intersects I1%*(B(x, €)) \ II**(W}%.(x)), then
I (W, (2)) intersects T1°* (B(y, =0)) \ T (Wi, (1))

We denote by U, Uy the local connected components of II°*(B(z, ¢)) \ II** (W} (z)) such that
I1°° (W, (y)) meets U, and is disjoint from U}. We also denote by U,", U, the local connected
components of I1°*(B(y, g9)) \ TI**(W%.(y)) such that TI°*(W} (z)) meets U, and is disjoint from
U, - In particular, U C U,

Let us assume by contradiction that y is accumulated by H(p) from the side of Wg* \ W (x)
which projects in U;. Let us consider a point z € H(p) close to y and which projects inside U .
Its local unstable manifold is close to the unstable manifold of y, hence II**(W}%_(2)) meets U, also.
This implies that we are in the transversal case which is a contradiction.

Similarly if x is accumulated by H(p) from the side of Wg* \ Wi* (x) which projects in U, we

loc\
find a contradiction. One deduces that x and y can not be accumulated by H(p) on the same side

of Wes \ Wi (). 0

loc\T

5.2 Structure of the stable boundary points

For quasi-attractors not in the transversal case, we prove that the stable boundary points (see
section 3.5) belong to the unstable manifold of a periodic orbit.

Proposition 5.2. Let H(p) be a homoclinic class such that

— H(p) is a quasi-attractor endowed with a partially hyperbolic structure E® @ E¢® E" such that
E€ is one-dimensional and E°° = E°* @& E° is thin trapped,

~ for any periodic points q,q' € H(p) homoclinically related to the orbit of p, the manifolds
Wss(q) \ {q} and W*(q') are disjoint,

— the transversal case does not hold.

Then any stable boundary point of H(p) belongs to the unstable manifold of a periodic point.
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Proof. Let = be a stable boundary point of H(p). Let us assume by contradiction that the point z
does not belong to the unstable manifold of a periodic point. In particular, the unstable manifolds
WH(f"(x)) for n € Z are all distinct.

Let us consider a point ¢ in the a-limit set of x. By considering a plaque transverse to W ((),
the holonomy II*® is well defined in a neighborhood of {. Since E® is thin trapped, the plaques
of the family W can be chosen small and one may thus assume that one of the components of
W\ Wi (x) is disjoint from H(p). Let us introduce two backward iterates 1 = f~"(x) and
xy = f~"(x), of x close to (. By the trapping property, one of the components of Wg* \ W (x;) is
also disjoint from H(p) for ¢ = 1 and 7 = 2. Since z; and xy are close, it makes sense to compare
the orientations of E{ and ES. Choosing different iterates 1 and z9 if necessary, one may assume
that the tangent map D f"~™: Ef — EZ  preserves the orientation.

Claim 5.3. Ezchanging x1 and x if necessary, W3 (x2) meets W} (x1).

Proof. Observe that the plaque W5 meets W} (x1) at a point 2} € H(p). One chooses a small
path t — x1(t) inside W} _(z1) between z1 = 1(0) and 2} = x1(1). Since H(p) is a quasi-attractor
this path is contained in H(p). Each plaque W;f(t) meets W} (x2) at a point x2(t), defining a path
t — xa(t) inside W (x2) N H(p).

For any t € [0, 1], the plaques W;f(t) and W;j(t) projects by II** on a C' curve () which is
topologically transverse to II°*(W}" (x1)) and II**(W}" (x2)). The set D\ II**(W}? (x1)) has locally
two connected components U™, U~. Hence, v(t)\II**(z1) has two connected components y*(¢) C U™
and v~ (t) C U~ for each t.

Let us consider the components ’yfc := v%(0). By lemma 3.11 and since x is a stable boundary
point, TI**(H (p) N WE®) meets one of them, ;, and is disjoint from the other one, ~4;". Similarly,
we define 75,7, the connected components of (1) \ II**(22), such that II**(H (p) N WSS ) meets the
first and is disjoint from the second. One deduces that y;r is contained in U™ or in U~. Recall that
v{ € U*. Since Df™~™ preserves the local orientation of E, the orientations on ;" and ~;” match
and ~, is contained in U™.

As a consequence 15 (W (7)) is disjoint from 77" := 4+ (0) and from v, := v~ (1). Since we are
not in the transversal case, one deduces that IT**(W}% _(z2)) contains IT**(x;) or II**(z) ). Exchanging
x1 and x4 if necessary, one has W*5(z) = W*5(x9). O

Let us denote z} the intersection point between W (x2) and W} (x1). Since 3 is a boundary
point, one connected component of Wy \ W (x2) is disjoint from H(p). By lemma 3.11 the other
component contains sequences of points of H(p) that accumulate on z3 and 2. One deduces from
the lemma 5.1 that the projections of W} (x1) and W} (x2) through the strong stable holonomy
match. Consequently, there exists a periodic point ¢ € H(p) such that W} (z1) and W}%_(z2) project
on W"(q) by the strong stable holonomy. Note that when 1,z are arbitrarily close to (, the point
q is also close.

If ¢ and ¢ are distinct, one may consider backward iterates x/, 2, closer to (. One builds another
periodic point ¢’ € H(p). All the local unstable manifolds of x1,z9, ], 2%, ¢, ¢ have the same
projection through the strong stable holonomy. By lemma 3.4, ¢ and ¢’ are homoclinically related
to the orbit of p. This proves that W;5(¢) and W}“.(¢’) intersect, contradicting our assumption.

If ¢ and ¢ coincide, one can consider higher backward iterates f~"(z) in a neighborhood of
¢. They all have distinct local unstable plaques whose projection by the strong stable holonomy
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coincide. One deduces that one can find a sequence of such backward iterates which accumulates on
a point ' € W3 (¢) different from ¢. Repeating the construction near ¢, one builds a periodic point
¢' € H(p) distinct from ¢ and as before W% (q) and W} (¢') intersect, giving again a contradiction.

This ends the proof of the proposition. O

5.3 The transversal case

When H(p) is a quasi-attractor, the lemma 3.9 ensures that for diffeomorphisms g close to f the
unstable manifold W*(p,) is still contained in H(py).

Lemma 5.4. Let us assume that H(p) is a quasi attractor and consider f', C*-close to f, such that
the transversal case holds for a pair of points x # y in H(ps ). Then, for any two different hyperbolic
periodic points p., py homoclinically related to the orbit of py and close to x and y respectively, and
for any diffeomorphism g that is C1-close to f' there exist ' € W(py4) andy’ € W(py 4) in H(py)
satisfying W35(x') = W*(y/).

Proof. Let x,y € H(py) with y € W2 (x)\ {} such that the intersection between II**(W}%_(z)) and
155 (W} .(y)) is topologically transversal. Consider two periodic points p,,p, homoclinically related
to py and close to x and y respectively, so that the local unstable manifolds of p, and p, are close to
the local unstable manifold of  and y. This implies that IT**(W}“_(p,)) and II**(W}_(p,)) intersect
topologically transversally. By continuity of the local unstable manifolds and the local strong stable
holonomy this property still holds for any g close to f’: there are points ' € W .(pzgq),y €
W (py,g) such that W*(2') = W**(y/). By lemma 3.9, the local unstable manifolds of p, g, py.q
remain in H(p,) and therefore the points 2’,y’ are in H(p,). O

5.4 The jointly integrable case

The next lemma states that in the jointly integrable case either a heterodimensional cycle is created
by a C"—perturbation or for any point in the class there is a well defined continuation.

Lemma 5.5. Let us assume that H(p) is a quasi-attractor whose periodic orbits are hyperbolic,
that E° is thin trapped and that the jointly integrable case holds. Then for any r > 1 such that
f € Diff" (M), one of the following cases occurs.

— There exists g that is C"-close to f such that H(py) exhibits a strong homoclinic intersection.

— There exists a hyperbolic periodic point ¢ homoclinically related to the orbit of p, two maps
g xg,yy defined on a neighborhood V of f in Diff" (M) and continuous at f such that for
any diffeomorphism g € V the points x4, yq belong to H(pg) NW*(qy) and are continuations of
xf,yr. Moreover y, belongs to W2 (xg).

Proof. Note that by our assumptions the results of sections 3 and 4 apply. In particular for g C'-
close to f the class H(py) is still chain-hyperbolic and contains W"(p). Let us assume that the first
item of the proposition does not hold: on a C"-neighborhood V of f, there is no diffeomorphism
whose homoclinic class H(py) has a strong homoclinic intersection.

Recall that all the periodic orbits are hyperbolic. Since E° @ E° is thin trapped, they have
the same index and by lemma 3.4, they are all homoclinically related. There is no periodic points
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q,q € H(p) such that W=%(q) \ {¢} and W*(q’) intersect: otherwise, one gets a strong homoclinic
intersection by using lemma 2.9. In particular, the proposition 5.2 can be applied.

As in definition 15, let z,y € H(p) be two close points with disjoint local unstable manifolds
such that for any z € W} (z) N B(x,&0) we have W (z) N W (y) # 0. Observe that there exists
a periodic point ¢ € H(p) close to x whose local stable manifold intersects both the local unstable
manifold of  and y. Without lose of generality, we can assume that x,y belong to W} (q).

The point z,y do not belong both to the unstable manifold of some periodic points p,,p,:
otherwise, we would get a strong connection by applying lemma 2.9. We can thus now assume that
x does not belong to the unstable manifold of a periodic point. In particular, by proposition 5.2
it is not a stable boundary point and it is accumulated by points in H(p) from both connected
components of W \ W (x). The corollary 4.8 (in the orientation preserving case) implies that
there exist two maps g — x4, yy on V satisfying (z¢,y¢) = (x,y) and for any g close to f, the points
xg4,1q belong to H(py) and have the same strong stable manifold. The points x4, y, are accumulated
by H(pg) in the same component of Wg* \ Wil (z).

Let us prove the continuity. Since the point x is accumulated from both sides, it has two

continuations g — x4, x;. By lemma 4.3, for any g one has x; € ng . One can choose an orientation

of ES and by lemma 4.6 assume that for any g, the point x’g does not meet W§2+ By lemma 4.7,

the map g — x'g is semi-continuous at f: when (g,) is a sequence that converges to f, then any

limit Z’ of (7, ) does not meet Wi~ = W;>". One deduces that any limit z of (z,) does no meet
7

W;>" either. Since the map g — T4 is also semi-continuous, the limit  does not meet WEST. One
deduces that  belongs to W} (x). The orbit of Z is shadowed by the orbit of x, hence one deduces
that Z = x. Let us now consider any limit point § of (y4,). By construction it has to belong to

o (x) and W (y), and so § = y. We have thus proved that the maps g — x4,y, are continuous

at f. O

5.5 The strictly non-transversal case

In the strictly non-transversal case, roughly speaking is proved that either by perturbation is created
a strong homoclinic connection, or for a diffeomorphisms nearby the strong stable leaves contains
at most one point in the class or there are two periodic points such that for any diffeomorphisms
nearby their unstable manifolds intersects some strong stable leaves (see lemma 5.8).

Lemma 5.6. Let us assume that H(p) satisfies the strictly non-transversal case. Then, any close
points © # y in H(p) satisfying y € WS (x) are stable boundary points. Moreover they are not

loc

accumulated by H(p) in the same component of Wg* \ W (x).

Proof. Since H(p) satisfies the strictly non-transversal case and z,y are close, there exists y' €
Wi (y) and 2’ € W (x) such that ¥ € W2 (2') and for any € > 0, the manifolds II**(W}"_ (y'))
intersects II°*(B(2/,¢)) \ II**(W}.(2")). By lemma 5.1, they are not accumulated by H(p) in the
same component and in particular both are stable boundary points. O

For the points (x,y) as in the previous lemma the following property obviously holds (the open
region considered below is then empty):

(**) Wg* contains y. The open region in W5® bounded by WS (x) U W2 (y) does not meet H(p).

loc
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Note that this property already appeared in corollary 4.8. The next lemma states that the set of
such pairs (z,y) is quite small.

Lemma 5.7. Let H(p) be a quasi-attractor such that E is thin trapped, the strictly non-transversal
case holds and for any periodic points q,q' € H(p) the manifolds W*%(q)\{q} and W"(q) are disjoint.
Let us fix 6 > 0. Then, there exist N > 1 and finitely many periodic points p1,...,ps such that any
points x # y in H(p) satisfying (**) and d(x,y) > & belong to the union of the fN(Wy (pi)),
ie{l,...,s}.

Proof. We fix 6 > 0 small. We first note that by lemma 5.6 and proposition 5.2, any z,y as
in the statement of the lemma are stable boundary points and there exists some periodic points
Pz, Py € H(p) such that « belongs to W"(p,) and y to W*(py).

Let P be the (closed) set of pairs (x,y) € H(p)? satisfying (**) and d(z,y) > §. We have to
prove that if two pairs (z,y) and (2,y’) in P are close, then 2’ € W (z) and v/ € W}*.(y). This
is done by contradiction: we consider a sequence (Zp,yn)n>0 in P that converges toward (z,y) and
assume that all the leaves W}’ () are distinct. One may assume that z is accumulated by H(p)
inside W‘;S”L.

First we claim that W} (x,) does not cut W;** (x). Otherwise, we denote by z, the intersection
point. The plaque WZ? coincides with W;* in a neighborhood of 2, by lemma 2.2, hence z;, is not
accumulated by H(p) N W:>™ for n large. One deduces that z, and z belongs to the same local
strong stable leaf and are accumulated by points of H(p) N WSt and H (p) N WEST respectively,
contradicting the definition of the strictly non-transversal case.

Let II** be the projection along the strong stable holonomy on a disk D transverse to W% (z). The
projections II%(W}E (xy)), 1% (W (x)), II** (W} (y)), 1% (W2 (yn)) are one codimensional mani-
folds of D: by our assumptions, the one-dimensional curve v = II**(WV$°) meets them in this
order. Since we are in the strictly non-transversal case, the order is the same on any other curve
v =TI**(WS) where o' € W (z) is close to z. In particular, when ' is the intersection point be-
tween W (x) and Wg? , one finds a contradiction since W} (x) and W} (y) cannot intersect the open
region of W¢® bounded by W (x) UW’ (y) and by the same argument as above, W} _(x) "W} (z,,)

loc loc

and W} (y) N W2 (y,) are empty. This concludes the proof of the lemma. O

loc

Lemma 5.8. Let us assume that H(p) is a quasi-attractor whose periodic orbits are hyperbolic, that
E°® is thin trapped and that the strictly non-transversal integrable case holds. Then for any r > 1
such that f € Diff" (M), one of the following cases occurs.

— There exists g, C"-close to f such that H(pg) exhibits a strong homoclinic intersection.

— There exists g, C"-close to f such that for any x # vy in H(py) one has W**(z) # W**(y).

— There exist two hyperbolic periodic points py,p, homoclinically related to the orbit of p and
an open set V C Diff" (M) whose closure contains f, such that for any g € V the class H(py)
contains two different points x € W*(pyq) and y € W(py 4) satisfying W (x) = W*(y).

Proof. As in the proof of lemma 5.5, for g that is Cl-close to f the class H(p,) is still chain-
hyperbolic and contains W*(p). Moreover, one can assume that for any periodic points ¢,¢" € H(p)
the manifolds W*%(q) \ {¢} and W*(q) do not intersect. Let us fix § < 0 small. One can consider
the periodic points pq,...,ps and the integer N > 1 provided by the lemma 5.7. These points
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are hyperbolic, homoclinically related to p by lemma 3.4 and have a continuation for any g that is
C'-close to f. One may also assume there is no g in a C"-neighborhood of f such that H(p,) has
a strong homoclinic intersection. One can then consider the continuation given by proposition 4.5.
We also introduce the period 7; of each periodic point p;.

In a small neighborhood of f in Diff" (M), consider for each pair (p;, p;) the (closed) subset D; ;

of diffeomorphisms ¢ such that the class H(p,) contains some distinct points z € N TT(WE (Diyg))

and y € fNTT(WE (pjg)) with y € W (z). The diffeomorphisms in the interior of D;; are in the
third case of the lemma.

If the sets D; ; have empty interior, there exists an open set VV in Diff" (M) whose closure contains
f such that for any g € U, any p;,p; and any distinct points z € fNT7(WE, (piy)) and y €
fNFTI(WE (pjg)) one has y & W3 (x). To conclude, we have to prove that for g € U close to f and
any distinct points x,y € H(py) one has W% (z) # W?**(y), giving the second case of the lemma.
This is done by contradiction: one considers a pair (z,y) such that y € W% (z) and up to consider
a backward iterate, one can require that the points x,y satisfy d(z,y) > 26. Having chosen g close
enough to f, one deduces (lemma 4.3) that any continuations z ¢,y for f still satisfy d(xf,ys) > 0.

If z,y are accumulated in the same component of Wg* \ W% (x), then by corollary 4.8 (in the
orientation preserving case) the same holds for the continuations zf,y; for f. This contradicts
lemma 5.6.

If 2,y are accumulated in different components of WS \ W (x), then by corollary 4.8 (in
the orientation reversing case) the continuations xy,ys for f satisfy (**). Since their distance is
bounded from below by 4, lemma 5.7 implies that z ¢,y belong to f~ (W (p;)) and f¥ (W (p;))
respectively. By lemma 4.4, one deduces that for the diffeomorphism ¢ close, the points x,y belong

to gVt (W (pig)) and gV 7 (W (p;4)) respectively. This contradicts our assumption on g. [

5.6 Proof of proposition 2.15

Let us consider a diffeomorphism f € DiffHo‘(M ), @ > 0, and a homoclinic class H(p) as in the
statement of theorem 10 and assume that the two first cases of the proposition do not occur. If
the jointly integrable case holds, the lemma 5.5 gives the third case of the proposition. If the
transversal or the strictly non-transversal case holds, the lemmas 5.4 and 5.8 give the fourth case of
the proposition.

6 Periodic stable leaves: proof of theorem 11

In this section we prove theorem 11 and proposition 2.11. Let us consider:

1) A diffeomorphism fp and a homoclinic class H(py,) which is a chain-recurrence class endowed
with a partially hyperbolic splitting £° & E° & E* where E° is one-dimensional and E° & E°
is thin-trapped.

