
Essential hyperbolicity and homoclinic bifurcations:

a dichotomy phenomenon/mechanism for diffeomorphisms

Sylvain Crovisier Enrique R. Pujals

November 11, 2010

To Jacob for his 70th birthday.

Abstract

We prove that any diffeomorphism of a compact manifold can be approximated in topology
C1 by another diffeomorphism exhibiting a homoclinic bifurcation (a homoclinic tangency or
a heterodimensional cycle) or by one which is essentially hyperbolic (it has a finite number of
transitive hyperbolic attractors with open and dense basin of attraction).
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1 Introduction

1.1 Mechanisms classifying the dynamics

In the direction to describe the long range behavior of trajectories for “most” systems (i.e. in a
subset of the space of dynamics which is residual, dense, etc.), a crucial goal is to identify any
generic dynamical behavior. It was briefly thought in the sixties that this could be realized by the
property of uniform hyperbolicity. Under this assumption, the limit set decomposes into a finite
number of disjoint (hyperbolic) transitive sets and the asymptotic behavior of any orbit is described
by the dynamics in those finitely many transitive sets (see [Sm]). Moreover, under the assumption of
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hyperbolicity one obtains a satisfactory (complete) description of the dynamics of the system from
a topological and statistical point of view.

Hyperbolicity was soon realized to be a less universal property than what one initially thought:
the space of dynamics contains open sets of non-hyperbolic systems. We are now aimed to understand
how the space of systems can be organized according to the different kinds of dynamical behavior
they exhibit.

a- Characterization of non-hyperbolic systems. Dynamicists were lead to look for obstruc-
tions to hyperbolicity. For instance any non-hyperbolic diffeomorphism can be approximated in the
C1-topology by a system having a non-hyperbolic periodic orbit (see [M2], [A], [H]). Since Poincaré
we know that some very simple configurations (such that the existence of a homoclinic orbit) could
be the source of a widely complex behavior. One has identified two simple obstructions for hyper-
bolicity which generate rich dynamical phenomena and they have played a crucial role in the study
of generic non-hyperbolic behavior:

1. heterodimensional cycle: the presence of two periodic orbits of different stable dimension linked
through the intersection of their stable and unstable manifolds (see [AS], [Sh], [D]);

2. homoclinic tangency: the existence of a non-transversal intersection between the stable and
unstable manifolds of a periodic orbit (see [N1], [N2], [PT], [PV], [BD1]).

These obstructions are relevant due to several dynamical consequences that they involve: the first one
is related to the existence of non-hyperbolic robustly transitive systems (see [D], [BDPR], [BDP]);
the second one generates cascade of bifurcations, is related to the existence of residual subsets of
diffeomorphisms displaying infinitely many periodic attractors (see [N3]) and to the local variations
of entropy for surface diffeomorphisms (see [PS2]).

Another important property is that these obstructions are not isolated in the C1−topology,
and sometimes, there are not isolated in a strong way: i) among C2-surface diffeomorphisms, any
system with a homoclinic tangency is limit of an open set of diffeomorphisms having homoclinic
tangencies associated to hyperbolic sets (see [N3]); ii) among C1-diffeomorphisms, any system with
a heterodimensional cycle is limit of an open set of diffeomorphisms having heterodimensional cycles
associated to hyperbolic sets of different indexes (see [BDKS] and section 2.10).

In the 80’s Palis conjectured (see [Pa], [PT]) that these two bifurcations are the main obstructions
to hyperbolicity:

Conjecture (Palis). Every Cr diffeomorphism of a compact manifold can be Cr approximated by
one which is hyperbolic or by one exhibiting a heterodimensional cycle or a homoclinic tangency.

This conjecture may be considered as a starting point to obtain a generic description of Cr-
diffeomorphisms. If it turns out to be true, we may focus on the two bifurcations mentioned above
in order to understand the dynamics.

b- Mechanisms versus phenomena. To elaborate the significance of this conjecture, we would
like to recast it in terms of mechanisms and dynamical phenomena.

By a mechanism, we mean a simple dynamical configuration for one diffeomorphism (involving
for instance few periodic points and their invariant manifolds) that has the following properties:
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– it “generates itself”: the system exhibiting this configuration is not isolated. In general the
mechanism is a co-dimensional bifurcation, but it produces a cascade of diffeomorphisms shar-
ing the same configuration;

– it “creates or destroys” rich and different dynamics for nearby systems (for instance horseshoes,
cascade of bifurcations, entropy’s variations).

Following this definition, homoclinic tangencies and heterodimensional cycles are mechanisms in any
Cr−topology for r ≥ 1.

In our context a dynamical phenomenon is any dynamical property which provides a good global
description of the system (like hyperbolicity, transitivity, minimality, zero entropy, spectral decom-
position) and which occurs on a “rather large” subset of systems.

We relate these notions and say that a mechanism is a complete obstruction to a dynamical
phenomenon when:

– it is an obstruction: the presence of the mechanism prevents the phenomenon to happen;

– it is complete: each system that does not exhibit the dynamical phenomenon is approximated
by another displaying the mechanism.

In other words, a mechanism (or a dynamical configuration) is a complete obstruction to a dynamical
phenomena, if it not only prevents the phenomenon to happen but it also generates itself creating rich
dynamics and it is common in the complement of the prescribed dynamical phenomenon. Following
this approach, Palis’s conjeture can be recasted:

Recasting Palis’s conjecture. Heterodimensional cycles and homoclinic tangencies are a complete
obstruction to hyperbolicity.

Let us give some examples where a dichotomy mechanism / phenomenon has been proved or
conjectured.

– Homoclinic bifurcations / hyperbolicity. This corresponds to the previous conjecture and is
known in dimensions 1 and 2 for the C1-topology, see [PS1].

– Transverse homoclinic intersection / robust zero topological entropy. It has been proved in any
dimension for the C1-topology, see [BGW], [C1].

– Trapping region / residual transitivity. Any C1-generic diffeomorphism f is either transitive
or sends a compact set into its interior, see [BC1].

– Homoclinic tangency / global dominated splitting. After a C1-perturbation any diffeomorphism
exhibits a homoclinic tangency or its limit dynamics holds a (robust) dominated splitting with
one-dimensional central bundles, see [CSY].
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c- Main result. In the present paper, we prove the mentioned conjecture in the C1−topology for
a weaker notion of hyperbolicity.

Definition. A diffeomorphism is essentially hyperbolic if it has a finite number of transitive hyper-
bolic attractors and if the union of their basins of attraction is open and dense in the manifold.

The essential hyperbolicity recovers the notion of Axiom A: most of the trajectories (in the Baire
category) converge to a finite number of transitive attractors that are well described from a both
topological and statistical point of view. Moreover, the dynamics in those hyperbolic attractors,
govern the dynamics of the trajectories that converge to them. In fact, in an open and dense subset
the forward dynamics does not distinguish the system to an Axiom A diffeomorphism.

Now, we state our main theorem:

Main theorem. Any diffeomorphism of a compact manifold can be C1−approximated by another
diffeomorphism which:

1. either has a homoclinic tangency,

2. or has a heterodimensional cycle,

3. or is essentially hyperbolic.

Roughly speaking we proved that homoclinic tangencies and heterodimensional cycles are the
C1−complete obstructions for the essential hyperbolicity.

Remark 1.1. The proof gives a more precise result: inside the open set of diffeomorphisms that are
not limit in Diff1(M) of diffeomorphisms exhibiting a homoclinic tangency or a heterodimensional
cycle, the essentially hyperbolic diffeomorphisms contain a Gδ dense subset. As a consequence, one
may also require that these diffeomorphisms are also essentially hyperbolic for f−1.

d- Mechanisms associated to phenomena. In contrast to the previous dichotomies, a mecha-
nism could also be the key for a rich (semi-global) dynamics. We say that a mechanism is associated
to a dynamical phenomenon if the following holds:

– the systems exhibiting the dynamical phenomenon can be approximated by ones displaying
the mechanism;

– the ones exhibiting the mechanism generate (at least locally) the dynamical phenomenon.

As in the notion of complete obstruction, a mechanism is associated to a dynamical phenomenon
not only if it generates it but if any time that the phenomenon appears by small perturbations the
mechanism is created. Thus a goal would be to establish a dictionary between mechanisms and
(semi-global) dynamical phenomena.

Let us mention some known examples.

– Transverse homoclinic intersections / non-trivial hyperbolicity. On one hand, systems exhibit-
ing a transversal homoclinic point of a hyperbolic periodic point has horseshoes associated to
them; on the other hand horseshoes displays transversal homoclinic points (see for instance
[Bi] and [Sm]).
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– Heterodimensional cycles / non-hyperbolic C1-robust transitivity. On the one hand, systems
displaying heterodimensional cycles are C1−dense in the interior of the set of non-hyperbolic
transitive diffeomorphisms (see for instance [GW]); on the other hand, the Cr−unfolding of
a (co-index one) heterodimensional cycles creates maximal invariant robustly transitive non-
hyperbolic sets (see [D]).

– Homoclinic tangencies / residual co-existence of infinitely many independent pieces. On the
one hand, the existence of a homoclinic tangency for C2 surface diffeomorphisms, sectionally
dissipative tangencies in higher dimension or the existence of a homoclinic tangencies com-
bined with heterodimensional cycles for C1 diffeomorphisms may imply locally residually the
co-existence of infinitely many attractors (Newhouse phenomenon), see [N3], [PV] and [BD1].
On the other hand, it is conjectured that any diffeomorphism exhibiting infinitely many at-
tractors can be approximated by a diffeomorphism which exhibits a homoclinic tangency (see
for instance [Bo]).

Related to the above conjecture in [Bo], it was proved in [PS4] that for smooth diffeomorphisms, the
co-existence of infinitely many attractors in a “sectionally dissipative region of the manifold” implies
the creation of sectionally dissipative tangencies by C1 perturbations (see corollary 1.1 in [PS4] for
details). In a more general framework as a byproduct of the proof of the main theorem, we prove
the following.
Theorem. The co-existence of infinitely many attractors implies that either heterodimensional
cycles or homoclinic tangencies can be created by C1 perturbations.
See item c- in section 1.2 for details and proof.

e- Robust mechanisms The mechanisms we presented are simple configurations of the dynamics
but as bifurcations are also one-codimensional. From the deep studies of the role of cycles and
tangencies, Bonatti and Diaz have proposed to enrich Palis’s conjecture and introduced the notion
of robust heterodimensional cycles and robust homoclinic tangencies, meaning that now the mecha-
nisms involve non-trivial transitive hyperbolic sets instead of periodic orbits so that the cycles and
tangencies may occur on an open set of diffeomorphisms.

From [BD2] the main theorem can be restated in the following way:

Main theorem revisited. Any diffeomorphism of a compact manifold can be C1−approximated
by another diffeomorphism which either is essentially hyperbolic, or has a homoclinic tangency, or
has a robust heterodimensional cycle.

We also refer to [Bo] for a complementary program about the dynamics of C1-diffeomorphisms.

1.2 Itinerary of the proof

The proof focuses on diffeomorphisms far from homoclinic bifurcations and consists in three parts.

• We first conclude that the quasi attractors (the Lyapunov stable chain-recurrence classes)
are “topologically hyperbolic”: they are partially hyperbolic homoclinic classes with a one-
dimensional “stable” center bundle and the union of their basin of attraction is dense in the
manifold.
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• We then develop a series of perturbation techniques which ensure that topologically hyperbolic
quasi-attractors are uniformly hyperbolic attractors.

• At the end we prove that the union of the quasi-attractors is closed. With the second point
this gives the finiteness of the hyperbolic attractors.

A diffeomorphism which satisfies the first and the third property could be called “essentially topo-
logically hyperbolic”.

a- Topological hyperbolicity. From the start, we concentrate the study on quasi-attractors.
Following [C1, C2] (see theorems 2 and 3 below), it is concluded that C1−far from homoclinic
bifurcations, the aperiodic chain-recurrent classes are partially hyperbolic with a one-dimensional
central bundl, and the homoclinic classes are partially hyperbolic with their central bundles being at
most two-dimensional (however the hyperbolic extremal subbundles may be degenerated). Moreover,
a special type of dynamics has to hold along the central manifolds: the center stable is chain-stable
and the center unstable is chain-unstable. We define a weak notion of topological hyperbolicity that
we call chain-hyperbolicity : this is suitable for our purpose since in some cases the chain-hyperbolicity
is robust under perturbations. (See definition 7 for details and justification of the names topological
hyperbolicity and chain-hyperbolicity).

From corollary 2.4 it is concluded that aperiodic classes can not be attractors and therefore they
are out of our picture. For homoclinic classes, whenever the partially hyperbolic splitting has two
extremal hyperbolic subbundles, corollary 2.3 concludes that the central bundle is one-dimensional
subbundle and chain-stable otherwise a heterodimensional cycle is created.

b- Uniform hyperbolicity. At this step, a first dichotomy is presented (see corollary 2.6): either
the quasi-attractor is contained in a normally hyperbolic submanifold (and from there one concludes
the hyperbolicity, see corollary 2.13) or the strong stable foliation is non-trivially involved in the
dynamic, meaning that at least two different points x, y in the class share the same local strong
stable leaf. In this second case (see theorem 10), we will perturb the diffeomorphism in order to
obtain a strong connection associated to a periodic point, i.e. a periodic point whose strong stable
and unstable manifolds intersect, see definition 9; in particular, assuming that the quasi-attractor is
not hyperbolic, a heterodimensional cycle can be created (see proposition 2.7).

To perform the perturbations, one has to discuss the relative position between two unstable leaves
after projection by the strong stable holonomy: the position types are introduced in definition 15.
In particular, by analyzing the geometry of quasi-attractors one can reduce to the case the points
x, y belong to stable or to unstable manifolds of some periodic orbits. Improving [Pu1] and [Pu2],
three different kinds of perturbations may be performed. They correspond to the following cases:

– x, y belong to unstable manifolds and their forward orbits have fast returns close to x or y.

– x, y belong to unstable manifolds and their forward orbits have slow returns close to x or y.

– x, y belong to a stable manifold.

The two first cases are covered by theorem 12 and the last one by theorem 11. To perform these
perturbations one needs to control how the geometry of the class changes for any perturbed map; we
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prove (see proposition 4.5) that whenever the perturbation of the homoclinic class does not display
strong connection associated to periodic points then it is possible to get a well defined continuation
for the whole class.

c- Finiteness of the attractors. The delicate point is to exclude the existence of an infinite
number of sinks. This is done by proving that for any non-trivial chain-recurrence classes, the
extremal subbundles are hyperbolic. We thus consider the splittings Es ⊕ Ecu or Es ⊕ Ecs ⊕ Ecu,
where Ecs, Ecu are one-dimensional, and in both cases we prove that Ecu is hyperbolic. The first
case follows from results in [PS4]. In the second case, the hyperbolicity of the center unstable
subbundle follows for a more detailed understanding of the topological and geometrical structure of
the homoclinic class (see theorem 9). In fact, from being far from heterodimensional cycles, it is
concluded that the the class is totally disconnected along the center stable direction (see theorems
5) and from there a type of geometrical Markov partition is constructed (see proposition 8.14); this
allows to use C2−distortion arguments to conclude hyperbolicity of Ecu as in [PS1] and [PS4].

After it is concluded that the chain-recurrence classes are partially hyperbolic with non-trivial
extremal hyperbolic subbundles, the finiteness follows quite easily (see section 2.8).

Structure of the paper. In section 2 it is proved that the chain-recurrence classes for systems far
from homoclinic bifurcations are “topologically hyperbolic”. Moreover, we stated there all the theo-
rems (proved in the other sections) needed to conclude the main theorem, which is done in subsection
2.9. In section 3 we give a general study of the chain-hyperbolic classes and their topological and
geometrical structures. This allows to obtain the continuation of some partially hyperbolic classes
(done in section 4), and to introduce the notion of boundary points for quasi-attractors (done in
section 5). In sections 6 and 7 are stated and proved the new perturbations techniques that hold in
the C1+α−topology. In sections 8 and 9 are studied partially hyperbolic homoclinic classes with a
two-codimensional strong stable bundle, first analyzing their topological and geometrical structure
and latter their hyperbolic properties.

1.3 Some remarks about new techniques and Cr−versions of the main theorem

We would like to highlight many of the new techniques developed in the present paper and that can
be used in other context.

1- Chain-hyperbolicity. We introduce the notion of chain-hyperbolic homoclinic class which gen-
eralizes the locally maximal hyperbolic sets. It allows to include some homoclinic classes having
hyperbolic periodic points with different stable dimensions, provided that at some scale, a stable
dimension is well-defined. We recover some classical properties of hyperbolic sets: the local product
structure, the stability under perturbation, the existence of (chain) stable and unstable manifolds.
See section 3.

2- Continuation of (non necessarily hyperbolic) homoclinic classes. It is well known that isolated
hyperbolic sets are stable under perturbation and have a well defined and unique continuation. We
extend this approach to certain partially hyperbolic sets which are far from strong connections. This
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is done by extending the continuation of their hyperbolic periodic points to their closure, a technique
that resembles to the notion of holomorphic motion. See section 4.

3- Geometrical and topological properties of partially hyperbolic attractors. We study the geometri-
cal structure of partially hyperbolic attractors with a one-dimensional central direction in terms of
the dynamics of the strong stable foliation. For instance:

– It is presented a dichotomy proving that a homoclinic class is either embedded in a submanifold
of lower dimension of the ambient space or one can create a strong connection (maybe after a
perturbation). See theorems 5 and 10.

– In certain cases it is introduced the notion of stable boundary points of a partially hyperbolic
homoclinic class (extending a classical notion for hyperbolic surfaces maps) which permits us
to control the bifurcations that holds after perturbations. See proposition 5.2 and lemma 5.6.

– If they are no (generalized) strong connection, it is proved that the homoclinic class is totally
disconnected along its stable leaves. See theorem 5.

– The total disconnectedness mentioned above, allows us to introduce kind of Markov partitions
for non-hyperbolic partially hyperbolic classes. See proposition 8.14.

4- Hyperbolicity of the extremal subbundles. For invariant compact sets having a dominated splitting
E ⊕ F with dim(F ) = 1, [PS1] and [PS4] have developed a technique which allows to prove that
F is hyperbolic provided E is either uniformly contracted or one-dimensional. We extend this
result for partially hyperbolic systems with a 2-dimensional central bundle, that is when E is only
“topologically contracted”. See section 9.

5- New perturbation techniques. It is developed new perturbation techniques suitable for partially
hyperbolic sets with one-dimensional central directions. See theorems 12 and 11. We want to
point out, that these perturbations hold in the C1+α−topology. Those perturbation resemble the
C1−connecting lemma but since in the present context a better understanding of the dynamic is
available, then the perturbation can be perform in the C1+α−topology.

6- Consequences for hyperbolic dynamics. Previous highlighted techniques can be formulated for
hyperbolic attractors and have consequences in terms of topological and geometrical structure. See
theorems 5 and 10.

7- Generic structure of partially hyperbolic quasi-attractors. A byproduct of the proof shows (see
theorem 13) that for C1-generic diffeomorphisms, any quasi-attractor which has a partially hyper-
bolic structure with a one-dimensional central bundle contains periodic points of different stable
dimension.

We want to emphasize that many of the results contained in the present paper work in the
Cr−category for any r ≥ 1 or for r = 1 + α with α ≥ 0 small. For instance, theorems 10, 12 and
11 hold in the C1+α−topology. This allows to prove (see the remark 2.5, item 4) a partial version
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of Palis conjecture in the C1+α−category when one restricts to partially hyperbolic attractors with
one-dimensional center direction).

Theorem. For any C2 diffeomorphism f of a compact manifold and any “topologically hyperbolic
attractor” H(p) (i.e. which satisfies the assumptions stated in theorem 10), there exists α > 0 with
the following property. For any δ > 0, there exists C1+α-perturbations g of f such that

– either the homoclinic class H(pg) associated to the continuation pg of p is hyperbolic,

– or there exists a periodic orbit O of g which has a strong homoclinic intersection and one of
its Lyapunov exponents has a modulus smaller than δ.

We don’t know however if under the conclusions of this theorem it is possible to create a het-
erodimensional cycle by a C1+α-perturbation of the diffeomorphism.

2 Chain-recurrence classes far from homoclinic bifurcations

We introduce in sections 2.1 and 2.2 the notion of trapped plaque families and chain-hyperbolic
homoclinic classes. Their basic properties will be studied systematically later in section 3, but we
will derive before (sections 2.2, 2.3 and 2.8) important consequences for the generic dynamics far
from homoclinic bifurcations. We also present (sections 2.7 and 2.9) the main results of the paper
that are proved in the next sections and explain how they imply the main theorem. In the last part
(section 2.10) we give other consequences of our techniques. We start this section by recalling some
classical definitions.

In all the paper M denotes a compact boundaryless manifold.

Definition 1. We say that f ∈ Diff1(M) exhibits a homoclinic tangency if there is a hyperbolic
periodic orbit O and a point x ∈W s(O) ∩W u(O) with TxW s(O) + TxW

u(O) 6= TxM .

Definition 2. We say that f ∈ Diff1(M) exhibits a heterodimensional cycle if there are two hyper-
bolic periodic orbits O and O′ of different stable dimension, such that W u(O) ∩W s(O′) 6= ∅ and
W u(O′) ∩W s(O) 6= ∅.
Definition 3. From now on, with Tang∪Cycl it is denoted the set of diffeomorphisms that can be
C1−approximated by one exhibiting either a homoclinic tangency or a heterodimensional cycle. We
say that a diffeomorphisms f is C1−far from cycles and tangencies if f ∈ Diff1(M) \ Tang∪Cycl

The global dynamics of a diffeomorphism may be decomposed in the following way. The chain-
recurrent set is the set of points that belong to a periodic ε-pseudo orbit for any ε > 0. This compact
invariant set breaks down into invariant compact disjoint pieces, called the chain-recurrence classes:
two points belong to a same piece if they belong to a same periodic ε-pseudo orbit for any ε > 0.
An invariant set is chain-transitive if it contains a ε-dense ε-pseudo-orbit for any ε > 0.

Definition 4. A quasi-attractor is a chain-recurrence class which is Lyapunov stable, i.e. which
admits a basis of neighborhoods U satisfying f(U) ⊂ U .
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For any diffeomorphism, we define another notion of “piece of the dynamics”. Associated to a
hyperbolic periodic point p, one introduces its homoclinic class H(p) which is the closure of the
transverse intersection points between the unstable and the stable manifolds W u(O),W s(O) of the
orbit O of p. It also coincides with the closure of the set of hyperbolic points q that are homoclinically
related to the orbit of p, i.e. such that W u(q) and W s(q) have respectively a transverse intersection
point with the stable and the unstable manifolds of the orbit of p. Note that for diffeomorphisms g
that are C1-close to f , the periodic point p has a hyperbolic continuation pg. This allows to consider
the homoclinic class H(pg).

For a C1-generic diffeomorphism, the periodic points are hyperbolic and [BC1] proved that a
chain-recurrence class that contain a periodic point p coincides with the homoclinic class H(p).
The other chain-recurrence classes are called the aperiodic classes. Those classes are treated in
subsections 2.2 and 2.3.

We state two other consequences of Hayashi’s connecting lemma and [BC1].

Lemma 2.1. For any C1-generic diffeomorphism f and any homoclinic class H(p),

– if H(p) contains periodic points with different stable dimensions, then f may be C1-approxi-
mated by diffeomorphisms having a heterodimensional cycle;

– H(p) is a quasi-attractor if and only if it contains the unstable manifold of p.

Quasi-attractor always exist but for a C1-generic diffeomorphism they attract most orbit.

Theorem 1 ([MP, BC1]). Let f be a diffeomorphism in a dense Gδ subset of Diff1(M). Then the
ω-limit set of any point x in a dense Gδ subset of M is a quasi-attractor.

According to this result, the main theorem is a consequence of two independant properties of
C1-generic diffeomorphisms that are C1-far from cycles and tangencies:

– the union of the quasi-attractors is closed (see proposition 2.14);

– each quasi-attractor is a hyperbolic set (see theorem 10).

Indeed by the shadowing lemma, any quasi-attractor which is hyperbolic is transitive and attracts
any orbit in a neighborhood. In particular, the quasi-attractors are isolated in the chain-recurrence
set. Since their union is closed, they are finite.

2.1 Trapped tangent dynamics

Let f be a diffeomorphism and K be an invariant compact set.

A dominated splitting on K is a decomposition TKM = E ⊕ F of its tangent bundle into two
invariant linear sub-bundles such that, for some integer N ≥ 1, any unitary vectors u ∈ Ex, v ∈ Fx
at points x ∈ K satisfy

2‖DfN .ux‖ ≤ ‖DfN .vx‖.
This definition does not depend on the choice of a Riemannian metric on M . In the same way, one
can define dominated splittings TKM = E1 ⊕ · · · ⊕ Es involving more than two bundles.
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When the bundle E is uniformly contracted (i.e. when there exists N ≥ 1 such that for any
unitary vector u ∈ E one has ‖DfN .u‖ ≤ 2−1), the stable set of each point x contains an injectively
embedded sub-manifoldW ss(x) tangent to Ex called the strong stable manifold of x, which is mapped
by f on the manifold W ss(f(x)).

A partially hyperbolic splitting on K is a dominated splitting TKM = Es ⊕ Ec ⊕ Eu such that
Es and Eu are uniformly contracted by f and f−1 respectively.

Definition 5. A plaque family tangent to E is a continuous map W from the linear bundle E over
K into M satisfying:

– for each x ∈ K, the induced map Wx : Ex →M is a C1-embedding which satisfies Wx(0) = x
and whose image is tangent to Ex at x;

– (Wx)x∈K is a continuous family of C1-embeddings.

The plaque family W is locally invariant if there exists ρ > 0 such that for each x ∈ K the image of
the ball B(0, ρ) ⊂ Ex by f ◦Wx is contained in the plaque Wf(x).

We often identify Wx with its image. The plaque family theorem [HPS, theorem 5.5] asserts that
a locally invariant plaque family tangent to E always exists (but is not unique in general).

Definition 6. The plaque family is trapped if for each x ∈ K, one has

f(Wx) ⊂ Wf(x).

It is thin trapped if for any neighborhood S of the section 0 in E there exist:

– a continuous family (ϕx)x∈K of C1-diffeomorphisms of the spaces (Ex)x∈K supported in S;

– a constant ρ > 0 such that for any x ∈ K one has

f(Wx ◦ ϕx(B(0, ρ))) ⊂ Wf(x) ◦ ϕf(x)(B(0, ρ)).

If a plaque family W is thin trapped, then it is also the case for any other locally invariant plaque
family W ′ tangent to E (moreover there exists ρ > 0 such that for each x ∈ K, the ball B(0, ρ) ⊂ Ex
is sent by W ′

x into Wx, see lemma 2.2). One thus say that E is thin trapped.

Remark 2.1. Note also hat when E is thin trapped, there exist nested families of trapped plaques
whose diameter are arbitrarily small.

The two following properties are classical (see for instance [C2, Lemma 2.4]). On a small neigh-
borhood of K, we introduce a cone field CE which is a thin neighborhood of the bundle E.

Lemma 2.2. Let K be a compact invariant set endowed with a dominated decomposition TKM =
E⊕F . There exists r > 0 such that if there exists a trapped plaque family Wcs tangent to CE whose
plaques have a diameter smaller than r, then the following properties hold.

– If Ŵcs is another locally invariant plaque family tangent to Ecs, then there exists ρ > 0 such
that for each x ∈ H(p) the image of the ball B(0, ρ) ⊂ Ex by Wcs

x is contained in Ŵcs
x .

– There exists ε > 0 such that for any points x, x′ ∈ H(p) that are ε-close with Wcs
x ∩Wcs

x′ 6= ∅,
then f(Wcs

x′ ) ⊂ Wcs
f(x).
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2.2 Homoclinic classes

Far from homoclinic bifurcations, the homoclinic classes of a generic diffeomorphism satisfy some
weak form of hyperbolicity.

Definition 7. A homoclinic class H(p) is said to be chain-hyperbolic if:

- H(p) has a dominated splitting TH(p)M = Ecs ⊕ Ecu into center stable and center unstable
bundles;

- there exists a plaque family (Wcs
x )x∈H(p) tangent to Ecs which is trapped by f and a plaque

family (Wcu
x )x∈H(p) tangent to Ecu which is trapped by f−1;

- there exists a hyperbolic periodic point qs (resp. qu) homoclinically related to the orbit of p
whose stable manifold contains Wcs

qs (resp. whose unstable manifold contains Wcu
qu ).

Such a class is topologically hyperbolic if its center stable and center unstable plaques are thin trapped
by f and f−1 respectively.

One will see (lemma 3.5 below) that for any point x ∈ H(p), the plaque Wcs
x is contained in the

chain-stable set of H(p). This justifies the name “chain-hyperbolicity”: this definition generalizes
the hyperbolic basic sets endowed with families of stable and unstable plaques (in this case the
plaques Wcs are the images of local stable manifolds by a backward iterate f−n). With additional
assumptions, the chain-hyperbolicity is a robust property: ifH(p) is chain-hyperbolic for f , coincides
with its chain-recurrence class and if Ecs, Ecu are thin trapped by f and f−1 respectively, then for
any g that is C1-close to f the homoclinic class H(pg) associated to the continuation pg of p is also
chain-hyperbolic (see lemma 3.8).

Theorem 2 ([C2]). Let f be a diffeomorphism in a dense Gδ subset of Diff1(M) \ Tang∪Cycl.
Then, any homoclinic class of f is chain-hyperbolic. Moreover, the central stable bundle Ecs is thin
trapped. If it is not uniformly contracted, it decomposes as a dominated splitting Ecs = Es ⊕ Ec

where dim(Ec) = 1 and Es is uniform; and there exist periodic orbits homoclinically related to p
and whose Lyapunov exponents along Ec are arbitrarily close to 0. The same holds for the central
unstable bundle Ecu and f−1.

Proof. The statement in [C2] is slightly different and we have to justify why the center stable
bundle Ecs is thin trapped. When Ecs is uniformly contracted, this is very standard. When Ecs

is not uniformly contracted, [C2, section 6] asserts that there exists a dominated splitting Ecs =
Es ⊕ Ec such that dim(Ec) = 1, Es is uniformly contracted and that the bundle Ec has “type
(H)-attracting”: there exists a locally invariant plaque family D tangent to Ec and arbitrarily small
open neighborhoods I of the section 0 in Ec satisfying f(Dx(Ix)) ⊂ Df(x)(If(x)) for each x ∈ H(p).
The neighborhood I may be chosen as a continuous family of open intervals (Ix)x∈H(p).

Let us now consider a locally invariant plaque family W tangent to Ecs. Since I is small, one
has Dx(Ix) ⊂ Wx for any x ∈ H(p) (see [C2, lemma 2.5]). One then builds for each x a small
open neighborhood Vx of Dx(Ix) in Wx which depends continuously on x: this can be obtained by
modifying a tubular neighborhood of Dx(Ix) in Wx. Since Es is uniformly contracted one can still
require the trapping property f(Vx) ⊂ Vx. Let Ux ⊂ Ecsx be the backward image of Vx by Wcs.
Since Ux can be obtained by modifying the tubular neighborhood of a C1-curve, it can be chosen
diffeomorphic in Ecs to an open ball through a diffeomorphism as stated in definition 6.
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One deduces that the tangent bundle over a non-hyperbolic homoclinic class as in theorem 2 has
a dominated splitting TM = Es⊕Ec⊕Eu or Es⊕Ec1⊕Ec2⊕Eu where each bundle Ec or Ec1, E

c
2 is

one-dimensional, Es is uniformly contracted and Eu is uniformly expanded (however, one of them
can be trivial). Note that under perturbations the homoclinic class H(pg) is still chain-hyperbolic
but its center stable bundle Ecs is a priori not thin trapped.

We will focus on the invariant compact sets K that are Lyapunov stable, i.e. that have a basis
of neighborhoods U that are invariant by f (i.e. f(U) ⊂ U).

Corollary 2.3. Let f be C1-generic in Tang∪Cyclc. Then, for any Lyapunov stable homoclinic
class of f the center unstable bundle is uniformly expanded.

Proof. For any open set U ⊂M and any integer d ≥ 0, one considers the following property:

P (U, d): There exists a hyperbolic periodic orbit O ⊂ U whose stable dimension equals d.

This property is open: if P (U, d) is satisfied by f , then so it is by any diffeomorphism g that is
C1-close to f . Let us fix a countable basis of open sets B, i.e. for any compact set and any open set
V satisfying K ⊂ V ⊂M , there exists U ∈ B such that K ⊂ U ⊂ V . Then, for any diffeomorphism
f in dense Gδ subset R0 ⊂ Diff1(M), for any open set U ∈ B and any d ≥ 0, if there exists a
perturbation g of f such that P (U, d) holds for g, then the same holds for f .

We denote by R ⊂ U a dense Gδ subset of Diff1(M) \ Tang∪Cycl whose elements satisfy
theorem 2 and have hyperbolic periodic orbits are.

Let us consider f ∈ R and a homoclinic class H(p) of f whose center unstable bundle Ecu =
Ec2⊕Eu is not uniformly expanded. Hence dim(Ec2) is one-dimensional, p is not a sink (and apriori Eu

could be degenerated). By the theorem 2, there exists a hyperbolic periodic orbit O homoclinically
related to p having some Lyapunov exponent along Ecu arbitrarily close to 0. By Franks lemma,
one can find a perturbation g of f such that O becomes a hyperbolic periodic orbit whose stable
space contains Ec2. Since f ∈ R0, one deduces that any neighborhood of H(p) contains a periodic
orbit whose stable dimension is ds + 1, where ds denotes the stable dimension of p.

Let us consider a locally invariant plaque families W tangent to Ecs over the maximal invariant
set in a neighborhood of H(p). Let us consider a periodic orbit O contained in a small neighborhood
of K, with stable dimension equal to ds+1. As a consequence, using the domination Ecs⊕Ecu, the
Lyapunov exponents along Ecs of O is smaller than some uniform constant −C < 0. If the plaques
of the family W are small enough, the lemma 3.3 and the remark 3.1 below then ensure that at
some q ∈ O one has Wq ⊂ W s(q). By lemma 3.2 below, q is close to a hyperbolic periodic point
z homoclinically related to p whose plaque Wcu

z is contained in the unstable set of z. The plaque
Wq intersects transversally the plaque Wcu

z . This proves that the stable manifold of q also intersects
transversally the unstable manifold of the orbit of p.

Since H(p) is Lyapunov stable, it contains W u(z), q and W u(q). As for H(p), the point q is
not a sink. This proves that Eu is non trivial. Let y ∈ W u(q) \ {q}. Since y belongs to H(p), the
stable manifold of the orbit of p accumulates on y, hence by a C1-small perturbation produced by
Hayashi’s connecting lemma, one can create an intersection between the unstable manifold of q and
the stable manifold of the orbit of p. The intersection between W u(p) and W s(q) persists hence we
have built a heterodimensional cycle, contradicting our assumptions. We have proved that if H(p)
is Lyapunov stable, the bundle Ecu is uniformly expanded.
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2.3 Aperiodic classes

Far from homoclinic bifurcations, the aperiodic classes have also a partially hyperbolic structure.

Theorem 3 ([C2]). Let f be a diffeomorphism in a dense Gδ subset of Diff1(M)\Tang∪Cycl. Then,
any aperiodic class of f is a minimal set and holds a partially hyperbolic structure Es ⊕ Ec ⊕ Eu.
Moreover, there exists a continuous familly of center stable plaques Wcs tangent to Ecs = Es ⊕ Ec

which are trapped by f . Similarly, there exists a continuous family of center unstable plaques Wcu

tangent to Ecu = Ec ⊕ Eu which are trapped by f−1.

Corollary 2.4. Let f be generic in Diff1(M) \ Tang∪Cycl. Then, for any aperiodic class, the
bundles Eu and Es are non-degenerated.

The strong unstable manifolds of points of the class are not contained in the class. In particular,
the class is not Lyapunov stable.

Proof. Let us consider an aperiodic class K and a locally invariant plaque family W tangent to Ecs

over the maximal invariant set in a small neighborhood of K. There exists a sequence of periodic
orbits that accumulate on K. A trapped plaque family Wcs over K whose plaques have small
diameters are contained in the plaques W by lemma 2.2 below. One deduces that one can extend
the plaque family Wcs over the maximal invariant set in a small neighborhood of K as a trapped
plaque family.

Since K is a minimal set and f is C1-generic, Pugh’s closing lemma (the general density theorem)
implies that K is the Hausdorff limit of a sequence of periodic orbits. For any τ -periodic point p
whose orbit is close to K, the plaque Wcs

p is mapped into itself by f τ . Since the plaque Wcs is
tangent to the bundle Ecs = Es⊕Ec where Ec has dimension 1 and Es is uniformly contracted, the
orbit of any point in Wcs

p accumulates in the future on a periodic orbit.
If Eu is degenerate, the union of the plaques Wcs

p cover a neighborhood of K, hence the orbit of
any point in K converges towards a periodic orbit, which is a contradiction.

If Eu is not degenerate, the strong unstable manifold W uu(x) tangent to Eu of any point x ∈ K
intersects the plaque Wcs

p of a periodic point p. One deduces that theres exists an orbit that
accumulates on K in the past and on a periodic orbit O in the future. If W uu(x) is contained in K,
the periodic orbit O is contained in K, contradicting the fact that K is an aperiodic class.

Remark 2.2. Actually, a stronger result can be proved. For any C1-generic diffeomorphism and
any aperiodic class K endowed with a partially hyperbolic structure TKM = Es ⊕ Ec ⊕ Eu with
dim(Eu) = 1, the class is not contained in a locally invariant submanifold tangent to Es ⊕ Ec.
Indeed, otherwise, one could work in this submanifold and get a contradiction as in the previous
proof. See also section 2.4.

2.4 Reduction of the ambient dimension

Let us consider an invariant compact set K with a dominated splitting TKM = Es ⊕ F such that
Es is uniformly contracted. The dynamics on K may behave like the dynamics inside a manifold of
smaller dimension. This motivates the following definition.
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Definition 8. A C1-submanifold Σ containing K and tangent to F is locally invariant if there exists
a neighborhood U of K in Σ such that f(U) is contained in Σ.

More generally, when K admits a partially hyperbolic splitting TKM = Es ⊕ Ec ⊕ Eu one may
define the notion of locally invariant submanifold tangent to Ec. The next proposition state that
the property defined above is robust by C1−perturbations.

