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Abstract. In this paper a discontinuous Galerkin (DG) discretization of an elliptic two-
dimensional problem with discontinuous coefficients is considered. The problem is posed on a polyg-
onal region Ω which is a union of disjoint polygonals Ωi of diameter O(Hi) and forms a geometrically
conforming partition of Ω. The discontinuities of the coefficients are assumed to occur only across
∂Ωi. Inside of each substructure Ωi, a conforming finite element space on a quasiuniform triangula-
tion with triangular elements and mesh size O(hi) is introduced. To handle the nonmatching meshes
across ∂Ωi, a discontinuous Galerkin discretization is considered. For solving the resulting discrete
problem, a FETI-DP method is designed and analyzed. It is established that the condition number
of the method is estimated by C(1 + maxi log Hi/hi)

2 with a constant C independent of hi, Hi and
the jumps of the coefficients. The method is well suited for parallel computations and it can be
straightforwardly extended to three-dimensional problems.
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1. Introduction. In this paper a discontinuous Galerkin (DG) approximation
of an elliptic problem with discontinuous coefficients is considered. The problem is
posed on a polygonal region Ω which is a union of disjoint polygonal subregions Ωi of
diameter O(Hi) and forms a geometrically partition of Ω, i.e., for i 6= j, ∂Ωi ∩ ∂Ωj is
empty or is a common corner or edge of ∂Ωi and ∂Ωj , where an edge means a curve
of continuous intervals. The discontinuities of the coefficients are assumed to occur
only across ∂Ωi. The problem is approximated by a conforming finite element method
(FEM) on a matching triangulation inside each Ωi, with hi as mesh parameter, and
nonmatching meshes are allowed to occur across ∂Ωi. This kind of composite dis-
cretization is motivated by the local regularity of the solution of the problem being
discussed. A discrete problem is formulated using symmetric DG methods with a
interior penalty term on ∂Ωi, see [4, 8, 26]. The main goal of this paper is to design
and analyze a FETI-DP method for the resulting discrete problem. To the best of our
knowledge, the FETI-DP method has never been considered before in the literature
for DG discretizations.

The first FETI-DP method for standard continuous Galerkin discretization was
introduced in [11] and is a nonoverlapping domain decomposition method that enforces
continuity of the solution at subdomain interfaces by Lagrange multipliers except at
subdomain corners where the continuity is enforced directly by assigning a unique
value for the functions at each corner. The first mathematical analysis of the method
was provided in [25]. The method was further improved by enforcing the continuity
directly on averages across the edges or faces on subdomain interfaces [12, 19], see also
[28], resulting in better parallel scalability for three-dimensional problems. FETI-DP

∗Department of Mathematics, Warsaw University, Banacha 2, 00-097 Warsaw, Poland. This
research was supported in part by the Polish Sciences Foundation under grant NN201006933.
(dryja@mimuw.edu.pl).
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methods, and also similar methods such as FETI, BDDC and BDD, have been tested
very successfully and analyzed theoretically for a variety of problems and their dis-
cretizations, see [28] and references therein.

The main goal of this paper is to develop a FETI-DP methodology for DG meth-
ods and apply it to a nontrivial problem. More specifically, we consider a scalar second
order elliptic problem with discontinuous coefficients with nonmatching meshes across
the subdomains. The discontinuities of the coefficients do not necessarily satisfy the
quasi-monotonicity condition on the jumps of the coefficients, see [10]. We expect
that the methodology developed here can be extended to a large class of problems
and DG discretizations, see [4, 16, 26].

In this paper, the DG discrete problem is reduced to the Schur complement prob-
lem with respect to unknowns on the closure of ∂Ωi\∂Ω, for i = 1, · · · , N . For that,
discrete harmonic functions defined in a special way, i.e., in the DG sense, are used.
The FETI-DP method for DG discretization is designed and analyzed using the ap-
proach from [28, 25], which is used there for standard conforming discretizations. Let
Γ(i) be the union of all edges F̄ij and F̄ji which are common to Ωi and Ωj , where F̄ij