2) Some a € [0,1), a C'*t*diffeomorphism f that is C'-close to fy, an open neighborhood
V C Diff!™*(M) of f and some collections of hyperbolic periodic points qr, {Pﬁ,f}neN and
{PZ, f}neN for f such that the following properties hold.

— For g € V, the continuations gy, py, ,, Ph,g exist and are homoclinically related to p,.
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— For each g € V, the sequences (p;, ;) and (qh.g) converge towards two distinct points x4, y,
in H(py) N W} (qg) such that y, belongs to W2 (z,).

— The maps g — x4,y, are continuous at f.

We will show that if @ > 0 is small, then there exists a diffeomorphism g € V whose homoclinic
class H(py) has a strong homoclinic intersection.

Proposition 6.1. For any diffeomorphism fo and any homoclinic class H(py,) satisfying the as-
sumption 1) above, there exists ag € (0,1) and a C'-neighborhood U of f with the following propertsy.
For any o € [0, 0], any diffeomorphism f, any neighborhood V C Diff!**(M) and any maps g —
Tg,Yg satisfying the assumption 2), there exists a transverse intersection z € W*(qp) "W (a5)\{as}
and an arc of diffeomorphisms (gt)ie[-1,1) in V such that

— for each t € [—1,1], considering the (unique) continuation z; of z for gy, the center stable
plaque Dg intersects W}t (xg,) and W (yg,) at some points Ty and Jy;

— considering an orientation of the central bundle in a neighborhood of q, one has

: - : -
g-1€D; and §1 € Dy

Let us conclude the proof of theorem 11. By construction and lemma 3.6, for each ¢ € [—1,1]
the points z¢, 24, y; belong to the homoclinic class H (py, ). Moreover one can find for each n € N two
hyperbolic periodic points p;, , and Pw,g Whose continuations exists for every g € V, are homoclinically
related to p, and are arbitrarily close to the intersections 4,7, between W} (z,) and W} (x4) or
W (yg) respectively. By corollary 4.9, one can assume that the hyperbolic points Dpg and Din.g
are the hyperbolic continuations of points of P. For n large, W/;éc(ﬁ%) intersects W;;L’_ for g_1 and

Wﬁﬁ’+ for g1. One can thus apply lemma 4.6 and obtain a diffeomorphism g € ¥V which has a strong
homoclinic intersection. Note that the neighborhood V of f can be taken arbitrarily small. As a
consequence the perturbation ¢ is arbitrarily C''*®-close to f. Hence the proposition implies theorem

11.
6.1 An elementary C'*®-perturbation lemma

The perturbations in sections 6 and 7 will be realized through the following lemma.

Lemma 6.2. Let us consider a C'® map vy: R* — R, and two numbers D > 2D > 0. Then,
there exists a C'T%-map v: R — R which coincides with vy on the ball B(0, D) and with 0 outside
the ball B(O,ZA?) and whose C'*%-size is arbitrarily small if the C'1t%-size of vo and the quantity
D~(1+a) SUP (o 7) llvol| are small.

Proof. One chooses a smooth bump map p: RY — [0, 1] which coincides with 0 outside B(0, %ﬁ)
and with 1 inside B(0, D). The map v is then defined by v = p.vy.
When a > 0, we define Lip, (h) the a-Holder size of a map h, that is

h(z) —h
Lipg () = sup 122 = R
el
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We then denote by A, A" the C° norm of vg, Dvg and by A,, AL, the a-Holder sizes of vg, Dvg on
B(0, D). There exists a universal constant C' > 0 such that for any o € (0, 1] one has

Lip,(p) < C.D™*,
Lip,,(Dp) < C.D~(+9),

From inequalities above, it is easily to check that when the C1T size of vg is small, the C'T-size
of v is controlled by AD—(1+):

— The C° norm of v is smaller than A.
~ The C%norm of Dv is bounded by ALip,(p) + A’ < CAD™! + A’
— When a > 0, the a-Hélder constant of Dv is bounded by

A Lipy (p) + ALip,(Dp) + A, + sup | Dug| Lip,(p). (6.1)

B(0,2D)

Observe that the three first terms in (6.1) are small when A/ and AD~(+9) are small. Indeed the
usual convexity estimate gives
Aq < CAYFa) g1 o/ 070,

For any = € B(0, %]5) one has

[vo(x + u) — vo(2)]|
lul

|Duo(a)]| < C. | sup
lull=D/3

< 3C.(AD™' + Al D®).

+ sup  [|[Duo(y) — Duvo(z)||
yeB(x,D/3)

The last term in (6.1) is thus smaller than AD~(+e) 4 Al
When the C1%-size of v is small, A/, is small and the lemma follows. O

Remark 6.1. When v(0) = 0, for proving that the quantity D~ (e SUP ;0. 5) |lvol| is small it is

enough to show that D= SUPp 0 B || Dvgl| is small.

6.2 Preliminary constructions

To simplify the presentation, one will assume that ¢g coincides with pg and is fixed by fo.

The smoothness bound «j. We denote also by A, € (0,1) an upper bound for the contraction
along E° and by A, > 1 a lower bound for the expansion along the bundle E*.
We choose oy > 0 small so that
Ag?max (A, Ae) < 1,

1D I7oA < 1.

In particular, one can consider p € (0, 1) such that

Ao < p < ||Dfg
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The neighborhoods Vi, V2 of z. Once the smoothness @ € [0, ] and the neighborhood V
have been fixed, one introduces a continuity point f’ € V for both maps g — x4,y Let zp €
We(pg) N W) .(pyr) be a transverse homoclinic point of the orbit of py that does not belong to
the orbit of xy or yp. We choose two small open neighborhoods V7, Vs of x4/, such that Vo C V1.
Choosing them small enough, the orbit of the intersection V; N W (pg) is disjoint from the orbit
of yp and zp.

Since f’ is a continuity point of g — x4, y,, for any diffeomorphism g € V close to f’, the point
x4 still belongs to V5 and the orbit of the intersection Vi N W (pg) is still disjoint from the orbit of
the continuations yq, 24.

The diffeomorphism f. We choose a diffeomorphism f € V arbitrarily close to f’. One can
require that f is of class C*° and that there is no resonance between the eigenvalues of the linear
part associated to the orbit of p;. As a consequence of Sternberg linearization theorem, the dynamics
in a neighborhood of the orbit of ps can be linearized by a smooth conjugacy map.

In order to simplify the notations we will denote p = py, ¢ = g5, * = x5, y = yy.

Local coordinates. One can find a small neighborhood B of p and a C"-chart B — R? which
linearizes the dynamics and maps p on 0 and the local manifolds W% (p), W} .(p), W} .(p) inside the
coordinate planes R® x {0}%*1 {0}* x R x {0}* and {0}**! x R¥, where s, u, d denotes the dimension
of £ E"™ and M respectively. The coordinates in the chart are written (z,y,2) € R® x R x R".

The map f viewed in the chart is thus a linear map A = A; x A, x A, of R? which preserves
these coordinate planes. Replacing x,y by iterates, one can assume that their forward orbits are
contained in B.

The local stable disk D. Let zy be the transverse homoclinic point of the orbit of p for f that
is the continuations of zy. For n > 0 we also define z_, = f~"(2).

We can thus choose a small neighborhood D of zy in W#(p) whose orbit is disjoint from the
orbits of z and y. Replacing zg by an iterate, one can assume that its backward orbit belongs to B.
The disk D (or one of its backward iterates) endowed with its strong stable foliation can then be
linearized.

Lemma 6.3. By a C'*-small perturbation of f one may assume furthermore that in the chart at
b,

— D is contained in an affine plane parallel to the local stable manifold W} .(p),

— the strong stable manifolds inside D coincide with the affine planes parallel to W5 (p).

loc

Proof. We choose a large integer n > 1. The ball W centered a z_,, of radius r = A\,;" does not
intersect the local stable manifold of the orbit of p, neither the iterates z_j for k # n.

We first rectify the disc D: in the chart, the disc f~™(D) can be seen as the graph of a map
whose derivative has norm smaller than A”. By the A-lemma, this graph is arbitrarily C'*t%close to
the linear plane W} (p). One can thus apply lemma 6.2: by a diffeomorphism supported inside W
which fixes z_,,, one can send a neighborhood of z_,, inside D in an affine plane parallel to W} .(p).
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By remark 6.1, this diffeomorphism is C1*close to the identity provided that \"r=® = (A\%)" is
small, which is the case if o < ag and our choice of «y.

Assuming now that D is contained in an affine plane parallel to W} (p), we denote by W (o)
the affine space containing zg parallel to {0} x R x {0}*. We rectify the strong stable foliation inside
D: this is the image of the affine foliation parallel to W5 (p) by a diffeomorphism ® of the form

loc
¢: (:2.7 g? 2) = (3_37 (p(‘f7 g)? 2)7
which fixes zgp and W} _(20). Let us again consider n > 1 large.

Inside f~"(D), the strong stable foliation is the image of the affine foliation by the map ®,, =
A7"o®oA where A = (A, A., Ay) is the linear map of R? which coincides with D, f. The components
®,, 7, Pz of ® along the coordinates Z,z coincide with the identity of the planes R® x {0} and
{0} x R*. The derivative of the component ®,, 5 at a point ¢ is

DO, 5(¢) = A" Ozp(A".C) AL + Oyp(A”.C).

When n goes to infinity, the first term A_" 0zp A7 goes to zero as A" since the contraction Ay is
stronger than A.. Since f is assumed to be smooth, 9z¢((), 95¢(() are Lipschitz in ¢. The map A"
sends a uniform neighborhood of z_,, in f~"(D) inside a ball of radius A of D; hence if one restricts
D®,, 5 to a small neighborhood of p, the second term Jgp(A".C) is Al-close to Jg¢(2p). One deduces
that D®,, ; converges uniformly to the identity and that

|D®y 5 — Id || < A" 4+ AL

The same argument shows that the Lipschitz constant of D®,, ; goes to zero as n goes to infinity. One
can thus apply lemma 6.2, in order to rectify the strong stable foliation on a small neighborhood of
Z_p in f7"(D), by a map supported on the ball B(z_,, A,™). The perturbation is small in topology
C1*o, provided that

D,y — I AL < (A" + AT

is small, which is the case when n is large since a < ag by the choice of ay. O

The perturbation support Let us denote by D™ the connected component of f~"*(D)NB which
contains z_,,. We choose two small open neighborhoods Uy, Us of & in W} (p), such that Uy C Up:
they are obtained as the intersection of Vi, Vs with W2 (p). By construction, their orbit is disjoint
from the orbit of zy and y. For each n > 0 and s > 0, we introduce R}(s) the product (in the
coordinates of the chart at p)

Ri(s) = f(Uy) x {12 < s},

and similarly we define R5(s). See figures 1 and 2.

6.3 The perturbation

Let us choose a linear form L on R* and recall that p € (0, 1) has been chosen smaller than | D f~1||~1.
The perturbation g of f will be obtained as the composition T o f where T in the chart around p

coincides with a map T,,, for n large, given by the following lemma. See figure 3.
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Figure 1: The perturbation support.

Lemma 6.4. There exists a sequence of smooth diffeomorphisms Ty, of R% such that
— T, coincides with the identity outside R} (p") and on W (p),
~ DT, coincides on RY(p"*1) with the linear map

B:(Z,y,z) — (Z,5 + p*".L(2), 2),

~ (Ty,) converges to the identity in topology C1+2.

Proof. Let us choose a smooth map ¢: RT! — [0, 1] supported on U; which takes the value 1 on
Uy and a smooth map : R* — [0, 1] supported on the unit ball and which coincides with 1 on the
ball B(0, p). We then define

Tn: (577@7 2) = (E?g+tn(j7g7 2)72)7

tn(Z,7,2) = p*" oo [7(2,5,0) ¥(p™".2) L(2).
The two first properties are clearly satisfied. On R (p"), the factor L(Z) is bounded (up to a
constant) by p™. Since f~" is linear and (by our choice of p) has a norm smaller than p~", as before
the C'*® size of the perturbation T can be easily computed: it is smaller than (p®~%)" and goes
to zero as n gets larger. O

Remark 6.2. After the perturbation, the orbits of zy and p are unchanged. The local manifold
W .(p) and its strong stable foliation are also the same. For m large and s > 0 small, the forward
orbit of D™ N R’f“(s) does not intersect the support of the perturbation, hence the strong stable
foliation on D™ N R} (s) still coincides with the linear one.
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Figure 2: The local stable disks D.

6.4 Proof of proposition 6.1

Recall that z_,, is the image of zy by the linear map A™™. Let us choose a linear form L on R* and
a constant ¢ > 0 such that for infinitely many values of m > 0 one has

L(z_m) > cllz—ml]|- (6.2)

We define L; = —tL for any t € [—1,1]. The construction of section 6.3 associates to n > 1 large, a
perturbation g; = T;, ;o f. We also consider a large integer m > 1 so that the distance of z_,, to p is
smaller than p"*! and (6.2) is satisfied. The point z announced in the statement of the proposition
wil be z_,,.

We introduce the continuations x; = x4,,y: = yg, of x,y for g; and the intersection &, g; of the

Figure 3: The perturbation.
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local unstable manifold at g™ (), g™ (y;) with the disc D™. By lemma 3.1, the points Zy, J
belong to H(p;). Since for each considered perturbation, the disc D™ is still contained in W} (p)
and is endowed with the same linear strong stable foliation, it is enough to introduce the projection
7. on the central coordinate y and to show that

ﬂc(il) < Wc(@l) and Fc(@_l) > Wc(g_l). (63)

First we notice that since g; is close to f and f’ in V, the continuations z; and y; of x,y are still
contained in Uy and in W (p) \ Ui. Since g; coincides with A outside R} (p"), the local unstable
manifolds of gf(z;) and g™ (y;) are tangent to the cone

Cr = {(v™,v") € R xR, [0 < A"[[v"]|}.

n

By construction the local unstable manifold of ¢! (z;) in f(R}(p"t')) is tangent to the cone

B (C! +1), where B is the linear map associated to L; as in lemma 6.4.
The points Z;, §; are contained in the intersection of these cones with the affine plane parallel to
Rs*1 x {0} containing A~ (zp). One deduces that

e(&t) € B(me(wi) — tp™" L(z—m), A"[|z—ml]),

Te(Gt) € B(me(ye), A" | z—mll)-

By assumption we have 7.(z;) = m.(y:) and by our choice of p one has A < p®. In particular,
by (6.2), for n large enough and ¢t = —1 or ¢t = 1, these two balls are disjoint. One also controls the
sign of m.(9:) — m.(Z+) and gets (6.3) as wanted.

6.5 Proof of proposition 2.11

The number ag > 0 is given by theorem 11. The open set U/ is chosen to satisfy theorem 11 and
proposition 4.5.

We then consider « € [0, ap| and a diffeomorphism f as in the statement of the proposition. Let
us assume by contradiction that in a C1*t®neighborhood V of f, there is no diffeomorphism g such
that H(py) has a strong homoclinic intersection. The proposition 4.5 applies.

By assumption there exists a hyperbolic periodic point ¢y homoclinically related to the orbit of
p and a point x5 € H(qr) NW*(qr) \ {¢r}. By lemma 3.11, x¢ is accumulated by points of the class
H(py) in Wi \ Wigi (). Considering the forward orbit of these points, one deduces that xy and gy
are accumulated by points of H(qy) inside the same component of W7 \ Wik (z¢). By corollary 4.8,
there exists a continuation g — x4 such that x4, belongs to W% (q,) for each g € V. Since ¢4 and
W% (qg) vary continuously, one can argue as in the proof of lemma 4.4 and conclude that g — 4 is
continuous.

Now the theorem 11 applies to the diffeomorphisms fy, f and to the points ¢ = y = p and x. One
gets a strong homoclinic intersection for some g € V and the class H(p,). This is a contradiction,
concluding the proof of the proposition.
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7 Periodic unstable leaves: proof of theorem 12
Now we continue with the proof of theorem 12. In this section we consider:

1) A diffeomorphism fy and a homoclinic class H(py,) which is a chain-recurrence class endowed
with a partially hyperbolic splitting E° & E° @ E* where E° is one-dimensional and E° @& E¢
is thin-trapped.

2) Two hyperbolic periodic points p, f, and p, f, homoclinically related to the orbit of ps, and
a diffeomorphism f that is Cl-close to fy such that there exists two points z € W¥%(p, f),
y € W"(py ¢) in H(py) whose strong stable manifold coincide.

Note that by lemma 3.8, the homoclinic class associated to the hyperbolic continuation ps of py,
is still chain-hyperbolic. Moreover the continuations of x, y are well defined and unique (lemma 4.4).
We will show that f is the limit of diffeomorphisms g such that H(py) has a strong homoclinic
intersection. The results of this section are sum up in the next proposition.

Proposition 7.1. For any diffeomorphism fo and any homoclinic class H(py,) satisfying the as-
sumption 1) above, there exists ag € (0,1) with the following property.

For oo € [0, 0] and any hyperbolic periodic points py f,, Py, f, homoclinically related to the orbit
of gy, any CYtediffeomorphism f that is Cl-close to fo and satisfies 2) can be C1*-approzimated
by a diffeomorphism g such that:

— FEither there exists a periodic point ¢ homoclinically related to the orbit of pg such that
Wige(a) N W*(pyq4) # 0.

— Or the continuations of x,y satisfy xg ¢ W (yg) and also x4 belongs to an arbitrary previously
selected component of WS \ W (x).

Note that by using corollary 4.8 in both cases of the conclusion of the proposition, f is C1+e-
approximated by a diffeomorphism whose homoclinic class H(p) exhibits a strong homoclinic inter-
section. The proposition thus clearly implies theorem 12.

In what follows, in subsection 7.1 are introduced the fake holonomies and it is explained the
Holder regularity. In subsection 7.2 it is shown that the recurrences to the point = in proposition
7.1 hold along the center direction and in subsection 7.3 it is a presented a dichotomy related to the
recurrence time. Related to this dichotomy, two different perturbations are introduced in lemma 7.7
and 7.8 proved in sections 7.4 and 7.5 respectively.