Proposition 2.5 ([BC2]). Let K be an invariant compact set endowed with a dominated splitting
TKM = Es ⊕ F such that Es is uniformly contracted. If K is contained in a locally invariant
submanifold tangent to F , then the same holds for any diffeomorphism C1-close to f and any compact
set K ′ contained in a small neighborhood of K.

There exists a simple criterion for the existence of a locally invariant submanifold.

Theorem 4 ([BC2]). Let K be an invariant compact set with a dominated splitting Es ⊕ F such
that Es is uniformly contracted. Then K is contained in a locally invariant submanifold tangent to
F if and only if the strong stable leaves for the bundle Es intersect the set K in only one point.

One can deduce a generic version of previous theorem.

Corollary 2.6. Let f be C1-generic and H(p) be a homoclinic class having a dominated splitting
Es ⊕ F such that Es is uniformly contracted.

Then, either H(p) is contained in a locally invariant submanifold tangent to F or for any dif-
feomorphism g that is C1-close to f , there exist two different points x 6= y in H(pg) such that
W ss(x) = W ss(y).

Proof. By [BC1], there exists a dense Gδ subset R ⊂ Diff1(M) of diffeomorphisms whose homoclinic
classes are chain-recurrence classes. In particular, for any f ∈ R and any homoclinic classH(p) for f ,
the class H(pg) for g C1-close to f is contained in a small neighborhood of H(p). By proposition 2.5,
one deduces that if H(p) has a dominated splitting Es ⊕ F and is contained in a locally invariant
submanifold tangent to F , then the same holds for the classes H(pg).

As a consequence, for any f in a dense Gδ subset of Diff1(M), and any homoclinic class H(p)
of f , either for any diffeomorphism g close to f the class H(pg) is contained in a locally invariant
submanifold tangent to F or for any diffeomorphism g close to f the class H(pg) is not contained in
such a manifold. The theorem 4 ends the proof.

The previous result raises an important question for us:

Question. When H(p) is not contained in a locally invariant submanifold tangent to F , is it possible
to find a periodic point q homoclinically related to the orbit of p whose strong stable manifold
W ss(q) \ {q} intersects H(p)?

Such an intersection is called a generalized strong homoclinic intersection in the next section.
We will provide answers for this problem in some particular cases, see theorems 5 and 10 below.
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2.5 Strong homoclinic intersections

Inside a homoclinic class, some periodic points exhibit a transverse intersection between their stable
and unstable manifolds. If this intersection holds along strong stable and unstable manifolds of the
periodic orbit we say that there is a strong homoclinic connection. More precisely, we introduce the
following definition:

Definition 9. Given a hyperbolic periodic orbit O with a dominated splitting TOM = E ⊕ F such
that the stable dimension of O is strictly larger (resp. strictly smaller) than dim(E) it is said that
O exhibits a strong stable homoclinic intersection (resp. a strong unstable homoclinic intersection)
if the invariant manifold of O tangent to E and the unstable manifold of O (resp. the invariant
manifold of O tangent to F and the stable manifold of O) have an intersection point outside the
orbit O.

This definition can be generalized for homoclinic classes.

Definition 10. A homoclinic class H(p) has a strong homoclinic intersection if there exists a hyper-
bolic periodic orbit orbit O homoclinically related to p which has a strong homoclinic intersection.

The strong homoclinic intersections allow sometimes to create heterodimensional cycles. The
following statement generalizes [Pu1, proposition 2.4]. The proof is similar and we only sketch it.

Proposition 2.7. Let H(p) be a homoclinic class for a diffeomorphism f such that:

– H(p) has a dominated splitting E ⊕ F and the stable dimension of p is dim(E) + 1;

– there exist some hyperbolic periodic orbits homoclinically related to p having some negative
Lyapunov exponents arbitrarily close to 0.

If there exist some diffeomorphisms g C1-close to f such that H(pg) has a strong homoclinic in-
tersection, then there exist some C1-close perturbations of f that have an heterodimensional cycle
between a hyperbolic periodic orbit homoclinically related to p and a hyperbolic periodic orbit of stable
dimension dim(E).

Before proving this proposition, we explain how it is possible by a Cr-perturbation to transport
the strong homoclinic intersection to another periodic orbit.

Lemma 2.8. Let H(p) be a homoclinic class for a Cr-diffeomorphism f with r ≥ 1 such that:

– H(p) has a dominated splitting E ⊕ F and the stable dimension of p is dim(E) + 1;

– H(pg) has a strong homoclinic intersection.

Then for any periodic point q homoclinically related to p there exist some Cr-close perturbations of f
that have a periodic point q′ homoclinically related to the orbit of p which exhibit a strong homoclinic
intersection and whose minimal Lyapunov exponents along F are close to the one of q.
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Proof. Let us consider a transverse intersection point zs between W s(O) and W u(q) and a trans-
verse intersection point zu between W u(O) and W s(q) where O is the orbit of p. There exists a
transitive hyperbolic set K which contains zs, zu, O and which is included in a small neighborhood
U of {fn(zs)}n∈Z ∪ {fn(zu)}n∈Z. One deduces that there exists a sequence of periodic points (qn)
converging to p and whose orbit is contained in U and homoclinically related to p. One may choose
these orbits in such a way that they spend most of their iterates close to the orbit of q. Note that
K has a dominated splitting of the form E ⊕ Ec ⊕ F ′ where Ec is one-dimensional and E ⊕ Ec, F ′

respectively coincide with the stable and the unstable bundle. As a consequence the minimal Lya-
punov exponents of qn along E are arbitrarily close to the corresponding exponent of q when n is
large.

For a small Cr perturbation g supported in a small neighborhood of ζ (hence disjoint from
K), one can first ensure that TζW u(O)⊕ Eζ is one-codimensional and then consider a small arc of
diffeomorphisms (gt) which coincides with g when t = 0 and which unfolds the strong intersection: in
a neighborhood of ζ the strong homoclinic intersection has disapeared for t 6= 0. The local unstable
manifold and the local manifold tangent to E for qn accumulate on the local unstable manifold and
the local manifold tangent to E for O respectively. One thus deduces that for a diffeomorphism
Cr close to g and n large enough, the strong stable and the unstable manifolds of the orbit of qn
intersect. This gives the conclusion for q′ = qn.

Sketch of the proof of proposition 2.7. Let us fix ε > 0 and a periodic point q homoclinically related
to the orbit of p and whose minimal Lyapunov exponent along F belongs to (−ε, 0). Let g be a
diffeomorphism C1-close to f and O be a periodic orbit homoclinically related to the continuation
pg of p for g which exhibits a strong homoclinic intersection y between its unstable manifold and its
invariant manifold tangent to E. By lemma 2.8, one can find a small C1-perturbation g1 having a
periodic point q1 homoclinically related to pg1 , whose minimal Lyapunov exponent along F belongs
to (−ε, 0) and which exhibits a strong homoclinic intersection.

Let us consider a local stable manifold D of q1. Since q1 has a stable exponent close to 0, one
can by C1-perturbation g′ (as small as one wants if one chooses ε and q accordingly) create inside
D a hyperbolic periodic point q′ of stable dimension dim(E). Since D has dimension dim(E) + 1,
one can also require that D contains finitely many periodic points of stable dimension dim(E) + 1,
close to q1, whose stable sets cover a dense subset of D. If the perturbation is realized in a small
neighborhood of q1, the manifold W u(pg′) intersects transversally D, hence one can ensure that the
unstable manifold of pg′ intersects transversally the stable manifold of a periodic point q′′, so that
q′′ and pg′ are homoclinically related. The stable manifold of q′′ intersects the unstable manifold
of q′ along an orbit contained in D. Since the local invariant manifolds of q′, q′′ are close to those
of q1, one can by a small perturbation close to the strong homoclinic intersection of q1 create an
intersection between W u(q′) and W s(q′′). This gives a heterodimensional cycle associated to the
periodic orbit q′′ that is homoclinically related to pg′ .

If a homoclinic class H(p) contains two hyperbolic periodic points q, q′ homoclinically related to
p such that the strong stable manifold W ss(q) \ {q} and the unstable manifold W u(q′) intersect, one
can create a strong homoclinic intersection by a Cr-perturbation, for any r ≥ 1. We have a more
general result.
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Lemma 2.9. Let f be a Cr-diffeomorphism, r ≥ 1 and let q, px, py be three periodic points whose
orbits are homoclinically related such that

– the homoclinic class H(q) has a dominated splitting TH(q)M = Es⊕F and dim(Es) is strictly
smaller than the stable dimension of O;

– there are two distinct transversal intersection points x ∈W u(px) |∩W s(q), y ∈W u(py) |∩W s(q)
sharing the same strong stable leaf.

Then for any r ≥ 1, there is g Cr-close to f such that H(qg) has a strong homoclinic intersection.

Proof. One can assume that y is distinct from q. There is a transitive hyperbolic set Λ that contains
px, py, x and q but not y. So, it follows that there is a periodic point q̂ homoclinically related to
p arbitrarily close to x and whose orbit is close to Λ in the Hausdorff topology. One deduces that
the local strong stable manifold of q̂ and the local unstable unstable manifold of the orbit of q̂ are
close to y. By a Cr-perturbation, one can thus create an intersection at y, hence a strong connection
between these manifolds, keeping the transverse homoclinic orbits with p. This shows that H(qg)
has a strong homoclinic intersection for this new diffeomorphism g.

We generalize again the definition of strong homoclinic intersection.

Definition 11. A homoclinic class H(p) has a generalized strong homoclinic intersection if there
exists a hyperbolic periodic orbit orbit O homoclinically related to p, having a dominated splitting
TOM = E ⊕ F such that the stable dimension of O is strictly larger (resp. strictly smaller) than
dim(E), and whose invariant manifold tangent to E (resp. to F ) contains a point z ∈ H(p) \O.

Using the C1−connecting lemma due to Hayashi, the following result holds immediately.

Proposition 2.10. Let H(p) be a homoclinic class for a diffeomorphism f which has a generalized
strong homoclinic intersection. Then, there exist some C1-close diffeomorphisms g such that H(pg)
has a strong homoclinic intersection.

One may wonder if this last result still holds in Cr-topologies for r > 1. We have a result in this
direction under stronger assumptions. The proof is much less elementary than the previous ones
and will be obtained as a corollary of theorem 11 at the end of section 6.

Proposition 2.11. For any diffeomorphism f0 and any homoclinic class H(p) which is a chain-
recurrence class endowed with a partially hyperbolic structure Es ⊕ Ec ⊕ Eu, dim(Ec) = 1, such
that Es ⊕ Ec is thin trapped, there exists α0 > 0 and a C1-neighborhood U of f0 with the following
property.

For any α ∈ [0, α0] and any C1+α-diffeomorphism f ∈ U such that H(pf ) has a generalized
strong homoclinic intersection, there exists a diffeomorphism g arbitrarily C1+α-close to f such that
H(pg) has a strong homoclinic intersection.
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2.6 Total disconnectedness along the center-stable plaques

Let us consider a chain-hyperbolic homoclinic class H(p). In certain part of the proof of the main
theorem, we need a better understanding on the geometrical properties of the class in order, for
instance, to build analogs of Markov partitions. To do that, we need to ensure that the intersection
of H(p) with its center-stable plaques is totally disconnected. By lemma 2.2 this property does not
depend on the choice of a center-stable plaque family. It is provided by the following result proved
in section 8.

Theorem 5. Let f be a diffeomorphism and H(p) be a chain-hyperbolic homoclinic class with a
dominated splitting Ecs⊕Ecu = (Ess⊕Ec1)⊕Ec2 such that Ec1, E

c
2 are one-dimensional and Ecs and

Ecu are thin trapped. Then, one of the following cases holds.

• The strong stable manifolds (tangent to Es) intersect the class in at most one point.

• There exists a periodic point q in H(p) whose strong stable manifold W ss(q) \ {q} intersects
H(p).

• The class is totally disconnected along the center-stable plaques.

Under this general setting the point q is not necessarily homoclinically related to p. Note that
this theorem also applies and may be interesting for locally maximal hyperbolic sets K having a
dominated splitting TKM = Es ⊕ Eu = (Es ⊕Ec)⊕ Eu such that Ec, Eu are one-dimensional.

2.7 Extremal bundles

Theorems 2 and 3 show that the chain-recurrence classes K of a C1-generic diffeomorphism far
from homoclinic bifurcations have a partially hyperbolic splitting TKM = Es ⊕ Ec ⊕ Eu with
dim(Ec) ≤ 2. We now prove that the extremal bundles are non-degenerated. This will ensure that
the diffeomorphisms considered in the main theorem have only finitely many sinks.

For aperiodic classes this has already been obtained with corollary 2.4. For homoclinic classes
one can apply the following result.

Theorem 6. Let f be a diffeomorphism in a dense Gδ subset of Diff1(M) and let H(p) be a ho-
moclinic class endowed with a partially hyperbolic splitting TH(p)M = Es ⊕ Ec1 ⊕ Ec2 ⊕ Eu, with
dim(Ec1) ≤ 1 and dim(Ec2) ≤ 1. Assume moreover that the bundles Es ⊕ Ec1 and Ec2 ⊕ Eu are thin
trapped by f and f−1 respectively and that the class is contained in a locally invariant submanifold
tangent to Es ⊕ Ec1 ⊕Ec2.

Then one of the two following cases occurs:

– either H(p) is a hyperbolic set,

– or there exists diffeomorphisms g arbitrarily C1-close to f with a periodic point q homoclinically
related to the orbit of pg and exhibiting a heterodimensional cycle.

Remark 2.3. We will see in section 2.10 that the result can be improved: the second case of the
theorem never appears.

The proof relies on techniques developed in [PS1, PS2, PS4] for C2-diffeomorphisms that extend
a result in [M1] for one-dimensional endomorphisms. We list different settings that have been already
studied.
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a) The surface case. For C2-maps, the non-hyperbolic transitive sets which have a dominated
splitting contain either a non-hyperbolic periodic point or a curve supporting the dynamics of an
irrational rotation.

Theorem 7 ([PS1]). Let f be a C2 diffeomorphism of surface and K be a compact invariant set
having a dominated splitting TKM = E ⊕ F , dim(F ) = 1 whose periodic orbits are all hyperbolic.
Then, one of the following cases occur.

– K contains a sink or a compact invariant one-dimensional submanifold tangent to F .

– F is uniformly contracted by f−1.

One deduces the following generic result.

Corollary 2.12. Let f be a C1-generic diffeomorphism and K be a partially hyperbolic set endowed
with a dominated splitting TKM = Es ⊕Ec1 ⊕ Ec2 ⊕Eu, with dim(Ec1) = dim(Ec2) = 1.

If K is contained in a locally invariant surface tangent to Ec1⊕Ec2 and does not contain a periodic
orbit of stable dimension dim(Es) or dim(Es) + 2, then K is hyperbolic.

Note that a periodic orbit of stable dimension dim(Es) or dim(Es) + 2 is a source or a sink in the
surface. If K is transitive and non trivial, it does not contain such a periodic orbit.

Proof. By proposition 2.5 and theorem 4, the property for a partially hyperbolic set to be contained
in a locally invariant surface tangent to Ec1 ⊕ Ec2 is robust. It is thus enough to consider open sets
U ⊂ Diff1(M), U ⊂M and a (non necessarily invariant) compact set Λ ⊂ U such that for each f ∈ U
any invariant compact set K contained in U has a dominated splitting TKM = Es ⊕Ec1 ⊕Ec2 ⊕Eu

and is contained in a locally invariant surface tangent to Ec1 ⊕Ec2: we have to obtain the conclusion
of the theorem for an open and dense subset of diffeomorphisms in U and invariant compact sets
contained in Λ. A standard Baire argument then concludes that the theorem holds for C1 generic
diffeomorphisms.

Let us fix a diffeomorphism f0 ∈ U and consider the maximal invariant set K0 in a small closed
neighborhood of Λ. By assumption it is contained in a locally invariant surface Σ0 tangent to Ec1⊕Ec2.
One can conjugate f0 by a diffeomorphism which sends Σ0 on a smooth surface Σ and approximate
the obtained diffeomorphism f1 by a smooth diffeomorphism. By this new diffeomorphism, the
smooth surface Σ is mapped on a smooth surface f1(Σ) which is C1-close to Σ. As a consequence,
there exists a smooth diffeomorphism f2 that is C1-close to f1 which preserves Σ. One deduces
that the maximal invariant set K2 for f2 in a small neighborhood of Λ is contained in Σ. One
can perturb the restriction of f2 to a neighborhood of K2 in Σ and obtain a smooth Kupka-Smale
diffeomorphism without any invariant one-dimensional submanifold supporting the dynamics of an
irrational rotation. This perturbation can be extended to a smooth diffeomorphism of M : indeed
the compactly supported diffeomorphism close to the identity in Σ are isotopic to the identity and
can be extended in a trivializing neighborhood of Σ as a compactly supported diffeomorphism close
to the identity.

At this point we have built a smooth diffeomorphism f3 that is C1-close to f and an invariant
smooth surface Σ which contains the maximal invariant set K3 of f3 in a small neighborhood of
Λ. Moreover all the periodic orbits in K3 are hyperbolic and the dynamics inside any invariant
one-dimensional submanifold of K3 is Morse-Smale. Theorem 7 then shows that any orbit in K3
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accumulates on a hyperbolic set. Now, for any diffeomorphism C1-close to f3, the dynamics contained
in a small neighborhood of Λ is hyperbolic: it contains a hyperbolic set L of stable dimension
dim(Es)+ 1, a finite collection of hyperbolic periodic orbits O1, . . . , Os of stable dimension dim(Es)
or dim(Es)+2 and any other orbit accumulates in the future and in the past on L∪O1∪ . . . Os.

b) The one-codimensional case. This has been considered for homoclinic classes.

Theorem 8 ([PS4]). Let f be a C2 diffeomorphism and H(p) be a homoclinic class endowed with a
partially hyperbolic splitting Es ⊕ Ec with dim(Ec) = 1 whose periodic orbits are hyperbolic. Then
H(p) is hyperbolic.

As before, this gives the following generic result (which is a particular case of theorem 6).

Corollary 2.13. For any C1-generic diffeomorphism, any homoclinic class H(p) that is

– endowed with a partially hyperbolic splitting Es ⊕Ec ⊕ Eu, dim(Ec) = 1,

– contained in a locally invariant submanifold tangent to Es ⊕Ec,

is hyperbolic.

Proof. Consider a C1-generic diffeomorphism f and a homoclinic classH(p) as stated in the corollary
and Σ the locally invariant submanifold tangent to Es⊕Ec containing H(p). By genericity, one can
suppose that the class H(p) is a chain-recurrence class and that for any diffeomorphism g close to
f , the class H(pg) is contained in a small neighborhood of H(p). Moreover, if for some arbitrarily
close diffeomorphisms g the chain-recurrence class containing pg is hyperbolic, then the class H(p)
for f is also hyperbolic.

Let us consider a C2-diffeomorphism g arbitrarily close to f in Diff1(M) and whose periodic orbits
are hyperbolic. By proposition 2.5, the chain recurrence class Λ containing pg is still contained in
a locally invariant submanifold Σg. As in the proof of corollary 2.12, one may have chosen g so
that Σg is a smooth submanifold. Let us assume by contradiction that Λ is not hyperbolic: there
exists an invariant compact set K ⊂ Λ that is not hyperbolic and that is minimal for the inclusion.
Since K coincides with the support of an ergodic measure whose Lyapunov exponent along Ec is non-
positive, the setK is transitive. The setK cannot be a sink, nor contain an invariant one-dimensional
submanifold tangent to Ec, since by transitivity the set K would be reduced to a sink or a union
of normally attracting curves in Σg, contradicting the fact that Λ is chain-transitive and contains
pg. One can thus apply [PS4, lemma 5.12] and conclude that K is contained in a homoclinic class
H(q). Since H(q) is contained in a small neighborhood of H(p), it is contained in Σg. By theorem 8
applied for g inside Σg, one deduces that H(q) is a hyperbolic set. This contradicts the fact that K
is non hyperbolic. As a consequence, the chain-recurrence class containing pg is hyperbolic, hence
coincides with H(p). This proves that the homoclinic class H(p) is hyperbolic.

c) The 2-codimensional case. For homoclinic classes with two-codimensional strong stable
bundle, one can replace the uniformity of the center stable bundle by the thin trapping property
and the total disconnectedness along the center stable plaques. This theorem is proved in section 9.
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Theorem 9. Let f0 be a diffeomorphism and H(pf0) be a chain-recurrence class which is a chain-
hyperbolic homoclinic class endowed with a dominated splitting Ecs ⊕ Ecu such that Ecu is one-
dimensional and Ecs, Ecu are thin trapped (for f0 and f−1

0 respectively). Assume moreover that the
intersection of H(pf0) with its center-stable plaques is totally disconnected.

Then, for any C2 diffeomorphism f that is close to f0 in Diff1(M) and for any f−invariant
compact set K contained in a small neighborhood of H(pf0) and whose periodic orbit are hyperbolic,
one of the following cases occurs.

– K contains a sink or a compact invariant one-dimensional submanifold tangent to Ecu.

– Ecu is uniformly contracted by f−1.

We can now prove that for C1-generic diffeomorphisms far from homoclinic bifurcations, the
extremal sub-bundles of the homoclinic classes are non-degenerated.

Proof of theorem 6. As before, one can assume that, for g close to f , the class H(pg) is contained in
a small neighborhood of H(p). Moreover, if for some arbitrarily close diffeomorphisms g the chain-
recurrence class containing pg is hyperbolic, then the class H(p) for f is hyperbolic. The following
several cases have to be considered.

Note first that when the bundle Ec1 or Ec2 is degenerated, corollary 2.13 implies that H(p) is a
hyperbolic set.

When the strong stable leaves intersect the class in at most one point, theorem 4 implies that
the class is contained in a locally invariant submanifold tangent to Ec1 ⊕ Ec2. By corollary 2.12 the
class is then hyperbolic.

When the intersection of the class with the center stable plaques is totally disconnected, one can
apply theorem 9. For any C2 diffeomorphisms g C1-close to f in Diff1(M) with hyperbolic periodic
orbits, the chain-recurrence class containing pg is hyperbolic. As a consequence H(p) is hyperbolic.

It remains the case that both bundles Ec1, E
c
2 are one-dimensional, Ec1 is not uniformly contracted,

the class contains two different point in a same strong stable leaf and the intersection of the class
with the center stable plaques is not totally disconnected. One can then apply theorem 5 when the
dynamics is restricted to a locally invariant submanifold tangent to Es ⊕ Ec1 ⊕ Ec2 and one deduces
that the class has a generalized strong homoclinic intersection.

By lemma 3.14 and remark 3.3 the class contains hyperbolic periodic orbits homoclinically related
to p and whose Lyapunov exponent along Ec1 is arbitrarily close to zero. One concludes applying
the propositions 2.10 and 2.7 and creating a heterodimensional cycle associated to a periodic orbit
homoclinically related to p.

2.8 Finiteness of quasi-attractors

We now consider the quasi-attractors and prove one part of the main theorem.

Proposition 2.14. For any C1-generic diffeomorphism that is far from homoclinic tangencies and
heterodimensional cycles, the union of all the quasi-attractors is closed.
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Proof. Consider a sequence of quasi-attractors (An) which converges towards a (chain-transitive) set
L. By theorem 2, they are homoclinic classes An = H(pn) and one can assume that all the periodic
orbits pn have the same dimension.

Claim 1. L is a contained in a homoclinic class H(p).

Proof. If L is contained in an aperiodic class, by theorem 3 it has splitting TLM = Es ⊕ Ec ⊕ Eu

with dim(Ec) = 1. So, this is the same for the classes An. Since the classes An are quasi-attractor,
they are saturated by strong unstable leaves, and therefore the same holds for L. This contradicts
corollary 2.4.

By theorem 2, the class H(p) has a dominated splitting Es ⊕ Ec1 ⊕ Ec2 ⊕ Eu where Ec1 and Ec2
have dimension 0 or 1. We assume by contradiction that H(p) is not a quasi-attractor.

Claim 2. The stable dimension of the periodic points pn is strictly larger than the stable dimension
of p.

Proof. Let us consider some plaque families Wcs,Wcu over the maximal invariant set in a neighbor-
hood of L and tangent to Es⊕Ec1 and Ec2⊕Eu respectively, as in the definition of chain-hyperbolic
class. Let us assume by contradiction that the stable dimension of pn is smaller or equal to the
stable dimension of p.

We claim that for any periodic point qn homoclinically related to the orbit of pn, one has Wcu
qn ⊂

W u(qn). Indeed if it is not the case, using that Wu is trapped by f−1, there would exists a periodic
point q′n ∈ Wcu

qn , in the closure of W u(qn) and whose stable dimension is dim(Wcu
qn )− 1. Since H(pn)

is a quasi-attractor it contains q′n and by lemma 2.1, there exist C1-perturbations of f which exhibit
a heterodimensional cycle. This is a contradiction.

In particular, one has Wcu
qn ⊂ H(pn) and, passing to the limit, the set L contains all the plaques

Wcu
x , x ∈ L. Let us consider any periodic point q homoclinically related to the orbit of p and

close to L such that Wcs
q ⊂ W s(q). This exists by lemma 3.2. The plaques Wcs

q and Wcu
x for

some x ∈ L intersect transversally, hence the forward iterates of Wcu
x accumulate W u

q . One thus
deduces that H(p) contains W u(q). By lemma 2.1 H(p) is thus a quasi-attractor, contradicting our
assumption.

We are thus reduced to consider the case that on the union of the An and H(p) there exists a
dominated splitting TM = Ecs⊕Ec⊕Eu such that Ec is one-dimensional, Ecs⊕Ec is thin trapped
by f over each quasi-attractor An and Ec ⊕ Ecu is thin trapped by f−1 over H(p). We also fix a
point z ∈ L and a small neighborhood U of z.

Claim 3. In each set An there exists a periodic orbit On which avoids U .

Proof. By theorem 6, the bundle Eu is non-degenerated and the set An is saturated by strong
unstable leaves. By a standard argument (see for instance [M1, lemma 5.2]), each class An contains
an invariant compact set Kn which avoids U . Then one can reduce Kn and assume that it is minimal.

Let us consider two plaque families W̃cs, W̃u tangent to Ecs ⊕Ec and Eu with arbitrarily small
diameter, above the maximal invariant set in a small neighborhood of An and whose restriction to
An satisfy the definition of chain-hyperbolic classes. By the closing lemma, there exists a periodic
orbit Õn arbitrarily close to Kn in the Hausdorff topology. By lemma 3.2, there exists a point q
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homoclinically related to the orbit of p such that W̃u
q is contained in W u(q) and intersects W̃cs

y for
some y ∈ Õn at a point ζ. One deduces that ζ converges toward a periodic orbit On contained in
the plaques of the family W̃cs above Õn. Since An is a quasi-attractor, it contains ζ and On. By
construction On is included in an arbitrarily small neighborhood of Kn, as required.

Claim 4. There exists N ≥ 1 such that fN (W u
loc(p)) intersects transversally W s

loc(On) for each n
large. Moreover, this property is stable under C1-perturbations with supports avoiding a neighborhood
of On.

Proof. Since the stable space of On is Ecs⊕Ec and since Ec is non-degenerate, all the exponents of
On along Ecs are bounded away from zero. By lemma 3.3 and remark 3.1, the orbit On contains a
point qn such that Wcs

qn ⊂W s
loc(qn). For N large, fN (W u

loc(p)) is close to any point of L. For n large,
On is contained in a small neighborhood of L. One thus deduces that fN (W u

loc(p)) and W s
loc(qn)

intersect transversally and this property is robust under perturbations with supports avoiding a
neighborhood of On.

Conclusion. Since W u(On) is dense in An, and An converges towards L, the unstable manifold of
On has a point close to z for n large. Since z is in H(p), the stable manifold of p has a point
close to z. Observing that the orbits of On are far from the neighborhood U of z, there exists
small perturbations given by the connecting lemma in a small neighborhood of a finite number of
iterates of z, such that W s(p) and W u(On) intersect. The orbit of On has been preserved and the
intersection W s(On)∩W u(p) is still non empty. This gives a heterodimensional cycle and therefore
a contradiction. As a consequence H(p) is a quasi-attractor.

Remark 2.4. In the case the quasi-attractors An are non-degenerated, Eu coincides with the un-
stable dimension of the periodic points in the sets An; hence we already know that Eu is non-
degenerated. Theorem 6 is thus needed only to guarantee that the sinks of f accumulate on quasi-
attractors.

2.9 Hyperbolicity of quasi-attractors: proof of the main theorem

It remains now to prove that for any C1-generic diffeomorphism that is far from homoclinic tangencies
and heterodimensional cycles, the quasi-attractors are hyperbolic. The proof is independent from
proposition 2.14.

Let us consider a quasi-attractor and let us assume by contradiction that it is not hyperbolic.
From sections 2.2 and 2.3, the quasi-attractor is a homoclinic classH(p) with a splitting Es⊕Ec⊕Eu
where Ec is one-dimensional, Es⊕Ec is thin-trapped and it contains arbitrarily weak periodic orbits
homoclinically related to p. From theorem 6 and corollary 2.6, for any diffeomorphism g that is C1-
close to f the homoclinic class H(pg) associated to the continuation of p for g contains two different
points x, y such that W ss(x) = W ss(y). The end of the proof is based on the next theorem. The
first case of the dichotomy is not satisfied in our setting and in the second case, one can create
a heterodimensional cycle in H(p), by proposition 2.7. This contradicts our assumptions on the
diffeomorphism f and concludes the proof of the main theorem.
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Theorem 10. Let H(p) be a homoclinic class of a diffeomorphism f which is a quasi-attractor
endowed with a partially hyperbolic structure Es⊕Ec⊕Eu such that dim(Ec) = 1 and Ecs = Es⊕Ec
is thin trapped. Assume also that all the periodic orbits in H(p) are hyperbolic. Then, there exists
α ≥ 0 (which is positive if f is Cr for some r > 0) and C1+α−small perturbations g of f such that
the homoclinic class associated to the continuation pg of p satisfies one of the following cases.

– Either one has W ss(x) 6= W ss(y) for any x 6= y in H(pg) and therefore the class H(pg) is
contained in a C1-submanifold N ⊂M tangent to Ec ⊕ Eu which is locally invariant.

– Or one has W ss(x) = W ss(y) for some hyperbolic periodic point x homoclinically related to
the orbit of pg and some y 6= x in H(pg) ∩W u(x) and therefore the class H(pg) has a strong
homoclinic intersection.

Remark 2.5. We want to emphasize some features of theorem 10.

1. The result does not require any generic assumption.

2. It holds in the C1+α−category for α > 0 small.

3. The theorem can also be applied to the context of hyperbolic attractors whose stable bundle
has a dominated splitting Es = Ess ⊕ Ec such that dim(Ec) = 1. This can have important
consequences in terms of the Hausdorff dimension of the attractor: if the the attractor is
contained in a submanifold, the Hausdorff dimension is smaller than 1+u (where u = dim(Eu));
if there is a strong connection, the dimension could jump close to 1+u+s (where s = dim(Ess))
(see [BDV]). Note that the proof in the hyperbolic case is simpler since we can use the
hyperbolic continuation of any point in the attractor.

4. In the case the bundle Ec is not uniformly contracted, one can assume that the periodic point
x has an arbitrarily small Lyapunov exponent. Indeed by lemma 3.14 and remark 3.3, for any
ε > 0, there exists a periodic point q homoclinically related to the orbit of p and whose central
Lyapunov exponent is contained in (−ε, 0). Let us consider a perturbation g having a periodic
point x homoclinically related to pg and exhibiting a strong homoclinic intersection. By another
Cr-small perturbation (see lemma 2.8), one can obtain a periodic point x′ homoclinically
related to the orbit of p, with a strong connection and a central Lyapunov exponent close to
the exponent of q.

The proof of theorem 10 is based on the following proposition whose proof is postponed to
section 5 and uses the notion of stable boundary point (see section 3) and of continuation of a
homoclinic class (see section 4). As before W ss

loc(x) and W u
loc(x) denote local stable and unstable

manifolds tangent to Esx and Eux respectively for the points x ∈ H(pg). Note that this result holds
in any Cr-topology, r ≥ 1.

Proposition 2.15. Given a Cr diffeomorphisms under the assumptions of theorem 10, for any
α ∈ [0, r − 1] one of the following cases occurs.

1. There exists g, C1+α-close to f , such that for any x 6= y in H(pg), one has W ss(x) 6= W ss(y).

2. There exists g, C1+α-close to f , such that H(pg) exhibits a strong homoclinic intersection.
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3. There exist a neighborhood V ⊂ Diff1+α(M) of f and some hyperbolic periodic points q and
pxn, p

y
n for n ∈ N such that:

– the continuations qg, pxn,g, p
y
n,g exist on V and are homoclinically related to the orbit of pg;

– (pxn,g), (pyn,g) converge towards two distinct points xg, yg in H(pg)∩W s
loc(qg) for any g ∈ V;

– the map g 7→ xg, yg is continuous at f ;

– yg ∈W ss
loc(xg) for any g ∈ V.

4. There exist two hyperbolic periodic points px, py homoclinically related to the orbit of p and an
open set V ⊂ Diff1+α(M) whose closure contains f , such that for any g ∈ V the class H(pg)
contains two different points x ∈W u(px,g) and y ∈W u(py,g) satisfying W ss(x) = W ss(y).

One concludes the proof of theorem 10 by discussing the two last cases of the proposition 2.15.
The two following theorems, proved in sections 6 and 7 give a strong homoclinic intersection.

In the first case, the points x, y belong to the stable manifold of a periodic point q.

Theorem 11. For any diffeomorphism f0 and any homoclinic class H(p) which is a chain-recurrence
class endowed with a partially hyperbolic structure Es ⊕ Ec ⊕ Eu, dim(Ec) = 1, such that Es ⊕ Ec

is thin trapped, there exists α0 > 0 and a C1-neighborhood U of f0 with the following property.
For any α ∈ [0, α0], any diffeomorphism f ∈ U and any C1+α-neighborhood V of f , if there exist:

– some hyperbolic periodic points qf and pxn,f , p
y
n,f with n ∈ N for f whose hyperbolic continua-

tions qg, pxn,g, p
y
n,g exist for g ∈ V and are homoclinically related to the orbit of pg,

– two maps g 7→ xg, yg defined on V, continuous at f , such that for any g ∈ V the points xg, yg
belong to W s(qg), are the limit of (pxn,g) and (pyn,g) respectively and satisfy yg ∈W ss

loc(xg),

then, there exist C1+α-small perturbations g of f such that the homoclinic class H(pg) exhibits a
strong homoclinic intersection.

In the second case, the points x, y belong to the unstable manifold of periodic points px, py.

Theorem 12. For any diffeomorphism f0, for any homoclinic class H(p) which is a chain-recurrence
class endowed with a partially hyperbolic structure Es⊕Ec⊕Eu, dim(Ec) = 1, such that Es⊕Ec is
thin trapped there exists α0 > 0 and for any hyperbolic periodic points px, py homoclinically related
to the orbit of p, there exists a C1-neighborhood U of f with the following property.

Given any α ∈ [0, α0] and any C1+α-diffeomorphism f ∈ U , if there exist two different points
x ∈W u(px,f ) and y ∈W u(py,f ) in H(pf ) satisfying W ss(x) = W ss(y), then, there exist C1+α-small
perturbations g of f such that the homoclinic class H(pg) exhibits a strong homoclinic intersection.

Some weaker results similar to theorems 12 and 11 were obtained in [Pu2] for attracting homo-
clinic classes in dimension three and assuming strong dissipative properties.
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2.10 Other consequence on quasi-attractor. Main theorem revisited

As it was mentioned in the introduction, for C1-generic diffeomorphisms one obtains a stronger
version of theorem 10. We point out that what follows in this section is not used in the proof of our
main theorem.

Theorem 13. Let f be a diffeomorphism in a dense Gδ subset of Diff1(M) and let Λ be a quasi-
attractor endowed with a partially hyperbolic splitting TΛM = Es⊕Ec⊕Eu with dim(Ec) = 1. If Ec

is not uniformly contracted and not uniformly expanded, then Λ is a homoclinic class which contains
hyperbolic periodic points of both stable dimensions dim(Es) and dim(Es) + 1.

The proof uses the following result from [BDKS].

Theorem 14 ([BDKS]). Let f be a diffeomorphism that exhibits a heterodimensional cycle between
two hyperbolic periodic points p, q whose stable dimensions differ by 1.

Then, there exist a C1-perturbation g of f and two transitive hyperbolic sets K,L - the first
contains the hyperbolic continuation pg, the second has same stable dimension as q - that form a
robust cycle: for any diffeomorphism h that is C1-close to f , there exists heteroclinic orbits that join
the continuations Kg to Lg and Lg to Kg.

A consequence of this result is that for any C1-generic diffeomorphism and any hyperbolic point
p of stable dimension i ≥ 2, if there exists some small perturbations g of f which exhibits a het-
erodimensional cycle between a periodic point homoclinically related to pg and a periodic orbit of
stable dimension i− 1, then the homoclinic class H(p) for f contains periodic points of indices i− 1.

Proof of theorem 13. The existence of the dominated splitting implies that there is no diffeomor-
phism C1-close to f which exhibits a homoclinic tangency in a small neighborhood of Λ.

Step 1. We first prove that Λ is a homoclinic class H(p) which contains periodic orbits whose central
exponents are arbitrarily close to 0. This uses the following.
Claim. If Λ contains an invariant compact set K such that any invariant measure supported on K
has a Lyapunov exponent along Ec equal to 0, then Λ contains periodic orbits whose central Lyapunov
exponent is arbitrarily close to 0.

Proof. The proof is similar to the proof of theorem 9.25 in [C3] and uses proposition 9.23 also in
[C3]. See also [Y].

Since Ec ⊕ Eu is not uniformly expanded, the trichotomy given by [C2, theorem 1] and the
previous claim imply that the class Λ contains periodic orbits whose central exponent is negative
or arbitrarily close to 0. Similarly, since Es ⊕ Ec is not uniformly contracted, the class Λ contains
periodic orbits whose central exponent is positive or arbitrarily close to 0. In any case Λ is a
homoclinic class H(p) which contains for any δ > 0 some periodic orbits O−δ , O

+
δ whose central

exponent is respectively smaller than δ and larger than −δ. From the results in [ABCDW] follows
that that H(p) contains periodic orbits whose central exponents are arbitrarily close to 0.