and F̄ji refer to the Ωi and Ωj sides, respectively, and let Γ := ∪N
i=1Γ

(i). The method
consists of decomposing Γ into overlapping interfaces Γ(i), i = 1, · · · , N . We note that
each Γ(i) has unknowns (degrees of freedom) corresponding to nodal points on the clo-
sure ∂Ωi\∂Ω and on the F̄ji ⊂ ∂Ωj . Next we impose continuity of the unknowns which
correspond to corners of Ωi and common endpoints of F̄ji. These unknowns are called
primal. The remaining unknowns on Γ(i) and Γ(j) are called dual and have jumps,
hence, Lagrange multipliers are introduced to eliminate these jumps. For the dual
system with Lagrange multipliers, a special block diagonal preconditioner is designed.
It leads to independent local problems on Γ(i) for i = 1, · · · , N. It is proved that the
proposed method is almost optimal with a condition number estimate bounded by
C maxi(1 + log Hi/hi)2, where C does not depend on hi, hj , hi/hj , the number of
subdomains Ωi and the jumps in the coefficients. The method can be straightfor-
wardly extended to DG discretizations of three-dimensional problems. The FETI-DP
method developed here complements the BDDC methodology for DG discretizations
developed recently in [9]. We note that the discretization used there (based on the
harmonic average of the coefficients) is not the same as the one we consider here,
additionally, the constraints used there are based on edges while here are based on
corners. We point out that the introduction of corner constraints eliminates the inter-
face condition assumption required in [9]. We note that other types of preconditioners
have been considered for solving DG discretizations. In connection with block diago-
nal or overlapping Schwarz methods see for example [13, 14, 22, 6, 1, 2, 7, 24] while
for multilevel preconditioners [15, 17, 23, 21, 20, 5]. We note that these precondi-
tioners do not use discrete harmonic extensions and do not belong to the family of
iterative substructuring type of methods such as FETI, FETI-DP, BDD, BDDC and
Neumann-Neumann.

The paper is organized as follows. In Section 2 the differential problem and a
DG discretization are formulated. In Section 3, the Schur complement problem is
derived using discrete harmonic functions defined in a special way (in the DG sense).
In Section 4, the so-called FETI-DP method is introduced, i.e., the Schur complement
problem is reformulated by imposing continuity for the primal variables and by using
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Lagrange multipliers at the dual variables. Finally, a special block diagonal precon-
ditioner is defined. The main results of the paper are Theorem 4.2 and Lemma 4.4.
Section 6 is devoted to the implementation of the FETI-DP method.

2. Differential and discrete problems. In this section we discuss the contin-
uous and discrete problems we take into consideration for preconditioning.

2.1. Differential problem. Consider the following problem: Find u∗ex ∈ H1
0 (Ω)

such that

a(u∗ex, v) = f(v) ∀v ∈ H1
0 (Ω)(2.1)

where

a(u, v) :=
N∑

i=1

∫
Ωi

ρi(x)∇u · ∇v dx and f(v) :=
∫

Ω

fv dx.

We assume that Ω = ∪N
i=1Ωi and the substructures Ωi are disjoint shaped regular

polygonal subregions of diameter O(Hi). We assume the partition {Ωi}N
i=1 is geomet-

rically conforming, i.e., ∀i 6= j the intersection ∂Ωi ∩ ∂Ωj is empty or is a common
corner or edge of Ωi and Ωj , where here and below an edge means a curve of con-
tinuous intervals while its endpoints are called corners and the the collection of these
corners on ∂Ωi are refered to corners of Ωi. We assume f ∈ L2(Ω), and for simplicity
of presentation let ρi(x) be a positive constant ρi.

2.2. Discrete problem. Let us introduce a shape regular and quasiuniform
triangulation in each Ωi with triangular elements and hi as mesh parameter. The
resulting triangulation on Ω is in general nonmatching across ∂Ωi. Let Xi(Ωi) be the
regular finite element (FE) space of piecewise linear and continuous functions in Ωi.
Note that we do not assume that functions in Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. Define

X(Ω) := X1(Ω1)×X2(Ω2) · · · ×XN (ΩN ).

Let us denote by E0
i the collection of all edges of Ωi which are shared by other

subdomains, and denote by E∂
i the collection of edges of Ωi which belong to ∂Ω. The

set of all edges of Ωi is denoted by Ei. Note that Ei = E0
i for all Ωi which do not

intersect ∂Ω by an edge. A discrete problem obtained by DG method, see [26, 4, 8],
is of the form: Find u∗ = {u∗i }N

i=1 ∈ X(Ω) such that

ah(u∗, v) = f(v) ∀v = {vi}N
i=1 ∈ X(Ω)(2.2)

where

ah(u, v) :=
N∑

i=1

a(i)(u, v) and f(v) :=
N∑

i=1

∫
Ωi

fvi dx,(2.3)

a(i)(u, v) := ai(u, v) + si(u, v) + pi(u, v),(2.4)

and

ai(u, v) :=
∫

Ωi

ρi∇ui · ∇vi dx,(2.5)
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si(u, v) :=
∑

Fij⊂Ei

∫
Fij

1
lij

(
ρi

∂ui

∂n
(vj − vi) + ρi

∂vi

∂n
(uj − ui)

)
ds,(2.6)

pi(u, v) :=
∑

Fij⊂Ei

∫
Fij

δ

li

ρi

hij
(uj − ui)(vj − vi) ds(2.7)

where we set lij = 2 when F̄ij := ∂Ωi ∩ ∂Ωj is a common edge of Ωi and Ωj , and let
hij := 2hihj/(hi +hj), i.e., the harmonic average of hi and hj . The notation Fij ⊂ Ei

includes also boundary edges on ∂Ωi∩∂Ω where we set li∂ = 1, and let u∂ = 0, v∂ = 0
and hi∂ := hi. The partial derivative ∂

∂n denotes the outward normal derivative on
∂Ωi and δ is the penalty positive parameter.