7.1 Strong stable holonomy

Plaques. Using an adapted metric if needed, we can assume that there exist constants A > 1 and
0 < As <1 < Ay such that for any z € H(pg,) and any unitary vectors u € E;, v € E + EY and
w € EY, one has

M Dg foull <|[Dzfovll,  |[Defoull <As and [ Dy fo.w] = Au.
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Let us introduce a strong stable cone field C* above H(py,): one can choose a > 0 small and define
at each point z the set

G ={’ v u") € Bz + Ex + By, v’ = a.fJu® +u®|}-
The cone field extends continuously to a neighborhood U of H(py,) such that at any x € U N g(U),

Dy fy'.Chiy CCo

For some ry > 0, at any point x € U there exists a plaque of radius r¢ tangent to C°. Similarly,
one can define a center-unstable cone field C“* and an unstable cone-field C* on U close to the
bundles £¢@® E* and E" respectively. All these properties remain valid for any diffeomorphism that
is C'-close to fy.

Strong stable holonomy. It is a classical fact that the strong stable holonomies are Hélder. The
proof extends to more general objects, that we call fake holonomies. For more references see [BW].

Let us consider a small constant § > 0 that is used to measure how orbits separate. For any
diffeomorphism f that is C'-close to fo, let us consider two different points z € H(ps) and 2’ €
W (z) close to each other. Note that there exists a smallest integer N = N(z,2’) > 1 such that
N(2) and fN(2') are at distance larger than 4.

Definition 16. Two points ﬁ;(z),ﬁ;(z’) are called fake strong stable holonomies of z, 2" if they
satisfy the following properties.

— There exists a center-unstable plaque of radius ¢ containing ﬁ;(z) and ﬁ;(z’ ).

— There exists two plaques of radius 79 at f¥(z) and fV(2') that are tangent to C* and contain
fN(II55(2)) and fV(I155(2")) respectively.

— For 0 < k < N, the distances d(f*(z), fk(ﬁg(z))), d(f*(2), fk(@(z))) are smaller than (.

Note that by invariance of the cone field C* under backward iterations the point fk(ﬁg(z))
belongs to a plaque at f*(z) tangent to C* and whose radius is smaller than \¥.rg.

The choice for the plaques tangent to C® is of course not unique: one can consider for instance the
local strong stable manifold (in this case, the fake holonomies coincide with the usual strong-stable
holonomies) but one can also choose the local strong stable manifold of a diffeomorphism C*-close
to f. In fact the fake holonomies allow us to compare the holonomies when the diffeomorphism is
changed.

Holder regularity. We now sketch how the classical result about Holder regularity adapts for the
fake holonomies.

Lemma 7.2. If § > 0 has been chosen small enough, then there exists as > 0 such that for any
diffeomorphism f that is C'-close to fo, for any z € H(pg) and 2’ € W (2) close, and for any fake
holonomies 1155 (z), 1155(2), one has

d(TT55(2), TI55(2")) < d(z, 2).
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Sketch of the proof. Observe that if N is sufficiently large (provided that 2’ is close enough to
z), the distances d(fV (I1*%(2)), fN(2)) and d(fN(I1%5(2")), fN¥(2')) are exponentially small. Hence
d(fN(ﬁE(z)), fN(ﬁE(z’))) is of the same order than d(f(z), f~V(z')) and close to 4.

The distance d(TT%%(2), [1**(2")) is bounded by || Df~|[Nd(fN (11%*(2)), fN(II5(2"))) and the dis-
tance d(z, ') is bounded from below by || Df||~Nd(fN (I1°%(2)), ST (2 "})). This proves that there
exists o > 0 (which only depends on fy) such that

d(TI55(2), T155(2")) < o™V.d(z, 2).

On the other hand, since the distance along the unstable manifolds growth uniformly, there exists
another constant C' > 0 such that
N < C.logd(z,2").

The result follows from these two last inequalities. Observe that the exponent ag only depends on
C and o which are uniform on a C'-neighborhood of fy. O

Regularity of the strong stable bundle. The regularity of the strong stable bundle needs more
smoothness on the diffeomorphism. Note that the strong stable bundle is defined at any point whose
forward orbit is contained in a small neighborhood U of H(py,).

Lemma 7.3. There exists o, such that for any diffeomorphism f that is C*-close to fy and of class
CY*e for some a € (0,0), there exists a constant C > 0 with the following property.
At any points z, 2 close having their forward orbit contained in U, one has

d(E2°,ES) < Cud(z,2')*.

Sketch of the proof. Let us choose K > ||Df]||o and as before denote by A € (0,1) a bound for the
domination between E*¢ and E°@® E". We choose o/, > 0 such that K %) < 1. By working in charts,
one has for some constant C' > 0,

d(E", BE) < d(Df7 () DIy (Bfiy)) + dD I (B, DF ()
<)\d(Ef(Z)aES? /))"‘Cd(f( z), f(z ))

By induction one gets for any k > 1,
A(E, ES) < C. 3 Nd(F+(2), () + (B3 ). B3 ).
§=0
One can bound d(fi(z), f7(2')) by Kid(z,2'). Since AK® < 1, this gives
A(B, B2) < C(d(z #)* + X,

By choosing k large enough, one gets the estimate.
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Wige([f7(20), 20]) Wige(lf7(z1), 21])

[ N ——

Figure 4: Fundamental center domains.

7.2 Localization of returns to p,

We now fix a diffeomorphism f that is C'-close to fo. We assume that is C1*¢ for some « € [0, 1).
In order to simplify the notations we will now set p = py, pr = p, r and py = p, . Let 7, be the
period of p, and let us consider a local central manifold Wy (p).

We will use the following assumption:
(***) The intersection between W**(p) \ {pz} and H(p) is empty.

The orbit of any point z € W*(p,) \ {p»} meets the fundamental domain f7™ (W7 (pz)) \ W} .(pz)-
The next lemma states, that if H(p) and p, satisfy (***), and if z belongs to H(p) N W} .(p,;) then
its orbit meets a kind of “fundamental center domain” of p,.

Lemma 7.4. If (**%) is satisfied, there are points 2y, z1 contained in WS (pz) \ {p=} such that if
z € W (pz) N H(p) then there is k € Z verifying that

FH(z) € Wisa([f7™ (20), 20)]) U Wige([f*7 (21), 21))])

where [f2™(z;), 2], for i € {0,1} is the connected arc of Wf,.(ps) whose extremal points are z;,

27 (2) and (see figure 4)

5227 (21), 21]) = U ().
{z'e[f?= (z;),2]}
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Proof. Let us consider two points 2 and 2¥ in two different connected components of W .(pz) and
set 27 = fiT=(29).
Note that the image of WS ([f2™(21), 27]) by f7 is contained in WS ([f27 (2]"*1), 2™1]). The

union of the W5 ([f*™(21), 27]) over n > 0 and of W5 (p,) contains a neighborhood of p,.
If the thesis of the lemma does not hold, it follows that for arbitrarily large n > 0, there exists
a point ¢, € H(p;) N W (p;) which belongs to WS ([f27=(271), 2*1]) and whose preimage by

(s

f7 does not belong to Wi ([f*™=(27), 27]). An accumulation point ¢ of {¢,} belongs to W25 (p,) \
O

loc loc

{pz}] N H(p,), contradicting the assumption of the lemma.

We now describe the returns of the forward orbit of  in the neighborhood W of the orbit of p,.
We need to take into account the orbits that follow the orbit of x during some time. For that we let
As € (0,1) be an upper bound for the contraction along E®, we let A > 1 be a lower bound for the
domination between E* and E¢ @ E" as in section 7.1 and we let pu. > ps in (0,1) be the modulus
of the center eigenvalue at p, and the maximal modulus of the strong stable eigenvalues at p,. We
also choose p > 1 such that

p < min(A A2, e/ ps).

We then introduce some “forward dynamical balls” centered at x: we fix kg > 1 and for n > 0 we
define the set

k—1
B () = {Z € M, V0 <k <mn, d(ff(z), ff@) < p T] HDf|ES(f€(x))H} :
=0

Note that:

(i) By our choice of p, the intersection of all the balls B, (x) coincides with a local strong stable
manifold of z and the image f"(By(z)) has diameter smaller than v/, o,

(ii) By taking ko large enough, the point y belongs to the balls B, (z) and its forward iterates
satisfy the stronger estimate

k—1
A4 ), £ @) < 0 T ID A (£ ) (71)
=0

Let us now assume that (***) holds.

(ili) For n large enough, f"(B,(x)) does not intersect W% (p,). Otherwise B, (z) would intersect
a large backward iterate of W% (ps): this would imply that the strong stable manifold of the
orbit of p, contains x and contradicts our assumptions that W**(p,) N H(p) = {p.}. In fact,
by first item if for n large enough, f™(B,(z)) intersects W, (p,) it follows that p, € W% (x).

(iv) One can choose the neighborhood W of the orbit of p, so that the backward orbit of z is
contained in W and ¢ W. The lemma 7.4 above implies that the forward iterates of x close
to p, are close to the central manifold of p,. Consequently, their distance to the local unstable
manifold of the orbit of p, decreases by iteration by a factor close to the central eigenvalue of
pz- One thus gets the following.
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Lemma 7.5. Let us fir n > 0 small. If (***) holds, any large iterate (B, (x)) which intersects
B(x, ) has the following property.

Let m be the largest integer such that m < n and f™(By(z)) is not contained in W. Then the
distance between the points of f™(By(x)) and W} (pz) belongs to [,u((;Hn)‘(n*m),uglfn)'(nfm)], where
e denotes the modulus of the center eigenvalue associated to p,.

(v) For any forward iterate f‘(x) close to p., the quantity p”Df'E‘s(fg(CC))H is smaller than u. by
our choice of p. We thus obtain another version of the estimate of item (i).

Lemma 7.6. If f*(B,(z)) intersects B(z, ul) for some N > 1 large, then the diameter of f™(By,(x))
is smaller than vV, — ul.

7.3 Recurrence time dichotomy

As before we denote by Ay, A > 1 the lower bounds for the expansion along F* and the domination
between E° and E¢ @ E". By lemma 7.2, there exists as € (0,1) such that the strong stable fake
holonomies are ag-Holder. The lemma 7.3 gives o/, € (0,1) which control the smoothness of the
strong stable bundle. Recall that by u. € (0,1) we denote the modulus of the center eigenvalue
associated to p, for f. We also denote by & the bound on the smoothness associated to H(py,) in
proposition 2.11.

Let x, K1, Ko be some positive constants defined by

Y= log Ay
log A+ [ Df3 I

K — ylog/j’c|, K2:(1_a8)’log:u0|
x log A aglog Ay

Let us consider again the C'*@-diffeomorphism f that is C'-close to f. If a belongs to [0, ag] and
condition (***) does not hold, then the proposition 2.11 implies that there exist C'*®perturbation
g of f such that H(p,) has a strong homoclinic intersection, concluding the proof of the proposition.

In the following we assume that condition (***) holds for f and as in the statement of propo-
sition 7.1, that there exist two different points x € W"(p,) and y € W*(p,) whose strong stable
manifolds coincide. For any N large, we take V a neighborhood of size u around f~!(x). We define
n = n(N), the smallest element of NU {oco} such that f™(B,(x)) intersects V. By the property (iii)
of section 7.2, the sequence {n(N)} increases and goes to +00 as N increases.

We fix a constant K > max(1, Ko, K1, K2) and we are going to consider two cases:

1. Fast returns. There exists arbitrarily large N such that

n(N) < K.N. (7.2)

2. Slow returns. There exists arbitrarily large N such that

n(N) > K.N. (7.3)

64



One of these two conditions (maybe both) occur. If the first option holds, we prove the following.

S
there exists a diffeomorphism o € Diff ! ™*(M) that is C'-close to the identity such that g = po f
has a hyperbolic periodic point q homoclinically related to the orbit of py 4 and whose strong stable
manifold W**(q) \ {q} intersects W*(py.q4)-

Lemma 7.7. Assume that (***) and (7.2) hold for some K > 0, and that o < inf(45, o). Then

If the second option holds, we prove the following.

Lemma 7.8. Assume that (7.3) holds for some K > max(Kj, Ks), and that 1 + a < m

Then, there exists a diffeomorphism ¢ € DiffHO‘(M) that is C1t%-close to the identity such that
g = o [ satisfies the second option of proposition 7.1: if one fizes an orientation on Ey, there exist

two such diffeomorphism g+, g~ such that Tyt (resp. x4-) belongs to ngz . (resp. Wgcf’; ).
b g b -
Both lemmas and the proposition 2.11 conclude the proof of proposition 7.1.
Note that for proving proposition 7.1 one can choose K independently from ., for instance any

3 2x 2(1—ay)
log \s " log A" aglog\, )~

K = || D fpl|| max <

In this way we obtain a bound

Y S K
g = 11 Q (0%
0 K =17 max(K;, K2)

for the smoothness exponent « in proposition 7.1, which only depends on fy as announced.

7.4 Fast returns: proof of lemma 7.7

Let us assume that condition (7.2) holds for some large values of N and some K > 0 such that

a < inf (ﬁ, o ) We also assume that (***) holds so that the lemma 7.5 applies.

Lemma 7.9. There are a > b in (K~1,1) such that some arbitrarily large N and n = n(N) satisfy:
1. f™(Bp(z)) N Bz, u2™) # 0 and
2. f™(Bp(x)) N B(x, ™) = 0 for any ko < m < n.
Moreover § can be chosen arbitrarily close to %
Proof. We introduce the integers N; and n; = n(NN;) satisfying for any ¢,
N; < Nijt1, ni <njt1, and VN, < N < N;, n(N) =n;.

We will prove that there are positive constants ’ < a’ in (K~!,1) and there is n; sufficiently large
such that N; > a’.n; and N; < b'.n; for 0 < j < 4. We then choose any b < a in (V',a’). One can
check easily that for these large n = n; the result holds:
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— We have f*(B,(z))NB(z, ul*) # @ with N; > a’.n, hence f™(B,(z))NB(x, ¥ ™) is non-empty.
By lemma 7.6, the diameter of f™(B,(z)) is bounded by W\Z’Ni pi which is much smaller
than ;& ". As a consequence f™(B,(x)) is contained in B(z, u&").

— By definition of the sequence (Nj;), for any m < n = n;, one has f™(By,(z))NB(z, pe Ty =0
and b.n > b'.n+ 1> N;_1 + 1, implying the second condition of the lemma.

Let us now prove the existence of the constants a’ < b'. We denote by m; the smallest integer
such that
Vm; <m < mn;, f™(Bp(x)) CW.

By lemma 7.5 if one chooses € > 0 small and if V; is large enough, one has

Let us define
. N;
R = limsup —.
jotoo T
By (7.2), R belongs to [K~1,1].
For any j larger than a constant jy we have % < (14 ¢)R. For some i sufficiently large we also
J

have ]X—Z > (1 —¢)R. If j < i we have n; <m; <n; — (1 +¢)"N; and so for jo < j < i we have
Nj < (1 + E)RTL]' < (1 + E)R(nz — (1 + 5)_1Ni) < R[l — (1 — E)R + E]?’Li.

Since R belongs to [K~1 1], then [1 — (1 —&)R +¢] < (1 —¢) for € small and therefore taking
a=(1—¢)Rand V) = R[1 — (1 —e)R + ¢] the result holds. To check that it also holds for j < jj it
is enough to take 7 sufficiently large.
Observe that the quantity ¢ is close to 17(11:5
K
K1

jemwt Since R > K~!, when ¢ goes to 0 the limit

is larger or equal to
O

We can now conclude the proof of lemma 7.7.

Proof of lemma 7.7. We fix a, b and a large integer n as in lemma 7.9. By assumption o < (K —1)7!
and § can be chosen close to % One can thus ensure that 1 4 « is smaller than a/b.

Let D C W (x) be the smallest disc containing y. By construction it is contained in the ball
By, (z), hence its image by f" is contained in B(z, u%). We consider a C'*-diffeomorphism ¢
supported in B(z, u") which sends (D) into D and define g = o f. By construction the support
of the perturbation g is disjoint from D and its n — 1 first iterates.

Claim 7.10. If 1+a < inf($, o)), by choosing n large the diffeomorphism ¢ can be taken arbitrarily
close to the identity in Diff! ™ (M).
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Proof. Let us consider a C'®-chart U — R? of a neighborhood U of z such that z coincides with
0 and W () coincides with the plane R* x {0}, where k = dim(E**). For n large, the plaque

loc

WSS (f*(x)) is close to W3 (x) and coincides in the chart with the graph of a map xo: R¥ — R4F,

loc oc
We introduce the map

(Zl, 22) — (07 *XO(Zl))

which is close to 0 in the C'*® topology and satisfies [Jvg(0)|| < e~%" by construction.

One can thus apply the lemma 6.2 in order to build a map v: R? — R?* which coincides with
v on the ball B(0,e~) and with 0 outside B(0,e~""). The map ¢: (z1,22) — (21,22 — v(21, 22))
is the announced diffeomorphism. In order to prove that ¢ is close to the identity in Diff'*(A1),
one has to check that e(1+ebn SUpp(g,e-bn) |lvo| is small.

Since a < o, by lemma 7.3 we have

[Dvo(0)]] < Clluo(0)[|* < Cem™".
Since vy is close to the identity in Diff!*®, there exists an arbitrarily small constant ¢ > 0 such that

sup || Duol| < || Dvo(0)]] + e < 2ee~",
B(0,e~b7)

This gives
sup [[voll < uo(0)[| + e sup [ Dug|| < e + 2ee” ),
B(O,efbn) B(O,efb")

Since a > (1 4 )b, this shows that e(1te)bn Suppg(o,e-tn) [|vo|| is small when n is large.
0

To continue with the proof of lemma 7.7, we note that the map po f™ is a contraction on D, hence
the diffeomorphism g has a n-periodic point ¢ whose strong stable manifold contains D. Since the
backward orbit of W} (p,) is disjoint from the support of the perturbation, the manifolds 1W**(q)
and W} (py,q) intersect.