Step 2. We then show that one can find a diffeomorphism C1-close to f and a periodic orbit
homoclinically related to pg which exhibits a heterodimensional cycle.
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Using the center models introduced in [C1], the dynamics along the central bundle Ec can be
classified into chain-recurrent, chain-neutral, chain-hyperblic and chain-parabolic (see [C2, section
2.2] for details). SinceH(p) contains hyperbolic periodic orbits, some types can not occur (the neutral
and the parabolic ones). Note that since H(p) contains periodic orbits whose central exponent is
close to 0 and since f is C1-generic, the class H(p) is the limit of periodic orbits of both indices
dim(Es) and dim(Es) + 1 for the Hausdorff topology. When the central dynamics has the chain-
recurrent type, [C2, proposition 4.1], this implies that these periodic orbits are contained in H(p),
hence both indices appear in the class.

It reminds to consider a central dynamics which has the chain-hyperbolic type: equivalently two
cases are possible: either Es ⊕ Ec is thin trapped by f or Ec ⊕ Eu is thin-trapped by f−1. In
any case it follows that there exists a diffeomorphism g that is C1-close to f and a periodic point
homoclinically related to the continuation pg which exhibits a heterodimensional cycle: in the first
case, this is a direct consequence of theorem 10, corollary 2.6, theorem 6 and proposition 2.7; in the
second case, one argues as on the proof of corollary 2.3.

Step 3. We then concludes with theorem 14 that the class H(p) contains hyperbolic periodic points
of different stable dimension.

Theorem 6 can be combined with theorem 14 to get the following improvement.

Theorem 6’. Let f be a diffeomorphism in a dense Gδ subset of Diff1(M) and let H(p) be a
homoclinic class endowed with a partially hyperbolic splitting TH(p)M = Es ⊕ Ec1 ⊕ Ec2 ⊕ Eu, with
dim(Ec1) ≤ 1 and dim(Ec2) ≤ 1. Assume moreover that the bundles Es ⊕ Ec1 and Ec2 ⊕ Eu are thin
trapped by f and f−1 respectively and that the class is contained in a locally invariant submanifold
tangent to Es ⊕ Ec1 ⊕Ec2. Then H(p) is a hyperbolic set.

Proof. Arguing by contradiction, from theorem 6 it would be possible to create a heterodimensional
cycle involving points of different indexes and from theorem 14 it is get a robust heterodimensional
cycle, then for generic diffeomorphisms the center dynamics it is not trapped neither for f nor for
f−1; a contradiction.

3 Properties of chain-hyperbolic homoclinic classes

Let H(p) be a homoclinic class which is chain-hyperbolic for a diffeomorphism f . We consider as in
the definition 7 the two periodic points qs, qu ∈ H(p) and the plaque families Wcs,Wcu respectively
tangent to the bundles Ecs, Ecu.

3.1 Periodic points with large stable manifold

We first give an immediate consequence of the trapping property.

Lemma 3.1. Let O be a periodic orbit in H(p). If there exists a point q0 ∈ O such that Wcs
q0

is contained in the stable manifold of q0, then this property holds for any point q ∈ O and more
generally for any point z ∈W s(q0) ∩H(p).

28



Proof. Any point q ∈ O can be written as q = f−n(q0) with n ≥ 0. By the trapping property, Wcs
q

is contained in f−n(Wcs
q0 ), hence in f−n(W s(q0)) = W s(q). Any point z ∈W s(q0) has large forward

iterates fn(z), n ≥ n0 which remain close to O. By continuity and the coherence (lemma 2.2) one
deduces that Wcs

fn(z) is also contained in the stable manifold of O. By the trapping property this
also holds for z.

The homoclinic class H(p) contains a dense set of “good” periodic points, in the sense which is
defined in the next lemma:

Lemma 3.2. For any δ > 0 small, there exists a dense set P0 ⊂ H(p) of periodic points homoclini-
cally related to the orbit of p with the following property.

– The modulus of the Lyapunov exponents of any point q ∈ P0 are larger than δ.

– The plaques Wcs
q and Wcu

q for any point q ∈ P0 are respectively contained in the stable and in
the unstable manifolds of q.

Proof. Let us choose δ > 0 such that the modulus of the Lyapunov exponents of qs and qu are larger
than 2δ. Let Us and Uu be some small disjoint neighborhoods of the orbits of qs and qu respectively:
there exist some constant j ≥ 1 such that for any segment of orbit {x, . . . , f jn(x)} contained in
H(p) ∩ Us or in H(p) ∩ Uu, one has for any u ∈ Ex and v ∈ Fx,

n−1∏

i=0

‖Df j
f ij(x)

.u‖ ≤ e−2δnj‖u‖ and
n−1∏

i=0

‖Df jij .v‖ ≥ e2δnj‖v‖.

We fix ε > 0 small and consider the periodic orbits O that are homoclinically related to the
orbit of p with the following combinatorics: there are at least 1

2(1 − ε).τ consecutive iterates in Us
and at least 1

2(1 − ε).τ consecutive iterates in Uu, where τ is the period of O. In particular, the
maximal Lyapunov exponent of O along Ecs is smaller than −δ and the minimal Lyapunov exponent
of O along Ecu is larger than δ. Let us write the orbit O = {z, . . . , f τ−1(z)} as the concatenation
of a segment of orbit {z, . . . , fm−1(z)} in Us, a segment of orbit {fm+`1(z), . . . , f2m+`1−1(z)} in
Uu, and two other segments of orbit {fm(z), . . . , fm+`1−1(z)} and {f2m+`1(z), . . . , f2m+`1+`2−1(z)},
such that m ≥ 1

2(1 − ε).τ , and `1, `2 ≤ ε
2τ . Provided ε is small, at any iterate zk = fk(z) with

0 ≤ k < m/2, one has for any u ∈ Efk(z) and any n ≥ 0,

n−1∏

i=0

‖Df j
f ij(zk)

.u‖ ≤ e−δnj .‖u‖.

One deduces that there exists ρ > 0 such that the ball centered at zk with radius ρ in Wcs
zk

is
contracted by forward iterations so that it is contained in the stable set of zk.

Since the stable set of qs contains Wcs
qs , there exists N ≥ 2 such that fN (Wcs

qs ) has a radius
smaller than ρ/2. If τ is large enough, since {z, . . . , fm−1(z)} is contained in the neighborhood Us
of the hyperbolic orbit of qs, there exists an iterate zk = fk(z), 0 ≤ k < m

2 − N arbitrarily close
to qs. By continuity of the plaque family Wcs, one deduces that fN (Wcs

zk
) has radius smaller than

ρ, hence is contained in the stable set of fN (zk). Consequently the plaque Wcs
zk

is contained in the
stable manifold of zk. By lemma 3.1 for any point q in the orbit O, the plaque Wcs

q is contained in
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the stable manifold of q. Similarly the unstable manifold of q contains the plaque Wcu
q . In order

to prove the lemma, it remains to show that the union of the orbits O we considered is dense in
H(p): Indeed any point x in H(p) can be approximated by a hyperbolic periodic point q whose
orbit is homoclinically related to the orbit of qs and qu. Then there exists a transitive hyperbolic
set which contains the points q, qs, qu, p. One deduces by shadowing that there exists a hyperbolic
periodic orbit O having a point close to x which is homoclinically related to the orbit of p and has
the required combinatorics.

When the central bundles are one-dimensional, one can control the size of the invariant manifolds
of the periodic orbits whose Lyapunov exponents are far from 0.

Lemma 3.3. Let us assume that there is a dominated splitting Ecs = E ⊕ Ec such that Ec has
dimension 1. For any δ > 0, there exists ρ > 0 with the following property: let O ⊂ H(p) be a
periodic orbit whose Lyapunov exponents along Ecs are smaller than −δ. Then, there exists q ∈ O
whose stable set contains the ball centered at q with radius ρ.

Proof. Let O ⊂ H(p) be a hyperbolic periodic orbit whose Lyapunov exponents along Ecs are smaller
than −δ: since Ec is one-dimensional this implies that there exists q0 ∈ O such that for each n ≥ 0
one has ‖Dfn|Ec(q0)‖ =

∏n−1
i=0 ‖Df|Ec(f i(q0))‖ ≤ e−n.δ. The domination E⊕Ec then implies that for

each n ≥ 0, one has
n−1∏

i=0

‖DfN|Ecs(f i.N (q0))‖ ≤ C.e−n, (3.1)

where C,N > 0 are some uniform constants given by the domination. One deduces from (3.1) that
a uniform neighborhood of q0 in Wcs

q0 is contained in W s(q0).

Remark 3.1. The previous lemma still holds if one replaces g by a diffeomorphism C1-close to f
and if one considers a periodic orbit O of g contained in a small neighborhood of H(p) and a locally
invariant plaque family of g over O whose plaques are C1-close to the plaques of Wcs.

Lemma 3.4. Let us assume that Ecs and Ecu are thin trapped by f and f−1 respectively. Then, all
the hyperbolic periodic orbits contained in H(p) are homoclinically related together.

Proof. First, observe that all the hyperbolic periodic points in H(p) have the same stable index. Let
us take a periodic point q in the class. By lemma 3.2, there exists a periodic orbit O homoclinically
related to p and having a point q′ arbitrarily close to q such that Wcs

q′ ⊂W s(q′) and Wcu
q′ ⊂W u(q′).

One deduces that the plaques Wcs
q′ intersects W u(q) and Wcu

q′ intersects W s(q). As a consequence
O and q are homoclinically related.

3.2 Local product stability

For any invariant compact set K, we define the chain-stable set of K as the set of points x ∈ M
such that for any ε > 0, there exists a ε-pseudo-orbit that joints x to K. The chain-unstable set of
K is the chain stable set of K for the map f−1.
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Lemma 3.5. For any point x ∈ H(p), the plaque Wcs
x (resp. Wcu

y ) belongs to the chain-stable set
(resp. the chain-unstable set) of H(p).

Proof. By lemma 3.2, the point x is the limit of periodic points pn ∈ P0 such that Wcs
pn

is contained
in the stable set of pn for each n ≥ 0. By definition of a plaque family, any point of Wcs

x is limit of
a sequence of points xn ∈ Wcs

pn
, proving that x is contained in the chain-stable set of H(p).

Lemma 3.6. For any points x, y ∈ H(p), any transverse intersection point between Wcs
x and Wcu

y

is contained in H(p).

Proof. By lemma 3.2, there exist two periodic points px and py close to x and y respectively whose
orbits are homoclinically related to p such that Wcs

px
⊂W s(px) and Wcu

py
⊂W u(py). By continuity of

the plaque families Wcs and Wcu, one deduces that Wcs
px

and Wcu
py

intersect transversally at a point
z′ ∈ H(p) close to z. Hence z belongs to H(p).

3.3 Robustness

Let us consider a compact set K having a dominated splitting TKM = E ⊕ F for f . If U ⊂M and
U ⊂ Diff1(M) are some small neighborhoods of K and f , then for each g ∈ U the maximal invariant
set Kg =

⋂
n∈Z g

n(U) has a dominated splitting Eg ⊕ Fg such that dim(Eg) = dim(E). Moreover
the maps (g, x) 7→ Eg,x, Fg,x are continuous. Hence one may look for a plaque family tangent to the
continuation Eg of E for g.

A collection of plaque families (Wg)g∈U tangent to the bundles (Eg)g∈U over the sets (Kg)g∈U
is continuous if (Wg,x)g∈U ,x∈Kg is a continuous family of C1-embeddings. It is uniformly locally
invariant if there exists ρ > 0 such that for each g ∈ U and x ∈ Kg, the image of the ball
B(0, ρ) ⊂ Eg,x by g ◦Wg,x is contained in the plaque Wg,g(x).

Lemma 3.7. Let K be an invariant compact set for a diffeomorphism f having a dominated splitting
E ⊕ F . Then, there exist some neighborhoods U of K and U ⊂ Diff1(M) of f and a continuous
collection of plaque families (Wg)g∈U tangent to the bundles (Eg)g∈U over the maximal invariant
sets (Kg)g∈U in U , which is uniformly locally invariant.

Proof. Let exp be the exponential map from a neighborhood of the section 0 in TM to M . Each
diffeomorphism g close to f induces a diffeomorphism ĝ on TM , which coincides for each x ∈ K with
the map exp−1

g(x) ◦g ◦ expx on a small neighborhood of 0 ∈ TxM and with the linear map Txg outside
another small neighborhood of 0; moreover, ĝ is arbitrarily close to the linear bundle automorphism
Tg over the map g. The proof of the plaque family theorem [HPS, theorem 5.5] associates to each
x ∈ Kg the graph Γg,x in TxM of a C1 map ψg,x : Eg,x → Fg,x tangent to Eg,x at 0 ∈ TxM and
satisfying

ĝ(Γg,x) = Γg,g(x). (3.2)

The graphs Γg,x are uniformly Lipschitz and are characterized for some constant C > 0 by

Γg,x =
⋂

n≥0

ĝ−n({(y1, y2) ∈ Eg,g−n(x) × Fg,g−n(x), C‖y1‖ ≥ ‖y2‖}).

One thus deduces that they depend continuously on (g, x) for the C0-metric. On the other hand,
each map ĝ has a dominated splitting Êcs ⊕ Êcu inside the spaces TxM and each graph Γg,x is
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tangent to the bundle Êcs. The bundle Êcs depends continuously on (g, x), hence the graphs Γg,x
depend continuously on (g, x) also for the C1-metric.

The plaque Wg,x is defined as the image by the exponential expx of a uniform neighborhood of
0 ∈ Γg,x. For instance, one may choose ε > 0 small and define for any z ∈ Eg,x,

Wg,x(z) = expx(y, ψg,x(y)), where y = ε.
arctan ‖z‖

‖z‖ .z.

By construction and the invariance (3.2), the plaque families (Wg) are uniformly locally invariant.

Lemma 3.8. Let us assume that Ecs and Ecu are thin trapped by f and f−1 respectively and that
H(p) coincides with its chain-recurrence class. Then, there exist some neighborhoods U of K and
U ⊂ Diff1(M) of f and two continuous collections of plaque families (Wcs

g )g∈U , (Wcu
g )g∈U tangent to

the bundles (Ecsg ), (Ecug ) over the maximal invariant sets (Kg)g∈U in U , which are trapped by g and
by g−1 respectively.

The plaques may be chosen arbitrarily small. As a consequence, for any diffeomorphism g that
is C1-close to f , the homoclinic class H(pg) of g associated to the continuation pg of p is still
chain-hyperbolic.

Proof. Let us consider a continuous collection of plaque families (Wg) tangent to the bundles (Ecsg )
over the sets (Kg) as given by lemma 3.7. Since Ecs is thin trapped for f over H(p), there exists a
constant ρ > 0 and a continuous family of embedding (ϕ0

x) of (Ecsx ) supported in a small neighborhood
S of the section 0 in Ecs and satisfying for each x ∈ H(p),

f(Wf,x ◦ ϕ0
x(B(0, ρ))) ⊂ Wf,f(x) ◦ ϕ0

f(x)(B(0, ρ)). (3.3)

One may find a continuous family of embeddings (ϕx) that is close to (ϕ0
x) for the C1-topology and

that extends to any point x in a neighborhood of H(p): one fixes a finite collection of points xi in
H(p) and using a partition of the unity one defines ϕx as a barycenter between ϕ0

xi
associated to

points xi that are close to x. One deduces that there exist a neighborhood U of H(p) in M , and a
continuous family of embeddings (ϕx) of (Ecsx ) over U , such that (3.3) still holds for g, x ∈ Kg and
(ϕx). One can thus define Wcs

g,x as the embedding

z 7→ Wg,x ◦ ϕg,x
(
ρ. arctan ‖z‖

‖z‖ .z

)
.

By construction the plaque family Wcs
g is trapped by g and the collection (Wcs

g )g is continuous.
The plaques Wcs

g,x may have been chosen arbitrarily small and in particular much smaller than
the stable manifold W s(qs,g) of the continuation qs,g of qs. The trapping property thus implies that
Wcs
qs,g

is contained in the stable manifold of qs,g. One builds similarly the plaques Wcu
g,x and proves

that Wcu
qu,g

is contained in the unstable manifold of qu,g for any g close to f . We have thus shown
that H(pg) is chain-hyperbolic.

Remark 3.2. Under the setting of lemma 3.8. One can check that the numbers r, ρ, ε that appear
in lemma 2.2 for the coherence and the uniqueness of the plaque families can be chosen uniform in
g.
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3.4 Quasi-attractors

Lemma 3.9. If the chain hyperbolic class H(p) is a quasi-attractor and if the bundle Ecu is uni-
formly expanded, then for any diffeomorphism g C1−close to f and any hyperbolic periodic point q
homoclinically related to the orbit of pg, the unstable manifold W u(q) is contained in the homoclinic
class H(pg).

Proof. Since H(p) is a homoclinic class, there exists a dense set of points x ∈ H(p) that belong to
the stable manifold of p. Moreover by the trapping property, Wcs

x contains f−n(Wcs
fn(x)) for any

n ≥ 0, hence is contained in the stable manifold of the orbit of p.
If H(p) is a quasi-attractor and Ecu is uniformly expanded, it is the union of the unstable

manifolds W u(x) of the points x ∈ H(p). If one fixes ρ > 0 then any disk D of radius ρ contained in
an unstable manifold W u(x) intersects transversally the stable manifold of p. Hence, by compactness
there existsN ≥ 1 uniform such that fN (D) intersects transversally the local stable manifoldW s

loc(O)
of the orbit O of p. This property is open: since H(p) is a chain-recurrence class, for any g close to
f , the class H(pg) is contained in a small neighborhood of H(p), hence for any disk D of radius ρ
contained in W u(x) for some x ∈ H(p), the iterate fN (D) intersects transversally W s

loc(Og).
Moreover since H(p) is a quasi-attractor, there exists an arbitrarily small open neighborhood

U of H(p) such that f(U) ⊂ U . Hence for g close to f one still has g(U) ⊂ U and the unstable
manifold W u(Og) is contained in U . Since U is a small neighborhood of the set H(p), the partially
hyperbolic structure extends to the closure of W u(Og); in particular the dynamics of g uniformly
expands along the manifold W u(Og).

One deduces that for any g close to f , for any point x ∈ W u(Og), for any neighborhood V of x
inside W u(Og), there exists an iterate gn(V ) with n ≥ 1 which contains a disk of radius ρ, so that
gn+N (V ) ⊂ W u(Og) intersects transversally W s

loc(Og). One deduces that H(pg) meets gn+N (V ),
hence V . Since V can be chosen arbitrarily small and H(pg) is closed, the point x belongs to H(pg).
We have proved that W u(Og) ⊂ H(pg).

Let q be any hyperbolic periodic point homoclinically related to pg. The unstable manifolds of
the orbit of p and q have the same closure. In particular W u(q) ⊂ H(pg).

3.5 Stable boundary points

We now discuss the case the center stable bundle has a dominated decomposition Ecs = Es ⊕ Ec

with dim(Ec) = 1 and Es is uniformly contracted.

Half center-stable plaques. Any point x ∈ H(p) has a uniform strong stable manifold which
is one-codimensional inside Wcs

x . A neighborhood of x intersects Wcs
x \W ss

loc(x) into two connected
components. The choice of an orientation on Ecx allows to denote them by Wcs,+

x and Wcs,−
x . One

can then consider if x is accumulated inside Wcs
x \ W ss

loc(x) by points of H(p) in one or in both
components. Note that this does not depend on the choice of the plaque family Wcs. Note also that
the same case will occur all along the orbit of x.

If one considers a point y ∈ H(p) ∩W cu
x close to x, one gets an orientation of Ecy that matches

with the orientation of Ecx. The points of H(p) ∩ Wcs
x close to x projects on Wcs

y through the
holonomy along the center unstable plaques, but there is no reason that the projection of the points
in H(p) ∩Wcs,+

x are contained inside Wcs,+
y . However the following can be proved.
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Lemma 3.10. Consider any periodic point q homoclinically related to p and any point x ∈ H(p)
close to q such that W u

loc(q) intersects W ss
loc(x) at a point z. If q is accumulated by H(p) ∩ Wcs,+

q

then z is accumulated by H(p) ∩ Wcs,+
x . More precisely, there exists y ∈ H(p) ∩ Wcs,+

q arbitrarily
close to q such that W u

loc(y) intersects H(p) ∩Wcs,+
x close to z.

Proof. Let us consider a point y0 ∈ Wcs,+
q close to q; it belongs to W s(q). Let D be a neighborhood

of z in Wcs
x and D+ a neighborhood of z in Wcs,+

x . By the λ-lemma, the sequence f−n(D), n ≥ 0
converges toward W s(q). Observe that the strong stable manifolds of x and z coincide. By continuity
of the strong stable lamination, the sequence f−n(W ss

loc(x)) converges toward W ss(q). Hence Wcu
y0

intersects f−n(D+) close to q for n large enough. The intersection is transversal, hence belongs to
H(p) by lemma 3.6. One thus deduces that D+ intersects H(p). By taking D+ arbitrarily small,
one has proved that z is accumulated by H(p)∩Wcs,+

x . Also the local unstable manifold W u
loc(y) of

the point y = fn(y0) intersects D+, giving the conclusion.

Lemma 3.11. Let us assume that H(p) does not contains periodic points q, q′ homoclinically related
to the orbit of p such that W ss(q)\{q} and W u(q′) intersect. Then any point x ∈ H(p) is accumulated
by H(p) in Wcs

x \W ss
loc(x).

Proof. Let us assume by contradiction that there exists a point x ∈ H(p) which is not accumulated
by points in (Wcs

x ∩H(p)) \W ss
loc(x). Let q ∈ H(p) be a periodic point close to x and homoclinically

related to the orbit of p. Its unstable manifold intersects transversally Wcs
x at a point z ∈ H(p).

Since z can be chosen arbitrarily close to x, it belongs to W ss
loc(x) and it is not accumulated by points

in (Wcs
x ∩ H(p)) \W ss

loc(x). By lemma 3.10, W s
loc(q) \W ss(q) is disjoint from H(p). In particular

the point q is not accumulated by points in (Wcs
q ∩H(p)) \W ss

loc(q). One can thus repeat for q the
argument we have made for x and find a periodic point q′ 6= q homoclinically related to the orbit of
p such that W u(q′) intersects W ss(q). This contradicts our assumption.

We now introduce the definition of the stable boundary points, generalizing the notion of stable
boundary points for uniformly hyperbolic set whose stable bundle is one-dimensional (see [PT,
appendix 2]). This notion plays an important role and it is extensively studied in section 5.

Definition 12. A point x ∈ H(p) is a stable boundary point if it is not accumulated inside both
components of Wcs

x \W ss
loc(x) by points of H(p).

Observe that if x is a stable boundary point, then any iterate of x is also. Note that if Ecs is
one-dimensional, a stable boundary point x ∈ H(p) is a point which is not accumulated by points
of H(p) in both components of Wcs

x \ {x}.
Naturally in the same way, if the center unstable subbundle split Ecu = Ec2 ⊕ Eu, where Ec2 is

one-dimensional and Eu is uniformly expanded, it can be defined the notion of unstable boundary
point.

The next lemma about stable boundary points is a version of a classical one for hyperbolic
systems. A more general proposition about stable boundary points is provided in section 5.

Lemma 3.12. Let f be a diffeomorphism and H(p) be a chain-recurrence class which is a chain-
hyperbolic homoclinic class endowed with a dominated splitting Ecs ⊕ Ecu = Ecs ⊕ (Ec2 ⊕ Eu) such
that Ecs, Ec2 are one-dimensional, Ecs, Ecu are thin trapped (for f and f−1 respectively) and Eu is
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uniformly expanded. Then any stable boundary point of H(p) belong to the unstable set of a periodic
point.

Proof. Let x be a stable boundary point of H(p). Let us introduce three backward iterates x1 =
f−k(x), x2 = f−l(x) and x3 = f−m(x) arbitrarily close with k < l < m. If the center-unstable
plaques of two of those three points (for instance x1, x2) intersect, from the coherence (lemma 2.2)
it follows that the center-unstable plaque Wcu

x1
is mapped into itself by fk−l. Since Ecu splits as

Ec2 ⊕ Eu, one deduces that the backward orbit of x1 belongs to the unstable set of a periodic point
of Wcu

x1
(this point is not necessarily hyperbolic).

If the center unstable plaques of the three points do not intersect, we can assume that the center
stable plaque of namely x2 intersects the center unstable plaques of the other two points in different
connected components of Wcs

x2
\ {x2}. By lemma 3.6 those points of intersection belong to H(p)

and using that Ecs is thin trapped, the forward orbits of those points remain arbitrarily close to x
(provided that the points x1, x2, x3 were sufficiently close) and contained in different components of
Wcs
x2
\ {x2}; a contradiction.

The following proposition is not needed in the context of the present paper, however we provide
it since it helps to understand the notion of boundary point.

Proposition 3.13. Using [C2, proposition 3.2], one can prove that if the homoclinic class H(p) is
endowed with a partially hyperbolic structure Es⊕Ec⊕Eu with dim(Ec) = 1 such that Ecs = Es⊕Ec
is thin trapped, then,

– either any stable boundary point x ∈ H(p) belongs to the unstable manifold of a periodic point,

- or there exists a diffeomorphism g that is C1-close to f and a periodic orbit contained in a
small neighborhood of H(p) which has a strong homoclinic intersection.

One will use instead a similar result for quasi-attractors, see section 5.2 below.

Sketch of the proof. Let x be a strong boundary point. Let us take the sequence {xn = f−n(x)}n>0.
Since Ecs is thin trapped, one may take a small plaque family Wcs which is trapped and such that
for each n ≥ 0, one connected component Un of Wcs

xn
\W ss

loc(xn) is disjoint from H(p). In particular:

(*) For any two close iterates xn, xm, the unstable manifold W u
loc(xn) does not meet Um.

We consider two cases: either the orientation of the center manifolds of all close backward iterates is
preserved or not. Equivalently, the tangent map Df preserves or not a continuous orientation of the
bundle Ec over α(x), the α-limit set of x. One can assume that α(x) is not reduced to a periodic orbit
since otherwise, x belongs to the unstable manifold of a periodic orbit and the statement follows.
- The orientation preserved case. From property (*), any two close iterates xn, xm are in twisted
position (see [C2, section 3]), implying that α(x) is twisted. If α(x) contains a periodic orbit
O, it contains points in W ss(O) \ O and in W u(O) \ O; as a consequence, one can apply the
Hayashi connecting lemma and get a strong homoclinic intersection for O by an arbitrarily small
C1-perturbation. Otherwise α(x) contains a non-periodic minimal set and from [C2, proposition
3.2], there exists a diffeomorphism g that is C1-close to f and a periodic orbit contained in a small
neighborhood of H(p) which has a strong homoclinic intersection.
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- The orientation reversed case. Let us consider a sequence of arbitrarily close points xnk
, xmk

such
that Dfmk−nk reverse the local orientation on Ec at xnk

. One may assume that they converge
toward a point y ∈ α(x). Property (*) now implies that H(p) ∩Wcs

y is contained in W ss(y). This
contradicts lemma 3.11 above.

3.6 Non-uniformly hyperbolic bundles

When the bundle Ecs is not uniformly contracted, the class may contain weak periodic orbits.

Lemma 3.14. Let us assume that H(p) is a chain-recurrence class and that there exists a dominated
splitting Ecs = Es ⊕ Ec where Ec is one-dimensional, Ecs is thin-trapped and Es is uniformly
contracted. Then, there exists some hyperbolic periodic orbits in H(p) whose Lyapunov exponent
along Ec is arbitrarily close to zero.

Remark 3.3. If one assumes that all the periodic orbits in H(p) are hyperbolic, then one can ensure
that the obtained periodic orbits are homoclinically related to p. Indeed, since Ecs is thin-trapped,
all the periodic orbits in H(p) have the same stable dimension and by lemma 3.4 are homoclinically
related to p.

Proof. One can consider an invariant compact set K ⊂ H(p) such that the restriction of Ec to K is
not uniformly contracted and K is minimal for the inclusion and these properties. Since the bundle
Ec|K is one-dimensional, thin trapped and not uniformly contracted, K coincides with the support
of an ergodic measure µ whose Lyapunov exponent along Ec is zero. The exponent of any other
measure supported on K is non-positive.

In the case there exists ergodic measures µ supported on K whose Lyapunov exponent along Ec

is negative and arbitrarily close to zero, the domination Ecs ⊕ Ecu implies that these measures are
hyperbolic and the C1-version of Anosov closing lemma (see [C2, proposition 1.4]) ensures that the
chain-recurrence class H(p) contains hyperbolic periodic orbits whose Lyapunov exponent along Ec

is arbitrarily close to zero.
In the case there exists ergodic measures supported onK with negative Lyapunov exponent along

Ec but never contained in a small interval (−δ, 0), one can argue as in the proof of [C2, theorem 1]
and apply Liao’s selecting lemma. Once again, the chain-recurrence class H(p) contains hyperbolic
periodic orbits whose Lyapunov exponent along Ec is arbitrarily close to zero.

In the remaining case, all the measures supported on K have a Lyapunov exponent along Ec that
is equal to zero. In particular, Ecu is uniformly expanded on K. We have also assumed that Ecs is
thin trapped. As a consequence, one can choose over the maximal invariant set in a neighborhood
of K some plaques Dcs and Dcu with arbitrarily small diameter and that are trapped by f and f−1

respectively.
For any ε > 0 there exists a periodic ε-pseudo-orbit x0, x1, . . . , xn = x0 contained in K such that

the quantity
1
n

n−1∑

k=0

log ‖Df|Ec(xk)‖

is arbitrarily close to zero. By the weak shadowing lemma [C2, lemma 2.9], there exists a periodic
orbit O0 contained in an arbitrarily small neighborhood of K and whose Lyapunov exponent along
Ec is close to zero.
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The unstable manifold of a point x ∈ K close to O0 intersects a center-stable plaque of O0. Since
these plaques are trapped and Ec is one-dimensional, this implies that the center-stable plaques of
O0 contains a periodic orbit O′ whose stable manifold intersects W u(x). On the other hand W u(O′)
intersects a center-unstable plaque of a point of H(p). As a conclusion O′ is contained in the chain-
recurrence class of p. Since the plaques Dcs have a small diameter, the Lyapunov exponent of O′

along Ec is close to the Lyapunov exponent of O, hence is close to zero.
The conclusion of the lemma has been obtained in al the cases.

4 Continuation of chain-hyperbolic homoclinic classes

Let H(p) be a homoclinic class of a diffeomorphism f and assume that it is a chain-recurrence class
endowed with a partially hyperbolic structure Es ⊕Ec ⊕Eu such that dim(Ec) = 1 and the bundle
Ecs = Es ⊕ Ec is thin trapped. By lemma 3.8, the homoclinic class H(pg) is still chain-hyperbolic
for the diffeomorphisms g close to f . We explain here, how in certain sense, the points in H(p) can
be continued in H(pg). If f is far from strong homoclinic intersections, proposition 4.5 shows that
the points of H(pg) are in correspondence with the continuation of the points of H(p) up to some
identifications and blow-ups in the central direction (that can be compared with the blow-up of an
Anosov diffeomorphism during the construction of a “derived from Anosov” map).

4.1 Preliminary constructions

Local central orientation. The bundle Ec on H(p) is one-dimensional and locally trivial. More-
over it depends continuously on the dynamics f . One deduces that for any g, g′ close to f , the
orientations of Ecg,x and Ecg′,x′ for two points x ∈ H(pg) and x′ ∈ H(pg′) can be compared provided x
and x′ are close (say at distance less than ε). To make this precise, one can cover a neighborhood of
H(p) by a finite number of open sets Ui endowed with non-singular one-forms αi such that αi never
vanishes on the bundle Ec. Two close points x, x′ belong to a same open set Ui. Two orientations
on Ecg,x and Ecg′,x′ match if they both coincide with the class of αi or the class of −αi. If x, x′ are
close enough, this does not depend on the open set Ui containing {x, x′}. If one considers another
collection of pairs (U ′i , α

′
i), the orientations on Ecg,x and Ecg′,x′ still match if the distance between x

and x′ is small and g is close enough to f .

Plaque families. In the following one fixes δ > 0 small which is a lower bound for the modulus
of the Lyapunov exponents of pg for g close to f . One chooses some continuous collections of plaque
families (Wcs

g ) for the diffeomorphisms g close to f as given by lemma 3.8. Since Ecs is thin trapped,
the plaques may be chosen with a small diameter so that the properties stated in lemma 2.2 hold.
Also, by lemma 3.3, for g that is C1-close to f and for any periodic point q ∈ H(pg) whose Lyapunov
exponents along Ecs are smaller than −δ/2, the plaque Wcs

g,q is contained in the stable set of q.
One will consider local manifolds W ss

g,loc(x) and W u
g,loc(x) for x ∈ H(pg) with a small diameter so

thatW u
g,loc(x) intersects a plaqueWcs

g,y in at most one point and the intersection is always transversal.

Shadowing. Then, one chooses ε > 3ε′ > 0 so that the following lemma holds and so that for any
g, g′ close to f and any x ∈ H(pg) and y ∈ H(pg′) satisfying d(x, y) < ε the local manifold W u

g,loc(x)
intersects Wcs

g′,y.
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Lemma 4.1. There exists ε > 3ε′ > 0 small such that any diffeomorphisms g, g′ close to f satisfy:

– if x, y ∈ H(pg) are two points such that the forward orbit of x is ε-shadowed by the forward
orbit of y, then y ∈ Wcs

g,x;

– if x, y ∈ H(pg) are two points ε′-close such that y belongs to Wcs
g,x, then the forward orbit of x

is ε
3 -shadowed by the forward orbit of y;

– for any periodic orbit O ⊂ H(pg) of g whose central Lyapunov exponent is smaller that −δ,
any periodic orbit of g′ that ε-shadows O also ε′-shadows O, has a central Lyapunov exponent
smaller than δ/2 and is homoclinically related to pg′; moreover any point x ∈ H(pg) whose
backward orbit ε-shadows O belongs to the unstable manifold of O.

Proof. We prove the first item. Let us consider the intersection point z between Wcs
g,x and W u

g,loc(y).
By uniform local invariance of Wcs

g , one checks inductively that the point gn(z) is the intersection
point between Wcs

g,gn(x) and W u
g,loc(g

n(y)) for n ≥ 0. If z 6= y, since z and y belong to the same
unstable leaf, the distance d(gn(z), gn(y)) increases exponentially and becomes much larger than ε,
contradicting that the distance between gn(x) and gn(y) is bounded by ε. One deduces that y = z,
hence y belongs to Wcs

g,x.
Now we choose ε′ ¿ ε and prove the second item. Since Ecs and Eu are thin trapped by f and

f−1, lemma 3.8 associates some continuous trapped plaque families Ŵcs
g and Ŵcu

g over H(pg) for
g close to f with diameter smaller than ε/3. From lemma 2.2 if ε′ is small enough, then for any
x, y ∈ H(pg) such that y ∈ Wcs

g,x and d(x, y) < ε′, the point y belongs to Ŵcs
g,x. By the trapping

property, gn(y) belongs to Ŵcs
g,gn(x) for any n ≥ 0, hence d(gn(x), gn(y)) < ε/3 as required.

We then prove the properties of the third item. We first note that if g, g′ are close to f and ε is
small enough, then any periodic orbit O′ of g′ that ε-shadows a periodic orbit O of H(pg) still has a
partial hyperbolic structure and has Lyapunov exponents close to those of O. This proves that the
central Lyapunov exponent of O′ is smaller than −δ/2.

One deduces from lemma 3.3 that for some point q′ ∈ O′ the stable manifold of q has uniform
size inside Wcs

g′,q′ . From lemma 3.2, there exists a dense set of periodic points x ∈ H(pg′) whose
stable manifold has a uniform size. If ε is small enough and g, g′ close enough to f , one thus deduces
that q′ is close to a point of H(pg′). From the uniformity of the invariant manifolds, we deduce that
the stable and unstable manifolds of q′ intersect the stable and unstable manifolds of a hyperbolic
periodic orbit homoclinically related to pg′ . In particular, O′ is homoclinically related to pg′ .

Let us consider again, as given by lemma 3.8, some continuous plaque families Ŵcs
h and Ŵcu

h

over H(ph) for h close to f with diameter much smaller than ε′. From lemma 2.2 there exists ρ > 0
such that for any g close to f and any x ∈ H(pg), the ball B(x, ρ) in Wcs

g,x is contained in Ŵcs
g,x.

From the trapping property, the following holds for g, g′ close to f : if x ∈ H(pg) and y ∈ H(pg′)
such that d(x, y) < ε satisfy that W u

g′,loc(y) intersects Ŵcs
g,x, then the same holds for g(x) and g′(y).

Using the estimate (3.1) in the proof of lemma 3.3, there exists a uniform integer N ≥ 1 and an
iterate q ∈ O such that gN (Wcs

g,q) has radius smaller than ρ, hence is contained in Ŵcs
g,gN (q)

. Let us
choose q′ ∈ O′ such that d(g′n(q′), gn(q)) < ε for each n ∈ Z. Provided that g, g′ have been chosen
close enough to f , the intersection zn between W u

g′,loc(g
′n(q′)) and Wcs

g,gn(q) for 0 ≤ n ≤ N are close

to the N first iterates of z0 under g, hence zN is contained in Ŵcs
g,gN (q)

. By our construction, one
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deduces that W u
g′,loc(g

′n(q′)) intersects Ŵcs
g,gn(q) for any n ≥ N , hence any n ∈ Z. With the same

argument, Wcs
g′,g′n(q′) intersects Ŵcu

g,gn(q), for any n ∈ Z. Since the diameter of the plaques Ŵcu and

Ŵcs is much smaller than ε′, one deduces that gn(q) and g′n(q′) are at distance smaller than ε′. We
have proved that O is ε′-shadowed by O′.

Let us now consider a point x ∈ H(pg) whose backward orbits ε-shadows the backward orbit of
a point q ∈ O. Let us introduce for each n ≥ 0 the intersection point zn between W u

g,loc(g
−n(x)) and

Wcs
g,g−n(q). By construction one has g(zn+1) = zn and in particular z0 is contained in the intersection

of the gn(Wcs
g,g−n(q)). By assumption Wcs

g,g−n(q) is contained in the stable manifold of g−n(q). This
proves that z0 coincides with q. As a consequence z0 belongs to W u

g,loc(q).

4.2 Continuation of uniform periodic points

The periodic points with uniform Lyapunov exponents have a uniform hyperbolic continuation.

Lemma 4.2. There exists a simply connected open neighborhood U ⊂ Diff1(M) of f such that:

– The hyperbolic continuation of p exists for any g ∈ U and the class H(pg) is chain-hyperbolic.