In particular W#(q) and W}%.(py,q) have a transversal intersection. On the other hand the orbit of
q has a point close to p,, hence W*(p,) and W*(q) have a transversal intersection. One deduces that
q is homoclinically related to the orbits of p, 4 and py 4. This concludes the proof of lemma 7.7. []

7.5 Slow returns: proof of lemma 7.8

Let us fix a center-unstable plaque D at x and for diffeomorphisms ¢ close to f we consider the
strong stable holonomy IIZ* to D. Since the map f; is linear in a neighborhood of p,, one can choose
D in the linear plane corresponding to the sum of the central and unstable eigenspaces. Observe
that it contains the manifold W} (p,) for f.

Under condition (7.3), we are going to get a perturbation g of f such that II;%(xg) # II3°(yg),
proving that W (x4) and W} (y,) are disjoint. Since zg4,y, belong to a same center-stable plaque

W', the projections II¢%(z), II%(yg) are contained in a Cl-curve of D that is tangent to a central
cone field. Moreover, one will be able to choose the perturbation to satisfy either z, € Wgsy:— or

cs,—
Tg € Wy, -
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Description of the perturbation. We recall that we have fixed a large integer N > 1 and that
V denotes the ball B(z, ulY).

Let us fix two small constants 7 = %ué\f and r < 7 in (0,1). We perform the perturbation g of
[ in the ball B(f~!(z),7), in such a way that W} (p,) is still contained in the coordinate subspace
and the distance between z = f(f~!(x)) and g(f~'(x)) is r along the central coordinate. This can
be realized by a small perturbation of f in Diff* (M) provided 7 and r /7 are large enough. Moreover
one can require that the C? size of the perturbation is equal to 7.

Later, in item 7, we explain how the perturbation can be adapted to be C'T@-small. Note that
the point = can be pushed to g(f~!(x)) along E¢ in any of the two central directions at z.

To get the conclusion, we choose a small constant € > 0 (independent from N) and show that
the distances d(I13°(y,),z) and d(zg4,g(f~1(z))) are smaller than e.r, which is much smaller than

d(z,g(f~(2)))-

1- Estimating d(y,,y). Observe that y, does not necessarily coincide with y since the forward
orbit of y may intersect the region of perturbation. However by lemma 4.4 the point y, belongs to
the local unstable manifold of p, , = p, r which coincides for f and g. We will consider the distance
dist along the unstable plaques (which is locally comparable in a uniform way to the distance in the
ambient space). We also introduce a constant C' > ﬁ independent from N.

Lemma 7.11. If for some positive integer m the two points f™(y), g™ (y4) belong to a same unstable
plaque, then their distance satisfies dist(f™(y), 9™ (yq)) < C.r.

Proof. Let us assume by contradiction that the estimate does not hold. Observe that the distance
by the action of f growth by a factor A\, and the C° distance between f and g is at most r, which
is much smaller than C.r. One deduces that the points f™*1(y), g™ (y,) still belong to a same
unstable plaque. Denoting v = 2x&=1 C L > 1, their distance now satisfy

dist(f™ 1 (y), 9" (yg)) > A dist(f™ (y), 9™ (yg)) —
> (A —C7 )dzst(fm(y),gm( 9)) = -dist(f™(y), 9" (yg))-

Therefore after k iterates the distance become larger than +*.C.r and so increasing to infinity. This
is a contradiction with the fact y, is a continuation of y. O

Lemma 7.12. The n(N) first iterates of y and y, coincide for f and for g.

Proof. Since y belongs to the dynamical balls B, (), the segment of orbit (y, ..., f*™)(y)) is also a
segment of orbit for g. Let us consider the first integer m > 1 such that ¢ (y,) = f™(y,) enters in
the region of perturbation and let us assume by contradiction that m < n(N).

As for y, y,, one knows that f™(y,) and f™(y) belong to a same unstable plaque: by lemma 7.11
they are at distance smaller than C'.r. If r has been chosen small enough one has C.r < %ué\] =7
By definition of m one also has d(f™(y,),z) < # = ulY. As a consequence f™(y) belongs to V,
hence m > n(NN). This contradicts our assumption. This shows that the orbit (yq,... ,g" N (y 9))
coincides for f and for g.

[
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Since y,y, belong to an unstable plaque, and since by lemma 7.12 their n(/V) first iterates are
the same by f and by g, the points f*(™)(y) and g"N) (yg) belong to a same unstable plaque and
by lemma 7.11, their distance is smaller than C.r. For any 0 < m < n(N) we obtain

(g™ (ye), [ (y)) < g™, (7.4)

2- Estimating d(z,4, g(f~*(z))). Arguing as in lemma 7.11, one shows that for any positive integer
m, if the two points f™(z), g™ (z4) belong to a same unstable plaque, then their distance satisfy
dist(f"(x), g™ (zq)) < Cr.

Let us denote by X' > 1 a lower bound for the domination between the bundles E¢ and E* and
consider two large constants k < ¢ (independent from N) such that A.(\')~% > C. If N has been
chosen large, the ¢ first iterates of ,z,4, g(f~!(z)) are the same by f and by g. Let us assume by
contradiction that the distance dist(g(f~'(x)),z4) inside W (ps4) is larger than (X)~%.r. Since
the distance between x and g(f~!(x)) in the central direction is equal to 7, one deduces that the
distance from f*(g(f~*(x))) to f*(x,) is much larger than its distance to f¢(z). In particular f*(z)
and f* (x4) are contained in a same unstable plaque and by our choice of k, ¢, their distance is larger
than C.r, which is a contradiction. Consequently

dist(g(f 1 (z)),z4) < (M) 7F ..

Taking k large enough, one has d(g(f ' (z),z4) < e.r as wanted.

3- Estimating d(ﬁ“}\s(yg), 1% (y))- Since y, belongs to the unstable manifold Wiy .(y) for f, one can

—

SS

introduce some fake holonomies I13 (yg),ﬁ‘}\s(y) = II3(y) for f. By (7.4) and lemma 7.2, one gets

AT (), T () < dly,y0)* < A"V,

—

5- Estimating d(I13°(y,), H‘}S(yg)). As before we first compare the iterates of f and g.

Lemma 7.13. The x.n(N) first iterates of y,, 11;°(y,) and ﬁ‘}\s(yg) coincide for f and for g, where

Y = log Ay
log Au+log [ Dfy T

Proof. By lemma 7.12 we already know that the n(NN) first iterates of y, under f and g coincide.
Since x € (0,1) and from the estimate (7.4), the points y and y, do not separate by f during the
time x.n(/V) and by definition of the fake holonomies, the x.n(IV) first iterates of the points IT}*(y,)
and y, remain in a same strong stable plaque.

From (7.4) and the definition of x, we also have that for 0 < m < y.n(N),

m—1
PR TT 1D S (). (7.5)

=0
With (7.1), this shows that y, belongs to the dynamical ball B, ) (7).

d(f™(yg), f™(y)) < A" Cor < | DfHIT™ <

u

W =
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We will prove by induction on m < x.n(N) that II3°(y,) and ﬁ;\s(yg) by f also belong to the

dynamical ball B,,(x). This will imply that their m" iterates by f and g coincide and conclude the
proof of the lemma.
Let us choose n > 0 small and mg > 0 large. If N has been chosen large enough, the point y,

is close to y and the points II;°(y,) and ﬁ‘}\s(yg) are close to x; as a consequence, the three points
belong to the dynamical balls B,,(x) with 0 < m < mg. When m is larger than my, the diameter of
™Y By_1(x)) is small, hence

d(f™ (1 (Yg))s [ (yg)) < €MD fis (F" @)A™L (yg)), £ (g)),

d(f™ (I (), S (yg)) < €MD fis (F" (@) ACf™HILF (yg)), £ ()
With (7.5), (7.1), this gives the required estimate and gives the conclusion. O

—
SS

Since the points I15°(y, ), IT 7 (yg) belong to a same center-unstable plaque and since their x.n(N)
first iterates by f remain close, one deduces that for any 0 < m < x.n(N), the points f™(113°(y,)) and

fm(ﬁj}\s(yg)) are still contained in a center-unstable plaque, whereas the pairs of point f (II3*(yg)),
f™(yq) and fm(HjcS (yg)), [™(yq) are contained in strong-stable plaques. This shows that

(T (). T (5)) < A",
where A > 1 is the lower bound for the domination between the bundles E* and E¢ @ E“.
6- Estimating d(II3°(y,), z). From the estimates we obtained, we get
dist (113" (yg), @) < d(113 (yg), T (yg)) + A(IIF (g), 1L () < AN 4 AN O,
In order to conclude, the perturbation should thus satisfies:
ATxnN) [)\;"(N)C.r]as < e.r.

Since y, as, C, e are constants independent from N, this inequality holds if N large enough and
the following are satisfied:

as(n(N)log Ay + |logr|) > |logr| + ¢,

n(N)log A > |logr| + ¢,

where ¢ > 0 is independent from N.
From the definition of 7 and since n(N) > K.N, one gets the following condition

|logr| < B.|log7| — ¢, (7.6)

where

K
B = inf <X log A, &log /\u> _—.
1 - Oy “Og:uc’

Note that by our choice of K, the factor B is larger than 1.
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7- Realization of the C''*® perturbation. By lemma 6.2, in order to be able to realize a C1T¢
perturbation supported on a ball of radius 7 such that d(g(f~!(z)),z) = r, one has to check that
for some A > « one can choose r, 7 arbitrarily small satisfying

|logr| > (1+ A)|log7]|. (7.7)

Note that this also implies the estimate C.r <7 = % pY that we used in paragraph 1.
By our choice of K, both conditions (7.6) and (7.7) can be realized simultaneously provided 1+«
is smaller than B.

8 Structure in the center-stable leaves

In this section we prove theorem 5 on the geometry of chain-hyperbolic classes. It is used in the proof
of theorems 6 and 9. As a consequence (see proposition 8.14), for some chain-hyperbolic classes, one
can replace the plaques WS* by submanifolds V,, whose boundaries are disjoint from H(p).

In the whole section, H(p) is a chain-recurrence class with a dominated splitting £ @& E =
(E® @ EY) @ ES such that EY, ES are one-dimensional and E, E* are thin-trapped. We assume
moreover that for each periodic point ¢ € H(p), the set W*5(q) \ {q} is disjoint from H(p).

8.1 Geometry of connected compact sets

One can obtain connected compact sets as limit of e-chains, i.e. finite sets {xg,..., 2z} such that
d(x;,xiy1) < € for each 0 < i < m. This idea is used to prove the following lemma.

Lemma 8.1. For any n > 1, any distance on R™ which induces the standard topology, any closed
connected set K C R™, any point x € K and any 0 < D < Diam(K), there exists a compact
connected set K(D) C K containing x and whose diameter is equal to D.

Proof. For € > 0, one can choose a finite set X, = {z¢, z1,...,2m} C K such that
— x belongs to X¢;
— for each 0 < i < m, the open balls B(z;,¢) and B(x;1,¢) intersect;
— the diameter of X, belongs to [D, D + 2¢|.

Let K. be the closed e-neighborhood of X.. It is a connected compact set contained in the e-
neighborhood of K. Up to considering an extracted sequence, (K.) converges for the Hausdorff
topology towards a compact set K (D) which contains x, is connected and has diameter D as required.

O

Recall that for z € H(p), the submanifold W**(z) is diffeomorphic to R?~2, where d = dim(M).

Lemma 8.2. Consider a sequence (z,) in H(p) which converges to a point z and for each n a
compact connected set Cp, C W?*(z,) N H(p) which converges for the Hausdorff topology in M
towards a (compact connected) set C C W*5(z)NH (p). Then the restriction of the intrinsic distance
of W*3(zy,) to the set C,, converges towards the intrinsic distance of W to C.
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Proof. Let U be a bounded neighborhood of K inside W#*(z) which is diffeomorphic to R4~2.

For z, close to z, there exists an open set U, C W}°, containing z,, diffeomorphic to Ra-2
and which is close to U for the C''-topology on immersions of R%~2. In particular, U and U,, are
diffeomorphic by a map whose Lipschitz constant is arbitrarily close to 1. Since K, is connected
and contains z,, it is included in U,,. This gives the conclusion. O

8.2 Structure in the strong stable leaves

We are aimed first to prove total discontinuity in the strong stable leaves.

Proposition 8.3. Let f be a diffeomorphism and H(p) be a chain-hyperbolic class satisfying the
assumptions of theorem 5. If for any periodic point ¢ € H(p) the set W**(q) \ {q} is disjoint from
H(p), then, for each x € H(p), the set W75 (x) N H(p) is totally disconnected.

loc

At any points, one considers the plaques WS* C f (W]Ccﬁ‘l(x)). We choose the plaques W<, W
with a diameter small enough so that for each z,y € H(p) the intersection WgN f(W;*) is transversal
and contains at most one point (which belongs to H(p) by lemma 3.6).

For this proof we will endow H(p) with the center-stable topology: two points x,y € H(p) are
close if the distance d(x,y) is small and z € W;® (or equivalently y € W;° by lemma 2.2). The
center-stable distance on H(p) is the distance between z and y inside WE°.

Since W€ is trapped, W**(x) N W¢?® is contained inside W}’ (x) and the center-stable topology
induces on W#°(x) N H(p) the intrinsic topology of W**(z).

Local holonomy. We fix p > 0 and define the ball B®(z) centered at € H(p) of radius p
contained in W¢*. If p is small, for any points 9 € H(p) and yp,z0 € W% N H(p) the local
holonomy 11I°* along the center-unstable plaques f (W}Cfil (x)), x € W () N H(p), is defined from
B%(z0) N H(p) C Wg5 to Wye.

Global holonomy. We now try to extend globally the holonomy. A strong stable leaf may intersect
a plaque of W in several points, hence the global holonomy may be multivalued. A global holonomy
along the plaques W is a closed connected set A C H(p) x H(p) (endowed with the product center-
stable topologies) such that for any (z,y) € A one has y € Wg* and z € Wg*. The sets m1(A) and
m2(A) denote the projections on the first and the second factors.

One can obtain global holonomies from connected sets contained in a strong stable leaf.

Lemma 8.4. Let Ag be a global holonomy along the center-unstable plaques, and C C H(p) be a
set which is closed and connected for the center-stable topology and which contains w1 (Ap).

Then, there exists a global holonomy A along the center-unstable plaques containing Ag, such
that m (A) C C and satisfying one of the following cases.

1. m(A)=C;
2. A is non-compact;

3. there exists (v,y) € A such that y € W \ Wit or x € Wt \ Wt
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Proof. If {A,} is a family of global holonomies along the center-unstable plaques that is totally
ordered by the inclusion, then the closure of the union U,A,, is also a global holonomy. By Zorn’s
lemma one deduces that there exists a global holonomy A containing Ay, satisfying m1(A) C C and
maximal with these properties for the inclusion. We prove by contradiction that A satisfies one of
the properties above. We fix a pair (z9,yo) € Ag.

If m1(A) # C, then there exists r; > 0 and for each €1 > 0 there exists a sequence (zg,...,zs) in

C' such that
— for each 0 < i < s, the points z;_1,x; are at distance less than 1 and x; € B®(x;_1);
— the point z; and the set 71(A) are at distance exactly 71 inside Wg?.

If A does not satisfies the items 2) or 3), then for any (z,y) € H(p) x H(p) close to A and any
x' € H(p) close z (for the center-stable topology), B®(y) meets WS} at a point y' € H(p) which
also satisfies 2/ € Wy

This allows to build inductively a sequence (yo,...,y¢) for some 0 < ¢ < s and associated to
(zo,...,x¢) such that, for each i, the pair (z;,y;) is at a small distance from (z;_1,y;—1) for the
center-stable distance.

More precisely, there exists » > 0 and for each € > 0 there exists a sequence (xg, o), - .-, (Z¢, Ye)
such that for the product center-stable distance on H(p) x H(p) the following holds:

— for each 0 < i </, one has z; € W, and y; € WL
— for each 0 < i </, the pairs (x;—1,y;—1) and (x;,y;) are at distance less than ¢;
— the pair (z4,y,) and the set A are at distance exactly r.

When ¢ goes to 0 and up to consider a subsequence, the set A U {(zo, o), .., (x¢, ye)} converges
for the Hausdorff distance towards a compact connected set A’ which is a global holonomy, strictly
contains A and satisfies w1 (A’) C C. This contradicts the maximality of A and proves the lemma. []

The strong stable leaves are preserved under global holonomies along center-unstable plaques.

Addendum 8.5. In the case each set C' and m2(Ag) is contained in a strong stable leaf, one can
ensure furthermore that wo(A) is also contained in a strong stable leaf.

Proof. We repeat the proof of lemma 8.4 requiring furthermore that the projection ma(A) of the
global holonomies are contained in the strong stable leaf W**(yy). Indeed if {A,} is totally ordered
family of such global holonomies, then the closure of the union U,A,, projects in W*(yy) by m:
this is due to the choice of the center-stable topology.

Let us consider a maximal global holonomy A satisfying mo(A) C W#(yg) and given by Zorn’s
lemma. Assume by contradiction that A does not satisfies the three items of lemma 8.4. In particular,
it is compact and one may fix (z,y) € A and an n > 1 such that f"(m2(A)) is contained in W (

yo)”
One repeats the same construction as above and builds a global holonomy A’ that contains strictly A.

If mo(A') is contained in W*5(y), one has contradicted the maximality of A. One will thus assume
that the set f™(ma(A’)) C W (yo) 18 MOt contained in a strong stable leaf. Since it is connected,
it contains a point z such that both local components of WE* \ W (z) at z meet II°*(C). If one
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considers a hyperbolic periodic orbit O homoclinically related to p having a point ¢y close to z, the
local holonomy II¢* along the plaques of W allows to project f"(m2(A’)) on a connected compact
subset of Wye which meets W*(go). Since W*(qo) \ {qo} is disjoint from H(p), one deduces that
the projection contains gg. Consequently the unstable manifold of some point ¢ € O meets C at
some point x.