– For any g ∈ U and any periodic orbit O ⊂ H(pg) of g whose central Lyapunov exponent is
smaller than −δ, the hyperbolic continuation Og′ of O exists for any g′ ∈ U and is homoclin-
ically related to pg′. Moreover its central Lyapunov exponent is still smaller than −δ/2, and
Og′ is ε

3 -shadowed by O.

Proof. Lemma 3.8 gives the existence of an open set U satisfying the first item.
Let us consider a path (γt)t∈[0,1] in U between g and g′ and the maximal interval I containing 0

where the hyperbolic continuation Ot of O is defined and ε/2-shadows O. If I = [0, t0) with t0 < 1,
one can consider a periodic orbit Ot0 for gt0 that is the limit of a sequence of orbit Ot for t < t0. By
construction Ot0 ε-shadows O, hence Ot0 has a central Lyapunov exponent smaller than −δ/2 and
also ε′-shadows O by lemma 4.1. Since ε′ < ε/3, we have contradicted the definition of t0. Hence,
the orbit O has a hyperbolic continuation Og′ for g′. Since U is simply connected, this continuation
is unique. We have shown that O is ε′-shadowed by Og′ , hence by lemma 4.1, Og′ is homoclinically
related to pg′ , has a central Lyapunov exponent smaller than −δ/2. Since ε′ < ε/3, all the properties
stated in the second item are satisfied.

This justifies the following definition.

Definition 13. Let us denotes with P, the set of hyperbolic periodic points q ∈ H(p) homoclinically
related to the orbit of p whose continuation qg exists for any diffeomorphism g ∈ U and such that
for some g ∈ U the central Lyapunov exponent of qg is smaller than −δ.
Since for any g ∈ U the central Lyapunov exponents of pg is smaller than −δ, there exists a dense
set of periodic points in H(pg) whose central Lyapunov exponent is smaller than −δ. By lemma 4.2,
one deduces that the continuations qg of points in q ∈ P are dense in H(pg).

Note also that by lemma 4.2 the central Lyapunov exponent of qg for q ∈ P is smaller than −δ/2;
hence the plaque Wcs

g,qg is contained in W s
g (qg).
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4.3 Pointwise continuation of H(p)

Definition 14. For any g, g′ ∈ U , one says that two points x ∈ H(pg) and x′ ∈ H(pg′) have the
same continuation if there exists a sequence of hyperbolic periodic points (pn) in P such that (pn,g)
and (pn,g′) converge toward x and x′ respectively.

This implies that gk(x) and g′k(x′) have the same continuation for each k ∈ Z.

By compactness and density of the points qg with q ∈ P, one sees that, for any g, g′ ∈ U , any
point x ∈ H(pg) has the same continuation as some x′ ∈ H(pg′). In general x′ is not unique. The
following implies that if x′1, x

′
2 ∈ H(pg′) have the same continuation as x, then x′2 belongs to Wcs

g′,x′1
.

Lemma 4.3. For any g, g′ ∈ U , let us consider x ∈ H(pg) and x′ ∈ H(pg′) such that x and x′ have
the same continuation. Then, the orbits of x by g is ε

3 -shadowed by the orbit of x′ by g′.
As a consequence, if x1, x2 ∈ H(pg) are ε′-close and satisfy x2 ∈ Wcs

g,x1
, then for any x′1, x

′
2 ∈

H(pg′) such that xi, x′i have the same continuation for i = 1, 2, one still has x′2 ∈ Wcs
g′,x′1

.

Proof. Let us consider a sequence (pn) ∈ P whose continuations (pn,g), (pn,g′) for g and g′ converges
toward x and x′ respectively. From lemma 4.2, the orbit of (pn,g) by g is ε

3 -shadowed by the orbit
of (pn,g′) by g′. Taking the limit, one deduces that the orbit of x by g is ε

3 -shadowed by the orbit of
x′ by g′.

If x1, x2 ∈ H(pg) are ε′-close and satisfy x2 ∈ Wcs
g,x1

, by lemma 4.1 the forward orbit of x2 is
ε
3 -shadowed by the forward orbit of x1. By the first part of the lemma, one deduces that for any
x′1, x

′
2 ∈ H(pg′) such that xi, x′i for i = 1, 2 have the same continuation, then the forward orbit of x′1

by g′ is ε-shadowed by the forward orbit of x′2 by g′. By lemma 4.1, this implies that x′2 ∈ Wcs
g′,x′1

.

One then shows that if x is a hyperbolic periodic point in P, then x′ coincides with its hyperbolic
continuation (hence is unique). This is also true for the unstable manifold of points in P.

Lemma 4.4. For any g ∈ U , let qg be the hyperbolic continuation of some point q ∈ P and let
us consider some point x ∈ W u(qg) ∩ H(pg). Then, for any g′ ∈ U , there exists a unique point
x′ ∈ H(pg′) which has the same continuation as x; moreover x′ belongs to W u(qg′) and varies
continuously with g′. In particular the hyperbolic continuation qg′ of qg is the unique point in H(pg′)
such that qg and qg′ have the same continuation (in the sense of the definition 14).

Proof. Let us consider any x′ ∈ H(pg′) which has the same continuation as x. From lemma 4.2, the
orbit of qg′ by g′ is ε

3 -shadowed by the orbit of qg by g and from lemma 4.3, the orbit of x by g is
ε
3 -shadowed by the orbit of x′ by g′. There exists N ≥ 1 such that the backward orbit of g−N (x) is
ε
3 -shadowed by the backward orbit of g−N (qg). Hence the backward orbit of g′−N (x′) is ε-shadowed
by the backward orbit of g′−N (qg′). By lemma 4.1, x belongs to the unstable manifold of g−N (qg). It
remains to prove that x′ is the only point in H(pg′) which has the same continuation as x ∈ H(pg).

Let x′1, x
′
2 ∈ H(pg′) be two points that have the same continuation as x ∈ H(pg). By lemma 4.3

their orbits under g′ both ε
3 -shadow the orbit of x under g. By lemma 4.1, g′n(x′2) belongs to

Wcs
g′,g′n(x′1) for each n ∈ Z. When n goes to −∞, the points g′n(x′2) and g′n(x′1) are contained in

a small local unstable manifold of the orbit of qg′ . Since the plaques W u
loc and Wcs intersect in at

most one point, this implies that x′1 = x′2.

40



Let us denote by xg′ the point which has the same continuation as x. In order to prove the
continuity of the map g′ 7→ xg′ , one considers any limit point x′ of points xg′ when g′ goes to g. As
before, the orbit of x by g is ε-shadowed by the orbit of x′, so that gn(x′) belongs to the unstable
manifold of the orbit of q and to Wcs

g,gn(x) for each n ∈ Z. This implies x = x′.

Remark 4.1. Lemma 4.4 also implies that definition 14 does not depend on the choice of δ and U .
Indeed, if one considers δ̃ ∈ (0, δ) and Ũ ⊂ U another neighborhood of f , then one gets two sets of
periodic points P ⊂ P̃. Let us consider g, g′ ∈ Ũ and two points x ∈ H(pg), x′ ∈ H(pg′) which have
the same continuation on Ũ with respect to P̃; we claim that they also have the same continuation
with respect to P. Indeed one considers a sequence (p̃n) in P̃ such that (p̃n,g) converges toward x.
Then, for each n there exists pn ∈ P such that pn,g is close to p̃n,g. By lemma 4.4, pn,g′ is close
to p̃n,g′ , hence one can obtain a sequence (pn) in P such that (pn,g) converges toward x and (pn,g′)
converges toward x′, as wanted.

4.4 Continuations far from strong homoclinic intersections

For g ∈ U we define H̃(pg) as the set of pairs x̃ = (x, σ) where x ∈ H(pg) and σ is an orientation of
Ecg,x, such that x is accumulated in H(pg) ∩Wcs,+

g,x where Wcs,+
g,x is the component of Wcs

g,x \W ss
loc(x)

determined by the orientation σ as introduced in section 3.5.
One can view H̃(pg) as a subset of the unitary bundle associated to Ecg over H(pg). The dynamics

of g can thus be lifted to H̃(pg) and defines a map g̃. One also defines the projection πg : H̃(pg) →
H(pg) such that πg(x, σ) = x.

Proposition 4.5. Let H(p) be a homoclinic class of a diffeomorphism f ∈ Diffr(M) such that

– it is not a periodic orbit,

– is a chain-recurrence class endowed with a partially hyperbolic structure Es ⊕ Ec ⊕ Eu such
that dim(Ec) = 1 and Ecs = Es ⊕ Ec is thin trapped.

In a C1-small neighborhood U of f in Diff1(M) we consider a Cr-open connected set V ⊂ U such that
there is no diffeomorphism g ∈ V whose homoclinic class H(pg) has a strong homoclinic intersection.

Then, for each g, g′ ∈ V, the following holds:

a) (Lifting). The map πg : H̃(pg) → H(pg) is surjective and semi-conjugates g̃ to g.

b) (Continuation of the lifting). For any x̃g = (xg, σ) ∈ H̃(pg), there is a unique x̃g′ = (xg′ , σ′) ∈
H̃(pg′) such that xg = πg(x̃g) and xg′ = πg′(x̃g′) have the same continuation and such that the

orientations σ on Ecg,xg
and σ′ on Ecg′,xg′

match; this defines a bijection Φg,g′ : H̃(pg) → H̃(pg′).
We denote Φg := Φf,g.

c) (Continuation of the projection). For any xg ∈ H(pg) and xg′ ∈ H(pg′) having the same contin-
uation, there exists x̃ ∈ H̃(p) such that πg(Φg(x̃)) = xg and πg′(Φg′(x̃)) = xg′.
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Remarks 4.2. One may consider on H̃(pg) the topology induced by Ecg. This set is in general not
compact since a sequence of points xn ∈ H(pg) that are accumulated in H(pg)∩Wcs,+

g,xn may converge
toward a point x ∈ H(pg) which is not accumulated in Wcs,+

g,x . One can show however that the map
(g, x̃) 7→ Φg(x̃) is semi-continuous.

The next lemma is used in the proof of the proposition 4.5 and of lemma 4.7.

Lemma 4.6. Let us consider q1, q2 ∈ P and g, g′ ∈ V such that d(q1,g, q2,g) < ε/3. If W u
g,loc(q1,g)

intersects Wcs,+
g,q2,g , then W u

g′,loc(q1,g′) does not intersect Wcs,−
g′,q2,g′

.

Proof. By lemma 4.2 and our choice of ε, one has d(q1,h, q2,h) < ε for any h ∈ U , hence W u
h,loc(q1,h)

intersects Wcs
h,q2,h

. Now, W ss
h,loc(q2,h) is one-codimensional in Wcs

h,q2,h
and varies continuously with

h. Let us assume that W u
g,loc(q1,g) intersects Wcs,+

g,q2,g and that W u
g′,loc(q1,g′) intersects Wcs,−

g′,q2,g′
.

By connectedness of V, one deduces that for some h0 ∈ V the local manifolds W u
h0,loc

(q1,h0) and
W ss
h0,loc

(q2,h0) \ {q1,h0} intersect. By using lemma 2.9 one gets a diffeomorphism h ∈ V having a
strong homoclinic intersection in H(ph), giving a contradiction.

Lemma 4.7. Under the setting of proposition 4.5, if (gn) converges in V toward g and (x̃n) toward
x̃ in H̃(p), then any limit x̄ of (Φgn(x̃n)) satisfies πg(x̄) ∈ Wcs

g,xg
\Wcs,+

g,xg where xg = πg(x̃).

Proof. Let us assume by contradiction that x̄ belongs to Wcs,+
g,xg . There exists a sequence (pn) in P

that converges toward xf = πf (x̃) such that W u
loc(pn) intersects Wcs,+

xf and (pn,gn) converges towards
x̄. By proposition 4.5, the sequence (pn,g) converges toward xg. Hence, one can consider n large
such that pn,g is close to xg. By continuity of the map h 7→ pn,h, the point pn,h is still close to xh for
a diffeomorphisms h nearby. For m large enough, pn,gm is close to xg and pm,gm is close to x̄. One
deduces that W u

loc,gm
(pn,gm) meets Wcs,−

gm,pm,gm
. On the other hand, since W u

loc(pn) meets Wcs,+
xf , the

local manifold W u
loc(pn,g) meets Wcs,+

g,pm . The lemma 4.6 below contradicts our assumption that f is
far from homoclinic intersections.

Proof of proposition 4.5. We introduce the open set U and the collection of periodic points P as in
the previous sections.

The item a) of the proposition is a direct consequence of lemmas 3.11 and 2.9. The item b) is
first proved in the case xg is the hyperbolic continuation qg of a periodic point q ∈ P. In this case
there is only one possible continuation xg′ . We are thus reduced to prove.

Claim 1. Consider any periodic point q ∈ P and an orientation σ on Ecq . If qg is accumulated by
H(pg) ∩Wcs,+

g,qg for some g ∈ V, then the same holds for any g.

Proof. Let us consider g ∈ V such that qg is accumulated by H(pg) ∩ Wcs,+
g,qg . In particular, there

exists a sequence (pn) in P such that (pn,g) converges toward qg and W u
g,loc(pn,g) intersects Wcs,+

g,qg .
By lemma 4.4, the sequence (pn,g′) converges toward qg′ . Moreover W u

g′,loc(pn,g′) does not inter-
sect W ss

g′,loc(qg′) since this would contradict our assumptions by lemma 2.9. Also by lemma 4.6,
W u
g′,loc(pn,g′) does not intersects Wcs,−

g′,qg′
. One thus deduces that W u

g′,loc(pn,g′) intersects Wcs,+
g′,qg′

. The

intersection point belongs to H(pg′) by lemma 3.6, hence qg′ is accumulated by H(pg′)∩Wcs,+
g′,qg′

.
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We now prove the item b) in the general case.

Claim 2. Let us consider xg ∈ H(pg) and xg′ ∈ H(pg′) and a sequence (pn) in P such that (pn,g)
converges toward xg and (pn,g′) converges toward xg′. If the local unstable manifolds W u

g,loc(pn,g)
intersect Wcs,+

g,xg , then there exists another sequence (p̄n) in P having the same properties as (pn) and
which satisfies furthermore that the local unstable manifolds W u

g′,loc(p̄n,g′) intersect Wcs,+
g′,xg′

.

Proof. We first remark that each point (pn,g), with n large enough, is accumulated byH(pg)∩Wcs,+
g,pn,g .

Indeed, W u
g,loc(p1,g) intersects Wcs,+

g,pn,g for n large at some point yn which belongs to H(pg) by
lemma 3.6. By lemma 3.3, Wcs,+

g,pn,g is contained in the stable manifold of pn,g, hence the forward
orbit of yn accumulates the orbit of pn,g, proving the announced property. From claim 1, the points
pn,g′ are also accumulated by H(pg′) ∩Wcs,+

g′,pn,g′
.

Now we note that W u
g′,loc(pn,g′) does not intersect Wcs,−

g′,xg′
. Indeed, if this occurs, one would

deduce that for mÀ n the manifold W u
g′,loc(pn,g′) intersects Wcs,−

g′,pm,g′
and that W u

g,loc(pn,g) intersects

Wcs,+
g,pm,g . By lemma 4.6 this would contradict our assumptions. IfW u

g′,loc(pn,g′) intersectsWcs,+
g′,xg′

for a
subsequence (p̄n) of (pn), the claim holds. We thus reduced to consider the caseW u

g′,loc(pn,g′) intersect
W ss
g′,loc(xg′). We denote by zn the intersection. Since pn,g′ is accumulated by H(pg′) ∩ Wcs,+

g′,pn,g′
,

lemma 3.10 implies that there exists p̄n ∈ P such that

– p̄n,g′ is close to pn,g′ (hence (p̄n) has the same properties as (pn)),

– W u
g′,loc(p̄n,g′) intersects Wcs,+

g′,xg′
as announced.

The last claim implies the existence statement of the item b): if x̃g belongs to H̃(pg), one may
approximate the points of H(pg) ∩ Wcs,+

g,xg by periodic points that are the continuations for g of
points in P. Hence, there exists a sequence (pn) in P such that W u

g,loc(pn,g) intersects Wcs,+
g,xg for

each n. Taking a subsequence, one may also assume that the points pn,g′ converge toward a point
xg′ ∈ H(pg′). One defines x̃g′ = (xg′ , σ) such that σ is the orientation with matches with the
orientation of x̃g. By the previous claim, one can replace the sequence (pn) by another one (p̄n)
such that (p̄n,g′) still converges toward xg′ and furthermore W u

g′,loc(p̄n,g′) intersects Wcs,+
g′,xg′

for each

n. The intersection point belongs to H(pg′) by lemma 3.6, hence x̃g′ belongs to H̃(pg′), as required.

Claim 3. For any g1, g2 ∈ V, let us consider x1 ∈ H(pg1) and x2 ∈ H(pg2) having the same
continuation. Then, there exist two matching orientations on Ecg1,x1

, Ecg2,x2
and a sequence (pn)

in P such that (pn,gi) converges toward xi and the local unstable manifolds W u
gi,loc

(pn,gi) intersects
Wcs,+
gi,xi for i = 1, 2.

Proof. By assumption, there exists a sequence (p0
n) in P such that (p0

n,gi
) converges toward xi

for i = 1, 2. We first replace (p0
n) by a sequence (p1

n) so that W u
g1,loc

(p1
n,g1) does not intersect

W ss
g1,loc

(x1): if there exists a subsequence of (p0
n) which has this property, we get the subsequences

(p1
n); otherwise, one can assume that W u

g1,loc
(p0
n,g1) intersects W ss

g1,loc
(x1) for each n ≥ 0. From
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lemma 3.10, there exists y ∈ Wcs
g,p0n,g1

arbitrarily close to p0
n,g1 such that its unstable manifold

intersects Wcs
x1
\W ss

g1,loc
(x1). One can approximate y by a point p1

n,g1 with p1
n ∈ P. Doing this for

each n, one gets a required sequence (p1
n) such that (p1

n,g1) still converges toward x1. By lemma 4.4,
one can ensure that the sequence (p1

n,g2) converges toward x2. By choosing the orientations on Ecgi,xi
,

one can now assume that W u
g1,loc

(p1
n,g1) intersects Wcs,+

g1,x1 . By the claim 2, one can modify again the
sequence (p1

n) and replace it by a sequence (pn) having the required properties.

One can now conclude the uniqueness part of the item b). Let us assume by contradiction that

x̃g ∈ H̃(pg) has two distinct continuations x̃1
g′ , x̃

2
g′ in H̃(pg′) as stated in item b). By lemma 4.3,

one may assume that x1
g′ belongs to Wcs,−

g′,x2
g′

. Claim 3 provides us with two sequence (pin), i = 1, 2.

On the one hand W u
g,loc(p

i
n,g) intersects Wcs,+

g,xg , hence for n ≥ 1 and m À n, W u
g,loc(p

1
n,g) intersects

Wcs,+
g,p2

m,g′
. On the other hand x1

g′ ∈ Wcs,−
g′,x2

g′
, hence W u

g′,loc(p
1
n,g′) intersects Wcs,−

g′,p2
m,g′

. By lemma 4.6,

this contradicts our assumptions.

The item c) is a direct consequence from the claim 3.

Corollary 4.8. Under the assumptions of proposition 4.5, let us consider g ∈ V and x̃, ỹ ∈ H̃(pg)
such that the projections x = πg(x̃) and y = πg(ỹ) are ε′-close and satisfy y ∈W ss

g,loc(x).
Then, for any g′ ∈ V the projections x′ = πg′(x̃′) and y′ = πg′(ỹ′), associated to the continuations

x̃′, ỹ′ ∈ H̃(pg′) of x̃, ỹ, still satisfy y′ ∈ Wcs
g′,x′ and the open region in Wcs

g′,x′ bounded by W ss
loc(x) ∪

W ss
loc(y

′) does not meet H(p). When the orientations of x̃ and ỹ match, one also has y′ ∈W ss
g′,loc(x

′).

Proof. Let us consider two points x̃, ỹ whose projections are ε′-close and satisfy y ∈ Wcs
g,x. Then,

the same holds for g′ and the continuations x′, y′ by lemma 4.3.
The point x is the limit of a sequence (pn,g) with pn ∈ P such that W u

loc(pn,g) intersects Wcs,+
x .

We claim that y′ does not belong to Wcs,+
x′ . Let us assume by contradiction that this is not the

case. On the one hand y does not meet Wcs,+
g,x whereas W u

loc(pn,g) intersects Wcs,+
x : this implies

that W u
loc(pn,g) intersects the component of Wcs

g,y \W ss
g,loc(y) corresponding to the orientation of x̃.

On the other hand for m large pm,g′ is close to x′, hence W u
loc(pm,g′) intersects the component of

Wcs
g′,y′ \W ss

g′,loc(y
′) corresponding to the reversed orientation of x̃. There exists q ∈ P such that qg

and qg′ are arbitrarily close to y and y′ respectively. Hence, W u
g,loc(pn,g) intersects one component of

W cs
g,q \W ss

g,loc(qg) and W u
g′,loc(pn,g′) intersects the component of W cs

g′,q \W ss
g′,loc(qg′) which corresponds

to the other orientation. From lemma 4.6, this implies that there exists h ∈ U such that H(ph) has
a strong homoclinic intersection, contradicting our assumptions.

Similarly, x′ does not belong to Wcs,+
g′,y′ for the orientation on Ecy′ induced by ỹ.

When the orientations of x̃ and ỹ match, this implies that y′ belongs to W ss
g′,loc(x

′). When the
orientations differ, W ss

g′,loc(x
′) and W ss

g′,loc(y
′) bound the open region Wcs,+

g′,x′ ∩Wcs,+
g′,y′ . If there exists

a point z̃ ∈ H̃(p) whose projection by πg′ belongs to this region, the discussion above proves that
the projection of its continuation for g also belongs to Wcs,+

g,x ∩Wcs,+
g,y . But for g this open region is

empty since y ∈ W ss
g,loc(x). This is a contradiction. Hence the open region bounded by W ss

g′,loc(x
′)

and W ss
g′,loc(y

′) in Wcs
g′,x′ does not meet H(pg′).
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Corollary 4.9. Under the assumptions of proposition 4.5, let us consider a diffeomorphism g ∈ V
and a hyperbolic periodic point qg whose hyperbolic continuation qg′ is defined and homoclinically
related to the orbit of pg′ for each g′ ∈ V.

Then, for g′ ∈ V, qg′ is the unique point in H(pg′) which has the same continuation as qg.

Proof. It is enough to prove that in a small neighborhood of g, the point qg′ is the unique point
in H(pg′) which has the same continuation as qg. Let us consider a sequence (pn) in P such that
pn,g accumulates on qg and W u

g,loc(pn,g) intersects Wcs,+
g,qg . One may also choose the pn such that

W u
g,loc(qg) intersects Wcs,−

g,pn,g . By lemma 4.2, for any g′ ∈ V, the limit q̄g′ of (pn,g′) is a periodic point
in Wcs

g,qg′ \W
cs,−
g,qg′ . Also W u

g′,loc(q̄g′) intersects Wcs,−
g′,pn,g′

.
For n large and g′ close to g, the points pn,g′ and qg′ are close: this implies that q̄g′ is contained

in a small neighborhood of qg′ . Since qg′ is uniformly hyperbolic for any g′ close to g, this implies
that q̄g′ and qg′ coincide, as claimed.

5 Boundary points of quasi-attractors

We discuss the properties of chain-hyperbolic homoclinic classes as in the previous section that are
furthermore quasi-attractors. In particular, we conclude the proof of proposition 2.15. The following
slightly more general setting will be considered.

– Let V ⊂M be an invariant open set which is a trapping region f(V ) ⊂ V .

– Assume that the maximal invariant set in V is endowed with a partially hyperbolic splitting
Es ⊕ Ec ⊕ Eu such that dim(Ec) = 1.

– Let H(p) ⊂ V be a chain-hyperbolic homoclinic class with the splitting Ecs ⊕ Ecu = (Es ⊕
Ec)⊕ Eu and containing the unstable manifold of p.

In particular, H(p) is saturated by the unstable leaves, tangent to Eu, and U is foliated by a forward
invariant foliation which extends the strong stable lamination tangent to Es.

5.1 Comparison of unstable leaves through the strong stable holonomy

Let us assume that H(p) satisfies the following property.

Strong intersection property: there exist x, y ∈ H(p) with y ∈W ss(x) \ {x}.
As explained in section 2.4, this property prevents the class to be contained in a lower dimensional
submanifold tangent to Ec ⊕ Eu.

For any point x ∈ H(p), we fix arbitrarily some plaque D transverse to W ss
loc(x) and define for any

z close to W ss
loc(x) the projection Πss(z) ∈ D through the strong stable holonomy. When z belongs

to H(p), the map Πss is a homeomorphism from a neighborhood of z in Wcu
z to a neighborhood

of Πss(z) in D. Hence, the projection Πss(W u
loc(z)) is a one-codimensional topological submanifold

of D. In particular, in a neighborhood of z, the set D \ Πss(W u
loc(z)) has locally two connected

components.

Definition 15. Let us fix ε0 > 0 small. The following situations can occur.
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– The transversal case. There exists x, y ∈ H(p) with y ∈ W ss
loc(x) \ {x} such that Πss(W u

loc(y))
intersects both components of Πss(B(x, ε0)) \Πss(W u

loc(x)).

– The jointly integrable case. There exists x, y ∈ H(p) with y ∈W ss
loc(x) \ {x} such that

Πss(W u
loc(x)) and Πss(W u

loc(y)) coincide in Πss(B(x, ε0)).

– The strictly non-transversal case. For any x, y ∈ H(p) with y ∈W ss
loc(x)\{x}, the projection

Πss(W u
loc(y)) intersects one of the components of Πss(B(x, ε0)) \ Πss(W u

loc(x)) and is disjoint
from the other.

Note that these definitions do not depend on the choice of the plaque D. Clearly one of these three
cases happen. The transversal and the jointly integrable cases may occur at the same time. The
strictly non-transversal case is quite particular.

Lemma 5.1. Let us assume that H(p) does not satisfy the transversal case and consider two points
x, y ∈ H(p) with y ∈W ss

loc(x)\{x}. For ε small, if Πss(W u
loc(y)) intersects Πss(B(x, ε))\Πss(W u

loc(x)),
then x and y are not accumulated by H(p) in the same component of Wcs

x \W ss
loc(x).

Proof. Note that if ε is small enough and if Πss(W u
loc(y)) intersects Πss(B(x, ε))\Πss(W u

loc(x)), then
Πss(W u

loc(x)) intersects Πss(B(y, ε0)) \Πss(W u
loc(y)).

We denote by U+
x , U

−
x the local connected components of Πss(B(x, ε)) \ Πss(W u

loc(x)) such that
Πss(W u

loc(y)) meets U−x and is disjoint from U+
x . We also denote by U+

y , U
−
y the local connected

components of Πss(B(y, ε0)) \ Πss(W u
loc(y)) such that Πss(W u

loc(x)) meets U+
y and is disjoint from

U−y . In particular, U+
x ⊂ U+

y .
Let us assume by contradiction that y is accumulated by H(p) from the side of Wcs

x \W ss
loc(x)

which projects in U+
x . Let us consider a point z ∈ H(p) close to y and which projects inside U+

x .
Its local unstable manifold is close to the unstable manifold of y, hence Πss(W u

loc(z)) meets U−x also.
This implies that we are in the transversal case which is a contradiction.

Similarly if x is accumulated by H(p) from the side of Wcs
x \W ss

loc(x) which projects in U−y , we
find a contradiction. One deduces that x and y can not be accumulated by H(p) on the same side
of Wcs

x \W ss
loc(x).

5.2 Structure of the stable boundary points

For quasi-attractors not in the transversal case, we prove that the stable boundary points (see
section 3.5) belong to the unstable manifold of a periodic orbit.

Proposition 5.2. Let H(p) be a homoclinic class such that

– H(p) is a quasi-attractor endowed with a partially hyperbolic structure Es⊕Ec⊕Eu such that
Ec is one-dimensional and Ecs = Es ⊕Ec is thin trapped,

– for any periodic points q, q′ ∈ H(p) homoclinically related to the orbit of p, the manifolds
W ss(q) \ {q} and W u(q′) are disjoint,

– the transversal case does not hold.

Then any stable boundary point of H(p) belongs to the unstable manifold of a periodic point.
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Proof. Let x be a stable boundary point of H(p). Let us assume by contradiction that the point x
does not belong to the unstable manifold of a periodic point. In particular, the unstable manifolds
W u(fn(x)) for n ∈ Z are all distinct.

Let us consider a point ζ in the α-limit set of x. By considering a plaque transverse to W ss
loc(ζ),

the holonomy Πss is well defined in a neighborhood of ζ. Since Ecs is thin trapped, the plaques
of the family Wcs can be chosen small and one may thus assume that one of the components of
Wcs
x \ W ss

loc(x) is disjoint from H(p). Let us introduce two backward iterates x1 = f−n(x) and
x2 = f−m(x), of x close to ζ. By the trapping property, one of the components of Wcs

xi
\W ss

loc(xi) is
also disjoint from H(p) for i = 1 and i = 2. Since x1 and x2 are close, it makes sense to compare
the orientations of Ec1 and Ec2. Choosing different iterates x1 and x2 if necessary, one may assume
that the tangent map Dfn−m : Ecx1

→ Ecx2
preserves the orientation.

Claim 5.3. Exchanging x1 and x2 if necessary, W ss
loc(x2) meets W u

loc(x1).

Proof. Observe that the plaque Wcs
x2

meets W u
loc(x1) at a point x′1 ∈ H(p). One chooses a small

path t 7→ x1(t) inside W u
loc(x1) between x1 = x1(0) and x′1 = x1(1). Since H(p) is a quasi-attractor

this path is contained in H(p). Each plaque Wcs
x1(t) meets W u

loc(x2) at a point x2(t), defining a path
t 7→ x2(t) inside W u

loc(x2) ∩H(p).
For any t ∈ [0, 1], the plaques Wcs

x1(t) and Wcs
x2(t) projects by Πss on a C1 curve γ(t) which is

topologically transverse to Πss(W u
loc(x1)) and Πss(W u

loc(x2)). The set D \ Πss(W u
loc(x1)) has locally

two connected components U+, U−. Hence, γ(t)\Πss(x1) has two connected components γ+(t) ⊂ U+

and γ−(t) ⊂ U− for each t.
Let us consider the components γ±1 := γ±(0). By lemma 3.11 and since x1 is a stable boundary

point, Πss(H(p) ∩ Wcs
x1

) meets one of them, γ−1 , and is disjoint from the other one, γ+
1 . Similarly,

we define γ−2 , γ
+
2 the connected components of γ(1) \Πss(x2), such that Πss(H(p)∩Wcs

x2
) meets the

first and is disjoint from the second. One deduces that γ+
2 is contained in U+ or in U−. Recall that

γ+
1 ⊂ U+. Since Dfn−m preserves the local orientation of Ec, the orientations on γ+

1 and γ+
2 match

and γ+
2 is contained in U+.

As a consequence Πss(W u
loc(x2)) is disjoint from γ+

1 := γ+(0) and from γ−2 := γ−(1). Since we are
not in the transversal case, one deduces that Πss(W u

loc(x2)) contains Πss(x1) or Πss(x′1). Exchanging
x1 and x2 if necessary, one has W ss(x′1) = W ss(x2).

Let us denote x′1 the intersection point between W ss
loc(x2) and W u

loc(x1). Since x2 is a boundary
point, one connected component of Wcs

x2
\W ss

loc(x2) is disjoint from H(p). By lemma 3.11 the other
component contains sequences of points of H(p) that accumulate on x2 and x′1. One deduces from
the lemma 5.1 that the projections of W u

loc(x1) and W u
loc(x2) through the strong stable holonomy

match. Consequently, there exists a periodic point q ∈ H(p) such that W u
loc(x1) and W u

loc(x2) project
on W u(q) by the strong stable holonomy. Note that when x1, x2 are arbitrarily close to ζ, the point
q is also close.

If q and ζ are distinct, one may consider backward iterates x′1, x
′
2 closer to ζ. One builds another

periodic point q′ ∈ H(p). All the local unstable manifolds of x1, x2, x
′
1, x

′
2, q, q

′ have the same
projection through the strong stable holonomy. By lemma 3.4, q and q′ are homoclinically related
to the orbit of p. This proves that W ss

loc(q) and W u
loc(q

′) intersect, contradicting our assumption.
If q and ζ coincide, one can consider higher backward iterates f−n(x) in a neighborhood of

ζ. They all have distinct local unstable plaques whose projection by the strong stable holonomy
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coincide. One deduces that one can find a sequence of such backward iterates which accumulates on
a point ζ ′ ∈W ss

loc(ζ) different from ζ. Repeating the construction near ζ ′, one builds a periodic point
q′ ∈ H(p) distinct from q and as before W ss

loc(q) and W u
loc(q

′) intersect, giving again a contradiction.
This ends the proof of the proposition.

5.3 The transversal case

When H(p) is a quasi-attractor, the lemma 3.9 ensures that for diffeomorphisms g close to f the
unstable manifold W u(pg) is still contained in H(pg).

Lemma 5.4. Let us assume that H(p) is a quasi attractor and consider f ′, C1-close to f , such that
the transversal case holds for a pair of points x 6= y in H(pf ′). Then, for any two different hyperbolic
periodic points px, py homoclinically related to the orbit of pf ′ and close to x and y respectively, and
for any diffeomorphism g that is C1-close to f ′ there exist x′ ∈W u(px,g) and y′ ∈W u(py,g) in H(pg)
satisfying W ss(x′) = W ss(y′).

Proof. Let x, y ∈ H(pf ′) with y ∈W ss
loc(x)\{x} such that the intersection between Πss(W u

loc(x)) and
Πss(W u

loc(y)) is topologically transversal. Consider two periodic points px, py homoclinically related
to pf ′ and close to x and y respectively, so that the local unstable manifolds of px and py are close to
the local unstable manifold of x and y. This implies that Πss(W u

loc(px)) and Πss(W u
loc(py)) intersect

topologically transversally. By continuity of the local unstable manifolds and the local strong stable
holonomy this property still holds for any g close to f ′: there are points x′ ∈ W u

loc(px,g), y
′ ∈

W u
loc(py,g) such that W ss(x′) = W ss(y′). By lemma 3.9, the local unstable manifolds of px,g, py,g

remain in H(pg) and therefore the points x′, y′ are in H(pg).

5.4 The jointly integrable case

The next lemma states that in the jointly integrable case either a heterodimensional cycle is created
by a Cr−perturbation or for any point in the class there is a well defined continuation.

Lemma 5.5. Let us assume that H(p) is a quasi-attractor whose periodic orbits are hyperbolic,
that Ecs is thin trapped and that the jointly integrable case holds. Then for any r ≥ 1 such that
f ∈ Diffr(M), one of the following cases occurs.

– There exists g that is Cr-close to f such that H(pg) exhibits a strong homoclinic intersection.

– There exists a hyperbolic periodic point q homoclinically related to the orbit of p, two maps
g 7→ xg, yg defined on a neighborhood V of f in Diffr(M) and continuous at f such that for
any diffeomorphism g ∈ V the points xg, yg belong to H(pg)∩W s(qg) and are continuations of
xf , yf . Moreover yg belongs to W ss

loc(xg).

Proof. Note that by our assumptions the results of sections 3 and 4 apply. In particular for g C1-
close to f the class H(pg) is still chain-hyperbolic and contains W u(p). Let us assume that the first
item of the proposition does not hold: on a Cr-neighborhood V of f , there is no diffeomorphism
whose homoclinic class H(pg) has a strong homoclinic intersection.

Recall that all the periodic orbits are hyperbolic. Since Es ⊕ Ec is thin trapped, they have
the same index and by lemma 3.4, they are all homoclinically related. There is no periodic points

48



q, q′ ∈ H(p) such that W ss(q) \ {q} and W u(q′) intersect: otherwise, one gets a strong homoclinic
intersection by using lemma 2.9. In particular, the proposition 5.2 can be applied.

As in definition 15, let x, y ∈ H(p) be two close points with disjoint local unstable manifolds
such that for any z ∈ W u

loc(x) ∩ B(x, ε0) we have W ss
loc(z) ∩W u

loc(y) 6= ∅. Observe that there exists
a periodic point q ∈ H(p) close to x whose local stable manifold intersects both the local unstable
manifold of x and y. Without lose of generality, we can assume that x, y belong to W s

loc(q).
The point x, y do not belong both to the unstable manifold of some periodic points px, py:

otherwise, we would get a strong connection by applying lemma 2.9. We can thus now assume that
x does not belong to the unstable manifold of a periodic point. In particular, by proposition 5.2
it is not a stable boundary point and it is accumulated by points in H(p) from both connected
components of Wcs

x \ W ss
loc(x). The corollary 4.8 (in the orientation preserving case) implies that

there exist two maps g 7→ xg, yg on V satisfying (xf , yf ) = (x, y) and for any g close to f , the points
xg, yg belong to H(pg) and have the same strong stable manifold. The points xg, yg are accumulated
by H(pg) in the same component of Wcs

xg
\W ss

loc(xg).
Let us prove the continuity. Since the point x is accumulated from both sides, it has two

continuations g 7→ xg, x
′
g. By lemma 4.3, for any g one has x′g ∈ Wcs

xg
. One can choose an orientation

of Ecx and by lemma 4.6 assume that for any g, the point x′g does not meet Wcs,+
xg . By lemma 4.7,

the map g 7→ x′g is semi-continuous at f : when (gn) is a sequence that converges to f , then any
limit x̄′ of (x′gn

) does not meet Wcs,−
x′f

= Wcs,−
x . One deduces that any limit x̄ of (xgn) does no meet

Wcs,−
x either. Since the map g 7→ xg is also semi-continuous, the limit x̄ does not meet Wcs,+

x . One
deduces that x̄ belongs to W ss

loc(x). The orbit of x̄ is shadowed by the orbit of x, hence one deduces
that x̄ = x. Let us now consider any limit point ȳ of (ygn). By construction it has to belong to
W ss
loc(x) and W ss

loc(y), and so ȳ = y. We have thus proved that the maps g 7→ xg, yg are continuous
at f .

5.5 The strictly non-transversal case

In the strictly non-transversal case, roughly speaking is proved that either by perturbation is created
a strong homoclinic connection, or for a diffeomorphisms nearby the strong stable leaves contains
at most one point in the class or there are two periodic points such that for any diffeomorphisms
nearby their unstable manifolds intersects some strong stable leaves (see lemma 5.8).