By lemma 8.1 and since F*® is uniformly contracting, there exists € > 0 such that any backward
iterate x_, = f~"(x) is contained in a connected compact set C_,, C W’ (x_,) N H(p) which has
a radius equal to €. Since x belongs to the unstable set of some point f*(g) in the orbit of ¢, the
backward iterates of x and g become arbitrarily close. Let 7 be the period of ¢. One gets that
the projection II°*(C_,;) by holonomy on W;® converges to a compact connected set contained in
W (q) with diameter equal to €. This contradicts our assumption that W*%(q) \ {¢} is disjoint from

oc
H(p). In all the cases we have found a contradiction and the lemma is proved. O

Triple holonomy. The previous results on holonomies extend to connected set of triples.

Lemma 8.6. Let A be a global holonomy along the center-unstable plaques, (xo,yo) be a pair in A
and zg € H(p) be a point which belong to the connected component of Wt NWSU bounded by xo and
yo. Then there exists a set X C H(p) x H(p) x H(p) containing (xo,yo, 20) such that

— X 1is closed and connected for the center-stable topology,

— for each triple (z,y,z) € X one has (z,y) € A and z € W5t N WL,

— one of the two following cases holds:

1. the set of pairs (z,y) for (x,y,z) € X coincides with A,

2. X is non-compact.
Moreover if w1 (A) and wo(A) are contained in strong stable leaves, then the same holds for ms(X).

Proof. The proof is the same as for lemma 8.4 and addendum 8.5 but the third case of lemma 8.4
has not to be considered since for all the triples (z,y,z) € X, the point z belongs to the connected
component of Wg* N Wg* bounded by z and y and its distance to 2 and z is thus controlled. O

Remark 8.1. If one projects the set X obtained in lemma 8.6 on any pair of coordinates, for
instance as m 3(X) = {(z, 2), (z,y, 2) € X}, one gets a set which is connected. Hence the closure of
m1,3(X) for the center-stable topology is a global holonomy.

Non compact holonomy. We now build non bounded holonomies.

Lemma 8.7. If for some x € H(p) the set W*%(x) N H(p) is not totally disconnected, then there
exists a global holonomy A along the center-unstable plaques which is non-compact, non trivial (i.e.
there exists (xo,y0) € A such that xog # yo) and such that both w1 (A) and ma(A) are contained in
strong stables leaves.
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Proof. One considers a non trivial compact connected set I' C H(p) contained in some strong stable
leaf and the accumulation set A of the backward iterates f~"(I') (which is invariant by f). The
uniform expansion along £*° and the lemmas 8.1 and 8.2 above imply that for any x¢ € A the strong
stable leaf W5%(x(), contains a closed connected set Cp C A which is not compact and contains x.

There exist some points yg € H(p) distinct from z¢ such that zg € Wye and yo € Wy hold.
Indeed, z is accumulated by periodic points ¢ € H(p) whose period is arbitrarily large. Consequently
the sets W * are pairwise disjoint. Hence, there exists ¢ close to xg whose plaque W;* intersects
Wye at a point yo which belongs to H(p) \ {zo} from lemma 3.6.

Assuming that the conclusion of the lemma does not hold one builds a sequence of compact
holonomies (A,,) such that m(A,) is contained in A, both m1(A,), m2(A,) are contained in strong
stable leaves, and the diameter of m1(A) in the strong stable leaf goes to infinity with n. The
holonomy A is just the initial pair (zg,y0). One constructs A, 41 from A, in the following way.

In the strong stable leaf that contains 71 (A,,), one considers a closed non-compact connected set
C,, C A. One then applies lemma 8.4 and its addendum 8.5 and finds a global holonomy A/ D A,
such that again 71 (Al) is contained in C), and both 71 (Al), m2(Al)) are contained in strong stable
leaves. By assumption A! is compact and in particular m1(A!) is strictly contained inside C,,. As
a consequence there exists (x},,y),) € Al such that z/, € Wﬁ:\ Wit or yn € Wﬂi\ Wg. Using the
fact that for each x € H(p) we have

F7iwgn) © ()

the set of images (f~1(x), f~1(y)) for (z,y) € Al is still a compact global holonomy: this is A, 1.
We also define (21, gni1) = (f (@n), £~ ().

By construction 71 (A7) is a non-trivial compact connected set. Since E** is uniformly contracted,
the projection 71 (A,,), which contains f~"(m1(A1)), has a diameter (for the distance inside W**(zy,))
which increases exponentially. This ends the construction of the sequence (A,,).

Up to considering a subsequence, one can assume that the sequence (z,, y,) converges towards a
pair (z,y) € H(p) x H(p) for the classical topology on M. By construction z,,y, are at a bounded
distance, hence z and y are distinct.

For each n, one endows W#*(x,) x W*5%(y,) with the supremum distance between the intrinsic
distances inside W**(x,,) and W**(y,). Let us fix D > 0. By lemma 8.1, for each n large one can
find a compact connected set A2 contained in A,, of diameter D and containing (z,,y,). One can
assume that the sequence (A2) converges for the Hausdorff topology towards a compact connected
set AP C W*s(x) x W*(y). By lemma 8.2, this set has diameter D. Now the closure of the union
of the AP over D is a global holonomy which is non-compact and whose projections by 7, m are
both contained in strong stable leaves. O

Unbounded projections of holonomies Non-compact holonomies allow to obtain non-compact
connected sets inside strong stable leaves.

Lemma 8.8. Let A be a non-compact holonomy such that w1 (A), 7e(A) are contained in strong
stable leaves. Then the closure of w1 (A) for the center-stable topology is non-compact.

Proof. First notice that one can replace A by f~(A). By the trapping of the center-unstable plaques
this allows to have z € Wi and y € Wg* for each (7,y) € A and to work with the plaques of the
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family W. The set of pairs (z,y) € A such that = y is closed. By the choice of the central-stable
topology it is also open. Hence two cases occurs: either z = y for each (z,y) € A and m1(A) = m2(A)
is non-compact; or for each (z,y) € A one has z # y and this is the case one considers now. For
any pair (z,y) € A, we denote by [z, y] the closed segment of WS* bounded by z,y.

Let us assume by contradiction that the closure of m1(A) is compact. One can find a finite
collection of points {x;} C 71 (A) which satisfies that for any « € m;(A) there exists x; such that

— x belongs to B(x;);
— for any y, z € H(p) NWES* such that (x,y) € A and z € [z,y], the plaque Wi intersects B%(z).

In the following we will consider holonomies D with 71 (D) C m1(A) and we introduce the set of
points x; that are “avoided” by D:

P(D) = {z;, Y(z,y) € D, Vz € [z,y]| N H(p), x ¢ W or B®(z) N W;" = 0}
Since the closure of 71 (A) is compact and A is not, one can find x; with the following property.
(F*F**) There exists (2,y'), (", y") € A with o', 2" € Wg? such that

~ for each z € ([2',y'] U [2",y"]) N H(p), the plaque WE* intersects Wg', WS, Wi ;

2! !

- W7 and Wy intersect Wi in two distinct points.

Note that in particular the plaques W¢ and W, are disjoint. This allows us to build a compact
holonomy D C A which “almost fails” to be a graph above its first projection.

Claim 8.9. There exists a compact holonomy D having the following properties:
1. (D) C m(A); ma(D) is contained in a strong stable leaf;
2. D is a continuous graph over its first factor;
3. there is x; € P(D) satisfying (****).

Proof. Let us first notice that since A is non-compact it contains compact holonomies A’ with
arbitrarily large diameter by lemma 8.1. One can thus assume that for such a compact holonomy
A’ there exists x; and two pairs (2/,y'), (2”,y") € A’ satisfying (¥****). Working with e-chains as in
the proof of lemma 8.1, one can build a compact connected set Dy C A’ such that 3) is satisfied for
x;. More precizely for any € > 0 one builds a finite set X, = {(x(0),y(0)),..., (z(s),y(s))} contained
in A’ such that

— (z(k),y(k)) and (z(k+1),y(k + 1)) are e-close for each 0 < k < s;
— the pairs (2/,9) = ((0),y(0)) and (2", y") = (z(s),y(s)) and the point x; satisfy (¥***);

— for any pair (z(k),y(k)) with z(k) € WS

o, and for any point z € [z(k),y(k)] N H(p) the
intersection B®(z) N Wy is empty.

The compact holonomy Dy is obtained as limit of the sets X.. Repeating the construction with the
other points z;, one gets a new compact global holonomy D C Dy such that 2) is satisfied. Note
that 3) is still satisfied but for a new point z;. Since D C A, the condition 1) holds also. O
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We now fix a compact holonomy D satisfying the properties 1), 2) and 3) above. We do not
assume that it is contained in A. However we choose it so that the cardinal of P(D) is maximal.

Let us consider the points x;, 2’, 2" in property 3) and (****) and consider the plaques Wg*, W¢?,

Wi and the ordering of their intersection on W;¥. Then W;? is not “in the middle” of W;? and

CS
xl/ .

Claim 8.10. The point x; does not belong to the connected component of Wg\ (WS UWSS) bounded
by Wei and W55

Proof. Let us define the compact connected set C' := 71 (D). For each x € C, there exists a unique
pair (x,y) € D; moreover x # y. One can thus consider the orientation on E$* determined by the
component of WS \ {x} which contains y. This defines a continuous orientation of the bundle EE.

One can compare the orientations of E¢ and £} as transverse spaces to the one-codimensional
plaque W;?. By the trapping property, for any & > 0 the forward iterates fE(x") and f*(z") still
belong to the same plaque W i () hence the orientations comparison will be the same for £ = 0 or

k large Since C'is a compact subset of a strong stable leaf, for k > 1 large f*(C) is contained in

( .3 SO for any continuous orientation of Effk(c), the orientations on EC“( ) and E () match.
One deduces that for the orientation on E‘Cg considered above, the orientations on Ef} and E}
match. By definition of the orientation on E“'g, this implies the claim. O

Let v' = [/, ] and 7" = [2",4"]. One now defines a homeomorphism ¢: v N H(p) — v N H(p).
For 2’ € /N H(p), one can use lemma 8.6 and find a closed connected set X, C H(p) x H(p) x H(p)
containing (z',y’,2") and such that for all (z,y,2) € X.» one has z € Wg* N Wy* and (,y) € D.

Claim 8.11. There exists a unique map x: D — H(p) which is continuous for the center-stable
topology, sends (z',y') on 2’ and satisfies x(x,y) € [x,y] for each (x,y) € D. Its graph coincides
with X/, which is thus compact.

Proof. By remark 8.1, the closure A of 71,3(X,/) is a gobal holonomy satisfying property 1).

Let us assume by contradiction that the projection map m2: X, — D is not injective: in
particular A contains two different pairs (x, z) and (z, (), having the same projection by 7. Let us
choose zj such that € B(x;) and Wy intersects both B*(z) and B**(¢). Repeating the argument

of the proof of claim 8.9, there exists a compact holonomy DcA satisfying the properties 1), 2),

3) above such that x; belongs to P(D D). By construction for each (z,z) € A, there exists (z, y) eD
such that z belongs to [z, y]. The definition of the set {z;} and the fact that for each (x, z) € D there
exists (x,y) € D such that z € [z,y] imply that P(D) C P(D). Since z; belongs to P(D) \ P(D),
we have contradicted the maximality of D. Hence the map 7 2: X,» — D is injective.

Since D is compact, one deduces that X, is also compact and the first case of lemma 8.6 holds.
Consequently, the projection o is also surjective X,,. This proves that X,/ is the graph of a map
x: D — H(p). Since X, is compact, this map is continuous. The connectedness of D implies that
the map y is unique. ]

One deduces that X, contains a unique triple of the form (z”,y”, 2") and one sets p(2') = 2”.
The claim implies that ¢ is monotonous for the ordering on 7/,7”. One can build similarly a map
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from 7" to 4/, which is an inverse of . Consequently ¢ is a homeomorphism which is monotonous
for the ordering on v/, ~".

Let y; be the intersection between Wg* and Wi and y; be the intersection between Wy and Wi
Let ;,7; be the segments contained in Wg* and bounded by {x;,y;} and {z;,y]} respectively. One
defines two monotonous homeomorphisms ¢': v N H(p) — v; N H(p) and " : v" N H(p) — ~v; N H(p)
which send 2’ and 2” on x;. There are obtained by considering local projection throught the center-
stable holonomy: one has ¢’(2') = z when z € WS (and equivalently when 2z’ € W¢®). One thus
obtains a monotonous homeomorphism ¢; = 1’ o p o ¢! from v N H(p) to v/ N H(p).

From the claim 8.10 and exchanging (z/,y’) and (2”,y”) if necessary, one can assume that y/
is between z; and y, inside Wy, Consequently ¢; maps monotonously H(p) N 7 into itself. The
sequence z, = ¢7'(y;) thus converges to a point z which is fixed by ¢; but all the z, are distinct
since by assumption zg = y} and z; = y/ are distinct.

By construction, for each n one associates a compact connected set X,, = X¢,—1(Zn) C H(p) x
H(p) x H(p) which contains the triples (z’,1/,¢' " (2)) and (2", 3", %" ' (zn)). Its projection on its
third factor is a compact connected set Cy, C H(p) containing ¢’ *(2,) and 1" (z,) and contained
in a strong stable leaf. Similarly, let X = Xw/—l(z) and C' be its projection on the third factor.
Then, C,, converges towards C' for the Hausdorff topology on compact sets of M, whereas the points
W (20), 0" (2n41) € Cy converge towards o' (z), 9" " !(z) € C.

Since z is fixed by ¢;, the center-stable plaques of the points 1)’ _1(2), " _1(2) intersect, whereas
since zy, z,+1 are distinct, the center-stable plaques of the points 1)’ 71(zn), " 71(zn+1) are disjoint.
Thus the intrinsic distances between v/ (z),4” (z) and ¢’ ' (zn), %" ' (2n41) are bounded away,
contradicting lemma 8.2. The proof of lemma 8.8 is now complete. ]

We now finish the proof of the proposition.

Proof of proposition 8.3. Let us assume by contradiction that for some point x € H(p) the
set H(p) N W*$(x) is not totally disconnected. We will build a periodic point ¢ € H(p), a point
z0 € W*(q)NH (p) and a set C C W**(zp) which is closed connected and non-compact for the intrinsic
topology on W*%(2g). In the stable manifold of the orbit of ¢, the iterates f™(C) accumulate a non-
trivial subset of W**(q), contradicting the assumption that W**(q) N H(p) = {q}.

In order to build ¢ and C, we apply lemma 8.7 and consider a non-compact holonomy A and
a pair (zo,yo) € A such that xg # yo. The sets m1(A), m2(A) are contained in strong stable leaves
and by lemma 8.8 their closures in the leaves are not compact. Let us remind that W' is a one-
dimensional curve and consider the open connected subset U C Wg bounded by {xo,y0}. Two
cases have to be studied.

If H(p) does not meet the set U, then zp is an unstable boundary point of the chain-hyperbolic
class H(p) (see definition 12). By lemma 3.12, there exists a periodic point ¢ in H(p) whose stable
set contains 71 (A). We define zp = z¢ and the set C' as the closure of 71 (A) in W#(q), finishing the
proof in this case.

Let us assume now that there exists a point ¢ € U N H(p). We introduce a hyperbolic periodic
point ¢ homoclinically related to p and close to ¢ such that Wi* C W*#(q) as given by lemma 3.2.
The plaques W;* and Wgy' intersect at a point 29 € U N H(p). By lemma 8.6, there is a closed
connected set X C H(p) x H(p) x H(p) which contains (zo, 3o, 20), such that for each (z,y,z) € X
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one has z € Wy N Wy* and (z,y) € A. Moreover the projection m3(.X) is contained in a strong
stable leaf of W#(q) and X is non-compact. We want to show that the closure of 7w3(X) in W*#(q) is
non-compact.

We know that the closure of one of the three projections 71 (X ), m2(X), m3(X) is non-compact. If
for instance this happens for 71 (X)), the closure of 71 3(X) is a non-compact holonomy by remark 8.1.
Hence by lemma 8.8, the closure of m3(X) is non-compact also. One concludes that in any case
the closure C' of m3(X) is non-compact: we have found a non-compact connected set contained in
H(p) N W*%(2p) as claimed, concluding the proof of the proposition in the second case. O

8.3 Structure in the center-stable leaves: proof of theorem 5

By the trapping property, the iterates of each plaque WS*, x € H(p), remain in a small neighborhood
of H(p), hence is covered by a strong stable foliation. We call strong stable plaques the connected
components of the strong stables leaves of WS*.

Lemma 8.12. For any x € H(p), let us consider a connected compact set I' C H(p) "WS®. Then
I' intersects each strong stable plaque of WS* in at most one point. In particular this is a curve.

Proof. Let us assume by contradiction that I' intersects some strong stable leaf L of W¢® in at least
two distinct points z, 2’. Let us consider two small closed neighborhoods U and U’ of z, 2’ in WSS,
such that that U \ L and U’ \ L have two connected components.

We introduce the connected components I',,I',; of TN U and I' N U’ containing z and 2z’ respec-
tively. These two sets are not reduced to z and 2’ and, by proposition 8.3 ', N L and ', N L are
totally disconnected. In one of the connected components V' of U \ L, all the strong stable plaques
close to z are met by I',. The same holds for I',s and a component V' of U’ \ L.

We claim that one can reduce to the case both components V,V’ are on the same side of L.
Indeed if this is not the case, the connected set I' intersects L at another point z”. One can thus
define three sets V, V', V”; among them, two are on the same side of L.

Let L be a strong stable plaque close to z and 2z’ which intersects V and V': all the plaques close
to L meet both ', and T,/

Let g be a periodic point homoclinically related to p and close to a point in ', N L. The
local strong stable manifold W% (¢q) is close to L and the projection of I', by the center-unstable

loc

holonomy on Wg* is a connected compact set that intersects both sides of Wi,(¢). One deduces that

this projection meets I', at a point y € H(p) N W*%(q) which is distinct from g. This contradicts our
assumption. O

Let us call graph of a plaque WS*® a connected compact set of YW which intersects each strong
stable leaf of WW;® in at most one point.

Lemma 8.13. If for some point xo € H(p), the set Wgs N H (p) is not totally disconnected, then for
each x € H(p), there exists a graph Ty, C WS* N H(p) containing x which meets all the strong stable
plaques of WS® that intersect a small neighborhood of x.