Lemma 5.6. Let us assume that H(p) satisfies the strictly non-transversal case. Then, any close
points x 6= y in H(p) satisfying y ∈ W ss

loc(x) are stable boundary points. Moreover they are not
accumulated by H(p) in the same component of Wcs

x \W ss
loc(x).

Proof. Since H(p) satisfies the strictly non-transversal case and x, y are close, there exists y′ ∈
W u
loc(y) and x′ ∈ W u

loc(x) such that y′ ∈ W ss
loc(x

′) and for any ε > 0, the manifolds Πss(W u
loc(y

′))
intersects Πss(B(x′, ε)) \ Πss(W u

loc(x
′)). By lemma 5.1, they are not accumulated by H(p) in the

same component and in particular both are stable boundary points.

For the points (x, y) as in the previous lemma the following property obviously holds (the open
region considered below is then empty):

(**) Wcs
x contains y. The open region in Wcs

x bounded by W ss
loc(x) ∪W ss

loc(y) does not meet H(p).
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Note that this property already appeared in corollary 4.8. The next lemma states that the set of
such pairs (x, y) is quite small.

Lemma 5.7. Let H(p) be a quasi-attractor such that Ecs is thin trapped, the strictly non-transversal
case holds and for any periodic points q, q′ ∈ H(p) the manifolds W ss(q)\{q} and W u(q) are disjoint.
Let us fix δ > 0. Then, there exist N ≥ 1 and finitely many periodic points p1, . . . , ps such that any
points x 6= y in H(p) satisfying (**) and d(x, y) ≥ δ belong to the union of the fN (W u

loc(pi)),
i ∈ {1, . . . , s}.
Proof. We fix δ > 0 small. We first note that by lemma 5.6 and proposition 5.2, any x, y as
in the statement of the lemma are stable boundary points and there exists some periodic points
px, py ∈ H(p) such that x belongs to W u(px) and y to W u(py).

Let P be the (closed) set of pairs (x, y) ∈ H(p)2 satisfying (**) and d(x, y) ≥ δ. We have to
prove that if two pairs (x, y) and (x′, y′) in P are close, then x′ ∈ W u

loc(x) and y′ ∈ W u
loc(y). This

is done by contradiction: we consider a sequence (xn, yn)n≥0 in P that converges toward (x, y) and
assume that all the leaves W u

loc(xn) are distinct. One may assume that x is accumulated by H(p)
inside Wcs,+

x .
First we claim that W u

loc(xn) does not cut W ss
loc(x). Otherwise, we denote by zn the intersection

point. The plaque Wcs
zn

coincides with Wcs
x in a neighborhood of zn by lemma 2.2, hence zn is not

accumulated by H(p) ∩ Wcs,−
zn for n large. One deduces that zn and x belongs to the same local

strong stable leaf and are accumulated by points of H(p) ∩ Wcs,+
zn and H(p) ∩ Wcs,+

x respectively,
contradicting the definition of the strictly non-transversal case.

Let Πss be the projection along the strong stable holonomy on a diskD transverse toW ss
loc(x). The

projections Πss(W u
loc(xn)),Π

ss(W u
loc(x)),Π

ss(W u
loc(y)),Π

ss(W u
loc(yn)) are one codimensional mani-

folds of D: by our assumptions, the one-dimensional curve γ = Πss(Wcs
x ) meets them in this

order. Since we are in the strictly non-transversal case, the order is the same on any other curve
γ′ = Πss(Wcs

x′ ) where x′ ∈ W u
loc(x) is close to x. In particular, when x′ is the intersection point be-

tweenW u
loc(x) andWcs

xn
, one finds a contradiction sinceW u

loc(x) andW u
loc(y) cannot intersect the open

region of Wcs
x bounded by W ss

loc(x)∪W ss
loc(y) and by the same argument as above, W u

loc(x)∩W ss
loc(xn)

and W u
loc(y) ∩W ss

loc(yn) are empty. This concludes the proof of the lemma.

Lemma 5.8. Let us assume that H(p) is a quasi-attractor whose periodic orbits are hyperbolic, that
Ecs is thin trapped and that the strictly non-transversal integrable case holds. Then for any r ≥ 1
such that f ∈ Diffr(M), one of the following cases occurs.

– There exists g, Cr-close to f such that H(pg) exhibits a strong homoclinic intersection.

– There exists g, Cr-close to f such that for any x 6= y in H(pg) one has W ss(x) 6= W ss(y).

– There exist two hyperbolic periodic points px, py homoclinically related to the orbit of p and
an open set V ⊂ Diffr(M) whose closure contains f , such that for any g ∈ V the class H(pg)
contains two different points x ∈W u(px,g) and y ∈W u(py,g) satisfying W ss(x) = W ss(y).

Proof. As in the proof of lemma 5.5, for g that is C1-close to f the class H(pg) is still chain-
hyperbolic and contains W u(p). Moreover, one can assume that for any periodic points q, q′ ∈ H(p)
the manifolds W ss(q) \ {q} and W u(q) do not intersect. Let us fix δ < 0 small. One can consider
the periodic points p1, . . . , ps and the integer N ≥ 1 provided by the lemma 5.7. These points
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are hyperbolic, homoclinically related to p by lemma 3.4 and have a continuation for any g that is
C1-close to f . One may also assume there is no g in a Cr-neighborhood of f such that H(pg) has
a strong homoclinic intersection. One can then consider the continuation given by proposition 4.5.
We also introduce the period τi of each periodic point pi.

In a small neighborhood of f in Diffr(M), consider for each pair (pi, pj) the (closed) subset Di,j

of diffeomorphisms g such that the class H(pg) contains some distinct points x ∈ fN+τi(W u
loc(pi,g))

and y ∈ fN+τj (W u
loc(pj,g)) with y ∈ W ss

loc(x). The diffeomorphisms in the interior of Di,j are in the
third case of the lemma.

If the sets Di,j have empty interior, there exists an open set V in Diffr(M) whose closure contains
f such that for any g ∈ U , any pi, pj and any distinct points x ∈ fN+τi(W u

loc(pi,g)) and y ∈
fN+τj (W u

loc(pj,g)) one has y 6∈W ss
loc(x). To conclude, we have to prove that for g ∈ U close to f and

any distinct points x, y ∈ H(pg) one has W ss(x) 6= W ss(y), giving the second case of the lemma.
This is done by contradiction: one considers a pair (x, y) such that y ∈ W ss

loc(x) and up to consider
a backward iterate, one can require that the points x, y satisfy d(x, y) > 2δ. Having chosen g close
enough to f , one deduces (lemma 4.3) that any continuations xf , yf for f still satisfy d(xf , yf ) > δ.

If x, y are accumulated in the same component of Wcs
x \W ss

loc(x), then by corollary 4.8 (in the
orientation preserving case) the same holds for the continuations xf , yf for f . This contradicts
lemma 5.6.

If x, y are accumulated in different components of Wcs
x \ W ss

loc(x), then by corollary 4.8 (in
the orientation reversing case) the continuations xf , yf for f satisfy (**). Since their distance is
bounded from below by δ, lemma 5.7 implies that xf , yf belong to fN (W u

loc(pi)) and fN (W u
loc(pj))

respectively. By lemma 4.4, one deduces that for the diffeomorphism g close, the points x, y belong
to gN+τi(W u

loc(pi,g)) and gN+τj (W u
loc(pj,g)) respectively. This contradicts our assumption on g.

5.6 Proof of proposition 2.15

Let us consider a diffeomorphism f ∈ Diff1+α(M), α ≥ 0, and a homoclinic class H(p) as in the
statement of theorem 10 and assume that the two first cases of the proposition do not occur. If
the jointly integrable case holds, the lemma 5.5 gives the third case of the proposition. If the
transversal or the strictly non-transversal case holds, the lemmas 5.4 and 5.8 give the fourth case of
the proposition.

6 Periodic stable leaves: proof of theorem 11

In this section we prove theorem 11 and proposition 2.11. Let us consider:

1) A diffeomorphism f0 and a homoclinic class H(pf0) which is a chain-recurrence class endowed
with a partially hyperbolic splitting Es ⊕ Ec ⊕ Eu where Ec is one-dimensional and Es ⊕ Ec

is thin-trapped.

2) Some α ∈ [0, 1), a C1+α-diffeomorphism f that is C1-close to f0, an open neighborhood
V ⊂ Diff1+α(M) of f and some collections of hyperbolic periodic points qf , {pxn,f}n∈N and
{pyn,f}n∈N for f such that the following properties hold.

– For g ∈ V, the continuations qg, pxn,g, p
y
n,g exist and are homoclinically related to pg.
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– For each g ∈ V, the sequences (pxn,g) and (qyn,g) converge towards two distinct points xg, yg
in H(pg) ∩W s

loc(qg) such that yg belongs to W ss
loc(xg).

– The maps g 7→ xg, yg are continuous at f .

We will show that if α ≥ 0 is small, then there exists a diffeomorphism g ∈ V whose homoclinic
class H(pg) has a strong homoclinic intersection.

Proposition 6.1. For any diffeomorphism f0 and any homoclinic class H(pf0) satisfying the as-
sumption 1) above, there exists α0 ∈ (0, 1) and a C1-neighborhood U of f with the following property.
For any α ∈ [0, α0], any diffeomorphism f , any neighborhood V ⊂ Diff1+α(M) and any maps g 7→
xg, yg satisfying the assumption 2), there exists a transverse intersection z ∈W s(qf )∩W u

loc(qf )\{qf}
and an arc of diffeomorphisms (gt)t∈[−1,1] in V such that

– for each t ∈ [−1, 1], considering the (unique) continuation zt of z for gt, the center stable
plaque Dcszt

intersects W u
loc(xgt) and W u

loc(ygt) at some points x̂t and ŷt;

– considering an orientation of the central bundle in a neighborhood of q, one has

ŷ−1 ∈ Dcs,−x̂−1
and ŷ1 ∈ Dcs,+x̂1

.

Let us conclude the proof of theorem 11. By construction and lemma 3.6, for each t ∈ [−1, 1]
the points zt, xt, yt belong to the homoclinic class H(pgt). Moreover one can find for each n ∈ N two
hyperbolic periodic points p̂xn,g and p̂yn,g whose continuations exists for every g ∈ V, are homoclinically
related to pg and are arbitrarily close to the intersections x̂g, ŷg between W s

loc(zg) and W u
loc(xg) or

W u
loc(yg) respectively. By corollary 4.9, one can assume that the hyperbolic points p̂xn,g and p̂yn,g

are the hyperbolic continuations of points of P. For n large, W u
loc(p̂

y
n) intersects Wcs,−

p̂x
n

for g−1 and

Wcs,+
p̂x

n
for g1. One can thus apply lemma 4.6 and obtain a diffeomorphism g ∈ V which has a strong

homoclinic intersection. Note that the neighborhood V of f can be taken arbitrarily small. As a
consequence the perturbation g is arbitrarily C1+α-close to f . Hence the proposition implies theorem
11.

6.1 An elementary C1+α-perturbation lemma

The perturbations in sections 6 and 7 will be realized through the following lemma.

Lemma 6.2. Let us consider a C1+α map v0 : Rd → R`, and two numbers D̂ > 2D > 0. Then,
there exists a C1+α-map v : Rd → R` which coincides with v0 on the ball B(0, D) and with 0 outside
the ball B(0, D̂) and whose C1+α-size is arbitrarily small if the C1+α-size of v0 and the quantity
D̂−(1+α) sup

B(0, bD)
‖v0‖ are small.

Proof. One chooses a smooth bump map ρ : Rd → [0, 1] which coincides with 0 outside B(0, 2
3D̂)

and with 1 inside B(0, D). The map v is then defined by v = ρ.v0.
When α > 0, we define Lipα(h) the α-Hölder size of a map h, that is

Lipα(h) = sup
x 6=y

‖h(x)− h(y)‖
‖x− y‖α .
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We then denote by A,A′ the C0 norm of v0, Dv0 and by Aα, A
′
α the α-Hölder sizes of v0, Dv0 on

B(0, D̂). There exists a universal constant C > 0 such that for any α ∈ (0, 1] one has

Lipα(ρ) ≤ C.D̂−α,

Lipα(Dρ) ≤ C.D̂−(1+α).

From inequalities above, it is easily to check that when the C1+α size of v0 is small, the C1+α-size
of v is controlled by AD̂−(1+α):

– The C0 norm of v is smaller than A.

– The C0-norm of Dv is bounded by ALip1(ρ) +A′ ≤ CAD̂−1 +A′.

– When α > 0, the α-Hölder constant of Dv is bounded by

Aα Lip1(ρ) +ALipα(Dρ) +A′α + sup
B(0, 2

3
bD)

‖Dv0‖ Lipα(ρ). (6.1)

Observe that the three first terms in (6.1) are small when A′α and AD̂−(1+α) are small. Indeed the
usual convexity estimate gives

Aα ≤ CA1/(1+α)A′α
α/(1+α)

.

For any x ∈ B(0, 2
3D̂) one has

‖Dv0(x)‖ ≤ C.

[
sup

‖u‖= bD/3

‖v0(x+ u)− v0(x)‖
‖u‖ + sup

y∈B(x, bD/3)

‖Dv0(y)−Dv0(x)‖
]

≤ 3C.(AD̂−1 +A′αD̂
α).

The last term in (6.1) is thus smaller than AD̂−(1+α) +A′α.
When the C1+α-size of v0 is small, A′α is small and the lemma follows.

Remark 6.1. When v0(0) = 0, for proving that the quantity D̂−(1+α) sup
B(0, bD)

‖v0‖ is small it is

enough to show that D̂−α sup
B(0, bD)

‖Dv0‖ is small.

6.2 Preliminary constructions

To simplify the presentation, one will assume that q0 coincides with p0 and is fixed by f0.

The smoothness bound α0. We denote also by λc ∈ (0, 1) an upper bound for the contraction
along Ec and by λu > 1 a lower bound for the expansion along the bundle Eu.

We choose α0 > 0 small so that
λα0
u max(λ, λc) < 1,

‖Df−1
0 ‖α0λ < 1.

In particular, one can consider ρ ∈ (0, 1) such that

λ1/α0 < ρ < ‖Df−1
0 ‖−1.
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The neighborhoods V1, V2 of x. Once the smoothness α ∈ [0, α0] and the neighborhood V
have been fixed, one introduces a continuity point f ′ ∈ V for both maps g 7→ xg, yg. Let zf ′ ∈
W s(pf ′) ∩ W u

loc(pf ′) be a transverse homoclinic point of the orbit of pf ′ that does not belong to
the orbit of xf ′ or yf ′ . We choose two small open neighborhoods V1, V2 of xf ′ , such that V̄2 ⊂ V1.
Choosing them small enough, the orbit of the intersection V1 ∩W s

loc(pf ′) is disjoint from the orbit
of yf ′ and zf ′ .

Since f ′ is a continuity point of g 7→ xg, yg, for any diffeomorphism g ∈ V close to f ′, the point
xg still belongs to V2 and the orbit of the intersection V1 ∩W s

loc(pg) is still disjoint from the orbit of
the continuations yg, zg.

The diffeomorphism f . We choose a diffeomorphism f ∈ V arbitrarily close to f ′. One can
require that f is of class C∞ and that there is no resonance between the eigenvalues of the linear
part associated to the orbit of pf . As a consequence of Sternberg linearization theorem, the dynamics
in a neighborhood of the orbit of pf can be linearized by a smooth conjugacy map.

In order to simplify the notations we will denote p = pf , q = qf , x = xf , y = yf .

Local coordinates. One can find a small neighborhood B of p and a Cr-chart B → Rd which
linearizes the dynamics and maps p on 0 and the local manifolds W ss

loc(p),W
s
loc(p),W

u
loc(p) inside the

coordinate planes Rs×{0}u+1, {0}s×R×{0}u and {0}s+1×Ru, where s, u, d denotes the dimension
of Ess, Eu and M respectively. The coordinates in the chart are written (x̄, ȳ, z̄) ∈ Rs × R× Ru.

The map f viewed in the chart is thus a linear map A = As × Ac × Au of Rd which preserves
these coordinate planes. Replacing x, y by iterates, one can assume that their forward orbits are
contained in B.

The local stable disk D. Let z0 be the transverse homoclinic point of the orbit of p for f that
is the continuations of zf ′ . For n ≥ 0 we also define z−n = f−n(z0).

We can thus choose a small neighborhood D of z0 in W s(p) whose orbit is disjoint from the
orbits of x and y. Replacing z0 by an iterate, one can assume that its backward orbit belongs to B.
The disk D (or one of its backward iterates) endowed with its strong stable foliation can then be
linearized.

Lemma 6.3. By a C1+α-small perturbation of f one may assume furthermore that in the chart at
p,

– D is contained in an affine plane parallel to the local stable manifold W s
loc(p),

– the strong stable manifolds inside D coincide with the affine planes parallel to W ss
loc(p).

Proof. We choose a large integer n ≥ 1. The ball W centered a z−n of radius r = λ−nu does not
intersect the local stable manifold of the orbit of p, neither the iterates z−k for k 6= n.

We first rectify the disc D: in the chart, the disc f−n(D) can be seen as the graph of a map
whose derivative has norm smaller than λn. By the λ-lemma, this graph is arbitrarily C1+α-close to
the linear plane W s

loc(p). One can thus apply lemma 6.2: by a diffeomorphism supported inside W
which fixes z−n, one can send a neighborhood of z−n inside D in an affine plane parallel to W s

loc(p).
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By remark 6.1, this diffeomorphism is C1+α-close to the identity provided that λnr−α = (λλαu)n is
small, which is the case if α < α0 and our choice of α0.

Assuming now that D is contained in an affine plane parallel to W s
loc(p), we denote by W c

loc(z0)
the affine space containing z0 parallel to {0}s×R×{0}u. We rectify the strong stable foliation inside
D: this is the image of the affine foliation parallel to W ss

loc(p) by a diffeomorphism Φ of the form

Φ: (x̄, ȳ, z̄) 7→ (x̄, ϕ(x̄, ȳ), z̄),

which fixes z0 and W c
loc(z0). Let us again consider n ≥ 1 large.

Inside f−n(D), the strong stable foliation is the image of the affine foliation by the map Φn =
A−n◦Φ◦A where A = (As, Ac, Au) is the linear map of Rd which coincides withDpf . The components
Φn,x̄,Φn,z̄ of Φ along the coordinates x̄, z̄ coincide with the identity of the planes Rs × {0} and
{0} × Ru. The derivative of the component Φn,ȳ at a point ζ is

DΦn,ȳ(ζ) = A−nc ∂x̄ϕ(An.ζ) Ans + ∂ȳϕ(An.ζ).

When n goes to infinity, the first term A−nc ∂x̄ϕ Ans goes to zero as λn since the contraction As is
stronger than Ac. Since f is assumed to be smooth, ∂x̄ϕ(ζ), ∂ȳϕ(ζ) are Lipschitz in ζ. The map An

sends a uniform neighborhood of z−n in f−n(D) inside a ball of radius λnc of D; hence if one restricts
DΦn,ȳ to a small neighborhood of p, the second term ∂ȳϕ(An.ζ) is λnc -close to ∂ȳϕ(z0). One deduces
that DΦn,ȳ converges uniformly to the identity and that

‖DΦn,ȳ − Id ‖ ≤ λn + λnc .

The same argument shows that the Lipschitz constant ofDΦn,ȳ goes to zero as n goes to infinity. One
can thus apply lemma 6.2, in order to rectify the strong stable foliation on a small neighborhood of
z−n in f−n(D), by a map supported on the ball B(z−n, λ−nu ). The perturbation is small in topology
C1+α, provided that

‖DΦn,ȳ − Id ‖λnαu ≤ (λn + λnc )λ
nα
u

is small, which is the case when n is large since α < α0 by the choice of α0.

The perturbation support Let us denote by Dm the connected component of f−m(D)∩B which
contains z−m. We choose two small open neighborhoods U1, U2 of x in W s

loc(p), such that Ū2 ⊂ U1:
they are obtained as the intersection of V1, V2 with W s

loc(p). By construction, their orbit is disjoint
from the orbit of z0 and y. For each n ≥ 0 and s > 0, we introduce Rn1 (s) the product (in the
coordinates of the chart at p)

Rn1 (s) = fn(U1)× {|z̄| < s},
and similarly we define Rn2 (s). See figures 1 and 2.

6.3 The perturbation

Let us choose a linear form L on Ru and recall that ρ ∈ (0, 1) has been chosen smaller than ‖Df−1‖−1.
The perturbation g of f will be obtained as the composition T ◦ f where T in the chart around p
coincides with a map Tn, for n large, given by the following lemma. See figure 3.
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1 (s)
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fn(y)

fn(x)

W s
loc(p)

z0D

Figure 1: The perturbation support.

Lemma 6.4. There exists a sequence of smooth diffeomorphisms Tn of Rd such that

– Tn coincides with the identity outside Rn1 (ρn) and on W s
loc(p),

– DTn coincides on Rn2 (ρn+1) with the linear map

B : (x̄, ȳ, z̄) 7→ (x̄, ȳ + ρα0n.L(z̄), z̄),

– (Tn) converges to the identity in topology C1+α.

Proof. Let us choose a smooth map ϕ : Rs+1 → [0, 1] supported on U1 which takes the value 1 on
U2 and a smooth map ψ : Ru → [0, 1] supported on the unit ball and which coincides with 1 on the
ball B(0, ρ). We then define

Tn : (x̄, ȳ, z̄) 7→ (x̄, ȳ + tn(x̄, ȳ, z̄), z̄),

tn(x̄, ȳ, z̄) = ρα0n ϕ ◦ f−n(x̄, ȳ, 0) ψ(ρ−n.z̄) L(z̄).

The two first properties are clearly satisfied. On Rn1 (ρn), the factor L(z̄) is bounded (up to a
constant) by ρn. Since f−n is linear and (by our choice of ρ) has a norm smaller than ρ−n, as before
the C1+α size of the perturbation T can be easily computed: it is smaller than (ρα0−α)n and goes
to zero as n gets larger.

Remark 6.2. After the perturbation, the orbits of z0 and p are unchanged. The local manifold
W s
loc(p) and its strong stable foliation are also the same. For m large and s > 0 small, the forward

orbit of Dm ∩ Rn+1
1 (s) does not intersect the support of the perturbation, hence the strong stable

foliation on Dm ∩Rn+1
1 (s) still coincides with the linear one.
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1 (s)

Dm

f−1(D)

D

p

Figure 2: The local stable disks Dm.

6.4 Proof of proposition 6.1

Recall that z−m is the image of z0 by the linear map A−m. Let us choose a linear form L on Ru and
a constant c > 0 such that for infinitely many values of m ≥ 0 one has

L(z−m) > c‖z−m‖. (6.2)

We define Lt = −tL for any t ∈ [−1, 1]. The construction of section 6.3 associates to n ≥ 1 large, a
perturbation gt = Tn,t ◦ f . We also consider a large integer m ≥ 1 so that the distance of z−m to p is
smaller than ρn+1 and (6.2) is satisfied. The point z announced in the statement of the proposition
wil be z−m.

We introduce the continuations xt = xgt , yt = ygt of x, y for gt and the intersection x̂t, ŷt of the

fn(x) fn+1(x) p

Figure 3: The perturbation.
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local unstable manifold at gn+1
t (xt), gn+1

t (yt) with the disc Dm. By lemma 3.1, the points x̂t, ŷt
belong to H(pt). Since for each considered perturbation, the disc Dm is still contained in W s

loc(p)
and is endowed with the same linear strong stable foliation, it is enough to introduce the projection
πc on the central coordinate ȳ and to show that

πc(x̂1) < πc(ŷ1) and πc(x̂−1) > πc(ŷ−1). (6.3)

First we notice that since gt is close to f and f ′ in V, the continuations xt and yt of x, y are still
contained in U2 and in W s

loc(p) \ U1. Since gt coincides with A outside Rn1 (ρn), the local unstable
manifolds of gnt (xt) and gn+1

t (yt) are tangent to the cone

Cun = {(vcs, vu) ∈ Rs+1 × Ru, ‖vcs‖ ≤ λn‖vu‖}.

By construction the local unstable manifold of gn+1
t (xt) in f(Rn2 (ρn+1)) is tangent to the cone

Bt(Cun+1), where Bt is the linear map associated to Lt as in lemma 6.4.
The points x̂t, ŷt are contained in the intersection of these cones with the affine plane parallel to

Rs+1 × {0} containing A−m(z0). One deduces that

πc(x̂t) ∈ B(πc(xt)− tρα0nL(z−m), λn‖z−m‖),

πc(ŷt) ∈ B(πc(yt), λn‖z−m‖).
By assumption we have πc(xt) = πc(yt) and by our choice of ρ one has λ < ρα0 . In particular,

by (6.2), for n large enough and t = −1 or t = 1, these two balls are disjoint. One also controls the
sign of πc(ŷt)− πc(x̂t) and gets (6.3) as wanted.

6.5 Proof of proposition 2.11

The number α0 > 0 is given by theorem 11. The open set U is chosen to satisfy theorem 11 and
proposition 4.5.

We then consider α ∈ [0, α0] and a diffeomorphism f as in the statement of the proposition. Let
us assume by contradiction that in a C1+α-neighborhood V of f , there is no diffeomorphism g such
that H(pg) has a strong homoclinic intersection. The proposition 4.5 applies.

By assumption there exists a hyperbolic periodic point qf homoclinically related to the orbit of
p and a point xf ∈ H(qf )∩W ss(qf ) \ {qf}. By lemma 3.11, xf is accumulated by points of the class
H(pf ) in Wcs

xf
\W ss

loc(xf ). Considering the forward orbit of these points, one deduces that xf and qf
are accumulated by points of H(qf ) inside the same component of Wcs

xf
\W ss

loc(xf ). By corollary 4.8,
there exists a continuation g 7→ xg such that xg belongs to W ss

loc(qg) for each g ∈ V. Since qg and
W ss
loc(qg) vary continuously, one can argue as in the proof of lemma 4.4 and conclude that g 7→ xg is

continuous.
Now the theorem 11 applies to the diffeomorphisms f0, f and to the points q = y = p and x. One

gets a strong homoclinic intersection for some g ∈ V and the class H(pg). This is a contradiction,
concluding the proof of the proposition.
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7 Periodic unstable leaves: proof of theorem 12

Now we continue with the proof of theorem 12. In this section we consider:

1) A diffeomorphism f0 and a homoclinic class H(pf0) which is a chain-recurrence class endowed
with a partially hyperbolic splitting Es ⊕ Ec ⊕ Eu where Ec is one-dimensional and Es ⊕ Ec

is thin-trapped.

2) Two hyperbolic periodic points px,f0 and py,f0 homoclinically related to the orbit of pf0 and
a diffeomorphism f that is C1-close to f0 such that there exists two points x ∈ W u(px,f ),
y ∈W u(py,f ) in H(pf ) whose strong stable manifold coincide.

Note that by lemma 3.8, the homoclinic class associated to the hyperbolic continuation pf of pf0
is still chain-hyperbolic. Moreover the continuations of x, y are well defined and unique (lemma 4.4).
We will show that f is the limit of diffeomorphisms g such that H(pg) has a strong homoclinic
intersection. The results of this section are sum up in the next proposition.

Proposition 7.1. For any diffeomorphism f0 and any homoclinic class H(pf0) satisfying the as-
sumption 1) above, there exists α0 ∈ (0, 1) with the following property.

For α ∈ [0, α0] and any hyperbolic periodic points px,f0 , py,f0 homoclinically related to the orbit
of pf0, any C1+α-diffeomorphism f that is C1-close to f0 and satisfies 2) can be C1+α-approximated
by a diffeomorphism g such that:

– Either there exists a periodic point q homoclinically related to the orbit of pg such that

W ss
loc(q) ∩W u(py,g) 6= ∅.

– Or the continuations of x, y satisfy xg /∈W ss
loc(yg) and also xg belongs to an arbitrary previously

selected component of Wcs
x \W ss

loc(x).

Note that by using corollary 4.8 in both cases of the conclusion of the proposition, f is C1+α-
approximated by a diffeomorphism whose homoclinic class H(p) exhibits a strong homoclinic inter-
section. The proposition thus clearly implies theorem 12.

In what follows, in subsection 7.1 are introduced the fake holonomies and it is explained the
Hölder regularity. In subsection 7.2 it is shown that the recurrences to the point x in proposition
7.1 hold along the center direction and in subsection 7.3 it is a presented a dichotomy related to the
recurrence time. Related to this dichotomy, two different perturbations are introduced in lemma 7.7
and 7.8 proved in sections 7.4 and 7.5 respectively.

7.1 Strong stable holonomy

Plaques. Using an adapted metric if needed, we can assume that there exist constants λ > 1 and
0 < λs < 1 < λu such that for any x ∈ H(pf0) and any unitary vectors u ∈ Esx, v ∈ Ecx + Eux and
w ∈ Eu, one has

λ.‖Dxf0.u‖ < ‖Dxf0.v‖, ‖Dxf0.u‖ ≤ λs and ‖Dxf0.w‖ ≥ λu.
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Let us introduce a strong stable cone field Cs above H(pf0): one can choose a > 0 small and define
at each point x the set

Csx = {(us, uc, uu) ∈ Esx +Ecx + Eux , ‖us‖ ≥ a.‖uc + uu‖}.
The cone field extends continuously to a neighborhood U of H(pf0) such that at any x ∈ U ∩ g(U),

Dxf
−1
0 .Csg(x) ⊂ Csx.

For some r0 > 0, at any point x ∈ U there exists a plaque of radius r0 tangent to Cs. Similarly,
one can define a center-unstable cone field Ccu and an unstable cone-field Cu on U close to the
bundles Ec⊕Eu and Eu respectively. All these properties remain valid for any diffeomorphism that
is C1-close to f0.

Strong stable holonomy. It is a classical fact that the strong stable holonomies are Hölder. The
proof extends to more general objects, that we call fake holonomies. For more references see [BW].

Let us consider a small constant δ > 0 that is used to measure how orbits separate. For any
diffeomorphism f that is C1-close to f0, let us consider two different points z ∈ H(pf ) and z′ ∈
W u
loc(z) close to each other. Note that there exists a smallest integer N = N(z, z′) ≥ 1 such that

fN (z) and fN (z′) are at distance larger than δ.

Definition 16. Two points Π̂ss(z), Π̂ss(z′) are called fake strong stable holonomies of z, z′ if they
satisfy the following properties.

– There exists a center-unstable plaque of radius r0 containing Π̂ss(z) and Π̂ss(z′).

– There exists two plaques of radius r0 at fN (z) and fN (z′) that are tangent to Cs and contain
fN (Π̂ss(z)) and fN (Π̂ss(z′)) respectively.

– For 0 ≤ k ≤ N , the distances d(fk(z), fk(Π̂ss(z))), d(fk(z), fk(Π̂ss(z))) are smaller than r0.

Note that by invariance of the cone field Cs under backward iterations the point fk(Π̂ss(z))
belongs to a plaque at fk(z) tangent to Cs and whose radius is smaller than λks .r0.

The choice for the plaques tangent to Cs is of course not unique: one can consider for instance the
local strong stable manifold (in this case, the fake holonomies coincide with the usual strong-stable
holonomies) but one can also choose the local strong stable manifold of a diffeomorphism C1-close
to f . In fact the fake holonomies allow us to compare the holonomies when the diffeomorphism is
changed.

Hölder regularity. We now sketch how the classical result about Hölder regularity adapts for the
fake holonomies.

Lemma 7.2. If δ > 0 has been chosen small enough, then there exists αs > 0 such that for any
diffeomorphism f that is C1-close to f0, for any z ∈ H(pf ) and z′ ∈W u

loc(z) close, and for any fake
holonomies Π̂ss(z), Π̂ss(z′), one has

d(Π̂ss(z), Π̂ss(z′)) ≤ d(z, z′)αs .

60



Sketch of the proof. Observe that if N is sufficiently large (provided that z′ is close enough to
z), the distances d(fN (Πss(z)), fN (z)) and d(fN (Πss(z′)), fN (z′)) are exponentially small. Hence
d(fN (Π̂ss(z)), fN (Π̂ss(z′))) is of the same order than d(fN (z), fN (z′)) and close to δ.

The distance d(Π̂ss(z), Π̂ss(z′)) is bounded by ‖Df−1‖Nd(fN (Πss(z)), fN (Π̂ss(z′))) and the dis-
tance d(z, z′) is bounded from below by ‖Df‖−Nd(fN (Πss(z)), fN (Π̂ss(z′))). This proves that there
exists σ > 0 (which only depends on f0) such that

d(Π̂ss(z), Π̂ss(z′)) ≤ σN .d(z, z′).

On the other hand, since the distance along the unstable manifolds growth uniformly, there exists
another constant C > 0 such that

N ≤ C. log d(z, z′).

The result follows from these two last inequalities. Observe that the exponent αs only depends on
C and σ which are uniform on a C1-neighborhood of f0.

Regularity of the strong stable bundle. The regularity of the strong stable bundle needs more
smoothness on the diffeomorphism. Note that the strong stable bundle is defined at any point whose
forward orbit is contained in a small neighborhood U of H(pf0).

Lemma 7.3. There exists α′s such that for any diffeomorphism f that is C1-close to f0 and of class
C1+α for some α ∈ (0, α′s), there exists a constant C > 0 with the following property.

At any points z, z′ close having their forward orbit contained in U , one has

d(Essz , E
ss
z′ ) ≤ C.d(z, z′)α.

Sketch of the proof. Let us choose K > ‖Df‖∞ and as before denote by λ ∈ (0, 1) a bound for the
domination between Ess and Ec⊕Eu. We choose α′s > 0 such that Kα′sλ < 1. By working in charts,
one has for some constant C > 0,

d(Essz , E
ss
z′ ) ≤ d(Df−1

f(z)(E
ss
f(z)), Df

−1
f(z)(E

ss
f(z′))) + d(Df−1

f(z)(E
ss
f(z′)), Df

−1
f(z′)(E

ss
f(z′)))

≤ λd(Essf(z), E
ss
f(z′)) + C.d(f(z), f(z′))α.

By induction one gets for any k ≥ 1,

d(Essz , E
ss
z′ ) ≤ C.

k−1∑

j=0

λjd(f j+1(z), f j+1(z′))α + λkd(Essfk(z), E
ss
fk(z′)).

One can bound d(f j(z), f j(z′)) by Kjd(z, z′). Since λKα′s < 1, this gives

d(Essz , E
ss
z′ ) ≤ C(d(z, z′)α + λk).

By choosing k large enough, one gets the estimate.
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f τ (z0)
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W ss
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W ss
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τ (z1), z1])

Figure 4: Fundamental center domains.

7.2 Localization of returns to px

We now fix a diffeomorphism f that is C1-close to f0. We assume that is C1+α for some α ∈ [0, 1).
In order to simplify the notations we will now set p = pf , px = px,f and py = py,f . Let τx be the
period of px and let us consider a local central manifold W c

loc(px).
We will use the following assumption:

(***) The intersection between W ss(px) \ {px} and H(p) is empty.

The orbit of any point z ∈ W s(px) \ {px} meets the fundamental domain f τx(W s
loc(px)) \W s

loc(px).
The next lemma states, that if H(p) and px satisfy (***), and if z belongs to H(p) ∩W s

loc(px) then
its orbit meets a kind of “fundamental center domain” of px.

Lemma 7.4. If (***) is satisfied, there are points z0, z1 contained in W c
loc(px) \ {px} such that if

z ∈W s
loc(px) ∩H(p) then there is k ∈ Z verifying that

fk(z) ∈W ss
loc([f

2τx(z0), z0)]) ∪W ss
loc([f

2τx(z1), z1)])

where [f2τx(zi), zi], for i ∈ {0, 1} is the connected arc of W c
loc(px) whose extremal points are zi,

f2τx(zi) and (see figure 4)

W ss
loc([f

2τx(zi), zi]) =
⋃

{z′∈[f2τx (zi),zi]}
W ss
loc(z

′).
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Proof. Let us consider two points z0
0 and z0

1 in two different connected components of W c
loc(px) and

set zni = f iτx(z0
i ).

Note that the image of W ss
loc([f

2τx(zni ), zni ]) by f τ is contained in W ss
loc([f

2τx(zn+1
i ), zn+1

i ]). The
union of the W ss

loc([f
2τx(zni ), zni ]) over n ≥ 0 and of W ss

loc(px) contains a neighborhood of px.
If the thesis of the lemma does not hold, it follows that for arbitrarily large n ≥ 0, there exists

a point ζn ∈ H(px) ∩ W s
loc(px) which belongs to W ss

loc([f
2τx(zn+1

i ), zn+1
i ]) and whose preimage by

f τ does not belong to W ss
loc([f

2τx(zni ), zni ]). An accumulation point ζ of {ζn} belongs to W ss
loc(px) \

{px}] ∩H(px), contradicting the assumption of the lemma.

We now describe the returns of the forward orbit of x in the neighborhood W of the orbit of px.
We need to take into account the orbits that follow the orbit of x during some time. For that we let
λs ∈ (0, 1) be an upper bound for the contraction along Es, we let λ > 1 be a lower bound for the
domination between Es and Ec ⊕ Eu as in section 7.1 and we let µc > µs in (0, 1) be the modulus
of the center eigenvalue at px and the maximal modulus of the strong stable eigenvalues at px. We
also choose ρ > 1 such that

ρ < min(λ, λ−1/2
s , µc/µs).

We then introduce some “forward dynamical balls” centered at x: we fix k0 ≥ 1 and for n ≥ 0 we
define the set

Bn(x) =

{
z ∈M, ∀ 0 ≤ k ≤ n, d(fk(z), fk(x)) < ρk−k0 .

k−1∏

`=0

‖Df|Es(f `(x))‖
}
.

Note that:

(i) By our choice of ρ, the intersection of all the balls Bn(x) coincides with a local strong stable
manifold of x and the image fn(Bn(x)) has diameter smaller than

√
λ
n−k0
s .

(ii) By taking k0 large enough, the point y belongs to the balls Bn(x) and its forward iterates
satisfy the stronger estimate

d(fk(y), fk(x)) <
1
3
ρk−k0 .

k−1∏

`=0

‖Df|Es(f `(x))‖. (7.1)

Let us now assume that (***) holds.

(iii) For n large enough, fn(Bn(x)) does not intersect W u
loc(px). Otherwise Bn(x) would intersect

a large backward iterate of W u
loc(px): this would imply that the strong stable manifold of the

orbit of px contains x and contradicts our assumptions that W ss(px) ∩H(p) = {px}. In fact,
by first item if for n large enough, fn(Bn(x)) intersects W u

loc(px) it follows that px ∈W ss
loc(x).

(iv) One can choose the neighborhood W of the orbit of px so that the backward orbit of x is
contained in W and x 6∈W . The lemma 7.4 above implies that the forward iterates of x close
to px are close to the central manifold of px. Consequently, their distance to the local unstable
manifold of the orbit of px decreases by iteration by a factor close to the central eigenvalue of
px. One thus gets the following.
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Lemma 7.5. Let us fix η > 0 small. If (***) holds, any large iterate fn(Bn(x)) which intersects
B(x, δ) has the following property.

Let m be the largest integer such that m < n and fm(Bn(x)) is not contained in W . Then the
distance between the points of fn(Bn(x)) and W u

loc(px) belongs to [µ(1+η).(n−m)
c , µ

(1−η).(n−m)
c ], where

µc denotes the modulus of the center eigenvalue associated to px.

(v) For any forward iterate f `(x) close to px, the quantity ρ‖Df|Es(f `(x))‖ is smaller than µc by
our choice of ρ. We thus obtain another version of the estimate of item (i).

Lemma 7.6. If fn(Bn(x)) intersects B(x, µNc ) for some N ≥ 1 large, then the diameter of fn(Bn(x))
is smaller than

√
λ
n−N
s µNc .

7.3 Recurrence time dichotomy

As before we denote by λu, λ > 1 the lower bounds for the expansion along Eu and the domination
between Es and Ec ⊕ Eu. By lemma 7.2, there exists αs ∈ (0, 1) such that the strong stable fake
holonomies are αs-Hölder. The lemma 7.3 gives α′s ∈ (0, 1) which control the smoothness of the
strong stable bundle. Recall that by µc ∈ (0, 1) we denote the modulus of the center eigenvalue
associated to px for f . We also denote by ᾱ0 the bound on the smoothness associated to H(pf0) in
proposition 2.11.

Let χ,K1,K2 be some positive constants defined by

χ =
log λu

log λu + ‖Df−1
0 ‖ ,

K1 =
| logµc|
χ log λ

, K2 =
(1− αs)| logµc|

αs log λu
.

Let us consider again the C1+α-diffeomorphism f that is C1-close to f . If α belongs to [0, ᾱ0] and
condition (***) does not hold, then the proposition 2.11 implies that there exist C1+α-perturbation
g of f such that H(pg) has a strong homoclinic intersection, concluding the proof of the proposition.

In the following we assume that condition (***) holds for f and as in the statement of propo-
sition 7.1, that there exist two different points x ∈ W u(px) and y ∈ W u(py) whose strong stable
manifolds coincide. For any N large, we take V a neighborhood of size µNc around f−1(x). We define
n = n(N), the smallest element of N∪ {∞} such that fn(Bn(x)) intersects V . By the property (iii)
of section 7.2, the sequence {n(N)} increases and goes to +∞ as N increases.

We fix a constant K > max(1,K0,K1,K2) and we are going to consider two cases:

1. Fast returns. There exists arbitrarily large N such that

n(N) ≤ K.N. (7.2)

2. Slow returns. There exists arbitrarily large N such that

n(N) > K.N. (7.3)
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One of these two conditions (maybe both) occur. If the first option holds, we prove the following.

Lemma 7.7. Assume that (***) and (7.2) hold for some K > 0, and that α < inf( 1
K−1 , α

′
s). Then

there exists a diffeomorphism ϕ ∈ Diff1+α(M) that is C1+α-close to the identity such that g = ϕ ◦ f
has a hyperbolic periodic point q homoclinically related to the orbit of px,g and whose strong stable
manifold W ss(q) \ {q} intersects W u(py,g).

If the second option holds, we prove the following.

Lemma 7.8. Assume that (7.3) holds for some K > max(K1,K2), and that 1 + α < K
max(K1,K2) .

Then, there exists a diffeomorphism ϕ ∈ Diff1+α(M) that is C1+α-close to the identity such that
g = ϕ ◦ f satisfies the second option of proposition 7.1: if one fixes an orientation on Ecy, there exist
two such diffeomorphism g+, g− such that xg+ (resp. xg−) belongs to Wcs,+

g+,yg+
(resp. Wcs,−

g−,yg−
).

Both lemmas and the proposition 2.11 conclude the proof of proposition 7.1.

Note that for proving proposition 7.1 one can choose K independently from µc, for instance any

K = ‖Df0‖max
(

3
log λs

,
2 χ
log λ

,
2 (1− αs)
αs log λu

)
.

In this way we obtain a bound

α0 = inf
(
ᾱ0,

1
K − 1

, α′s,
K

max(K1,K2)

)

for the smoothness exponent α in proposition 7.1, which only depends on f0 as announced.

7.4 Fast returns: proof of lemma 7.7

Let us assume that condition (7.2) holds for some large values of N and some K > 0 such that
α < inf

(
1

K−1 , α
′
)
. We also assume that (***) holds so that the lemma 7.5 applies.

Lemma 7.9. There are a > b in (K−1, 1) such that some arbitrarily large N and n = n(N) satisfy:

1. fn(Bn(x)) ∩B(x, µanc ) 6= ∅ and

2. fm(Bm(x)) ∩B(x, µb nc ) = ∅ for any k0 < m < n.

Moreover a
b can be chosen arbitrarily close to K

K−1 .

Proof. We introduce the integers Ni and ni = n(Ni) satisfying for any i,

Ni < Ni+1, ni < ni+1, and ∀Ni−1 < N ≤ Ni, n(N) = ni.

We will prove that there are positive constants b′ < a′ in (K−1, 1) and there is ni sufficiently large
such that Ni > a′.ni and Nj < b′.ni for 0 ≤ j < i. We then choose any b < a in (b′, a′). One can
check easily that for these large n = ni the result holds:
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– We have fn(Bn(x))∩B(x, µNi
c ) 6= ∅ with Ni > a′.n, hence fn(Bn(x))∩B(x, µa

′.n
c ) is non-empty.

By lemma 7.6, the diameter of fn(Bn(x)) is bounded by
√
λ
n−Ni

s µNi
c which is much smaller

than µa
′.n
c . As a consequence fn(Bn(x)) is contained in B(x, µa.nc ).

– By definition of the sequence (Nj), for anym < n = ni, one has fm(Bm(x))∩B(x, µNi−1+1
c ) = ∅

and b.n > b′.n+ 1 > Ni−1 + 1, implying the second condition of the lemma.

Let us now prove the existence of the constants a′ < b′. We denote by mi the smallest integer
such that

∀mi ≤ m < ni, fm(Bni(x)) ⊂W.

By lemma 7.5 if one chooses ε > 0 small and if Ni is large enough, one has

(1 + ε).(ni −mi) ≥ Ni.

Let us define
R = lim sup

j→+∞
Nj

nj
.

By (7.2), R belongs to [K−1, 1].
For any j larger than a constant j0 we have Nj

nj
< (1 + ε)R. For some i sufficiently large we also

have Ni
ni
> (1− ε)R. If j < i we have nj ≤ mi ≤ ni − (1 + ε)−1Ni and so for j0 < j < i we have

Nj ≤ (1 + ε)Rnj ≤ (1 + ε)R(ni − (1 + ε)−1Ni) ≤ R[1− (1− ε)R+ ε]ni.

Since R belongs to [K−1, 1], then [1 − (1 − ε)R + ε] < (1 − ε) for ε small and therefore taking
a′ = (1− ε)R and b′ = R[1− (1− ε)R+ ε] the result holds. To check that it also holds for j < j0 it
is enough to take i sufficiently large.

Observe that the quantity a
b is close to 1−ε

1−(1−ε)R+ε . Since R ≥ K−1, when ε goes to 0 the limit

is larger or equal to K
K−1 .

We can now conclude the proof of lemma 7.7.

Proof of lemma 7.7. We fix a, b and a large integer n as in lemma 7.9. By assumption α < (K−1)−1

and a
b can be chosen close to K

K−1 . One can thus ensure that 1 + α is smaller than a/b.
Let D ⊂ W ss

loc(x) be the smallest disc containing y. By construction it is contained in the ball
Bn(x), hence its image by fn is contained in B(x, µanc ). We consider a C1+α-diffeomorphism ϕ
supported in B(x, µbnc ) which sends fn(D) into D and define g = ϕ◦f . By construction the support
of the perturbation g is disjoint from D and its n− 1 first iterates.

Claim 7.10. If 1+α < inf(ab , α
′
s), by choosing n large the diffeomorphism ϕ can be taken arbitrarily

close to the identity in Diff1+α(M).
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Proof. Let us consider a C1+α-chart U → Rd of a neighborhood U of x such that x coincides with
0 and W ss

loc(x) coincides with the plane Rk × {0}, where k = dim(Ess). For n large, the plaque
W ss
loc(f

n(x)) is close to W ss
loc(x) and coincides in the chart with the graph of a map χ0 : Rk → Rd−k.

We introduce the map
(z1, z2) 7→ (0,−χ0(z1))

which is close to 0 in the C1+α topology and satisfies ‖v0(0)‖ ≤ e−an by construction.
One can thus apply the lemma 6.2 in order to build a map v : Rd → Rd−k which coincides with

v0 on the ball B(0, e−an) and with 0 outside B(0, e−bn). The map ϕ : (z1, z2) 7→ (z1, z2 − v(z1, z2))
is the announced diffeomorphism. In order to prove that ϕ is close to the identity in Diff1+α(M),
one has to check that e(1+α)bn supB(0,e−bn) ‖v0‖ is small.

Since α < α′s, by lemma 7.3 we have

‖Dv0(0)‖ ≤ C‖v0(0)‖α ≤ Ce−αan.

Since v0 is close to the identity in Diff1+α, there exists an arbitrarily small constant ε > 0 such that

sup
B(0,e−bn)

‖Dv0‖ ≤ ‖Dv0(0)‖+ εe−αbn ≤ 2εe−αbn.

This gives
sup

B(0,e−bn)

‖v0‖ ≤ ‖v0(0)‖+ e−bn sup
B(0,e−bn)

‖Dv0‖ ≤ e−an + 2εe−(1+α)bn.

Since a > (1 + α)b, this shows that e(1+α)bn supB(0,e−bn) ‖v0‖ is small when n is large.

To continue with the proof of lemma 7.7, we note that the map ϕ◦fn is a contraction on D, hence
the diffeomorphism g has a n-periodic point q whose strong stable manifold contains D. Since the
backward orbit of W u

loc(py) is disjoint from the support of the perturbation, the manifolds W ss(q)
and W u

loc(py,g) intersect.
In particular W s(q) and W u

loc(py,g) have a transversal intersection. On the other hand the orbit of
q has a point close to px, hence W s(px) and W u(q) have a transversal intersection. One deduces that
q is homoclinically related to the orbits of px,g and py,g. This concludes the proof of lemma 7.7.

7.5 Slow returns: proof of lemma 7.8

Let us fix a center-unstable plaque D at x and for diffeomorphisms g close to f we consider the
strong stable holonomy Πss

g to D. Since the map f τx is linear in a neighborhood of px, one can choose
D in the linear plane corresponding to the sum of the central and unstable eigenspaces. Observe
that it contains the manifold W u

loc(px) for f.
Under condition (7.3), we are going to get a perturbation g of f such that Πss

g (xg) 6= Πss
g (yg),

proving that W ss
loc(xg) and W ss

loc(yg) are disjoint. Since xg, yg belong to a same center-stable plaque
Wcs
g,yg

, the projections Πss
g (xg),Πss

g (yg) are contained in a C1-curve of D that is tangent to a central
cone field. Moreover, one will be able to choose the perturbation to satisfy either xg ∈ Wcs,+

g,yg or
xg ∈ Wcs,−

g,yg .
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Description of the perturbation. We recall that we have fixed a large integer N ≥ 1 and that
V denotes the ball B(x, µNc ).

Let us fix two small constants r̂ = 1
2µ

N
c and r < r̂ in (0, 1). We perform the perturbation g of

f in the ball B(f−1(x), r̂), in such a way that W u
loc(px) is still contained in the coordinate subspace

and the distance between x = f(f−1(x)) and g(f−1(x)) is r along the central coordinate. This can
be realized by a small perturbation of f in Diff1(M) provided r̂ and r/r̂ are large enough. Moreover
one can require that the C0 size of the perturbation is equal to r.

Later, in item 7, we explain how the perturbation can be adapted to be C1+α-small. Note that
the point x can be pushed to g(f−1(x)) along Ecx in any of the two central directions at x.

To get the conclusion, we choose a small constant ε > 0 (independent from N) and show that
the distances d(Πss

g (yg), x) and d(xg, g(f−1(x))) are smaller than ε.r, which is much smaller than
d(x, g(f−1(x))).

1- Estimating d(yg, y). Observe that yg does not necessarily coincide with y since the forward
orbit of y may intersect the region of perturbation. However by lemma 4.4 the point yg belongs to
the local unstable manifold of py,g = py,f which coincides for f and g. We will consider the distance
dist along the unstable plaques (which is locally comparable in a uniform way to the distance in the
ambient space). We also introduce a constant C À 1

λu−1 independent from N .

Lemma 7.11. If for some positive integer m the two points fm(y), gm(yg) belong to a same unstable
plaque, then their distance satisfies dist(fm(y), gm(yg)) < C.r.

Proof. Let us assume by contradiction that the estimate does not hold. Observe that the distance
by the action of f growth by a factor λu and the C0 distance between f and g is at most r, which
is much smaller than C.r. One deduces that the points fm+1(y), gm+1(yg) still belong to a same
unstable plaque. Denoting γ = λuC−1

C > 1, their distance now satisfy

dist(fm+1(y), gm+1(yg)) > λu dist(fm(y), gm(yg))− r

> (λu − C−1) dist(fm(y), gm(yg)) = γ.dist(fm(y), gm(yg)).

Therefore after k iterates the distance become larger than γk.C.r and so increasing to infinity. This
is a contradiction with the fact yg is a continuation of y.

Lemma 7.12. The n(N) first iterates of y and yg coincide for f and for g.

Proof. Since y belongs to the dynamical balls Bn(x), the segment of orbit (y, . . . , fn(N)(y)) is also a
segment of orbit for g. Let us consider the first integer m ≥ 1 such that gm(yg) = fm(yg) enters in
the region of perturbation and let us assume by contradiction that m < n(N).

As for y, yg, one knows that fm(yg) and fm(y) belong to a same unstable plaque: by lemma 7.11
they are at distance smaller than C.r. If r has been chosen small enough one has C.r < 1

2µ
N
c = r̂.

By definition of m one also has d(fm(yg), x) < r̂ = 1
2µ

N
c . As a consequence fm(y) belongs to V ,

hence m ≥ n(N). This contradicts our assumption. This shows that the orbit (yg, . . . , gn(N)(yg))
coincides for f and for g.

68



Since y, yg belong to an unstable plaque, and since by lemma 7.12 their n(N) first iterates are
the same by f and by g, the points fn(N)(y) and gn(N)(yg) belong to a same unstable plaque and
by lemma 7.11, their distance is smaller than C.r. For any 0 ≤ m ≤ n(N) we obtain

d(gm(yg), fm(y)) < λm−n(N)
u C.r. (7.4)

2- Estimating d(xg, g(f−1(x))). Arguing as in lemma 7.11, one shows that for any positive integer
m, if the two points fm(x), gm(xg) belong to a same unstable plaque, then their distance satisfy
dist(fm(x), gm(xg)) < Cr.

Let us denote by λ′ > 1 a lower bound for the domination between the bundles Ec and Eu and
consider two large constants k ¿ ` (independent from N) such that λ`u.(λ

′)−k > C. If N has been
chosen large, the ` first iterates of x, xg, g(f−1(x)) are the same by f and by g. Let us assume by
contradiction that the distance dist(g(f−1(x)), xg) inside W u

loc(px,g) is larger than (λ′)−k.r. Since
the distance between x and g(f−1(x)) in the central direction is equal to r, one deduces that the
distance from f `(g(f−1(x))) to f `(xg) is much larger than its distance to f `(x). In particular f `(x)
and f `(xg) are contained in a same unstable plaque and by our choice of k, `, their distance is larger
than C.r, which is a contradiction. Consequently

dist(g(f−1(x)), xg) < (λ′)−k.r.

Taking k large enough, one has d(g(f−1(x), xg) < ε.r as wanted.

3- Estimating d(Π̂ss
f (yg),Πss

f (y)). Since yg belongs to the unstable manifold W u
loc(y) for f , one can

introduce some fake holonomies Π̂ss
f (yg), Π̂ss

f (y) = Πss
f (y) for f . By (7.4) and lemma 7.2, one gets

d(Π̂ss
f (yg),Πss

f (y)) < d(y, yg)αs < [λ−n(N)
u C.r]αs .

5- Estimating d(Πss
g (yg), Π̂ss

f (yg)). As before we first compare the iterates of f and g.

Lemma 7.13. The χ.n(N) first iterates of yg, Πss
g (yg) and Π̂ss

f (yg) coincide for f and for g, where
χ = log λu

log λu+log ‖Df−1
0 ‖ .

Proof. By lemma 7.12 we already know that the n(N) first iterates of yg under f and g coincide.
Since χ ∈ (0, 1) and from the estimate (7.4), the points y and yg do not separate by f during the
time χ.n(N) and by definition of the fake holonomies, the χ.n(N) first iterates of the points Π̂ss

f (yg)
and yg remain in a same strong stable plaque.

From (7.4) and the definition of χ, we also have that for 0 ≤ m ≤ χ.n(N),

d(fm(yg), fm(y)) < λ−n(N)+m
u .C.r < ‖Df−1

0 ‖−m <
1
3
ρm−k0 .

m−1∏

`=0

‖Df|Es(f `(x))‖. (7.5)

With (7.1), this shows that yg belongs to the dynamical ball Bχ.n(N)(x).
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We will prove by induction on m ≤ χ.n(N) that Πss
g (yg) and Π̂ss

f (yg) by f also belong to the
dynamical ball Bm(x). This will imply that their mth iterates by f and g coincide and conclude the
proof of the lemma.

Let us choose η > 0 small and m0 ≥ 0 large. If N has been chosen large enough, the point yg
is close to y and the points Πss

g (yg) and Π̂ss
f (yg) are close to x; as a consequence, the three points

belong to the dynamical balls Bm(x) with 0 ≤ m ≤ m0. When m is larger than m0, the diameter of
fm−1(Bm−1(x)) is small, hence

d(fm(Πss
g (yg)), fm(yg)) ≤ eη.‖Df|Es(fm−1(x))‖.d(fm−1(Πss

g (yg)), fm−1(yg)),

d(fm(Π̂ss
f (yg)), fm(yg)) ≤ eη.‖Df|Es(fm−1(x))‖.d(fm−1(Π̂ss

f (yg)), fm−1(yg)).

With (7.5), (7.1), this gives the required estimate and gives the conclusion.

Since the points Πss
g (yg), Π̂ss

f (yg) belong to a same center-unstable plaque and since their χ.n(N)
first iterates by f remain close, one deduces that for any 0 ≤ m ≤ χ.n(N), the points fm(Πss

g (yg)) and
fm(Π̂ss

f (yg)) are still contained in a center-unstable plaque, whereas the pairs of point fm(Πss
g (yg)),

fm(yg) and fm(Π̂ss
f (yg)), fm(yg) are contained in strong-stable plaques. This shows that

d(Πss
g (yg), Π̂ss

f (yg)) < λ−χ.n(N),

where λ > 1 is the lower bound for the domination between the bundles Es and Ec ⊕ Eu.

6- Estimating d(Πss
g (yg), x). From the estimates we obtained, we get

dist(Πss
g (yg), x) < d(Πss

g (yg), Π̂ss
f (yg)) + d(Π̂ss

f (yg),Πss
f (y)) < λ−χ.n(N) + [λ−n(N)

u C.r]αs .

In order to conclude, the perturbation should thus satisfies:

λ−χ.n(N) + [λ−n(N)
u C.r]αs < ε.r.

Since χ, αs, C, ε are constants independent from N , this inequality holds if N large enough and
the following are satisfied:

αs(n(N) log λu + | log r|) > | log r|+ c,

n(N) log λ > | log r|+ c,

where c > 0 is independent from N .
From the definition of r̂ and since n(N) > K.N , one gets the following condition

| log r| < B.| log r̂| − c, (7.6)

where

B = inf
(
χ log λ,

αs
1− αs

log λu

)
K

| logµc| .

Note that by our choice of K, the factor B is larger than 1.
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7- Realization of the C1+α perturbation. By lemma 6.2, in order to be able to realize a C1+α

perturbation supported on a ball of radius r̂ such that d(g(f−1(x)), x) = r, one has to check that
for some A > α one can choose r, r̂ arbitrarily small satisfying

| log r| > (1 +A)| log r̂|. (7.7)

Note that this also implies the estimate C.r < r̂ = 1
2µ

N
c that we used in paragraph 1.

By our choice of K, both conditions (7.6) and (7.7) can be realized simultaneously provided 1+α
is smaller than B.

8 Structure in the center-stable leaves

In this section we prove theorem 5 on the geometry of chain-hyperbolic classes. It is used in the proof
of theorems 6 and 9. As a consequence (see proposition 8.14), for some chain-hyperbolic classes, one
can replace the plaques Wcs

x by submanifolds Vx whose boundaries are disjoint from H(p).
In the whole section, H(p) is a chain-recurrence class with a dominated splitting Ecs ⊕ Ecu =

(Es ⊕ Ec1) ⊕ Ec2 such that Ec1, E
c
2 are one-dimensional and Ecs, Ecu are thin-trapped. We assume

moreover that for each periodic point q ∈ H(p), the set W ss(q) \ {q} is disjoint from H(p).

8.1 Geometry of connected compact sets

One can obtain connected compact sets as limit of ε-chains, i.e. finite sets {x0, . . . , xm} such that
d(xi, xi+1) < ε for each 0 ≤ i < m. This idea is used to prove the following lemma.

Lemma 8.1. For any n ≥ 1, any distance on Rn which induces the standard topology, any closed
connected set K ⊂ Rn, any point x ∈ K and any 0 ≤ D ≤ Diam(K), there exists a compact
connected set K(D) ⊂ K containing x and whose diameter is equal to D.

Proof. For ε > 0, one can choose a finite set Xε = {x0, x1, . . . , xm} ⊂ K such that

– x belongs to Xε;

– for each 0 ≤ i < m, the open balls B(xi, ε) and B(xi+1, ε) intersect;

– the diameter of Xε belongs to [D,D + 2ε].

Let Kε be the closed ε-neighborhood of Xε. It is a connected compact set contained in the ε-
neighborhood of K. Up to considering an extracted sequence, (Kε) converges for the Hausdorff
topology towards a compact setK(D) which contains x, is connected and has diameterD as required.

Recall that for x ∈ H(p), the submanifold W ss(x) is diffeomorphic to Rd−2, where d = dim(M).

Lemma 8.2. Consider a sequence (zn) in H(p) which converges to a point z and for each n a
compact connected set Cn ⊂ W ss(zn) ∩ H(p) which converges for the Hausdorff topology in M
towards a (compact connected) set C ⊂W ss(z)∩H(p). Then the restriction of the intrinsic distance
of W ss(zn) to the set Cn converges towards the intrinsic distance of W ss

z to C.
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Proof. Let U be a bounded neighborhood of K inside W ss(z) which is diffeomorphic to Rd−2.
For zn close to z, there exists an open set Un ⊂ W ss

zn
, containing zn, diffeomorphic to Rd−2

and which is close to U for the C1-topology on immersions of Rd−2. In particular, U and Un are
diffeomorphic by a map whose Lipschitz constant is arbitrarily close to 1. Since Kn is connected
and contains zn, it is included in Un. This gives the conclusion.

8.2 Structure in the strong stable leaves

We are aimed first to prove total discontinuity in the strong stable leaves.

Proposition 8.3. Let f be a diffeomorphism and H(p) be a chain-hyperbolic class satisfying the
assumptions of theorem 5. If for any periodic point q ∈ H(p) the set W ss(q) \ {q} is disjoint from
H(p), then, for each x ∈ H(p), the set W ss

loc(x) ∩H(p) is totally disconnected.

At any points, one considers the plaques Wcu
x ⊂ f(Wcu

f−1(x)). We choose the plaques Wcs,Wcu

with a diameter small enough so that for each x, y ∈ H(p) the intersectionWcs
x ∩f(Wcu

y ) is transversal
and contains at most one point (which belongs to H(p) by lemma 3.6).

For this proof we will endow H(p) with the center-stable topology : two points x, y ∈ H(p) are
close if the distance d(x, y) is small and x ∈ Wcs

y (or equivalently y ∈ Wcs
x by lemma 2.2). The

center-stable distance on H(p) is the distance between x and y inside Wcs
x .

Since Wcs is trapped, W ss(x) ∩Wcs
x is contained inside W ss

loc(x) and the center-stable topology
induces on W ss(x) ∩H(p) the intrinsic topology of W ss(x).

Local holonomy. We fix ρ > 0 and define the ball Bcs(x) centered at x ∈ H(p) of radius ρ
contained in Wcs

x . If ρ is small, for any points x0 ∈ H(p) and y0, z0 ∈ Wcu
x0
∩ H(p) the local

holonomy Πcu along the center-unstable plaques f(Wcu
f−1(x)), x ∈ Wcs(x0) ∩H(p), is defined from

Bcs(z0) ∩H(p) ⊂ Wcs
z0 to Wcs

y0 .

Global holonomy. We now try to extend globally the holonomy. A strong stable leaf may intersect
a plaque ofWcu in several points, hence the global holonomy may be multivalued. A global holonomy
along the plaques Wcu is a closed connected set ∆ ⊂ H(p)×H(p) (endowed with the product center-
stable topologies) such that for any (x, y) ∈ ∆ one has y ∈ Wcu

x and x ∈ Wcu
y . The sets π1(∆) and

π2(∆) denote the projections on the first and the second factors.

One can obtain global holonomies from connected sets contained in a strong stable leaf.

Lemma 8.4. Let ∆0 be a global holonomy along the center-unstable plaques, and C ⊂ H(p) be a
set which is closed and connected for the center-stable topology and which contains π1(∆0).

Then, there exists a global holonomy ∆ along the center-unstable plaques containing ∆0, such
that π1(∆) ⊂ C and satisfying one of the following cases.

1. π1(∆) = C;

2. ∆ is non-compact;

3. there exists (x, y) ∈ ∆ such that y ∈ Wcu
x \Wcu

x or x ∈ Wcu
y \Wcu

y .
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Proof. If {∆n} is a family of global holonomies along the center-unstable plaques that is totally
ordered by the inclusion, then the closure of the union ∪n∆n is also a global holonomy. By Zorn’s
lemma one deduces that there exists a global holonomy ∆ containing ∆0, satisfying π1(∆) ⊂ C and
maximal with these properties for the inclusion. We prove by contradiction that ∆ satisfies one of
the properties above. We fix a pair (x0, y0) ∈ ∆0.

If π1(∆) 6= C, then there exists r1 > 0 and for each ε1 > 0 there exists a sequence (x0, . . . , xs) in
C such that

– for each 0 < i ≤ s, the points xi−1, xi are at distance less than ε1 and xi ∈ Bcs(xi−1);

– the point xs and the set π1(∆) are at distance exactly r1 inside Wcs
xs

.

If ∆ does not satisfies the items 2) or 3), then for any (x, y) ∈ H(p)×H(p) close to ∆ and any
x′ ∈ H(p) close x (for the center-stable topology), Bcs(y) meets Wcu

x′ at a point y′ ∈ H(p) which
also satisfies x′ ∈ Wcu

y′ .
This allows to build inductively a sequence (y0, . . . , y`) for some 0 ≤ ` ≤ s and associated to

(x0, . . . , x`) such that, for each i, the pair (xi, yi) is at a small distance from (xi−1, yi−1) for the
center-stable distance.

More precisely, there exists r > 0 and for each ε > 0 there exists a sequence (x0, y0), . . . , (x`, y`)
such that for the product center-stable distance on H(p)×H(p) the following holds:

– for each 0 < i ≤ `, one has xi ∈ Wcu
yi

and yi ∈ Wcu
xi

;

– for each 0 < i ≤ `, the pairs (xi−1, yi−1) and (xi, yi) are at distance less than ε;

– the pair (x`, y`) and the set ∆ are at distance exactly r.

When ε goes to 0 and up to consider a subsequence, the set ∆ ∪ {(x0, y0), . . . , (x`, y`)} converges
for the Hausdorff distance towards a compact connected set ∆′ which is a global holonomy, strictly
contains ∆ and satisfies π1(∆′) ⊂ C. This contradicts the maximality of ∆ and proves the lemma.

The strong stable leaves are preserved under global holonomies along center-unstable plaques.

Addendum 8.5. In the case each set C and π2(∆0) is contained in a strong stable leaf, one can
ensure furthermore that π2(∆) is also contained in a strong stable leaf.

Proof. We repeat the proof of lemma 8.4 requiring furthermore that the projection π2(∆) of the
global holonomies are contained in the strong stable leaf W ss(y0). Indeed if {∆n} is totally ordered
family of such global holonomies, then the closure of the union ∪n∆n projects in W ss(y0) by π2:
this is due to the choice of the center-stable topology.

Let us consider a maximal global holonomy ∆ satisfying π2(∆) ⊂ W ss(y0) and given by Zorn’s
lemma. Assume by contradiction that ∆ does not satisfies the three items of lemma 8.4. In particular,
it is compact and one may fix (x, y) ∈ ∆ and an n ≥ 1 such that fn(π2(∆)) is contained in Wcs

fn(y0).
One repeats the same construction as above and builds a global holonomy ∆′ that contains strictly ∆.
If π2(∆′) is contained in W ss(y0), one has contradicted the maximality of ∆. One will thus assume
that the set fn(π2(∆′)) ⊂ Wcs

fn(y0) is not contained in a strong stable leaf. Since it is connected,
it contains a point z such that both local components of Wcs

z \W ss
loc(z) at z meet Πcu(C). If one
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considers a hyperbolic periodic orbit O homoclinically related to p having a point q0 close to z, the
local holonomy Πcu along the plaques of Wcu allows to project fn(π2(∆′)) on a connected compact
subset of Wcs

q0 which meets W ss(q0). Since W ss(q0) \ {q0} is disjoint from H(p), one deduces that
the projection contains q0. Consequently the unstable manifold of some point q ∈ O meets C at
some point x.

By lemma 8.1 and since Ess is uniformly contracting, there exists ε > 0 such that any backward
iterate x−n = f−n(x) is contained in a connected compact set C−n ⊂ W ss

loc(x−n) ∩H(p) which has
a radius equal to ε. Since x belongs to the unstable set of some point fk(q) in the orbit of q, the
backward iterates of x and q become arbitrarily close. Let τ be the period of q. One gets that
the projection Πcu(C−nτ ) by holonomy on Wcs

q converges to a compact connected set contained in
W ss
loc(q) with diameter equal to ε. This contradicts our assumption that W ss(q)\{q} is disjoint from

H(p). In all the cases we have found a contradiction and the lemma is proved.

Triple holonomy. The previous results on holonomies extend to connected set of triples.

Lemma 8.6. Let ∆ be a global holonomy along the center-unstable plaques, (x0, y0) be a pair in ∆
and z0 ∈ H(p) be a point which belong to the connected component of Wcu

x0
∩Wcu

y0 bounded by x0 and
y0. Then there exists a set X ⊂ H(p)×H(p)×H(p) containing (x0, y0, z0) such that

– X is closed and connected for the center-stable topology,

– for each triple (x, y, z) ∈ X one has (x, y) ∈ ∆ and z ∈ Wcu
x0
∩Wcu

y0 ,

– one of the two following cases holds:

1. the set of pairs (x, y) for (x, y, z) ∈ X coincides with ∆,

2. X is non-compact.

Moreover if π1(∆) and π2(∆) are contained in strong stable leaves, then the same holds for π3(X).

Proof. The proof is the same as for lemma 8.4 and addendum 8.5 but the third case of lemma 8.4
has not to be considered since for all the triples (x, y, z) ∈ X, the point z belongs to the connected
component of Wcu

x ∩Wcu
y bounded by x and y and its distance to x and z is thus controlled.

Remark 8.1. If one projects the set X obtained in lemma 8.6 on any pair of coordinates, for
instance as π1,3(X) = {(x, z), (x, y, z) ∈ X}, one gets a set which is connected. Hence the closure of
π1,3(X) for the center-stable topology is a global holonomy.

Non compact holonomy. We now build non bounded holonomies.

Lemma 8.7. If for some x ∈ H(p) the set W ss(x) ∩ H(p) is not totally disconnected, then there
exists a global holonomy ∆ along the center-unstable plaques which is non-compact, non trivial (i.e.
there exists (x0, y0) ∈ ∆ such that x0 6= y0) and such that both π1(∆) and π2(∆) are contained in
strong stables leaves.
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Proof. One considers a non trivial compact connected set Γ ⊂ H(p) contained in some strong stable
leaf and the accumulation set Λ of the backward iterates f−n(Γ) (which is invariant by f). The
uniform expansion along Ess and the lemmas 8.1 and 8.2 above imply that for any x0 ∈ Λ the strong
stable leaf W ss(x0), contains a closed connected set C0 ⊂ Λ which is not compact and contains x0.

There exist some points y0 ∈ H(p) distinct from x0 such that x0 ∈ Wcs
y0 and y0 ∈ Wcs

x0
hold.

Indeed, x0 is accumulated by periodic points q ∈ H(p) whose period is arbitrarily large. Consequently
the sets Wcs

q are pairwise disjoint. Hence, there exists q close to x0 whose plaque Wcs
q intersects

Wcu
x0

at a point y0 which belongs to H(p) \ {x0} from lemma 3.6.
Assuming that the conclusion of the lemma does not hold one builds a sequence of compact

holonomies (∆n) such that π1(∆n) is contained in Λ, both π1(∆n), π2(∆n) are contained in strong
stable leaves, and the diameter of π1(∆) in the strong stable leaf goes to infinity with n. The
holonomy ∆0 is just the initial pair (x0, y0). One constructs ∆n+1 from ∆n in the following way.

In the strong stable leaf that contains π1(∆n), one considers a closed non-compact connected set
Cn ⊂ Λ. One then applies lemma 8.4 and its addendum 8.5 and finds a global holonomy ∆′

n ⊃ ∆n

such that again π1(∆′
n) is contained in Cn and both π1(∆′

n), π2(∆′
n) are contained in strong stable

leaves. By assumption ∆′
n is compact and in particular π1(∆′

n) is strictly contained inside Cn. As
a consequence there exists (x′n, y′n) ∈ ∆′

n such that x′n ∈ Wcu
y′n
\ Wcu

y′n
or yn ∈ Wcu

x′n
\ Wcu

x′n
. Using the

fact that for each x ∈ H(p) we have

f−1(Wcu
x ) ⊂ Wcu

f−1(x),

the set of images (f−1(x), f−1(y)) for (x, y) ∈ ∆′
n is still a compact global holonomy: this is ∆n+1.

We also define (xn+1, yn+1) = (f−1(xn), f−1(yn)).
By construction π1(∆1) is a non-trivial compact connected set. Since Ess is uniformly contracted,

the projection π1(∆n), which contains f−n(π1(∆1)), has a diameter (for the distance insideW ss(xn))
which increases exponentially. This ends the construction of the sequence (∆n).

Up to considering a subsequence, one can assume that the sequence (xn, yn) converges towards a
pair (x, y) ∈ H(p)×H(p) for the classical topology on M . By construction xn, yn are at a bounded
distance, hence x and y are distinct.

For each n, one endows W ss(xn) ×W ss(yn) with the supremum distance between the intrinsic
distances inside W ss(xn) and W ss(yn). Let us fix D > 0. By lemma 8.1, for each n large one can
find a compact connected set ∆D

n contained in ∆n of diameter D and containing (xn, yn). One can
assume that the sequence (∆D

n ) converges for the Hausdorff topology towards a compact connected
set ∆D ⊂ W ss(x)×W ss(y). By lemma 8.2, this set has diameter D. Now the closure of the union
of the ∆D over D is a global holonomy which is non-compact and whose projections by π1, π2 are
both contained in strong stable leaves.

Unbounded projections of holonomies Non-compact holonomies allow to obtain non-compact
connected sets inside strong stable leaves.

Lemma 8.8. Let ∆ be a non-compact holonomy such that π1(∆), π2(∆) are contained in strong
stable leaves. Then the closure of π1(∆) for the center-stable topology is non-compact.

Proof. First notice that one can replace ∆ by f−1(∆). By the trapping of the center-unstable plaques
this allows to have x ∈ Wcu

y and y ∈ Wcu
x for each (x, y) ∈ ∆ and to work with the plaques of the
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family Wcu. The set of pairs (x, y) ∈ ∆ such that x = y is closed. By the choice of the central-stable
topology it is also open. Hence two cases occurs: either x = y for each (x, y) ∈ ∆ and π1(∆) = π2(∆)
is non-compact; or for each (x, y) ∈ ∆ one has x 6= y and this is the case one considers now. For
any pair (x, y) ∈ ∆, we denote by [x, y] the closed segment of Wcu

x bounded by x, y.

Let us assume by contradiction that the closure of π1(∆) is compact. One can find a finite
collection of points {xj} ⊂ π1(∆) which satisfies that for any x ∈ π1(∆) there exists xj such that

– x belongs to Bcs(xj);

– for any y, z ∈ H(p)∩Wcu
x such that (x, y) ∈ ∆ and z ∈ [x, y], the plaque Wcu

xj
intersects Bcs(z).

In the following we will consider holonomies D with π1(D) ⊂ π1(∆) and we introduce the set of
points xj that are “avoided” by D:

P(D) = {xj , ∀(x, y) ∈ D, ∀z ∈ [x, y] ∩H(p), x /∈ Wcs
xj

or Bcs(z) ∩Wcu
xj

= ∅}.
Since the closure of π1(∆) is compact and ∆ is not, one can find xi with the following property.

(****) There exists (x′, y′), (x′′, y′′) ∈ ∆ with x′, x′′ ∈ Wcs
xi

such that

– for each z ∈ ([x′, y′] ∪ [x′′, y′′]) ∩H(p), the plaque Wcs
z intersects Wcu

xi
,Wcu

x′ ,Wcu
x′′;

– Wcs
y′ and Wcs

y′′ intersect Wcu
xi

in two distinct points.