Proof. Let us consider a non trivial connected compact set I' C Wg?. By lemma 8.12 this is a graph.
Let us consider a point z € I which is not an endpoint. One also chooses a trapped plaque family D
above H(p) tangent to £ whose plaques have a small diameter and are contained in the plaques of
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Wes. Consequently the connected component I', of I' N D, contains z and has its endpoints inside
D, \ D,. We are aimed to build at each point # € H(p) a similar graph I';, C D,. This will imply
the conclusion of the lemma. Let us first choose a periodic point ¢ homoclinically related to p and
close to z. By projecting I' inside W;* along the center-unstable holonomy, one deduces that D,
contains a graph I'; C H (p) whose endpoints are inside D, \ D,. It contains a point close to ¢. Since
Wi (q) \ {q} is disjoint from g, this proves that I'; contains g.

By the trapping property, for each n > 0, the connected component I'g—n gy of f7*(T ) NDj-n(y)
has also its endpoints inside the boundary of Dy-n(,). As a consequence H ( ) contains a dense set
of periodic points y and inside each plaque D, there exists a graph I'; containing y whose endpoints
belong to D, \ D,

For any point © € H(p) there exists a sequence of periodic points (y,) converging towards x such
that the sequence of graphs (T, ) converges towards a connected compact set I';: by lemma 8.12
this is a graph and by construction its endpoints belong to D7y \ Dy as required. ]

We are now able to finish the proof of the theorem.

Proof of theorem 5. We assume that the conclusion of the theorem does not holds: in particular,
the lemma 8.13 applies. By theorem 4, there exists two distinct points x,y € H(p) with y € W*¥(x).
By iterations one may assume that y belongs to the strong stable plaque of x in W¢*. By lemma 8.13,
there exists a graph I';, C WS which contains x and meets all the strong stable plaques of points
close to z in WS®. One now argues as at the end of the proof of lemma 8.12: if ¢ is a periodic point
close to y, the projection of I'; to W¢* has to intersect Wy (q) at a point close to x, hence different
from ¢. This contradicts the assumptions. O

8.4 Construction of adapted plaques

We now give a consequence of theorem 5 giving plaques adapted to the geometry of the classes along
the center-stable plaques.

Let us consider an invariant compact set K with a dominated splitting F' ¢ F' and a trapped
family tangent to E such that the coherence holds for some constant 10 € > 0 (see lemma 2.2). Let
W be another trapped family tangent to E whose plaques have a small diameter and such that for
each z € K one has W, C W,. The coherence ensures that any plaque ¥V, that intersects the 5e-ball
centered at x inside W, is contained in W,.

Definition 17. In this setting, a set X C K that is contained in the e-ball centered at a point
z € K inside the plaque W, is said to be W-connected if the union of the plaques Wy* for y € X is
connected.

When the diameters of the plaques WS are small, the Wes_connected sets have a small diameter.

Proposition 8.14. Let fy be a diffeomorphism, H(py,) be a chain-recurrence class which is chain-
hyperbolic such that the bundles E°, E°* are thin trapped and consider some neighborhoods U of
H(pys,), U of fo in Diff} (M) and a plaque family (Wj‘is )feu ek, as provided by lemma 3.8.
If for each x € H(py,), the set H(pfo) NWE s totally disconnected, then for any n > 0 small,
there exist smaller neighborhoods UcU of H(py,) and u of fo and there are other plaque families
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(Wcs )fef{,xefff defined on the mazimal invariant sets IN(f in the closure of U for f, satisfying the

following properties for each f € U and z € IN(f :

— The plaque WSS s contained in We

s

- Any W;s—connected set of Ky N W which contains x has diameter smaller than 7.

Proof. One considers a constant € > 0, two neighborhoods U, of H(py,) and U. of fy which decrease

to H(pys,) and fo as € goes to zero, and a continuous collection of plaque family (Wgsf) feu. defined

on the maximal invariant set K. r in the closure of U.. We assume that these families are trapped,
C

that each plaque Wgsf , has diameter smaller than e and that for each x € K. y, the plaque 55} .
is contained Wgsf Such plaque families are given by remark 2.1.

For f € U, one makes the union Ay of the sets et We claim that when € goes to zero, the

supremum of the diameter of the connected components of Ay (with respect to the center-stable
topology) goes to zero. Indeed, if this is not the case, one finds as limit set a non-trivial connected
component of H(py,) for fy and the center-stable topology, which contradicts our assumption. The

plaque family (VNVJ%S ) is thus chosen to be (WS?%) for some e small enough. O

9 Uniform hyperbolicity of the extremal bundles: proof of theo-
rem 9
In this section we end the proof of theorem 9. We consider:

1. adiffeomorphism fy and a chain-hyperbolic homoclinic class H (py,) which is a chain-recurrence
class endowed with a dominated splitting £ @ E* such that:

la. E is one-dimensional and E°, E°* are thin trapped by f and f~! respectively.

1b. The intersection of H(p) with the center-stable plaques is totally disconnected.
2. a C?-diffeomorphism f that is C'-close to fo,
3. a chain-recurrence class K for f contained in a small neighborhood of H(py,) such that:

3a. All the periodic points of K are hyperbolic.

3b. K does not contain a sink, nor a closed curve « tangent to E*, invariant by some iterate
f™ n > 1, such that fﬁ is conjugated to an irrational rotation.

4. a transitive invariant compact set A C K for f such that the bundle £ is uniformly expanded
on any proper invariant compact subset of A.

We prove here the following proposition.

Proposition 9.1. Let us consider some diffeomorphisms fo, f, some chain-recurrence classes
H(pys,)), K and a subset A C K satisfying the assumptions 1)-4) above. Then the bundle E“ is
uniformly expanded on any proper invariant compact subset of A.

Let us explain how to conclude the proof of the theorem 9.
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Proof of theorem 9 Under the hypothesis of the theorem, the assumptions 1) and 2) above are
clearly satisfied. Note that since K is contained in a small neighborhood of H(py,), the same holds
for any chain recurrence class K’ which meets K. If for any such chain-recurrence class K’, the
bundle £ is uniformly expanded, the same holds for K, hence the conclusion of the theorem holds.
Note that if K’ contains a curve v tangent to E such that f™ preserves v and is conjugated to
an irrational rotation for some n > 1, then from the domination £ is uniformly contracted on the
union X of the iterates of v and consequently X is an attractor. Since K’ is chain-transitive, K’
coincides with X and is contained in K; this gives theorem 9 in this case. The same holds if K’
contains a sink. We will now assume by contradiction that the conclusion of the theorem does not
hold and hence that K’ satisfies 3) and that the bundle E* is not uniformly expanded by f on K’.

One can then consider an invariant compact set A C K’ whose bundle E° is not uniformly
expanded and that is minimal for this property. Such a set exists by Zorn’s lemma since if {A, }aeca
is a family of invariant compact sets totally ordered by the inclusion and if E* is uniformly expanded
on the intersection Nge Ay, then the same holds on the A, for « large enough. By minimality, for
any proper invariant compact set of A, the bundle E* is uniformly expanded.

Since E° is one-dimensional and not uniformly expanded on A, there exists an invariant measure
1 supported on A and whose Lyapunov exponent along EF" is non-positive. One can assume that
u is ergodic and by minimality of A its support coincides with A. This implies that A is transitive
and satisfies 4).

By applying proposition 9.1 to f, A, K’, the bundle E is uniformly expanded on A which is a
contradiction. Consequently the conclusion of theorem 9 holds. 0

In the following we are in the setting of proposition 9.1 and prove that £ is uniformly expanded
on A. The proof follows the strategy of [PS1] (see also [PS3, PS4, Pul] for more general contexts).
The new difficulty is to work with a non-uniformly contracted bundle £ having dimension larger
than 1; the summability arguments and the construction of Markovian rectangles become more
delicate.

Strategy. Our goal is to find a non-empty open set B of A which satisfy:
(E) For any x € B and n > 1 such that f~"(xz) € B we have HDfFETCLu(:c)H <3
This concludes the proof of the proposition 9.1. Indeed if one considers any point x € A, then:

— either its backward orbit intersects B and property (E) applies,

or the a-limit set of z is a proper invariant compact subset of A whose bundle E* is uniformly
contracted by f~1.

In both cases, the point  has a backward iterate f~"(x) such that HDf|_ETZu (x)|| < 1. By compactness

one deduces that there is some k > 1 such that for any x € A the derivative ||D fl_E]Zu (x)] is smaller
than 1/2, concluding the proof that £ is uniformly expanded on A.
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9.1

Topological hyperbolicity on A

We begin with preliminary constructions and recall some results from [PS1] which only use the
one-codimensional domination E @ E“ and the fact that f is C?. We introduce (in this order) the
following objects satisfying several properties stated in this section:

some constants k, A, 4, x related to the domination,

two transverse cone fields C®,C on a neighborhood of H(py,): they are thin neighborhoods
of the bundles E° and E“* over H(py,) and they are invariant by f; Land fy respectively.

two continuous trapped C'-plaques families (WJ‘iS ), (WJ‘i“) provided by the lemma, 3.8, defined
for diffeomorphisms f that are C'-close to fo and tangent to the bundles (E) and (EF")
over the maximal invariant sets in a small neighborhood of H(py,): the plaques are small and
tangent to C¢,C".

some constants ¢, which control the geometry of the center-stable plaques under backward
iterations, their coherence and their intersections,

some small neighbourhood U of H(py,): for any diffeomorphism f we then denotes Ky the
maximal invariant set of f in U.

a continuous family of trapped C'-plaques (chs) tangent to E° over the maximal invariant
set in a small neighborhood of H(py,): they have a small diameter so that )7\/\;5 is contained in

U for each x € K; moreover for each x € K, the plaque )7\/\;5 is contained in W¢°. This family
is obtained by remark 2.1. It will be used in order to define holes at section 9.2.

a scale p smaller than the diameter of the plaques Wes and which control the size of Markovian
rectangles,

a C2-diffeomorphism f, a chain-recurrence class K and a chain-transitive set A satisfying
the conditions of the proposition 9.1: the C'-distance between f and fy and the size of the
neighborhood of H(pys,) containing K are chosen small enough in order to satisfy further
conditions that will appear in section 9.3.

a scale r > 0 which depends on the C?-diffeomorphism f and on the set A, where the plaques
WE are nicely controled.

Now we list a series of properties that are used (and refered to) in the proof of proposition 9.1.

a) Dominated splitting. We first state some consequences of the domination E° @ E. To
simplify the presentation, one can change the Riemannian metric (see [G]) and find x € (0,1)
such that for each point x € H(py,), and each unitary vectors u € E$° and v € ES*, one has

x

| D fo.u|| < k|| D fo.v]]. One then chooses some A, 1 € (0,1) such that Ay > . This implies that:

For any x € Ky one has

IDfipes @)l 2 A = [|Dfigen(@)ll > p~".
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Since E is not uniformly expanded on A, there exists ¢ € A such that | D f‘%w(( )| <1 for all
n > 1. Note that since E* is uniformly expanded on any invariant compact subset, the forward
orbit of ( is dense in A. With the domination E° @& E“* one deduces:

(i) There exists a point ( with dense forward orbit in A such that for each n > 1 one has

H 1D fies (f* (O < 6"

We fix some small constant x > 0 such that (1 + x)x < A. Choosing C® thin enough one gets:

(i) For any points x,y that are close and contained in a small neighborhood of H(py,) and for any
unitary vector u € CS°, one has

1D fo-ull < (1+x) sup {[|Dfy-vll, v ey, vl =1}

b) Center stable and unstable plaques. Assuming that the plaques are small and the cones
thin, one deduces from our choice of A, u:

(iii) If for some point x € Ky and any n > 0 one has

H 1D fipes (f* (@)[] < A",

then WS? is contained in the stable set of z, i.e. the diameter of f"(WS®) goes to 0 asn — +oo.

(iv) If for some point x € Ky and some n > 0 one has

H 1D fipes (f* (@)[] = A",

then the norm of the derivative of f~™ along the plaque WJ??L( ) 1s smaller than p™.
The center-stable discs do not degenerate under backward iterations: let us fix € > 0 small; then
there is £ > 0 small such that choosing f close to fo and U small the following holds.

(v) Consider any segment of orbit (z,..., f"(2)) in U and any disc D tangent to C**, containing
a ball centered at f"(z) of radius €. Then the preimage f~"(D) contains a ball B centered at
z and of radius €, whose iterates f'(B), i € {0,...,n}, have radius bounded by €.

Indeed each point f¢(z) is close to a point x; € H(py,). Each disc D in the plaque WJ'%EL () 8t f3(2)
can be viewed as the graph of a Lipschitz map above a domain A, of W;®. The invariance of the
cones C%, C% and the fact that the bundle £ is thin trapped shows that fo_k(D), for k € {0,...,n}
contains the graph of a Lipschitz map above a domain A, of Wg*

bounded from below. The property extends to any diffeomorphism f that is C'-close.

whose radius is uniformly

The coherence of the plaques (lemma 2.2) gives:
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(vi) For any points x,y € Ky that are e-close, if W N Wi* # 0 then f(W;°) C oy
Wt O Wit # 0 then f_l(WZj") C Wi (-

The holonomy along the center-stable plaques can be chosen to “preserve the order”:
(vii) For any points x,y € Ky that are e-close, the plaques WS* and Wy intersect in a unique point.

(viil) For any points z~,x",y,z € Ky that are e-close, assume that y belongs to a subinterval of
Wy bounded by 2=, 2% and denote T~ ,%7,y the intersections of the plaques WeE WL, Wye
with WS, Then g belongs to the subinterval of W bounded by &~ ,z+.

(This is a consequence of the coherence of the W-plaques given by the property (vi).)

c) Smoothness and stability of the center-unstable plaques. We now use the following result
which is based on a Denjoy argument. (The proof in [PS1] is written for surface diffeomorphisms
but as it is noticed in [PS3] this does not make any difference.)

Lemma 9.2 ([PS1], lemma 3.3.2, item1)). Let f be a C2*-diffeomorphism and K be an invariant
compact set endowed with a dominated splitting E°° @ E* such that E" is one-dimensional, K does
not contain sinks and all its periodic points hyperbolic. Then, there exists a locally invariant plaque
family v tangent to E°* such that

~ the maps v: ES* — M, x € K, define a continuous family of C?-embeddings;

— for any ro > 0, there exists r1 > 0 such that for any x € K and n > 0 the image of the curve
Ve = Y(B(0,71)) by =" is contained in yy-n .

For the C2-diffeomorphism f and the chain-recurrence class K one deduces that the plaques
W are C? in a neighborhood of the section 0 € E* which remains small by backward iterations.
Indeed, the coherence (lemma 2.2), gives r > 0 such that WS*(B(0,7)) is contained in -y, for any
e K.

d) Topological expansion along the center-unstable plaques. The following result, whose
proof is identical to the surface case [PS1], asserts that the center-unstable curves «y in the center-
unstable direction are unstable manifolds.

Lemma 9.3 ([PS1], lemma 3.5.2). Under the setting of lemma 9.2, for any transitive invariant
compact set A C K such that on any proper invariant compact sets the bundle E* is uniformly
expanded, there exists r > 0 such that

for any x € A, the length of f~"(vx,) decreases uniformly to 0 as n — +o0.

In the following we fix » > 0 small and depending on A, as given by the previous lemma, and
we denote by W(x) the C?-curve Yzr for x € K. By lemma 9.2, the family of unstable curves
(WE(z))zek is continous for the C? topology. For points z € A we sometimes write W (z) =
Wet ().

loc
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9.2 Adapted rectangles

a) Rectangles. The set B in condition (E) will be obtained from a geometry adapted to the
splitting £ @ E*. A rectangle' of A will be a union of local unstable leaves of points of K.

Definition 18. A rectangle R is a union J,cx 7. with X C K such that for each x € X the set
7Yz is an open interval of W!(z) bounded by two distinct points a;l_%,a:}; in Ky and such that the
following properties hold:

1. R has diameter smaller than p,
2. RN A is open in A,

3. for any x,y € X, the point y, belongs to W;i and the point y?%' belongs to W;i.
R R

The sets {x5, € X} and {z}, x € X} are called the boundaries of R.

By item 3) and the property (vi), any two curves ~,,7,s with z,2’ € X are either disjoint or
coincide. For any z € X or z € RN A, one can thus denote by W5*(z) the curve 7, containing z.

Definition 19. A rectangle S is a subrectangle of R = |J,cx 7, if it is a union (J, 7, over the
same set X as R and if one has 7, C ~, for each z € X.

Remark 9.1. Note that if S,T are two subrectangles of R and if 2y = x;, for some x € X, then it
holds for all . Indeed for any y € X, the point y,. is the intersection of W;i = W;‘i with WS(y).
T S

In particular if W§*(x) = Wi*(x) for some x € X, then S =T.
b) Adapted rectangles. We introduce for rectangles a kind of Markov property.
Definition 20. A rectangle R is adapted if for any x,y € X and n > 0,

— the curve Wg'(y) is either disjoint from or contained in f™*(Wg(z)),

— in the case Wg'(y) C f"(Wg"'(x)) there exists a subrectangle S of R such that for each z € X
the image f"(W§"(z)) is an unstable curve of R and such that f"(S) contains Wg*(y).

This subrectangle S is called a return and n is called a return time of R. In the case f*(9) is disjoint
from R for any 0 < k < n, one says that S and n are a first return and a first return time of R.

The next lemma shows that returns of adapted rectangles are adapted (take S = R).

Lemma 9.4. Let R be an adapted rectangle and S be a subrectangle of R. Let also R’ be a return of
R with return time n. Then S = R'N0 f~™(S) is a subrectangle of R'. If S is adapted, S’ is adapted.

!The name refers to the rectangles of Markov partitions. For general hyperbolic sets K the rectangles are subsets of
K but on surfaces one can also consider geometrical Markov partitions [PT, Appendix 2] whose rectangles are subsets
of the surface diffeomorphic to [0, 1]2. In higher dimensions, when the unstable bundle is one-dimensional, one can
build rectangles that are laminated by curves as in definition 18.
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Proof. Note that S’ has diameter smaller than p and S’NA is open in A. For 2’ € X, we consider the
point € X such that f"(Wg(2")) = Wi (x) and we define v,y = f~"(W§*(z)). By construction
and since R is adapted, S’ is the union Uaex Var- In order to prove that S’ is a rectangle it remains
to check the item 3 of the definition.