Note that in particular the plaques Wcs
y′ and Wcs

y′′ are disjoint. This allows us to build a compact
holonomy D ⊂ ∆ which “almost fails” to be a graph above its first projection.

Claim 8.9. There exists a compact holonomy D having the following properties:

1. π1(D) ⊂ π1(∆); π2(D) is contained in a strong stable leaf;

2. D is a continuous graph over its first factor;

3. there is xi ∈ P(D) satisfying (****).

Proof. Let us first notice that since ∆ is non-compact it contains compact holonomies ∆′ with
arbitrarily large diameter by lemma 8.1. One can thus assume that for such a compact holonomy
∆′, there exists xi and two pairs (x′, y′), (x′′, y′′) ∈ ∆′ satisfying (****). Working with ε-chains as in
the proof of lemma 8.1, one can build a compact connected set D0 ⊂ ∆′ such that 3) is satisfied for
xi. More precizely for any ε > 0 one builds a finite set Xε = {(x(0), y(0)), . . . , (x(s), y(s))} contained
in ∆′ such that

– (x(k), y(k)) and (x(k + 1), y(k + 1)) are ε-close for each 0 ≤ k < s;

– the pairs (x′, y′) = (x(0), y(0)) and (x′′, y′′) = (x(s), y(s)) and the point xi satisfy (****);

– for any pair (x(k), y(k)) with x(k) ∈ Wcs
xi

, and for any point z ∈ [x(k), y(k)] ∩ H(p) the
intersection Bcs(z) ∩Wcu

xi
is empty.

The compact holonomy D0 is obtained as limit of the sets Xε. Repeating the construction with the
other points xj , one gets a new compact global holonomy D ⊂ D0 such that 2) is satisfied. Note
that 3) is still satisfied but for a new point xi. Since D ⊂ ∆, the condition 1) holds also.
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We now fix a compact holonomy D satisfying the properties 1), 2) and 3) above. We do not
assume that it is contained in ∆. However we choose it so that the cardinal of P(D) is maximal.

Let us consider the points xi, x′, x′′ in property 3) and (****) and consider the plaques Wcs
xi
,Wcs

x′ ,
Wcs
x′′ and the ordering of their intersection on Wcu

xi
. Then Wcs

xi
is not “in the middle” of Wcs

x′ and
Wcs
x′′ .

Claim 8.10. The point xi does not belong to the connected component of Wcu
xi
\(Wcs

x′ ∪Wcs
x′′) bounded

by Wcs
x′ and Wcs

x′′.

Proof. Let us define the compact connected set C := π1(D). For each x ∈ C, there exists a unique
pair (x, y) ∈ D; moreover x 6= y. One can thus consider the orientation on Ecux determined by the
component of Wcu

x \ {x} which contains y. This defines a continuous orientation of the bundle Ecu|C .
One can compare the orientations of Ecux′ and Ecux′′ as transverse spaces to the one-codimensional

plaque Wcs
xi

. By the trapping property, for any k ≥ 0 the forward iterates fk(x′) and fk(x′′) still
belong to the same plaque Wcs

fk(xi)
, hence the orientations comparison will be the same for k = 0 or

k large. Since C is a compact subset of a strong stable leaf, for k ≥ 1 large fk(C) is contained in
Wcs
fk(xi)

; so for any continuous orientation of Ecu|fk(C)
, the orientations on Ecu

fk(x′) and Ecu
fk(x′′) match.

One deduces that for the orientation on Ecu|C considered above, the orientations on Ecux′ and Ecux′′
match. By definition of the orientation on Ecu|C , this implies the claim.

Let γ′ = [x′, y′] and γ′′ = [x′′, y′′]. One now defines a homeomorphism ϕ : γ′∩H(p) → γ′′∩H(p).
For z′ ∈ γ′∩H(p), one can use lemma 8.6 and find a closed connected set Xz′ ⊂ H(p)×H(p)×H(p)
containing (x′, y′, z′) and such that for all (x, y, z) ∈ Xz′ one has z ∈ Wcu

x ∩Wcu
y and (x, y) ∈ D.

Claim 8.11. There exists a unique map χ : D → H(p) which is continuous for the center-stable
topology, sends (x′, y′) on z′ and satisfies χ(x, y) ∈ [x, y] for each (x, y) ∈ D. Its graph coincides
with Xz′, which is thus compact.

Proof. By remark 8.1, the closure ∆̃ of π1,3(Xz′) is a gobal holonomy satisfying property 1).
Let us assume by contradiction that the projection map π1,2 : Xz′ → D is not injective: in

particular ∆̃ contains two different pairs (x, z) and (x, ζ), having the same projection by π1. Let us
choose xj such that x ∈ Bcs(xj) andWcu

xj
intersects both Bcs(z) and Bcs(ζ). Repeating the argument

of the proof of claim 8.9, there exists a compact holonomy D̃ ⊂ ∆̃ satisfying the properties 1), 2),
3) above such that xj belongs to P(D̃). By construction for each (x, z) ∈ ∆̃, there exists (x, y) ∈ D
such that z belongs to [x, y]. The definition of the set {xj} and the fact that for each (x, z) ∈ D̃ there
exists (x, y) ∈ D such that z ∈ [x, y] imply that P(D) ⊂ P(D̃). Since xj belongs to P(D̃) \ P(D),
we have contradicted the maximality of D. Hence the map π1,2 : Xz′ → D is injective.

Since D is compact, one deduces that Xz′ is also compact and the first case of lemma 8.6 holds.
Consequently, the projection π1,2 is also surjective Xz′ . This proves that Xz′ is the graph of a map
χ : D → H(p). Since Xz′ is compact, this map is continuous. The connectedness of D implies that
the map χ is unique.

One deduces that Xz′ contains a unique triple of the form (x′′, y′′, z′′) and one sets ϕ(z′) = z′′.
The claim implies that ϕ is monotonous for the ordering on γ′, γ′′. One can build similarly a map
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from γ′′ to γ′, which is an inverse of ϕ. Consequently ϕ is a homeomorphism which is monotonous
for the ordering on γ′, γ′′.

Let y′i be the intersection betweenWcs
y′ andWcu

xi
and y′′i be the intersection betweenWcs

y′′ andWcu
xi

.
Let γ′i, γ

′′
i be the segments contained in Wcu

xi
and bounded by {xi, y′i} and {xi, y′′i } respectively. One

defines two monotonous homeomorphisms ψ′ : γ′∩H(p) → γi∩H(p) and ψ′′ : γ′′∩H(p) → γi∩H(p)
which send x′ and x′′ on xi. There are obtained by considering local projection throught the center-
stable holonomy: one has ψ′(z′) = z when z ∈ Wcs

z′ (and equivalently when z′ ∈ Wcs
z ). One thus

obtains a monotonous homeomorphism ϕi = ψ′ ◦ ϕ ◦ ψ′′−1 from γ′i ∩H(p) to γ′′i ∩H(p).
From the claim 8.10 and exchanging (x′, y′) and (x′′, y′′) if necessary, one can assume that y′′i

is between xi and y′i inside Wcu
xi

. Consequently ϕi maps monotonously H(p) ∩ γ′i into itself. The
sequence zn = ϕni (y

′
i) thus converges to a point z which is fixed by ϕi but all the zn are distinct

since by assumption z0 = y′i and z1 = y′′i are distinct.
By construction, for each n one associates a compact connected set Xn = Xψ′−1(zn) ⊂ H(p) ×

H(p)×H(p) which contains the triples (x′, y′, ψ′−1(zn)) and (x′′, y′′, ψ′′−1(zn)). Its projection on its
third factor is a compact connected set Cn ⊂ H(p) containing ψ′−1(zn) and ψ′′−1(zn) and contained
in a strong stable leaf. Similarly, let X = Xψ′−1(z) and C be its projection on the third factor.
Then, Cn converges towards C for the Hausdorff topology on compact sets of M , whereas the points
ψ′−1(zn), ψ′′

−1(zn+1) ∈ Cn converge towards ψ′−1(z), ψ′′−1(z) ∈ C.
Since z is fixed by ϕi, the center-stable plaques of the points ψ′−1(z), ψ′′−1(z) intersect, whereas

since zn, zn+1 are distinct, the center-stable plaques of the points ψ′−1(zn), ψ′′
−1(zn+1) are disjoint.

Thus the intrinsic distances between ψ′−1(z), ψ′′−1(z) and ψ′−1(zn), ψ′′
−1(zn+1) are bounded away,

contradicting lemma 8.2. The proof of lemma 8.8 is now complete.

We now finish the proof of the proposition.

Proof of proposition 8.3. Let us assume by contradiction that for some point x ∈ H(p) the
set H(p) ∩W ss(x) is not totally disconnected. We will build a periodic point q ∈ H(p), a point
z0 ∈W s(q)∩H(p) and a set C ⊂W ss(z0) which is closed connected and non-compact for the intrinsic
topology on W ss(z0). In the stable manifold of the orbit of q, the iterates fn(C) accumulate a non-
trivial subset of W ss(q), contradicting the assumption that W ss(q) ∩H(p) = {q}.

In order to build q and C, we apply lemma 8.7 and consider a non-compact holonomy ∆ and
a pair (x0, y0) ∈ ∆ such that x0 6= y0. The sets π1(∆), π2(∆) are contained in strong stable leaves
and by lemma 8.8 their closures in the leaves are not compact. Let us remind that Wcu

x0
is a one-

dimensional curve and consider the open connected subset U ⊂ Wcu
x0

bounded by {x0, y0}. Two
cases have to be studied.

If H(p) does not meet the set U , then x0 is an unstable boundary point of the chain-hyperbolic
class H(p) (see definition 12). By lemma 3.12, there exists a periodic point q in H(p) whose stable
set contains π1(∆). We define z0 = x0 and the set C as the closure of π1(∆) in W s(q), finishing the
proof in this case.

Let us assume now that there exists a point ζ ∈ U ∩H(p). We introduce a hyperbolic periodic
point q homoclinically related to p and close to ζ such that Wcs

q ⊂ W s(q) as given by lemma 3.2.
The plaques Wcs

q and Wcu
x0

intersect at a point z0 ∈ U ∩ H(p). By lemma 8.6, there is a closed
connected set X ⊂ H(p)×H(p)×H(p) which contains (x0, y0, z0), such that for each (x, y, z) ∈ X

78



one has z ∈ Wcu
x ∩ Wcu

y and (x, y) ∈ ∆. Moreover the projection π3(X) is contained in a strong
stable leaf of W s(q) and X is non-compact. We want to show that the closure of π3(X) in W s(q) is
non-compact.

We know that the closure of one of the three projections π1(X), π2(X), π3(X) is non-compact. If
for instance this happens for π1(X), the closure of π1,3(X) is a non-compact holonomy by remark 8.1.
Hence by lemma 8.8, the closure of π3(X) is non-compact also. One concludes that in any case
the closure C of π3(X) is non-compact: we have found a non-compact connected set contained in
H(p) ∩W ss(z0) as claimed, concluding the proof of the proposition in the second case.

8.3 Structure in the center-stable leaves: proof of theorem 5

By the trapping property, the iterates of each plaqueWcs
x , x ∈ H(p), remain in a small neighborhood

of H(p), hence is covered by a strong stable foliation. We call strong stable plaques the connected
components of the strong stables leaves of Wcs

x .

Lemma 8.12. For any x ∈ H(p), let us consider a connected compact set Γ ⊂ H(p) ∩Wcs
x . Then

Γ intersects each strong stable plaque of Wcs
x in at most one point. In particular this is a curve.

Proof. Let us assume by contradiction that Γ intersects some strong stable leaf L of Wcs
x in at least

two distinct points z, z′. Let us consider two small closed neighborhoods U and U ′ of z, z′ in Wcs
x ,

such that that U \ L and U ′ \ L have two connected components.
We introduce the connected components Γz,Γz′ of Γ ∩U and Γ ∩U ′ containing z and z′ respec-

tively. These two sets are not reduced to z and z′ and, by proposition 8.3 Γz ∩ L and Γz′ ∩ L are
totally disconnected. In one of the connected components V of U \ L, all the strong stable plaques
close to z are met by Γz. The same holds for Γz′ and a component V ′ of U ′ \ L.

We claim that one can reduce to the case both components V, V ′ are on the same side of L.
Indeed if this is not the case, the connected set Γ intersects L at another point z′′. One can thus
define three sets V, V ′, V ′′; among them, two are on the same side of L.

Let L̃ be a strong stable plaque close to z and z′ which intersects V and V ′: all the plaques close
to L̃ meet both Γz and Γz′ .

Let q be a periodic point homoclinically related to p and close to a point in Γz′ ∩ L̃. The
local strong stable manifold W ss

loc(q) is close to L̃ and the projection of Γz by the center-unstable
holonomy on Wcs

q is a connected compact set that intersects both sides of W ss
loc(q). One deduces that

this projection meets Γz at a point y ∈ H(p)∩W ss(q) which is distinct from q. This contradicts our
assumption.

Let us call graph of a plaque Wcs
x a connected compact set of Wcs which intersects each strong

stable leaf of Wcs
x in at most one point.

Lemma 8.13. If for some point x0 ∈ H(p), the set Wcs
x0
∩H(p) is not totally disconnected, then for

each x ∈ H(p), there exists a graph Γx ⊂ Wcs
x ∩H(p) containing x which meets all the strong stable

plaques of Wcs
x that intersect a small neighborhood of x.

Proof. Let us consider a non trivial connected compact set Γ ⊂ Wcs
x0

. By lemma 8.12 this is a graph.
Let us consider a point z ∈ Γ which is not an endpoint. One also chooses a trapped plaque family D
above H(p) tangent to Ecs whose plaques have a small diameter and are contained in the plaques of
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Wcs. Consequently the connected component Γz of Γ ∩ Dz contains z and has its endpoints inside
Dz \ Dz. We are aimed to build at each point x ∈ H(p) a similar graph Γx ⊂ Dx. This will imply
the conclusion of the lemma. Let us first choose a periodic point q homoclinically related to p and
close to z. By projecting Γ inside Wcs

q along the center-unstable holonomy, one deduces that Dq
contains a graph Γq ⊂ H(p) whose endpoints are inside Dq \Dq. It contains a point close to q. Since
W ss
loc(q) \ {q} is disjoint from q, this proves that Γq contains q.
By the trapping property, for each n ≥ 0, the connected component Γf−n(q) of f−n(Γq)∩Df−n(q)

has also its endpoints inside the boundary of Df−n(q). As a consequence H(p) contains a dense set
of periodic points y and inside each plaque Dy there exists a graph Γy containing y whose endpoints
belong to Dy \ Dy.

For any point x ∈ H(p) there exists a sequence of periodic points (yn) converging towards x such
that the sequence of graphs (Γyn) converges towards a connected compact set Γx: by lemma 8.12
this is a graph and by construction its endpoints belong to Dy \ Dy as required.

We are now able to finish the proof of the theorem.

Proof of theorem 5. We assume that the conclusion of the theorem does not holds: in particular,
the lemma 8.13 applies. By theorem 4, there exists two distinct points x, y ∈ H(p) with y ∈W ss(x).
By iterations one may assume that y belongs to the strong stable plaque of x inWcs

x . By lemma 8.13,
there exists a graph Γx ⊂ Wcs

x which contains x and meets all the strong stable plaques of points
close to x in Wcs

x . One now argues as at the end of the proof of lemma 8.12: if q is a periodic point
close to y, the projection of Γx to Wcs

q has to intersect W ss
loc(q) at a point close to x, hence different

from q. This contradicts the assumptions.

8.4 Construction of adapted plaques

We now give a consequence of theorem 5 giving plaques adapted to the geometry of the classes along
the center-stable plaques.

Let us consider an invariant compact set K with a dominated splitting E ⊕ F and a trapped
family tangent to E such that the coherence holds for some constant 10 ε > 0 (see lemma 2.2). Let
W̃ be another trapped family tangent to E whose plaques have a small diameter and such that for
each x ∈ K one has W̃x ⊂ Wx. The coherence ensures that any plaque W̃y that intersects the 5ε-ball
centered at x inside Wx is contained in Wx.

Definition 17. In this setting, a set X ⊂ K that is contained in the ε-ball centered at a point
x ∈ K inside the plaque Wx is said to be W̃-connected if the union of the plaques Wcs

y for y ∈ X is
connected.

When the diameters of the plaques W̃cs are small, the W̃cs-connected sets have a small diameter.

Proposition 8.14. Let f0 be a diffeomorphism, H(pf0) be a chain-recurrence class which is chain-
hyperbolic such that the bundles Ecs, Ecu are thin trapped and consider some neighborhoods U of
H(pf0), U of f0 in Diff1(M) and a plaque family (Wcs

f,x)f∈U ,x∈Kf
as provided by lemma 3.8.

If for each x ∈ H(pf0), the set H(pf0) ∩Wcs
x is totally disconnected, then for any η > 0 small,

there exist smaller neighborhoods Ũ ⊂ U of H(pf0) and Ũ of f0 and there are other plaque families
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(W̃cs
f,x)f∈eU ,x∈ eKf

defined on the maximal invariant sets K̃f in the closure of Ũ for f , satisfying the

following properties for each f ∈ Ũ and x ∈ K̃f :

– The plaque W̃cs
f,x is contained in Wcs

f,x.

– Any W̃cs
f -connected set of Kf ∩Wcs

f,x which contains x has diameter smaller than η.

Proof. One considers a constant ε > 0, two neighborhoods Uε of H(pf0) and Uε of f0 which decrease
to H(pf0) and f0 as ε goes to zero, and a continuous collection of plaque family (Wcs

ε,f )f∈Uε defined
on the maximal invariant set Kε,f in the closure of Uε. We assume that these families are trapped,
that each plaque Wcs

ε,f,x has diameter smaller than ε and that for each x ∈ Kε,f , the plaque Wcs
ε,f,x

is contained Wcs
ε,f . Such plaque families are given by remark 2.1.

For f ∈ Uε, one makes the union ∆f of the sets Wcs
ε,f,x. We claim that when ε goes to zero, the

supremum of the diameter of the connected components of ∆f (with respect to the center-stable
topology) goes to zero. Indeed, if this is not the case, one finds as limit set a non-trivial connected
component of H(pf0) for f0 and the center-stable topology, which contradicts our assumption. The
plaque family (W̃cs

f ) is thus chosen to be (Wcs
ε,f ) for some ε small enough.

9 Uniform hyperbolicity of the extremal bundles: proof of theo-
rem 9

In this section we end the proof of theorem 9. We consider:

1. a diffeomorphism f0 and a chain-hyperbolic homoclinic classH(pf0) which is a chain-recurrence
class endowed with a dominated splitting Ecs ⊕ Ecu such that:

1a. Ecu is one-dimensional and Ecs, Ecu are thin trapped by f and f−1 respectively.

1b. The intersection of H(p) with the center-stable plaques is totally disconnected.

2. a C2-diffeomorphism f that is C1-close to f0,

3. a chain-recurrence class K for f contained in a small neighborhood of H(pf0) such that:

3a. All the periodic points of K are hyperbolic.

3b. K does not contain a sink, nor a closed curve γ tangent to Ecu, invariant by some iterate
fn, n ≥ 1, such that fn|γ is conjugated to an irrational rotation.

4. a transitive invariant compact set Λ ⊂ K for f such that the bundle Ecu is uniformly expanded
on any proper invariant compact subset of Λ.

We prove here the following proposition.

Proposition 9.1. Let us consider some diffeomorphisms f0, f , some chain-recurrence classes
H(pf0), K and a subset Λ ⊂ K satisfying the assumptions 1)-4) above. Then the bundle Ecu is
uniformly expanded on any proper invariant compact subset of Λ.

Let us explain how to conclude the proof of the theorem 9.
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Proof of theorem 9 Under the hypothesis of the theorem, the assumptions 1) and 2) above are
clearly satisfied. Note that since K is contained in a small neighborhood of H(pf0), the same holds
for any chain recurrence class K ′ which meets K. If for any such chain-recurrence class K ′, the
bundle Ecu is uniformly expanded, the same holds for K, hence the conclusion of the theorem holds.
Note that if K ′ contains a curve γ tangent to Ecu such that fn preserves γ and is conjugated to
an irrational rotation for some n ≥ 1, then from the domination Ecs is uniformly contracted on the
union X of the iterates of γ and consequently X is an attractor. Since K ′ is chain-transitive, K ′

coincides with X and is contained in K; this gives theorem 9 in this case. The same holds if K ′

contains a sink. We will now assume by contradiction that the conclusion of the theorem does not
hold and hence that K ′ satisfies 3) and that the bundle Ecu is not uniformly expanded by f on K ′.

One can then consider an invariant compact set Λ ⊂ K ′ whose bundle Ecu is not uniformly
expanded and that is minimal for this property. Such a set exists by Zorn’s lemma since if {Λα}α∈A
is a family of invariant compact sets totally ordered by the inclusion and if Ecu is uniformly expanded
on the intersection ∩α∈AΛα, then the same holds on the Λα for α large enough. By minimality, for
any proper invariant compact set of Λ, the bundle Ecu is uniformly expanded.

Since Ecu is one-dimensional and not uniformly expanded on Λ, there exists an invariant measure
µ supported on Λ and whose Lyapunov exponent along Ecu is non-positive. One can assume that
µ is ergodic and by minimality of Λ its support coincides with Λ. This implies that Λ is transitive
and satisfies 4).

By applying proposition 9.1 to f,Λ,K ′, the bundle Ecu is uniformly expanded on Λ which is a
contradiction. Consequently the conclusion of theorem 9 holds.

In the following we are in the setting of proposition 9.1 and prove that Ecu is uniformly expanded
on Λ. The proof follows the strategy of [PS1] (see also [PS3, PS4, Pu1] for more general contexts).
The new difficulty is to work with a non-uniformly contracted bundle Ecs having dimension larger
than 1; the summability arguments and the construction of Markovian rectangles become more
delicate.

Strategy. Our goal is to find a non-empty open set B of Λ which satisfy:

(E) For any x ∈ B and n ≥ 1 such that f−n(x) ∈ B we have ‖Df−n|Ecu(x)‖ < 1
2 .

This concludes the proof of the proposition 9.1. Indeed if one considers any point x ∈ Λ, then:

– either its backward orbit intersects B and property (E) applies,

– or the α-limit set of x is a proper invariant compact subset of Λ whose bundle Ecu is uniformly
contracted by f−1.

In both cases, the point x has a backward iterate f−n(x) such that ‖Df−n|Ecu(x)‖ < 1. By compactness

one deduces that there is some k ≥ 1 such that for any x ∈ Λ the derivative ‖Df−k|Ecu(x)‖ is smaller
than 1/2, concluding the proof that Ecu is uniformly expanded on Λ.
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9.1 Topological hyperbolicity on Λ

We begin with preliminary constructions and recall some results from [PS1] which only use the
one-codimensional domination Ecs⊕Ecu and the fact that f is C2. We introduce (in this order) the
following objects satisfying several properties stated in this section:

– some constants κ, λ, µ, χ related to the domination,

– two transverse cone fields Ccs, Ccu on a neighborhood of H(pf0): they are thin neighborhoods
of the bundles Ecs and Ecu over H(pf0) and they are invariant by f−1

0 and f0 respectively.

– two continuous trapped C1-plaques families (Wcs
f ), (Wcu

f ) provided by the lemma 3.8, defined
for diffeomorphisms f that are C1-close to f0 and tangent to the bundles (Ecsf ) and (Ecuf )
over the maximal invariant sets in a small neighborhood of H(pf0): the plaques are small and
tangent to Ccs, Ccu.

– some constants ε, ε̃ which control the geometry of the center-stable plaques under backward
iterations, their coherence and their intersections,

– some small neighbourhood U of H(pf0): for any diffeomorphism f we then denotes Kf the
maximal invariant set of f in U .

– a continuous family of trapped C1-plaques (Ŵcs
f ) tangent to Ecs over the maximal invariant

set in a small neighborhood of H(pf0): they have a small diameter so that Ŵcs
x is contained in

U for each x ∈ K; moreover for each x ∈ K, the plaque Ŵcs
x is contained in Wcs

x . This family
is obtained by remark 2.1. It will be used in order to define holes at section 9.2.

– a scale ρ smaller than the diameter of the plaques Ŵcs and which control the size of Markovian
rectangles,

– a C2-diffeomorphism f , a chain-recurrence class K and a chain-transitive set Λ satisfying
the conditions of the proposition 9.1: the C1-distance between f and f0 and the size of the
neighborhood of H(pf0) containing K are chosen small enough in order to satisfy further
conditions that will appear in section 9.3.

– a scale r > 0 which depends on the C2-diffeomorphism f and on the set Λ, where the plaques
Wcu are nicely controled.

Now we list a series of properties that are used (and refered to) in the proof of proposition 9.1.

a) Dominated splitting. We first state some consequences of the domination Ecs ⊕ Ecu. To
simplify the presentation, one can change the Riemannian metric (see [G]) and find κ ∈ (0, 1)
such that for each point x ∈ H(pf0), and each unitary vectors u ∈ Ecsx and v ∈ Ecux , one has
‖Df0.u‖ ≤ κ‖Df0.v‖. One then chooses some λ, µ ∈ (0, 1) such that λµ > κ. This implies that:

For any x ∈ Kf one has

‖Df|Ecs(x)‖ ≥ λ ⇒ ‖Df|Ecu(x)‖ > µ−1.
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Since Ecu is not uniformly expanded on Λ, there exists ζ ∈ Λ such that ‖Dfn|Ecu(ζ)‖ ≤ 1 for all
n ≥ 1. Note that since Ecu is uniformly expanded on any invariant compact subset, the forward
orbit of ζ is dense in Λ. With the domination Ecs ⊕ Ecu one deduces:

(i) There exists a point ζ with dense forward orbit in Λ such that for each n ≥ 1 one has

n−1∏

i=0

‖Df|Ecs(f i(ζ))‖ ≤ κn.

We fix some small constant χ > 0 such that (1 + χ)κ < λ. Choosing Ccs thin enough one gets:

(ii) For any points x, y that are close and contained in a small neighborhood of H(pf0) and for any
unitary vector u ∈ Ccsx , one has

‖Dfx.u‖ ≤ (1 + χ) sup
{‖Dfy.v‖, v ∈ Ccsy , ‖v‖ = 1

}
.

b) Center stable and unstable plaques. Assuming that the plaques are small and the cones
thin, one deduces from our choice of λ, µ:

(iii) If for some point x ∈ Kf and any n ≥ 0 one has

n−1∏

i=0

‖Df|Ecs(f i(x)‖ ≤ λn,

then Wcs
x is contained in the stable set of x, i.e. the diameter of fn(Wcs

x ) goes to 0 as n→ +∞.

(iv) If for some point x ∈ Kf and some n ≥ 0 one has

n−1∏

i=0

‖Df|Ecs(f i(x)‖ ≥ λn,

then the norm of the derivative of f−n along the plaque Wcu
fn(x) is smaller than µn.

The center-stable discs do not degenerate under backward iterations: let us fix ε > 0 small; then
there is ε̃ > 0 small such that choosing f close to f0 and U small the following holds.

(v) Consider any segment of orbit (z, . . . , fn(z)) in U and any disc D tangent to Ccs, containing
a ball centered at fn(z) of radius ε̃. Then the preimage f−n(D) contains a ball B centered at
z and of radius ε, whose iterates f i(B), i ∈ {0, . . . , n}, have radius bounded by ε̃.

Indeed each point f i0(z) is close to a point xi ∈ H(pf0). Each disc D in the plaque Wcs
fn
0 (z) at fn0 (z)

can be viewed as the graph of a Lipschitz map above a domain ∆n of Wcs
xn

. The invariance of the
cones Ccs, Ccu and the fact that the bundle Ecs is thin trapped shows that f−k0 (D), for k ∈ {0, . . . , n}
contains the graph of a Lipschitz map above a domain ∆n−k of Wcs

xn−k
whose radius is uniformly

bounded from below. The property extends to any diffeomorphism f that is C1-close.

The coherence of the plaques (lemma 2.2) gives:
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(vi) For any points x, y ∈ Kf that are ε-close, if Wcs
x ∩ Wcs

y 6= ∅ then f(Wcs
y ) ⊂ Wcs

f(x). If
Wcu
x ∩Wcu

y 6= ∅ then f−1(Wcu
y ) ⊂ Wcu

f−1(x).

The holonomy along the center-stable plaques can be chosen to “preserve the order”:

(vii) For any points x, y ∈ Kf that are ε-close, the plaques Wcs
x and Wcu

y intersect in a unique point.

(viii) For any points x−, x+, y, z ∈ Kf that are ε-close, assume that y belongs to a subinterval of
Wcu
y bounded by x−, x+ and denote x̃−, x̃+, ỹ the intersections of the plaques Wcs

x− ,Wcs
x+ ,Wcs

y

with Wcu
z . Then ỹ belongs to the subinterval of Wcu

z bounded by x̃−, x̃+.

(This is a consequence of the coherence of the Wcs-plaques given by the property (vi).)

c) Smoothness and stability of the center-unstable plaques. We now use the following result
which is based on a Denjoy argument. (The proof in [PS1] is written for surface diffeomorphisms
but as it is noticed in [PS3] this does not make any difference.)

Lemma 9.2 ([PS1], lemma 3.3.2, item1)). Let f be a C2-diffeomorphism and K be an invariant
compact set endowed with a dominated splitting Ecs⊕Ecu such that Ecu is one-dimensional, K does
not contain sinks and all its periodic points hyperbolic. Then, there exists a locally invariant plaque
family γ tangent to Ecu such that

– the maps γx : Ecux →M , x ∈ K, define a continuous family of C2-embeddings;

– for any r0 > 0, there exists r1 > 0 such that for any x ∈ K and n ≥ 0 the image of the curve
γx,r1 := γx(B(0, r1)) by f−n is contained in γf−n,r0.

For the C2-diffeomorphism f and the chain-recurrence class K one deduces that the plaques
Wcu are C2 in a neighborhood of the section 0 ∈ Ecu which remains small by backward iterations.
Indeed, the coherence (lemma 2.2), gives r > 0 such that Wcu

x (B(0, r)) is contained in γx for any
x ∈ K.

d) Topological expansion along the center-unstable plaques. The following result, whose
proof is identical to the surface case [PS1], asserts that the center-unstable curves γ in the center-
unstable direction are unstable manifolds.

Lemma 9.3 ([PS1], lemma 3.5.2). Under the setting of lemma 9.2, for any transitive invariant
compact set Λ ⊂ K such that on any proper invariant compact sets the bundle Ecu is uniformly
expanded, there exists r > 0 such that

for any x ∈ Λ, the length of f−n(γx,r) decreases uniformly to 0 as n→ +∞.

In the following we fix r > 0 small and depending on Λ, as given by the previous lemma, and
we denote by W cu

loc(x) the C2-curve γx,r for x ∈ K. By lemma 9.2, the family of unstable curves
(W cu

loc(x))x∈K is continous for the C2 topology. For points x ∈ Λ we sometimes write W u
loc(x) =

W cu
loc(x).
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9.2 Adapted rectangles

a) Rectangles. The set B in condition (E) will be obtained from a geometry adapted to the
splitting Ecs ⊕ Ecu. A rectangle1 of Λ will be a union of local unstable leaves of points of K.

Definition 18. A rectangle R is a union
⋃
x∈X γx with X ⊂ K such that for each x ∈ X the set

γx is an open interval of W cu
loc(x) bounded by two distinct points x−R, x

+
R in Kf and such that the

following properties hold:

1. R has diameter smaller than ρ,

2. R ∩ Λ is open in Λ,

3. for any x, y ∈ X, the point y−R belongs to Wcs
x−R

and the point y+
R belongs to Wcs

x+
R

.

The sets {x−R, x ∈ X} and {x+
R, x ∈ X} are called the boundaries of R.

By item 3) and the property (vi), any two curves γx, γx′ with x, x′ ∈ X are either disjoint or
coincide. For any z ∈ X or z ∈ R ∩ Λ, one can thus denote by W cu

R (z) the curve γx containing z.

Definition 19. A rectangle S is a subrectangle of R =
⋃
x∈X γx if it is a union

⋃
x∈X γ

′
x over the

same set X as R and if one has γ′x ⊂ γx for each x ∈ X.

Remark 9.1. Note that if S, T are two subrectangles of R and if x−S = x−T for some x ∈ X, then it
holds for all x. Indeed for any y ∈ X, the point y−T is the intersection of Wcs

x−T
= Wcs

x−S
with W cu

loc(y).

In particular if W cu
S (x) = W cu

T (x) for some x ∈ X, then S = T .

b) Adapted rectangles. We introduce for rectangles a kind of Markov property.

Definition 20. A rectangle R is adapted if for any x, y ∈ X and n ≥ 0,

– the curve W cu
R (y) is either disjoint from or contained in fn(W cu

R (x)),

– in the case W cu
R (y) ⊂ fn(W cu

R (x)) there exists a subrectangle S of R such that for each z ∈ X
the image fn(W cu

S (z)) is an unstable curve of R and such that fn(S) contains W cu
R (y).

This subrectangle S is called a return and n is called a return time of R. In the case fk(S) is disjoint
from R for any 0 < k < n, one says that S and n are a first return and a first return time of R.

The next lemma shows that returns of adapted rectangles are adapted (take S = R).

Lemma 9.4. Let R be an adapted rectangle and S be a subrectangle of R. Let also R′ be a return of
R with return time n. Then S′ = R′∩ f−n(S) is a subrectangle of R′. If S is adapted, S′ is adapted.

1The name refers to the rectangles of Markov partitions. For general hyperbolic sets K the rectangles are subsets of
K but on surfaces one can also consider geometrical Markov partitions [PT, Appendix 2] whose rectangles are subsets
of the surface diffeomorphic to [0, 1]2. In higher dimensions, when the unstable bundle is one-dimensional, one can
build rectangles that are laminated by curves as in definition 18.
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Proof. Note that S′ has diameter smaller than ρ and S′∩Λ is open in Λ. For x′ ∈ X, we consider the
point x ∈ X such that fn(W cu

R′ (x
′)) = W cu

R (x) and we define γx′ = f−n(W cu
S (x)). By construction

and since R is adapted, S′ is the union
⋃
x′∈X γx′ . In order to prove that S′ is a rectangle it remains

to check the item 3 of the definition.
For x′, y′ ∈ X , we consider x, y ∈ X such that fn(W cu

R′ (x
′)) = W cu

R (x) and fn(W cu
R′ (y

′)) =
W cu
R (y). We then denote x−S′ = f−n(x−S ) and y−S′ = f−n(y−S ). We have to prove that y−S′ belongs to

Wcs
x−

S′
. Let z by the intersection between Wcs

x−
S′

and W cu
R′ (y

−
S′). The image fn(z) is the intersection

between Wcs
x−S

and W cu
R (y−S ). Since S is a subrectangle of R, fn(z) and y−S coincide, hence z and y−S′

coincide, as required.

We now assume that S is adapted and prove that S′ is adapted too. Let us suppose that
fm(W cu

S′ (x
′)) intersects W cu

S′ (y
′) for some m ≥ 0. Taking the image by fm, one deduces that

fm(W cu
S (x)) intersects W cu

S (y). Since S is adapted, one has W cu
S (y) ⊂ fm(W cu

S (x)). This implies
that W cu

S′ (y
′) is contained in fm(W cu

S′ (x
′)), proving the first item of definition 20.

Since R is adapted, there exists a subrectangle R′′ of R such that, for each z′ ∈ X, the image
fm(W cu

R′′(z
′)) is an unstable curve of R and such that fm(W cu

R′′(x
′)) = W cu

R (y′). By the first part
of the lemma, the intersection T ′ = R′′ ∩ f−m(S′) is a subrectangle of R′′. Note that W cu

T ′ (x
′) is

contained in W cu
S′ (x

′). By property (viii) this implies that for any z ∈ X one has W cu
T ′ (x

′) ⊂W cu
S′ (x

′)
proving that T ′ is a subrectangle of S′ such that W cu

T ′ (x
′) is mapped on W cu

S′ (y
′). Hence S′ is

adapted.

c) Holes. In general, Λ ∩R is smaller than R and one can introduce the notion of hole.

Definition 21. A hole of a rectangle R is a subrectangle that is disjoint from Λ and that is maximal
for the inclusion and these properties.

A hole has aperiodic boundary if its boundary
⋃
x∈X{x−S , x+

S } is disjoint from its forward iterates.

Lemma 9.5. 1. If S is a hole of R then either for any unstable curve W cu
R (x) of R one has x−S = x−R

or there exists a sequence (xn) in R ∩ Λ such that d(xn, x−n,S) goes to zero as n→ +∞.
2. Holes of adapted rectangles are adapted.
3. For any adapted rectangle R, any hole S with aperiodic boundary and any τ ≥ 1, there exists
N ≥ 1 such that for any x ∈ Λ ∩ R and any n ≥ N satisfying f−n(W cu

S (x)) ⊂ S, the iterates
f−n−k(W cu

S (x)) for k ∈ {1, . . . , τ} are disjoint from S.

Proof. Let S be a hole of R and W cu
R (x) be an unstable curve. We suppose that x−S 6= x+

R. The
points y ∈ Kf ∩ R can be ordered by considering the projections Wcs

y ∩W cu
R (x) on W cu

R (x) in such
a way that x−S < x+

S . The union of the curves γ′y ⊂ W cu
R (y) for y ∈ X, bounded by y−R and y+

S , is a
rectangle. Thus, since S is a hole and x−R < x−S , there exists points y ∈ Λ∩R such that x−R < y ≤ x−S .

If there exists an increasing sequence (xn) ∈ Λ∩R whose projections on W cu
R (x) converge towards

x−S , then the distance d(xn, x−n,S) goes to zero and we are done. So we assume by contradiction that
this is not the case. There exists a point x̄ ∈ Λ ∩ R which is the limit of points y ∈ Λ ∩ R and
such that there is no point y ∈ Λ ∩ R satisfying x̄ < y ≤ x−S . Since R has diameter smaller than ρ,
which has been chosen smaller than the size of the plaque Ŵcs, the plaque Ŵcs

x̄ intersects each curve
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W cu
R (y) at a point y−T . The union of the curves γ′y ⊂W cu

R (y) for y ∈ X, bounded by y−T and y+
R is a

rectangle whose intersection with Λ is empty. This contradicts the maximality of S. We have thus
proved the first item of the lemma.

Let us assume that R is adapted and that W cu
S (y) intersects fn(W cu

S (x)) for some n > 0 and
some x, y ∈ X. We have to show that fn(x−S ) and fn(x+

S ) do not belong to the open curve W cu
S (y).