For 2/,y € X , we consider z,y € X such that f*(Wg'(z')) = Wg(z) and f"(W§(y')) =
Wg!(y). We then denote 2, = f~"(zg) and yg = f~"(yg). We have to prove that yg, belongs to
W< . Let z by the intersection between W;‘; and W/ (yg). The image f"(z) is the intersection

S/
between W;i and W§*(yg). Since S is a subrectangle of R, f"(z) and yg coincide, hence z and yg,
S

coincide, as required.

We now assume that S is adapted and prove that S’ is adapted too. Let us suppose that
MW (")) intersects W& (y') for some m > 0. Taking the image by f™, one deduces that
(W (x)) intersects WE"(y). Since S is adapted, one has W§"(y) C f™(W§"*(x)). This implies
that W5 (y') is contained in f™(WE(z')), proving the first item of definition 20.

Since R is adapted, there exists a subrectangle R” of R such that, for each 2’ € X, the image
fM(Wgi(2')) is an unstable curve of R and such that f™(W(2')) = Wi'(y'). By the first part
of the lemma, the intersection 77 = R" N f~™(S5’) is a subrectangle of R”. Note that W (') is
contained in W& (z'). By property (viii) this implies that for any z € X one has W (z') C W& (2')
proving that 7" is a subrectangle of S’ such that W& (z') is mapped on W5 (y'). Hence S’ is
adapted. ]

c) Holes. In general, AN R is smaller than R and one can introduce the notion of hole.

Definition 21. A hole of a rectangle R is a subrectangle that is disjoint from A and that is maximal
for the inclusion and these properties.
A hole has aperiodic boundary if its boundary |J,c x {7y, a:jgr} is disjoint from its forward iterates.

Lemma 9.5. 1. If S is a hole of R then either for any unstable curve Wg'(z) of R one has g = xp,
or there erists a sequence (z,) in RN A such that d(x,,z, ¢) goes to zero as n — +o0.

2. Holes of adapted rectangles are adapted.

3. For any adapted rectangle R, any hole S with aperiodic boundary and any T > 1, there exists
N > 1 such that for any x € AN R and any n > N satisfying f~"(W§"(x)) C S, the iterates
R WS (2)) for k € {1,...,7} are disjoint from S.

Proof. Let S be a hole of R and Wg*(x) be an unstable curve. We suppose that xy # x}%. The
points y € Ky N R can be ordered by considering the projections Wy N WgH(x) on WE*(z) in such

a way that rg < m'g The union of the curves ’y; C Wgt(y) for y € X, bounded by 5 and yg, isa
rectangle. Thus, since S is a hole and 2, < xg, there exists points y € AN R such that 2, <y < zg.

If there exists an increasing sequence (x,) € ANR whose projections on W§*(x) converge towards
xg, then the distance d(xp, T, g) goes to zero and we are done. So we assume by contradiction that
this is not the case. There exists a point Z € A N R which is the limit of points y € A N R and
such that there is no point y € AN R satisfying ¥ < y < zg. Since R has diameter smaller than p,
which has been chosen smaller than the size of the plaque )7\/\'35, the plaque Wgs intersects each curve
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Wg'(y) at a point y;. The union of the curves v, C Wg'(y) for y € X, bounded by y;. and yg is a
rectangle whose intersection with A is empty. This contradicts the maximality of S. We have thus
proved the first item of the lemma.

Let us assume that R is adapted and that W§"(y) intersects f"(W§"(x)) for some n > 0 and
some z,y € X. We have to show that f"(z5) and f™(z) do not belong to the open curve W5*(y).
Since R is adapted, there exists a return 7" of R such that (W5 (x)) = W§*(y). By property (viii),
the rectangle T' contains S. In the case zg and zj coincide for z € X, the point f"(zg) = f™(z7)
does not belong to the interior of the curves of R, as required. Otherwise, there exists by the first
item a sequence (zx) in AN R such that d(zy, 7y g-) goes to 0 as k goes to +oo. Hence f"(xy) is
close to f”(a:,; g) and belongs to R. We have thus proved that W;i @3) is accumulted by points of
AN R. As a consequence, f"(zg) can not belong to the interior of an unstable curve of S. This
gives the second item of the lemma.

Note that S has only finitely many returns with return time smaller or equal to 7. If S has
aperiodic boundary, its boundary is disjoint from the boundary of each of its returns: there exists
d > 0 such that for any return 7" with return time smaller or equal to 7, one has d(zg,z}) > ¢
and d(z{,2}) > 6. For n larger than some constant N, the unstable curves f~" (W}, (x)) of points
x € A have a size smaller than §. If x € R and f~ (WC"( )) C S, then the iterate f~"(x) € A
belongs to R\ S. One deduces that f~"(W§"(x)) belongs to a return of S with return time larger
than N. This gives the third item of the lemma. O

9.3 Construction of adapted rectangles

The assumptions 1) and 2) are now used for the construction of adapted rectangles. The proof is
strongly based on proposition 8.14.

Proposition 9.6. There exists an adapted rectangle R such that RN A is non-empty.
Moreover one can choose R in such a way that one of the following cases occur.

1. For any T > 0, there is a first return S of R with return time larger than T such that ANS # ().
2. There exists a hole S of R with aperiodic boundary.

The section continues with the proof of this proposition.

a) The construction. We have to require further assumptions on f and A needed to perform

the following construction. We first choose 7 > 0 small. In particular one has n < p < ¢ and the
10 n-neighborhood of H(py,) is contained in U.

Let us apply the proposition 8.14: one gets a smaller open neighborhood U of H (pf,) such that
for any dlffeomorphlsm f that is close enough to fy in Diff! (M), there exists a continuous family
of C'-plaques Wwes tangent to £ over the maximal invariant set K ¢ of fin U which satisfies the
following properties:

— If two plaques WS* and W;S have an intersection in the p-ball centered at x then )7\//53 C We.

— Any Wes_connected set of K N WS containing x has radius smaller than 7.
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Since f is close to fo, if the chain-transitive set A for f is contained in a small neighborhood of
H(py,), then the chain-recurrence class K that contains A is also contained in U. We thus have the

inclusions A ¢ K C IN(f C Ky.

Approximation by periodic orbits. We build a sequence of periodic points (pg) in K such that
e the orbit of p; converges toward A for the Hausdorff topology,
e for each iterate f"(pg), the plaque W]‘ii (%) is contained in the stable manifold of f"(py).

Let us fix ¢ € A satisfying the property (i). With the property (iii), the plaque W¢* is contained in
the stable set of . Note that ( is not periodic since otherwise A would be a periodic orbit: by our
assumptions, either it would be a sink or the bundle E* would be uniformly expanded, contradicting
our assumptions. This ensures that all the plaques W]?i(pk) and WCCS are disjoint.

Claim 9.7. For any o > 0, there exists d > 0 with the following property. For any forward return
y = f™(C) that is 6-close to (, there exists x € WL(¢) N K such that d(f*(x), f*()) is smaller than
a for each 0 < k < n and the image f"(WS®) is contained in WSS,

In particular for any k > 0 one has

k—1
[T 1D fies (Fi(@))] < A
1=0

Proof. From lemma 9.3, there exists rg such that for any point z € A, the backward iterates of the
ball centered at z and of radius ro in W}%_(z) have a length smaller than «. For §p small enough
and any point y,z € K that are dp-close to ¢, the plaque WS® intersects WS(y) at a point y' which
belongs to the ball centered at y and of radius less than 79 in W (y). For n large enough, the length
of any curve f~"(WSk(y)) with y € A is smaller than dy. We choose ¢ € (0,dp) so that the returns
f™(¢) that are d-close to ¢ occur for n large.

We define inductively a sequence of points z; € K N WSL(() that are dp-close to ¢ and satisfy:
— d(f*(z:), f¥(¢)) < afor any 0 < k <n,
_ fn(Wcs

. L s _
., ) is contained in WE* and x = (.

With properties (i) and (ii), this implies that
— For any k > 0 one has H?;é 1D figes (f7 ()] < AR

The construction is done in the following way. Let us assume that x; has been defined. Then the
plaque Wg? intersects W2 (y) in a point y;. By property (iii) the point y; belongs to the stable and
the unstable set of A, hence belongs to K. Moreover the distances d(f~*(y;),%) are smaller than o
for any k > 0. We then define z;1; = f~"(y;) and by construction this point is dp-close to ¢ and
belongs to W%.(¢).

The map x; — ;41 is continuous and monotonous, hence converges to a fixed point x € W} (¢) €
K. The construction and properties (i), (ii) give the announced conclusions on x. O
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Since ( is recurrent, the lemma 9.7 gives a sequence of points (x) in W} (¢)N K which converges
toward ¢ and such that each plaque W7 is mapped into itself by an iterate f*. The contraction
along the bundle £ at zj shows that each plaque W} is contained in the stable manifold of a
periodic point py € Wi N K.

By construction, the orbit (xy, f(zx),. .., f™ !(x})) is contained in an arbitrarily small neigh-
borhood of A. With the contraction along the bundle E* at x;, and the fact that f™*(Wg’) C Wg3,

one deduces that the whole forward orbit of z; and the orbit of p; are close to A for the Hausdorff
topology. Since the plaques W are trapped, each plaque ]ﬁi (pe) is contained in the stable set of
the orbits of py.

The boundary W;i,W;i. We fix some periodic point pg for k large and consider the set P of all
iterates p’ of py such that d(p’,z) < 5.

We choose zy € A close to ¢ and p~,pt € P so that the open interval I C W} ({) bounded by
W;f and W;i has the following properties:

— for any point p’ € P the intersection of W;f with W} (¢) does not belong to I,

— Wy intersects I.
The plaques WS (%) close to ( are controled:

Claim 9.8. For anyn > 0, either the iterate f”(WIfi) does not meet the ball centered at ¢ of radius
2n, or W;i(pﬂ does not intersect I. The same holds with the iterates of W;i.

Proof. Let us fix a large integer N. Since ( is non-periodic and W is contained in its stable set,
the iterates f"(WgS ) are pairewise disjoint. From the construction, having chosen ;ﬁ close to Wg*

and I close to (, the plaques f"(ng) do not meet I for n < N.
When n = N, the radius of the plaque f”(W;fL) is small, and the plaque is contained in lf/\\//]fi (p+)"

By the trapping property, any iterate f"( ;fr) with n > N is thus contained in W;i(pﬂ and has

a radius smaller than 7. One deduces that if f”(W;i) meets the ball centered at ¢ of radius 27,
then the distance between f™(p™) and ¢ is smaller than 3. Consequently, f™(p™) belongs to P and
W]Cci () does not meet I. O

The rectangle R. Let us consider in the 2n-neighborhood of ¢ the set Xy of points z € Wgs that
belong to a forward iterate f7 (W}, (y)) associated to a point y € A. Then we define X as the largest
We_connected subset of Xy containing (. By the choice of )/NVCS, the set X has diameter bounded
by . We define R as the union of curves v, C W(z), z € X, bounded by the intersections z~, 2T
between W%(z) and Wi WL

By the choice of 1 and the construction, the points z~, 2" belong to K. With property (vi),
one deduces that the items 1) and 3) of the definition 18 are satisfied.

Consider any close points x,y € A with x € R. The intersections of W} (z) and W} (y) with
We® are close, hence belong to the same Wcs—component of Xo. As a consequence, W} (y) N Wee
belongs to X. This shows that y belongs to R. We have proved that AN R is open in A and that R
is a rectangle. By construction it contains the point zy and the intersection R N A is non-empty.
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b) R is adapted. Let us assume that for some z,y € X, a forward iterate f"(7,) intersects
vy Considering a large backward iterate, the two curves f"~™(y;) and f~™(v,) are small and
contained in local unstable curves W} (z') and W} (y') for some points z',y/ € A. By property
(vi), one deduces that f"~"™(v,) and f~"(y,) are contained in a same unstable curve W} (z'). In
particular, if f"(-y;) intersects 7, but does not contain 7,, then the image of an endpoint f"(z~) (or
f™(a™)) of v, is contained inside ~y,. One deduces that WS, . intersects I. Since f™(z~) is 2n-close
to x, this contradicts the claim 9.8 above. We have thus proved the first item of definition 20.

Assume now that f"(v,) contains 7,. One can define the subrectangle S of R whose unstable
curves are bounded by W;i and W;i, with ;1:§ = f*"(y]i%). It remains to prove that f™(S) is
S S

contained in R. Let us consider the set ng of points zjq“ for z € X, i.e. the intersection of W;i
S

with the unstable curves W% (z). Since z;f and z are close, the set X;f is connected for the larger

loc

plaque family f *1()/NVCS) containing the plaques f *1(VNVJ§f m)) forz € K ¢. Note that n is larger than
2. As a consequence, the set f"(Xd) is f (WCS)—connected. One thus deduces that the set X’ of

intersections of the curves WSk(z), z € X;, with Wg® is Wes-connected. Since it contains y € X,

this set is contained in the Wcs—component X. This proves the second item of definition 20 and R
is adapted.

c) Periodic center-stable plaques. Let us assume that there exist € A and n > 1 such that
the plaque W¢® is mapped into itself by f™. The set A is not contained in the orbit of the plaque
WE®: otherwise the property (i) would imply that ¢ is a sink of WS*, contradicting the fact that A
is non-periodic. Since W¢* is contained in the stable manifold of ¢, the closure of W¢* and of W;*
are disjoint.

Note that the rectangle R can have been constructed arbitrarily thin in the center unstable
direction, hence it is contained in an arbitrarily small neighborhood of Wgs . In particular, the
closure of R and the closure of the orbit of z are disjoint. Since A is transitive the first return time
on A N R is unbounded, giving the first case of proposition 9.6.

d) Non-periodic center-stable plaques. Let us assume the opposite case: there does not exist
x € A and n > 1 such that the plaque W¢S® is mapped into itself by f™. Let Ry be a rectangle as
obtained in paragraphs a) and b). One can assume also that the first case of the proposition 9.6
does not hold. Since RygN A is non empty and since A is the Hausdorff limit of periodic points, there
exists a periodic point p € Ky whose plaque W,* intersects all the unstable leaves Wgé(z) of Ry at
a point z, which is not in A.

As in the proof of lemma 9.5, the points Ky N Ry are ordered by their projection on an unstable
curve of Ry. There exist two points z—, 2" € Ky N Ry such that 2~ < zp < &, any point y € AN Ry
satisfies y < 2~ or y > 2T and such that there is no = < 2z~ or T > 2+ with the same properties.
One checks easily that the collection of curves 7, C Wﬁo(z) bounded by points in W% and Wi is
a rectangle and a hole Sy of Ry.

We then explain how to modify Ry in order to obtain a hole with aperiodic boundary. Since
Ry N A is non-empty, one can assume by lemma 9.5 that there exists a sequence z,, € A N Ry such
that d(zn,z, g ) goes to zero as n goes to +oo. Let us denote by X~ = {25, 2 € X} one of the
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boundaries of Sy. By construction there exists 2= € X~ N A such that the plaque WS contains
X ™. One deduces that X~ is disjoint from its forward iterates.

One can choose the points z, to have a dense forward orbit. In particular they return to Ry.
Since the return time is bounded, one can also assume that they all have the same return time, hence
belong to a same return 7' of Ry. The set X~ belong to T: otherwise it would be contained in the
boundary of T and mapped by a forward iterate into the boundary of Ry; since the closure of X~
meets A and since the boundary of Ry is contained in the stable set of a periodic orbit, this would
imply that the W¢-plaque of a point of A is mapped into itself, contradicting our assumption.

Note that the set X~ is still one of the boundaries of a hole of T" and that the boundary of T
is still contained in the stable set of periodic orbits. One can thus replace Ry by T and repeat the
same argument. Doing that several times, one gets a deeper return R of Ry which contains the set
X 7. The rectangle R is arbitrarily thin in the unstable direction, hence it contains a hole S whose
boundaries are X~ and a boundary of R. By construction the boundaries of R are disjoint from
their iterates. This implies that S has aperiodic boundaries.

The proof of the proposition 9.6 is now complete. O

9.4 Summability

For any point x € K we denote by ¢(J) the length of any interval J contained in its local unstable

manifold W%(x). This section is devoted to the proof of the next proposition.

Proposition 9.9. For any adapted rectangles S, R, where S is a subrectangle of R, there exists
K(S) > 0 satisfying the following: for any x € AN R, and any n > 0 such that the curves
fRWE (), 0 < k < n, are disjoint from S, we have

n—1

D UTEWE () < K(S).

k=0

Moreover, there is Ko > 0 which only depends on R such that K(S) < Ko when S is a return of R.

a) Summability for first returns. The first case corresponds to [PS1, lemma 3.7.1].

Lemma 9.10. For any adapted rectangle R with RN A # (), there are Cy > 0, o1 € (0,1) as follows.
For any unstable curve Wg(z) of R with Wik(x) N A # 0, any interval J C W (x) and any

loc

n >0 such that the iterates /(W& (x)) with 0 < j < n are disjoint from R we have
(7)) < Croy U(J).

Proof. Let us consider a point z € AN R. Since AN R is open, one can choose a small open
neighborhood V' of z. The maximal invariant set

A=) /"(A-V)

nez
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in AN (M \ V) is compact and proper in A. By assumption E is expansive on Aj. It is thus
possible to get a neighborhood of A; such that while the iterates remain in this neighborhood the
subbundle E is uniformly expanded by Df. Moreover, the number of iterates that an orbit of A
remains in the complement of the mentioned neighborhood of A; and V' is uniformly bounded.

Since Wk(xz) N A # 0, one can always assume that  belongs to A. By lemma 9.3, choosing ng
large enough (and independant from x, J, j), the curves f=/ (W} (x)) for j > ng are small. If j < n,
the segment f~7(J) is disjoint from R, hence f~/(x) is disjoint from V. Moreover x belongs to A.
One deduces that there exist uniform constants o € (0,1) and C > 0 such that ||D f|fE{u (z)|| < Co?
for all 0 < j < m. Since for ng large enough the curves f~7(W} (z)) are small, the derivatives
1D fpen(f (@) and [[Dfpeu (3 ()| for y € Wi () are close.