Since R is adapted, there exists a return T of R such that fn(W cu
T (x)) = W cu

R (y). By property (viii),
the rectangle T contains S. In the case z−S and z−R coincide for z ∈ X, the point fn(z−S ) = fn(z−T )
does not belong to the interior of the curves of R, as required. Otherwise, there exists by the first
item a sequence (xk) in Λ ∩ R such that d(xk, xk,S−) goes to 0 as k goes to +∞. Hence fn(xk) is
close to fn(x−k,S) and belongs to R. We have thus proved that Wcs

fn(x−S )
is accumulted by points of

Λ ∩ R. As a consequence, fn(x−S ) can not belong to the interior of an unstable curve of S. This
gives the second item of the lemma.

Note that S has only finitely many returns with return time smaller or equal to τ . If S has
aperiodic boundary, its boundary is disjoint from the boundary of each of its returns: there exists
δ > 0 such that for any return T with return time smaller or equal to τ , one has d(x−S , x

−
T ) > δ

and d(x+
S , x

+
T ) > δ. For n larger than some constant N , the unstable curves f−n(W u

loc(x)) of points
x ∈ Λ have a size smaller than δ. If x ∈ R and f−n(W cu

S (x)) ⊂ S, then the iterate f−n(x) ∈ Λ
belongs to R \ S. One deduces that f−n(W cu

S (x)) belongs to a return of S with return time larger
than N . This gives the third item of the lemma.

9.3 Construction of adapted rectangles

The assumptions 1) and 2) are now used for the construction of adapted rectangles. The proof is
strongly based on proposition 8.14.

Proposition 9.6. There exists an adapted rectangle R such that R ∩ Λ is non-empty.
Moreover one can choose R in such a way that one of the following cases occur.

1. For any τ ≥ 0, there is a first return S of R with return time larger than τ such that Λ∩S 6= ∅.
2. There exists a hole S of R with aperiodic boundary.

The section continues with the proof of this proposition.

a) The construction. We have to require further assumptions on f and Λ needed to perform
the following construction. We first choose η > 0 small. In particular one has η < ρ < ε and the
10 η-neighborhood of H(pf0) is contained in U .

Let us apply the proposition 8.14: one gets a smaller open neighborhood Ũ of H(pf0) such that
for any diffeomorphism f that is close enough to f0 in Diff1(M), there exists a continuous family
of C1-plaques W̃cs tangent to Ecs over the maximal invariant set K̃f of f in Ũ which satisfies the
following properties:

– If two plaques Wcs
x and W̃cs

y have an intersection in the ρ-ball centered at x then W̃cs
y ⊂ Wcs

x .

– Any W̃cs-connected set of K ∩Wcs
x containing x has radius smaller than η.
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Since f is close to f0, if the chain-transitive set Λ for f is contained in a small neighborhood of
H(pf0), then the chain-recurrence class K that contains Λ is also contained in Ũ . We thus have the
inclusions Λ ⊂ K ⊂ K̃f ⊂ Kf .

Approximation by periodic orbits. We build a sequence of periodic points (pk) in K such that

• the orbit of pk converges toward Λ for the Hausdorff topology,

• for each iterate fn(pk), the plaque Wcs
fn(pk) is contained in the stable manifold of fn(pk).

Let us fix ζ ∈ Λ satisfying the property (i). With the property (iii), the plaque Wcs
ζ is contained in

the stable set of ζ. Note that ζ is not periodic since otherwise Λ would be a periodic orbit: by our
assumptions, either it would be a sink or the bundle Ecu would be uniformly expanded, contradicting
our assumptions. This ensures that all the plaques Wcs

fn(pk) and Wcs
ζ are disjoint.

Claim 9.7. For any α > 0, there exists δ > 0 with the following property. For any forward return
y = fn(ζ) that is δ-close to ζ, there exists x ∈W cu

loc(ζ)∩K such that d(fk(x), fk(ζ)) is smaller than
α for each 0 ≤ k ≤ n and the image fn(Wcs

x ) is contained in Wcs
x .

In particular for any k ≥ 0 one has

k−1∏

i=0

‖Df|Ecs(f i(x))‖ ≤ λk.

Proof. From lemma 9.3, there exists r0 such that for any point z ∈ Λ, the backward iterates of the
ball centered at z and of radius r0 in W u

loc(z) have a length smaller than α. For δ0 small enough
and any point y, x ∈ K that are δ0-close to ζ, the plaque Wcs

x intersects W cu
loc(y) at a point y′ which

belongs to the ball centered at y and of radius less than r0 in W cu
loc(y). For n large enough, the length

of any curve f−n(W cu
loc(y)) with y ∈ Λ is smaller than δ0. We choose δ ∈ (0, δ0) so that the returns

fn(ζ) that are δ-close to ζ occur for n large.
We define inductively a sequence of points xi ∈ K ∩W cu

loc(ζ) that are δ0-close to ζ and satisfy:

– d(fk(xi), fk(ζ)) < α for any 0 ≤ k ≤ n,

– fn(Wcs
xi+1

) is contained in Wcs
xi

and x0 = ζ.

With properties (i) and (ii), this implies that

– For any k ≥ 0 one has
∏k−1
j=0 ‖Df|Ecs(f j(xi))‖ ≤ λk.

The construction is done in the following way. Let us assume that xi has been defined. Then the
plaque Wcs

xi
intersects W u

loc(y) in a point yi. By property (iii) the point yi belongs to the stable and
the unstable set of Λ, hence belongs to K. Moreover the distances d(f−k(yi), y) are smaller than α
for any k ≥ 0. We then define xi+1 = f−n(yi) and by construction this point is δ0-close to ζ and
belongs to W u

loc(ζ).
The map xi 7→ xi+1 is continuous and monotonous, hence converges to a fixed point x ∈W u

loc(ζ) ∈
K. The construction and properties (i), (ii) give the announced conclusions on x.
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Since ζ is recurrent, the lemma 9.7 gives a sequence of points (xk) in W u
loc(ζ)∩K which converges

toward ζ and such that each plaque Wcs
xk

is mapped into itself by an iterate fnk . The contraction
along the bundle Ecs at xk shows that each plaque Wcs

xk
is contained in the stable manifold of a

periodic point pk ∈ Wcs
xk
∩K.

By construction, the orbit (xk, f(xk), . . . , fnk−1(xk)) is contained in an arbitrarily small neigh-
borhood of Λ. With the contraction along the bundle Ecs at xk and the fact that fnk(Wcs

xk
) ⊂ Wcs

xk
,

one deduces that the whole forward orbit of xk and the orbit of pk are close to Λ for the Hausdorff
topology. Since the plaques Wcs are trapped, each plaque Wcs

fn(pk) is contained in the stable set of
the orbits of pk.

The boundary Wcs
p− ,Wcs

p+. We fix some periodic point pk for k large and consider the set P of all
iterates p′ of pk such that d(p′, x) < 5 η.

We choose x0 ∈ Λ close to ζ and p−, p+ ∈ P so that the open interval I ⊂ W u
loc(ζ) bounded by

Wcs
p− and Wcs

p+ has the following properties:

– for any point p′ ∈ P the intersection of Wcs
p′ with W u

loc(ζ) does not belong to I,

– Wcs
x0

intersects I.

The plaques Wcs
fn(p±) close to ζ are controled:

Claim 9.8. For any n ≥ 0, either the iterate fn(Wcs
p+) does not meet the ball centered at ζ of radius

2η, or Wcs
fn(p+) does not intersect I. The same holds with the iterates of Wcs

p−.

Proof. Let us fix a large integer N . Since ζ is non-periodic and Wcs
ζ is contained in its stable set,

the iterates fn(Wcs
ζ ) are pairewise disjoint. From the construction, having chosen Wcs

p+ close to Wcs
ζ

and I close to ζ, the plaques fn(Wcs
p+) do not meet I for n ≤ N .

When n = N , the radius of the plaque fn(Wcs
p+) is small, and the plaque is contained in W̃cs

fn(p+).

By the trapping property, any iterate fn(Wcs
p+) with n ≥ N is thus contained in W̃cs

fn(p+) and has
a radius smaller than η. One deduces that if fn(Wcs

p+) meets the ball centered at ζ of radius 2η,
then the distance between fn(p+) and ζ is smaller than 3η. Consequently, fn(p+) belongs to P and
Wcs
fn(p+) does not meet I.

The rectangle R. Let us consider in the 2η-neighborhood of ζ the set X0 of points z ∈ Wcs
ζ that

belong to a forward iterate f j(W u
loc(y)) associated to a point y ∈ Λ. Then we define X as the largest

W̃cs-connected subset of X0 containing ζ. By the choice of W̃cs, the set X has diameter bounded
by η. We define R as the union of curves γz ⊂W cu

loc(z), z ∈ X, bounded by the intersections z−, z+

between W cu
loc(z) and Wcs

p− ,Wcs
p+ .

By the choice of η and the construction, the points z−, z+ belong to Kf . With property (vi),
one deduces that the items 1) and 3) of the definition 18 are satisfied.

Consider any close points x, y ∈ Λ with x ∈ R. The intersections of W u
loc(x) and W u

loc(y) with
Wcs
ζ are close, hence belong to the same W̃cs-component of X0. As a consequence, W u

loc(y) ∩Wcs
ζ

belongs to X. This shows that y belongs to R. We have proved that Λ∩R is open in Λ and that R
is a rectangle. By construction it contains the point x0 and the intersection R ∩ Λ is non-empty.

90



b) R is adapted. Let us assume that for some x, y ∈ X, a forward iterate fn(γx) intersects
γy. Considering a large backward iterate, the two curves fn−m(γx) and f−m(γy) are small and
contained in local unstable curves W u

loc(x
′) and W u

loc(y
′) for some points x′, y′ ∈ Λ. By property

(vi), one deduces that fn−m(γx) and f−m(γy) are contained in a same unstable curve W u
loc(x

′). In
particular, if fn(γx) intersects γy but does not contain γx, then the image of an endpoint fn(x−) (or
fn(x+)) of γx is contained inside γy. One deduces that Wcs

fn(p−) intersects I. Since fn(x−) is 2η-close
to x, this contradicts the claim 9.8 above. We have thus proved the first item of definition 20.

Assume now that fn(γx) contains γy. One can define the subrectangle S of R whose unstable
curves are bounded by Wcs

x−S
and Wcs

x+
S

, with x±S = f−n(y±R). It remains to prove that fn(S) is

contained in R. Let us consider the set X+
S of points z+

S for z ∈ X, i.e. the intersection of Wcs
x+

S

with the unstable curves W cu
loc(z). Since z+

S and z are close, the set X+
S is connected for the larger

plaque family f−1(W̃cs) containing the plaques f−1(W̃cs
f(x)) for x ∈ K̃f . Note that n is larger than

2. As a consequence, the set fn(X+
S ) is f(W̃cs)-connected. One thus deduces that the set X ′ of

intersections of the curves W cu
loc(z), z ∈ X+

S , with Wcs
ζ is W̃cs-connected. Since it contains y ∈ X,

this set is contained in the W̃cs-component X. This proves the second item of definition 20 and R
is adapted.

c) Periodic center-stable plaques. Let us assume that there exist x ∈ Λ and n ≥ 1 such that
the plaque Wcs

x is mapped into itself by fn. The set Λ is not contained in the orbit of the plaque
Wcs
x : otherwise the property (i) would imply that ζ is a sink of Wcs

x , contradicting the fact that Λ
is non-periodic. Since Wcs

ζ is contained in the stable manifold of ζ, the closure of Wcs
ζ and of Wcs

x

are disjoint.
Note that the rectangle R can have been constructed arbitrarily thin in the center unstable

direction, hence it is contained in an arbitrarily small neighborhood of Wcs
ζ . In particular, the

closure of R and the closure of the orbit of x are disjoint. Since Λ is transitive the first return time
on Λ ∩R is unbounded, giving the first case of proposition 9.6.

d) Non-periodic center-stable plaques. Let us assume the opposite case: there does not exist
x ∈ Λ and n ≥ 1 such that the plaque Wcs

x is mapped into itself by fn. Let R0 be a rectangle as
obtained in paragraphs a) and b). One can assume also that the first case of the proposition 9.6
does not hold. Since R0∩Λ is non empty and since Λ is the Hausdorff limit of periodic points, there
exists a periodic point p ∈ Kf whose plaque Wcs

p intersects all the unstable leaves W cu
R0

(z) of R0 at
a point zp which is not in Λ.

As in the proof of lemma 9.5, the points Kf ∩R0 are ordered by their projection on an unstable
curve of R0. There exist two points x−, x+ ∈ Kf ∩R0 such that x− < zp < x+, any point y ∈ Λ∩R0

satisfies y ≤ x− or y ≥ x+ and such that there is no x̄− < x− or x̄+ > x+ with the same properties.
One checks easily that the collection of curves γ′z ⊂W u

R0
(z) bounded by points in Wcs

x− and Wcs
x+ is

a rectangle and a hole S0 of R0.

We then explain how to modify R0 in order to obtain a hole with aperiodic boundary. Since
R0 ∩ Λ is non-empty, one can assume by lemma 9.5 that there exists a sequence xn ∈ Λ ∩ R0 such
that d(xn, x−n,S0

) goes to zero as n goes to +∞. Let us denote by X− = {z−S0
, z ∈ X} one of the
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boundaries of S0. By construction there exists x− ∈ X− ∩ Λ such that the plaque Wcs
x− contains

X−. One deduces that X− is disjoint from its forward iterates.
One can choose the points xn to have a dense forward orbit. In particular they return to R0.

Since the return time is bounded, one can also assume that they all have the same return time, hence
belong to a same return T of R0. The set X− belong to T : otherwise it would be contained in the
boundary of T and mapped by a forward iterate into the boundary of R0; since the closure of X−

meets Λ and since the boundary of R0 is contained in the stable set of a periodic orbit, this would
imply that the Wcs-plaque of a point of Λ is mapped into itself, contradicting our assumption.

Note that the set X− is still one of the boundaries of a hole of T and that the boundary of T
is still contained in the stable set of periodic orbits. One can thus replace R0 by T and repeat the
same argument. Doing that several times, one gets a deeper return R of R0 which contains the set
X−. The rectangle R is arbitrarily thin in the unstable direction, hence it contains a hole S whose
boundaries are X− and a boundary of R. By construction the boundaries of R are disjoint from
their iterates. This implies that S has aperiodic boundaries.

The proof of the proposition 9.6 is now complete.

9.4 Summability

For any point x ∈ K we denote by `(J) the length of any interval J contained in its local unstable
manifold W cu

loc(x). This section is devoted to the proof of the next proposition.

Proposition 9.9. For any adapted rectangles S,R, where S is a subrectangle of R, there exists
K(S) > 0 satisfying the following: for any x ∈ Λ ∩ R, and any n ≥ 0 such that the curves
f−k(W cu

S (x)), 0 < k < n, are disjoint from S, we have

n−1∑

k=0

`(f−k(W cu
S (x))) < K(S).

Moreover, there is K0 > 0 which only depends on R such that K(S) < K0 when S is a return of R.

a) Summability for first returns. The first case corresponds to [PS1, lemma 3.7.1].

Lemma 9.10. For any adapted rectangle R with R∩Λ 6= ∅, there are C1 > 0, σ1 ∈ (0, 1) as follows.
For any unstable curve W cu

R (x) of R with W cu
loc(x) ∩ Λ 6= ∅, any interval J ⊂ W cu

R (x) and any
n ≥ 0 such that the iterates f−j(W cu

R (x)) with 0 < j < n are disjoint from R we have

`(f−n(J)) ≤ C1 σ
n
1 `(J).

Proof. Let us consider a point z ∈ Λ ∩ R. Since Λ ∩ R is open, one can choose a small open
neighborhood V of z. The maximal invariant set

Λ1 =
⋂

n∈Z
fn(Λ− V )
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in Λ ∩ (M \ V ) is compact and proper in Λ. By assumption Ecu is expansive on Λ1. It is thus
possible to get a neighborhood of Λ1 such that while the iterates remain in this neighborhood the
subbundle Ecu is uniformly expanded by Df . Moreover, the number of iterates that an orbit of Λ
remains in the complement of the mentioned neighborhood of Λ1 and V is uniformly bounded.

Since W cu
loc(x) ∩ Λ 6= ∅, one can always assume that x belongs to Λ. By lemma 9.3, choosing n0

large enough (and independant from x, J, j), the curves f−j(W u
loc(x)) for j ≥ n0 are small. If j < n,

the segment f−j(J) is disjoint from R, hence f−j(x) is disjoint from V . Moreover x belongs to Λ.
One deduces that there exist uniform constants σ ∈ (0, 1) and C > 0 such that ‖Df−j|Ecu(x)‖ < Cσj

for all 0 < j < n. Since for n0 large enough the curves f−j(W u
loc(x)) are small, the derivatives

‖DfEcu(f−j(x))‖ and ‖DfEcu(f−j(y))‖ for y ∈W u
loc(x) are close.

One deduces that for any 0 < j < n and y ∈W u
loc(x) one also has ‖Df−n|Ecs(y)‖ < C1σ

n
1 for other

constants C1 > 0, σ1 ∈ (0, 1). The conclusion of the lemma follows.

b) Distortion along center-stable holonomies and contracting returns. We will need to
compare the unstable curves.

Definition 22. A rectangle R has distortion bounded by ∆ > 0 if for any unstable curves W cu
R (x),

W cu
R (y) one has:

1
∆
≤ `(W cu

R (x))
`(W cu

R (y))
≤ ∆.

We will also need to consider returns that contract along the center-stable bundle.

Definition 23. Let us fix N ≥ 0. A point z0 ∈ Kf is N -contracting in time n if there exists m ≤ N
in {0, . . . , n} such that for each i ∈ {m, . . . , n} one has

i∏

k=m

‖Df|Ecs(fk(z0))‖ ≤ λi−m.

A return S of a rectangle R with returning time n is N -contracting if there z0 ∈ Kf ∩ S which is
N -contracting in time n.

The following lemma is similar to [PS1, lemma 3.4.1].

Lemma 9.11. For any adapted rectangle R and any N ≥ 0, there is ∆1 > 0 such that any N -
contracting return of R has distortion bounded by ∆1.

Proof. One chooses a C1-foliation F tangent to the cone field Ccs and containing the plaques Wcs
x− ,

Wcs
x+ of R. For any unstable curves of R with basepoints x, y ∈ X, one gets a diffeomorphism

Πx,y : W cu
R (x) →W cu

R (y), whose derivative is bounded from above and below uniformly in x, y ∈ X.
Let S be a N -contracting return of R. For any unstable curves of S with basepoints x′, y′,

their images by fn coincide with some curves W cu
R (x), W cu

R (y) of R. This allows us to define a
diffeomorphism Πn

x′,y′ : W
cu
S (x′) →W cu

S (y′) by

Πn
x′,y′ = f−n ◦Πx,y ◦ fn.
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The distortion of S is thus controled by the following quantity, for any z ∈W cu
S (x′):

‖Dfn|TW cu
S (z)‖/‖Dfn|TW cu

S (Πn
x′,y′ (z))

‖.

Using that the forward iterates of any vector tangent to Ccu in U converge towards Ecu (uniformly)
exponentially fast and that the bundle Ecu is Hölder (see lemma 7.3), one can argue as in [PS1,
lemma 3.4.1] and show that there exist some uniform constants C > 0 and α ∈ (0, 1) such that

‖Dfn|TW cu
S (z)‖

‖Dfn|TW cu
S (Πn

x′,y′ (z))
‖ ≤ exp

(
C + C

n−1∑

i=0

d(f i(z), f i(Πn
x′,y′(z)))

α

)
.

It remains to estimate d(f i(z), f i(Πn
x′,y′(z))) and it is clearly enough to consider the case i ≥ N .

Using the property (v) stated in section 9.1, there exists a disc B centered at z tangent to Ccs of
radius larger than ε, whose iterates f i(B), i ∈ {0, . . . , n} have a radius smaller than ε̃ and such that
fn(B) is contained in a leaf of the foliation F . One deduces that B contains the point Πn

x′,y′(z).
From property (ii), the distance d(f i(z), f i(Πn

x′,y′(z)) is thus bounded by

d(f i(z), f i(Πn
x′,y′(z))) ≤ d(fm(z), fm(Πn

x′,y′(z))) (1 + χ)i−m
i∏

k=m

‖Df|Ecs(fk(z0))‖

≤ ε̃ (1 + χ)i−m λi−m,

where z0 ∈ Kf ∩ S is a point which satisfies the definition 23 for some interger m ≥ N . We
have assumed that (1 + χ)λ < 1 (recall section 9.1), hence the sum

∑n−1
i=0 d(f

i(z), f i(Πn
x′,y′(z)))

α is
bounded uniformly. This concludes the proof of the lemma.

With the same proof, the lemma 9.11 generalizes to the following setting.

Lemma 9.12. For any adapted rectangles S,R such that S is a subrectangle of R and for any
N ≥ 0, there exists ∆1(S) such that for any N -contracting return R′ of R with return time n, the
subrectangle S′ = R′ ∩ f−n(S) has distortion bounded by ∆1(S).

c) Summability between contracting returns One now obtains the summability for returns
which do not satisfy lemma 9.11.

Lemma 9.13. For any adapted rectangle R and any N ≥ 1 large enough, there is K1 > 0 as follows.
Consider x ∈ Λ ∩R and 0 ≤ k < l such that:

– f−k(W cu
R (x)) ⊂ R and f−k(x) is N -contracting in time k,

– for any k < j < l, either f−j(W cu
R (x)) ∩R = ∅ or f−j(x) is not N -contracting in time j.

Then for any curve J ⊂W cu
R (x) one has

l∑

j=k

`(f−j(J)) ≤ K1 `(f−k(J)).
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Proof. We let R ⊂ {k, . . . , l} be the set of integers n such that f−n(W u
R(x)) ⊂ R. Since R is adapted

the other integers satisfy f−n(W u
R(x)) ∩R = ∅. The lemma 9.10 can be restated as:

Claim 9.14. There exists K2 > 0 satisfying the following.
For any integers r < p in {k, . . . , l} such that r ∈ R and {r+1, r+2, . . . p− 1}∩R = ∅, one has

p∑

j=r

`(f−j(J)) < K2 `(f−r(J)).

We also introduce the set P ⊂ {0, . . . , l} of integers n such that for each 0 ≤ i < n one has

n∏

j=i+1

‖Df|Ecs(f−j(x))‖ ≤ λn−i.

The summability between iterates in P is ensured by the next classical argument.

Claim 9.15. For any integers p < r in {k, . . . , l} such that p ∈ P and {p+1, p+2, . . . , r−1}∩P = ∅,
one has

`(f−r+1(J)) < µr−p−1`(f−p(J)).

Proof. Using that the integers n ∈ {p+ 1, . . . , r − 1} are not in P, one proves inductively that

n∏

j=p+1

‖Df|Ecs(f−j(x))‖ > λn−p. (9.1)

Indeed, if one has ‖Df|Ecs(f−p−1(x))‖ ≤ λ, then using that p belongs to P, one deduces that p+ 1
also, which is a contradiction. Moreover if the inequatlity (9.1) holds for all the integers p+1, . . . , n−1
and is not satisfied for n, then for all i ∈ {p, . . . , n− 1} one gets

n∏

j=i+1

‖Df|Ecs(f−j(x))‖ ≤ λn−i.

Since p belongs to P this implies that n also which is a contradiction. This proves that (9.1) holds.
The property (9.1) for n = r − 1 together with (iv) in section 9.1 imply that the norm of

Dfp−r+1
|Wu

S (f−p(x))
along the plaque W cu

S (f−p(x)) is smaller than µr−p−1, giving the required conclusion.

We can now prove the lemma. Let Cf > 1 be an upper bound of ‖Df‖. We choose N large
enough so that one has µNK2Cf <

1
2 .

Let us consider ps < ps−1 < · · · < p0 in P and k ≤ rs < rs−1 < · · · < r0 ≤ l in R which satisfy:

– For each i ∈ {0, . . . , s} one has pi ≤ ri and for i ∈ {1, . . . , s} one has ri ≤ pi−1.

– There is no r ∈ R such that ri < r < pi. There is no p ∈ P such that pi < p < ri−1.

– ps ≤ k and when s ≥ 1 one has k < ps−1. There is no r ∈ R such that r0 < r ≤ l.
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These sequences are defined inductively: r0 is the largest integer in R smaller or equal to l and p0 is
the largest integer in P smaller or equal to r0. Assume that pi ≤ ri have been constructed. If pi ≤ k
we set s = i and the construction stops. Otherwise we let ri+1 be the largest integer in R that is
smaller or equal to pi and smaller than ri. By assumption pi is larger than n, hence ri+1 is larger or
equal to n. Then pi+1 be the largest integer in P smaller or equal to ri+1 and smaller than pi.

Since f−k(x) is N -contracting in time k, we have ps ≥ k −N . One deduces

`(f−ps(J)) ≤ CNf `(f−k(J)).

Using claims 9.14 and 9.15, for each i ∈ {1, . . . , s} one has

pi−1∑

k=pi

`(f−k(J)) ≤ ((1− µ)−1 +K2Cf ) `(f−pi(J)),

l∑

k=p0

`(f−k(J)) ≤ ((1− µ)−1 +K2Cf ) `(f−p0(J)),

`(f−pi−1(J)) ≤ µri−piK2Cf `(f−pi(J)).

By our assumptions, when i satisfies 0 < i < s the point f−ri(x) ∈ R is not N -contracting. As a
consequence ri − pi ≥ N . This implies by our choice of N ,

`(f−pi−1(J)) ≤ µNK2Cf `(f−pi(J)) ≤ 1
2
`(f−pi(J)).

Putting all these estimates together one gets the conclusion:

l∑

j=k

`(f−j(J)) < ((1− µ)−1 +K2Cf )(1 + 2K2Cf )CNf `(f−k(J)).

d) Proof of the proposition 9.9. Let us choose N ≥ 1 large and consider the constant K1 given
by lemma 9.13. The lemma 9.12 applied to the rectangle S gives a bound ∆1(S). We fix an unstable
curve W cu

R (x0) of R. We set K(S) = 2∆1(S)K1`(W cu
R (x0)). We also set nS = 0 (in the case S is a

return we will obtain a better result taking nS equal to the return time).
Let x ∈ Λ∩R and J = W u

S (x). We introduce the set RP ⊂ {−nS , . . . , n} of integers i such that
f−i(J) ⊂ R and f−i(x) is N -contracting in time i + nS . Since R is adapted, the lemma 9.4 shows
that for each i ∈ RP , there exists a subrectangle Si of R such that

– f−i(J) is an unstable curve of Si,

– for each unstable curve W cu
Si

(z) of Si the image f i(W cu
Si

(z)) is an unstable curve of S.

Lemma 9.16. For any i′ < i in RP ∩ {1, . . . , n}, the rectangles Si, Si′ are disjoint.

96



Proof. Assume by contradiction that some unstable curves f−i(W cu
S (y)) and f−i′(W cu

S (y′)) of Si and
Si′ intersect. Then W cu

S (y′) intersects f i
′−i(W cu

S (y)) and since S is adapted, there exists a return
T of S with returning time i − i′ such that f i

′−i(W cu
S (y)) is an unstable curve of T . One deduces

from remark 9.1 and lemma 9.4 that f i
′
(Si) is contained in T , hence in S. This contradicts the

assumption that f i
′−i(W cu

S (x)) is disjoint from S.

Let i0 be the largest integer in RP which is smaller or equal to nS . (When nS = 0, one has
i0 = 0). We now end the proof of the proposition 9.9. The lemma 9.13 implies that

n−1∑

k=0

`(f−k(W cu
S (x))) ≤

n−1∑

k=i0−nS

`(f−k(W u
S (x)))

≤ K1


`(f−i0(J)) +

∑

i∈RP , i>nS

`(f−i(J))


 .

Since f−i(x) is N -contracting in time i+ nS , the lemma 9.11 implies that for each i ∈ RP
`(f−i(J)) ≤ ∆1(S) `(W cu

Si
(x0)).

The lemma 9.16 implies that the intervals W cu
Si

(x0) for i ∈ RP with i > nS are disjoint. As a
consequence ∑

i∈RP , i>nS

`(W cu
Si

(x)) ≤ `(W cu
R (x0)).

Putting together these last three inequalities, one concludes the proof of the proposition 9.9 in the
general case S is an adapted subrectangle:

n−1∑

k=0

`(f−k(W cu
S (x))) ≤ 2∆1(S)K1 `(W cu

R (x0)) = K(S).

When S is a return, we take nS equal to the return time so that fnS (J) is an unstable curve of R.
The constant ∆1 is given by lemma 9.12 and as before we set K0 = 2∆1K1`(W cu

R (x0)). We repeat
the same proof, noting that the subrectangles Si are returns of R, so that for each i ∈ RP we have
the better estimate

`(f−i(J)) ≤ ∆1 `(W cu
Si

(x0)).

The conclusion of the proposition 9.9 thus holds with the uniform constant K0.

9.5 Proof of the proposition 9.1

In order to conclude the proof of proposition 9.1 we consider a rectangle R as given by the section 9.3
and we distinguish between two cases described by the proposition 9.6.
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a) Distortion along unstable curves. Since by lemma 9.2, the unstable curves the setK are con-
tained in a continuous C2-plaque family, the classical distortion estimates hold (see for instance [PS1,
lemma 3.5.1]).

(D) There is ∆2 > 0 such that for any z ∈ K, any x, y in an interval J ⊂W cu
loc(z), and any n ≥ 0,

‖Df−n|Ecu(x)‖
‖Df−n|Ecu(y)‖ ≤ exp

(
∆2

n−1∑

k=0

`(f−k(J))

)
.

In particular,

‖Df−n|Ecu(x)‖ ≤ `(f−n(J))
`(J)

exp

(
∆2

n−1∑

k=0

`(f−k(J))

)
. (9.2)

As a consequence we also get the following.

(D’) For any C > 0 there is η > 0 such that for any z ∈ K, for any intervals J ⊂ Ĵ ⊂W cu
loc(z) and

for any n ≥ 0 satisfying `(Ĵ) ≤ (1 + η) `(J) and
∑n−1

k=0 `(f
−k(J)) ≤ K, then one has

n−1∑

k=0

`(f−k(J)) ≤ 2 C.

In particular for any x ∈ Ĵ one has

‖Df−n|Ecu(x)‖ ≤ `(f−n(J))
`(J)

exp

(
2 ∆2

n−1∑

k=0

`(f−k(J))

)
.

b) Adapted rectangles with unbounded first returns. We conclude proposition 9.1 in the
first case of the proposition 9.6. (The end of the proof corresponds to [PS1, lemma 3.7.4].)

Lemma 9.17. For any adapted rectangle R, there exists τ ≥ 0 as follows.
If there exists a first return S0 of R with return time larger than τ and such that S0 ∩ Λ 6= ∅,

then, there also exists a return S of R such that S ∩Λ 6= ∅ which has the following property: for any
x ∈ S ∩ Λ and n ≥ 1 such that f−n(x) ∈ S we have ‖Df−n|Ecu(x)‖ < 1

2 .

In particular the property (E) holds with B = S ∩ Λ.

Proof. Let K0,K1, N,∆2 be some constants associated to R so that proposition 9.9 and lemmas 9.11
and 9.13 hold. Let L be a lower bound for the length of unstable curves W cu

R (z) of R and l be an
upper bound for all the backward iterates f−j(W cu

R (z)) with j ≥ 0. Recall that ∆2 > 0 is a constant
such that (9.2) holds. We also set

δ =
L

∆1
exp(−∆2 (K0 +K1 l))/3

and choose τ ≥ 1 so that for any z ∈ Λ the backward iterates f−k(W cu
loc(z)) with k ≥ τ have a length

smaller than δ (see lemma 9.3). We then consider a return S0 of R with return time n0 larger than
τ such that S0 ∩ Λ 6= ∅. Two cases occur.
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Case 1: no contracting backward iterate. We assume first that for any x ∈ S0 ∩ Λ, there is no
backward iterate f−j(x) with j ≥ 0 which belongs to a N -contracting return of R with return time
j. In this case, we set S = S0. For any point x ∈ S ∩Λ and any j ≥ 1 such that f−j(x) ∈ S one can
apply the lemma 9.13 to x and the integers k = 0 and l = j. One deduces that one has

j∑

i=0

`(f−j(W cu
R (x))) ≤ K1`(W cu

R (x)) ≤ K1 l.

Note that j ≥ n0 ≥ τ . Since z belongs to Λ, one deduces that f−j(W cu
R (z)) is smaller than δ. With

property (D), one gets

‖Df−j|Ecs(x)‖ ≤ `(f−j(W cu
R (z)))

`(W cu
R (z))

exp(∆2 K1 l)

≤ δ

L
exp(∆2 K1 l) < 1/2.

The lemma is thus proved in this case.

Case 2: contracting backward iterates exist. We first build the return S.

Claim 9.18. There exists a N -contracting return S of R with return time n1 ≥ τ such that Λ∩S 6= ∅
and such that for each z ∈ Λ ∩ S one has

n1∑

j=0

`(f j(W cu
S (z))) < K1 `(W cu

R (fn1(z))).

Proof. There exists a point x ∈ fn0(S0) ∩ Λ and a backward iterate f−n1(x) with n1 > n0 which
belongs to a N -contracting S return of R with return time n1. One can assume that n1 is minimal:
consequently for any i ∈ {1, . . . , n1−n2} the iterate f i(S) does not intersect a N -contracting return
of R with return time n1−i. Since S0 is a first return, the iterates f i(S) for i ∈ {n1−n0+1, . . . , n1−1}
do not intersect R. The lemma 9.13 can thus be applied to the points z ∈ Λ∩fn1(S) and the integers
k = 0 and l = n1. In particular, for any z ∈ Λ ∩ S one gets the announced inequality.

We now prove that the return S given by the claim 9.18 satisfies the conclusions of the lemma 9.17.
It is enough to consider a point x ∈ S ∩ Λ and n ≥ 1 such that f−n(x) ∈ S and f−k(x) /∈ S for
0 < k < n. By lemma 9.4, the rectangle S is adapted, hence f−k(W cu

S (x)) is disjoint from S for any
0 < k < n. One deduces by proposition 9.9 that

n−1∑

k=0

`(f−k(W cu
S (x))) < K0.

By our choice of S one has

n1∑

j=0

`(f j(W cu
S (f−n(x)))) < K1`(fn1(W cu

S (f−n(x))) = K1`(W cu
R (fn1−n(x))).
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In particular, the property (D) gives

‖Dfn1−n
|Ecu (x)‖ ≤ `(fn1−n(W cu

S (x)))
`(W cu

S (x))
exp (∆2 K0) .

‖Df−n1

|Ecu(fn1−n(x))‖ ≤ `(W cu
S (f−n(x)))

`(W cu
R (fn1−n(x)))

exp (∆2 K1 l) .

Since S is an N -contracting return of R, the lemma 9.11 gives

`(W cu
S (f−n(x)))
`(W cu

S (x))
≤ ∆1.

We also have
`(fn1−n(W cu

S (x))) = `(f−n(W cu
R (fn1(x)))) < δ.

Combining these inequalities, one gets the required estimate:

‖Df−n|Ecu(f(x))‖ ≤ δ

L ∆1
exp (∆2 (K0 +K1 l)) < 1/2.

c) Adapted rectangles with holes. We obtain a stronger summability result for holes. This is
similar to [PS1, lemma 3.7.7].

Lemma 9.19. Let R be an adapted rectangle and S be a hole of R with aperiodic boundary. Then,
there exists K3 > 0 such that for any x ∈ R ∩ Λ, we have

∑

k≥0

`(f−k(W cu
S (x))) < K3.

Proof. By lemma 9.5, S is an adapted rectangle. Let (ni) be the sequence of returns of W cu
S (x)

into S, that is the integers such that f−ni(W cu
S (x)) ⊂ S. Let us consider two consecutive returns

ni, ni+1. By the proposition 9.9, we have

ni+1∑

k=ni

`((f−k(W cu
S (x))) < K(S).

It is enough to bound uniformly the sum
∑

i≥0 `(f
−ni(W cu

S (x))).
From (D) we have

`(f−ni+1(W cu
S (x)))

`(f−ni(W cu
S (x)))

≤ `(fni−ni+1(W cu
S (f−ni(x))))

`(W cu
S (f−ni(x)))

exp(∆2K(S)).

By lemma 9.5, there exists N ≥ 1 such that for ni ≥ N the difference ni+1 − ni is large and by
lemma 9.3, the length `(fni−ni+1(W cu

S (f−ni(x)))) is smaller than `(W cu
S (f−ni(x))) exp(−∆2K(S))/2.

In particular `(f−ni+1(W cu
S (x))) is smaller than `(f−ni(W cu

S (x)))/2 for any ni ≥ N . The corollary
follows.
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It remains to conclude proposition 9.1 in the second case of the proposition 9.6.

Lemma 9.20. For any adapted rectangle R having a hole S with aperiodic boundary and such that
R ∩ Λ 6= ∅, there exists a non-empty open subset B ⊂ R of Λ such that property (E) holds.

Proof. Let K3,∆2 be the constants given by lemma 9.19 and the property (D) and let η be the
constant given by the property (D’) and associated to C = K3. Since R∩Λ is non-empty S is proper
in R. Up to exchange the boundaries x−, x+ of R and S, one deduces by lemma 9.5 that there exists
a sequence (xn) in R∩Λ such that d(xn, x−n,S) goes to zero as n→ +∞. Since Λ is transitive and is
not a single periodic orbit, one can assume that the points xn are not periodic. We fix such a point
x so that d(x, x−S ) < η `(W cu

S (x)).
Let L be a lower bound for the length of the curves W cu

S (z) of S and let δ = L exp(−2 ∆2 K3)/3.
We choose τ large enough such that for any z ∈ Λ the curves f−n(W cu

loc(z)) for n ≥ τ have a length
smaller than δ. Since x is not periodic, one can find a small neighborhood B of x in Λ such that B
is disjoint from its first τ iterates and for any y ∈ B one has d(y, y−S ) < η `(W cu

S (y)).
For any return f−n(y) in B one has n ≥ τ . Lemma 9.19 and property (D’) thus give:

‖Df−n|Ecu(y)‖ ≤ `(f−n(W cu
S (y)))

`(W cu
S (y))

exp

(
2 ∆2

n−1∑

k=0

`(f−k(W cu
S (y)))

)

≤ δ

L
exp(2 ∆2 K3) < 1/2.

The proof of the proposition 9.1 is now complete.
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