One deduces that for any 0 < j < n and y € W} _(x) one also has HDf|_E’ZS (y)|l < Cho} for other
constants C7 > 0, o1 € (0,1). The conclusion of the lemma follows. O

b) Distortion along center-stable holonomies and contracting returns. We will need to
compare the unstable curves.

Definition 22. A rectangle R has distortion bounded by A > 0 if for any unstable curves Wg*(x),

Wg'(y) one has:
cu
L_MWpw)
AT UWE(y))
We will also need to consider returns that contract along the center-stable bundle.
Definition 23. Let us fix N > 0. A point 29 € Ky is N-contracting in time n if there exists m < N
in {0,...,n} such that for each i € {m,...,n} one has

TT 1D fimes (FE o))l < X,
k=m

A return S of a rectangle R with returning time n is N-contracting if there zop € Ky NS which is
N-contracting in time n.

The following lemma is similar to [PS1, lemma 3.4.1].

Lemma 9.11. For any adapted rectangle R and any N > 0, there is A1 > 0 such that any N-
contracting return of R has distortion bounded by A;.

Proof. One chooses a C'-foliation F tangent to the cone field C* and containing the plaques wee,
©% of R. For any unstable curves of R with basepoints z,y € X, one gets a diffeomorphism
I,y Wi (x) — W§E*(y), whose derivative is bounded from above and below uniformly in z,y € X.
Let S be a N-contracting return of R. For any unstable curves of S with basepoints z’, 1/,
their images by f" coincide with some curves Wg*(x), Wg*(y) of R. This allows us to define a
diffeomorphism II7, ,: W§"(2') — W§'(y') by

Gy = [ 0 Ty o f™.
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The distortion of S is thus controled by the following quantity, for any z € W§*(z'):
1D firwen ) H/HDfﬁ“Wg“(H;L,’y,(z))H'

Using that the forward iterates of any vector tangent to C" in U converge towards E* (uniformly)
exponentially fast and that the bundle E“* is Holder (see lemma 7.3), one can argue as in [PS1,
lemma 3.4.1] and show that there exist some uniform constants C' > 0 and « € (0, 1) such that

1P g o) nz_l i i o
|| < exp c+C d(f (Z)7f (Hx’,y/(z))) :
)

n
1P ffrweearr, x par;

It remains to estimate d(f*(z), fi(Hg,,y,(z))) and it is clearly enough to consider the case i > N.
Using the property (v) stated in section 9.1, there exists a disc B centered at z tangent to C of
radius larger than e, whose iterates fi(B), i € {0,...,n} have a radius smaller than £ and such that
f"(B) is contained in a leaf of the foliation 7. One deduces that B contains the point II7, ,(2).

From property (ii), the distance d(f%(z), fi(l_[zlyy,(z)) is thus bounded by

d(f'(2), 1Ly (2))) < d(f™ (), (I 4 (2))) (L4 )™ T 1D fimes (£ (20))ll

k=m

< g(l + X)ifm )\ifm7

where 29 € Ky N S is a point which satisfies the definition 23 for some interger m > N. We
have assumed that (14 x)A < 1 (recall section 9.1), hence the sum >7'" d(f(z), f*(IT%, s (2)))% is
bounded uniformly. This concludes the proof of the lemma. O

With the same proof, the lemma 9.11 generalizes to the following setting.

Lemma 9.12. For any adapted rectangles S, R such that S is a subrectangle of R and for any
N >0, there exists A1(S) such that for any N-contracting return R’ of R with return time n, the
subrectangle S" = R' N f~™(S) has distortion bounded by A1(S).

¢) Summability between contracting returns One now obtains the summability for returns
which do not satisfy lemma 9.11.

Lemma 9.13. For any adapted rectangle R and any N > 1 large enough, there is K1 > 0 as follows.
Consider x € AN R and 0 < k <[ such that:

~ fRFWg(x)) C R and f~*(x) is N-contracting in time k,
~ forany k < j <, either fI(Wg(z)) N R =0 or f~I(x) is not N-contracting in time j.

Then for any curve J C Wg*(x) one has
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Proof. Welet R C {k,...,l} be the set of integers n such that f~"(W}j(x)) C R. Since R is adapted
the other integers satisfy f~"(Wg(z)) N R = (). The lemma 9.10 can be restated as:

Claim 9.14. There exists Ko > 0 satisfying the following.
For any integers r < p in{k,...,l} such thatr € R and {r+1,r+2,...p—1}NR =0, one has

p

D UFTI)) < Ko (f7T()).

j=r

We also introduce the set P C {0, ...,l} of integers n such that for each 0 < i < n one has

IT IDfiges (F @)l < A

j=i+1
The summability between iterates in P is ensured by the next classical argument.

Claim 9.15. For any integers p < in{k,...,l} such thatp € P and {p+1,p+2,...,r—1}NP =1,
one has

L)) < TP TP()).
Proof. Using that the integers n € {p +1,...,r — 1} are not in P, one proves inductively that

n

LT 1Dfie (7 @) > A (9-1)

Jj=p+1

Indeed, if one has || D figes (f 77! (z))|| < A, then using that p belongs to P, one deduces that p + 1
also, which is a contradiction. Moreover if the inequatlity (9.1) holds for all the integers p+1,...,n—1
and is not satisfied for n, then for all i € {p,...,n — 1} one gets

11 IDfipe (£ 7 @) < A"
j=i+1

Since p belongs to P this implies that n also which is a contradiction. This proves that (9.1) holds.
The property (9.1) for n = r — 1 together with (iv) in section 9.1 imply that the norm of

D flpv;zz}l,p @) along the plaque W&*(fP(z)) is smaller than " ~P~1, giving the required conclusion.
S
O

We can now prove the lemma. Let Cy > 1 be an upper bound of ||Df||. We choose N large
enough so that one has MNKQC]“ < %
Let us consider ps < ps—1 < ---<pogin Pand k <rs <rs1 <---<rg<Ilin R which satisfy:

— For each i € {0,...,s} one has p; <r; and for i € {1,...,s} one has r; < p;_;.
— There is no r € R such that r; < r < p;. There is no p € P such that p; < p < rj_1.

— ps < k and when s > 1 one has k < ps_1. There is no r € R such that ro <r <.
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These sequences are defined inductively: rq is the largest integer in R smaller or equal to [ and pg is
the largest integer in P smaller or equal to rg. Assume that p; < r; have been constructed. If p; < k
we set s = ¢ and the construction stops. Otherwise we let ;11 be the largest integer in R that is
smaller or equal to p; and smaller than ;. By assumption p; is larger than n, hence r;41 is larger or
equal to n. Then p;11 be the largest integer in P smaller or equal to r; 1 and smaller than p;.

Since f~*(x) is N-contracting in time k, we have p, > k — N. One deduces
((f7P() < CF L(I75()).

Using claims 9.14 and 9.15, for each i € {1,..., s} one has

ST USE)) < (- )t 4 KaCy) 6P,

k=p;

l
SR < (1= )7+ KaCp) U(f7P0(T)),

k=po
C(f7P1(T)) S prTPKRCy U(fTP(T)).

By our assumptions, when i satisfies 0 < ¢ < s the point f~"i(z) € R is not N-contracting. As a
consequence 1; — p; > N. This implies by our choice of N,

UfPr () < pNERCy U(f7P(T)) < SU(F7PT))

N |

Putting all these estimates together one gets the conclusion:

l
S TUFI)) < (1= p) ™+ EKaCp) (1 + 2K2C5)CF £(f75(J)).
j=k

d) Proof of the proposition 9.9. Let us choose N > 1 large and consider the constant K; given
by lemma 9.13. The lemma 9.12 applied to the rectangle S gives a bound A (.S). We fix an unstable
curve Wi (zg) of R. We set K(S) = 2A1(S)K1£(Wg'(x0)). We also set ng = 0 (in the case S is a
return we will obtain a better result taking ng equal to the return time).

Let z € ANR and J = W¢(z). We introduce the set Rp C {—ng,...,n} of integers ¢ such that
f7%(J) C R and f~%(z) is N-contracting in time i + ng. Since R is adapted, the lemma 9.4 shows
that for each ¢ € Rp, there exists a subrectangle S; of R such that

~ f7%J) is an unstable curve of S;,
— for each unstable curve Wg:‘(z) of S; the image fZ(ng‘(z)) is an unstable curve of S.

Lemma 9.16. For any i’ <i in Rp N{1,...,n}, the rectangles S;, Sy are disjoint.
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Proof. Assume by contradiction that some unstable curves f~/(Wg(y)) and f _i/(Wgu(y’ )) of S; and
Sy intersect. Then Wg(y') intersects f*~#(W&%(y)) and since S is adapted, there exists a return
T of S with returning time ¢ — ¢’ such that fi/_i(Wgu(y)) is an unstable curve of 7. One deduces
from remark 9.1 and lemma 9.4 that f%(S;) is contained in 7', hence in S. This contradicts the
assumption that f*~#(Wg%(z)) is disjoint from S. O

Let iy be the largest integer in Rp which is smaller or equal to ng. (When ng = 0, one has
io = 0). We now end the proof of the proposition 9.9. The lemma 9.13 implies that

n—1 n—1
DASTEWE @) < Y UMW)
k=0 k=ig—ng

< Ky (o) + 0 > i)

1ERp, i>ng
Since f~%(x) is N-contracting in time i + ng, the lemma 9.11 implies that for each i € Rp
L)) < AL(S) (WG (o).

The lemma 9.16 implies that the intervals W§!(zo) for i € Rp with i > ng are disjoint. As a
consequence
Y. UWE (@) < UWE (o).
1ERP, i>ng

Putting together these last three inequalities, one concludes the proof of the proposition 9.9 in the
general case S is an adapted subrectangle:

n—1
D UTEWE (@) < 281(S) K1 ((WE (o)) = K(S).
k=0

When S is a return, we take ng equal to the return time so that fS(.J) is an unstable curve of R.
The constant Ap is given by lemma 9.12 and as before we set Ko = 2A1 K1£(W§(z0)). We repeat
the same proof, noting that the subrectangles S; are returns of R, so that for each i € Rp we have
the better estimate

U < Ay WS (o).

The conclusion of the proposition 9.9 thus holds with the uniform constant K. ]

9.5 Proof of the proposition 9.1

In order to conclude the proof of proposition 9.1 we consider a rectangle R as given by the section 9.3
and we distinguish between two cases described by the proposition 9.6.
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a) Distortion along unstable curves. Since by lemma 9.2, the unstable curves the set K are con-
tained in a continuous C%-plaque family, the classical distortion estimates hold (see for instance [PS1,
lemma 3.5.1]).

(D) There is Ao > 0 such that for any z € K, any x,y in an interval J C WSk(z), and any n > 0,
1Dz @)

Dl =P (Azzg >

n n—1
1D f e (@)l < ((J()‘])) exp (AZZE ))) . (9.2)
k=0

As a consequence we also get the following.

In particular,

(D’) For any C > 0 there is n > 0 such that for any z € K, for any intervals J C JC WEt(z) and

loc\?

for any n > 0 satisfying ((J) < (1+n) £(J) and SUZo fR()) < K, then one has

n—1

D)) <20

k=0

In particular for any x € J one has

—n n—1
D@l < L e (2 A2Z€(f"“(=f>)> .

k=0

b) Adapted rectangles with unbounded first returns. We conclude proposition 9.1 in the
first case of the proposition 9.6. (The end of the proof corresponds to [PS1, lemma 3.7.4].)

Lemma 9.17. For any adapted rectangle R, there exists T > 0 as follows.

If there exists a first return Sy of R with return time larger than T and such that Sy N A # 0,
then, there also exists a return S of R such that SN A # () which has the following property: for any
x € SNA andn > 1 such that f~"(z) € S we have HDf|_E’§u(:1:)H < %

In particular the property (E) holds with B = SN A.

Proof. Let Ky, K1, N, Ao be some constants associated to R so that proposition 9.9 and lemmas 9.11
and 9.13 hold. Let L be a lower bound for the length of unstable curves Wg*(z) of R and [ be an
upper bound for all the backward iterates f~/(Wg*(z)) with j > 0. Recall that Ay > 0 is a constant
such that (9.2) holds. We also set

L
6= A—exp( AQ (K0+K1 l))/3
1
and choose 7 > 1 so that for any z € A the backward iterates f~%(W<%(z)) with k > 7 have a length

loc
smaller than ¢ (see lemma 9.3). We then consider a return Sy of R with return time ng larger than

7 such that Sy N A # (. Two cases occur.
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Case 1: no contracting backward iterate. We assume first that for any = € Sy N A, there is no
backward iterate f~7(z) with j > 0 which belongs to a N-contracting return of R with return time
4. In this case, we set S = Sp. For any point € SN A and any j > 1 such that f~7(z) € S one can
apply the lemma 9.13 to x and the integers £k = 0 and [ = j. One deduces that one has
J
Y U WE (2) < Kil(W(x)) < K L.
i=0

Note that j > ng > 7. Since z belongs to A, one deduces that =7 (Wg*(z)) is smaller than §. With
property (D), one gets

(S (WE ()
LWi'(2))

_; l
”Df‘E]cs(x)H < €Xp(A2 Ky l)

< exp(Ag K l) < 1/2

| =

The lemma, is thus proved in this case.

Case 2: contracting backward iterates exist. We first build the return S.

Claim 9.18. There exists a N -contracting return S of R with return time ny > 7 such that ANS #
and such that for each z € AN S one has

D UF (WS (2))) < K1 6WR(S™ (2))).
j=0

Proof. There exists a point = € f"(Sp) N A and a backward iterate f~"!(x) with ny > ng which
belongs to a N-contracting S return of R with return time n;. One can assume that n; is minimal:
consequently for any i € {1,...,n1 —nsy} the iterate f*(S) does not intersect a N-contracting return
of R with return time ny—i. Since Sy is a first return, the iterates f(S) fori € {n;—no+1,...,n1—1}
do not intersect R. The lemma 9.13 can thus be applied to the points z € AN f™(.S) and the integers
k=0 and [ = n;. In particular, for any z € A NS one gets the announced inequality. O

We now prove that the return S given by the claim 9.18 satisfies the conclusions of the lemma 9.17.
It is enough to consider a point € SN A and n > 1 such that f~"(z) € S and f~*(x) ¢ S for
0 < k < n. By lemma 9.4, the rectangle S is adapted, hence f‘k(Wgu(m)) is disjoint from S for any
0 < k < n. One deduces by proposition 9.9 that

n—1

S U WE (@) < Koo

k=0

By our choice of S one has
DU WS (@) < Kib(f™ (W (f " (x))) = Kib(Wg (" (x))).
§=0
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In particular, the property (D) gives

(Mgt (@)
t(Wg'(z))
(W' (f ()
(WgH(fm—n(x)))
Since S is an N-contracting return of R, the lemma 9.11 gives

(Wer (7 (a))
(wee) SO

IDfL (@) <

exp (AQ K@) .

1D figea (F T (@)) < 5

We also have
(P (WE (@) = (0 (WE (™ ))) < 6.

Combining these inequalities, one gets the required estimate:

IDf e (f(2))]| < exp (Ag (Ko + K1 1)) <1/2.

L Ay

exp (AQ Kl l) .

O]

c) Adapted rectangles with holes. We obtain a stronger summability result for holes. This is

similar to [PS1, lemma 3.7.7].

Lemma 9.19. Let R be an adapted rectangle and S be a hole of R with aperiodic boundary. Then,

there exists K3 > 0 such that for any x € RN A, we have

DU (@) < K.

k>0

Proof. By lemma 9.5, S is an adapted rectangle. Let (n;) be the sequence of returns of Wg*(x)
into S, that is the integers such that f~"(W§"*(x)) C S. Let us consider two consecutive returns

n;,nit+1. By the proposition 9.9, we have

Ni41

> USRS @) < K(S).

k=n;
It is enough to bound uniformly the sum ;- £(f " (W§"(2))).

From (D) we have

(T (Wt ()
((fm(Wg(x)))

(T (Wt (T ()
WG (f i (2)))

<

exp(A2K(S9)).

By lemma 9.5, there exists N > 1 such that for n; > N the difference n;+; — n; is large and by
lemma 9.3, the length £( f ="+t (W (f~"(x)))) is smaller than (W& (f~"(x))) exp(—A2K(S))/2.
In particular £(f~"+(Wg*(x))) is smaller than £(f~"(W§*(x)))/2 for any n; > N. The corollary

follows.
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It remains to conclude proposition 9.1 in the second case of the proposition 9.6.

Lemma 9.20. For any adapted rectangle R having a hole S with aperiodic boundary and such that
RN A #0, there exists a non-empty open subset B C R of A such that property (E) holds.

Proof. Let K3, As be the constants given by lemma 9.19 and the property (D) and let n be the
constant given by the property (D’) and associated to C' = K3. Since RN A is non-empty S is proper
in R. Up to exchange the boundaries z~, z% of R and S, one deduces by lemma 9.5 that there exists
a sequence (zp) in RN A such that d(zn, z,, ) goes to zero as n — +oc. Since A is transitive and is
not a single periodic orbit, one can assume that the points z,, are not periodic. We fix such a point
x so that d(z,zg) < n (W' (x)).

Let L be a lower bound for the length of the curves W§"(z) of S and let 6 = Lexp(—2 Ay K3)/3.
We choose 7 large enough such that for any z € A the curves f~"(WS%(2)) for n > 7 have a length
smaller than é. Since x is not periodic, one can find a small neighborhood B of z in A such that B
is disjoint from its first 7 iterates and for any y € B one has d(y,yg) < n {(W§"(y)).

For any return f~"(y) in B one has n > 7. Lemma 9.19 and property (D’) thus give:

LW (y)

< %exp(Z Ay Kg) < 1/2.

—n cu n—1
T (2 A2Z€(f’“(W§“(y)))>

The proof of the proposition 9.1 is now complete.
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