We introduce the bilinear forms

di(u, v) := ai(u, v) + pi(u, v)(2.8)

and

dh(u, v) :=
N∑

i=1

di(u, v),(2.9)

and note that the norm defined by dh(·, ·) is a broken norm in X(Ω) with weights
given by ρi and δ

lij

ρi

hij
. For u = {ui}N

i=1 ∈ X(Ω) this discrete norm is defined by

‖ u ‖2
h:= dh(u, u) =

N∑
i=1

ρi ‖ ∇ui ‖2
L2(Ωi)

+
∑

Fij⊂Ei

δ

lij

ρi

hij

∫
Fij

(ui − uj)2ds

 .

It is known that there exists a δ0 = O(1) > 0 and a positive constant c < 1 such
that for every δ ≥ δ0, we obtain |si(u, u)| ≤ cdi(u, u) and

∑
i |si(u, u)| ≤ cdh(u, u),

and therefore, the following lemma is valid:

Lemma 2.1. There exists δ0 > 0 such that for δ ≥ δ0 and for all u ∈ X(Ω) we
have

γ0di(u, u) ≤ a(i)(u, u) ≤ γ1di(u, u), i = 1, · · · , N(2.10)

and

γ0dh(u, u) ≤ ah(u, u) ≤ γ1dh(u, u).(2.11)

Here, γ0 and γ1 are positive constants independent of the ρi, hi, Hi and u. For the
proof we refer to [8].

Lemma 2.1 implies that the discrete problem (2.2) is elliptic and continuous,
therefore, the solution exists and it is unique and stable. An optimal a priori error
estimate of this method was established in [3, 4] for the continuous coefficient case.
When the coefficients are discontinuous across substructures and/or when hi and hj

are not necessary of the same order, the following result is established in [8].
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Lemma 2.2. Let u∗ex and u∗ be the solution of (2.1) and (2.2). If u∗ex|Ωi
∈ Hq(Ωi),

i = 1, · · ·N , and 3/2 ≤ q ≤ 2, then

‖ u∗ex − u∗ ‖2
h≤ C

N∑
i=1

ρi(h
2(q−1)
i +

∑
Fij⊂E0

i

hj

hi
h

2(q−1)
j ) ‖u∗ex‖2

Hq(Ωi)

where C is independent of hi,Hi, ρi and u∗ex.

3. Schur complements systems and discrete harmonic extensions. The
first step of many iterative substructuring solvers, such as the FETI-DP method that
we consider in this paper, requires the elimination of the unknowns associated with
the interior of the subdomains. In this section, we describe this step for DG dis-
cretizations.

We introduce some notation and then formulate (2.2) as a variational problem
with constraints. Let us introduce

Ω(i) := Ωi ∪ {∪Fij⊂E0
i
F̄ji}

i.e., the union of Ωi and the F̄ji ⊂ ∂Ωj for Fji = Fij with Fij ⊂ ∂Ωi\∂Ω, and let

Γ(i) := ∪Fij⊂E0
i
(F̄ij ∪ F̄ji).

Note that Fij and Fji are treated separately in spite of geometrically they are the
same. Sometimes we use the notation Fijh and Fjih to refer the sets of nodal points
of the triangulation on Fij and Fji with parameters hi and hj , respectively, and F̄ijh

and F̄jih when the endpoints are included.

Let Wi(Ω(i)) be the FE space of functions defined by nodal values of Ω(i), i.e., an
element u(i) ∈ Wi(Ω(i)) is defined by u

(i)
i , the values at nodal points of Ωi, and by

u
(i)
j , the values at nodal points of F̄jih for Fji = Fij ⊂ E0

i . Here and below we use the
same notation to denote both FE functions and their vectors representations. Note
that a(i)(·, ·), see (2.4), is defined on Wi(Ω(i))×Wi(Ω(i)) with corresponding stiffness
matrix A(i) given by

a(i)(u(i), v(i)) = 〈A(i)u(i), v(i)〉 u(i), v(i) ∈ Wi(Ω(i))(3.1)

where 〈u(i), v(i)〉 denotes the `2 inner product associated to nodes of Ω(i). Let us
represent u(i) as u(i) = (u(i)

I , u
(i)
Γ ) where u

(i)
Γ represents values of u(i) at nodal points

of Γ(i) and u
(i)
I represents the interior nodal values on Ii := Ω(i)\Γ(i), hence, let us

represent Wi(Ω(i)) = Wi(Ii) ⊕ Wi(Γ(i)). Using the representation u(i) = (u(i)
I , u

(i)
Γ ),

the matrix A(i) can be represented as

A(i) =

(
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ,

)
(3.2)

where the first block of rows and columns corresponds to the nodal points of Ii while
the second block of rows and columns corresponds to the nodal points of Γ(i).
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The Schur complement of A(i) with respect to u
(i)
Γ is of the form:

S(i) ≡ S
(i)
ΓΓ := A

(i)
ΓΓ −A

(i)
ΓI(A

(i)
II )−1A

(i)
IΓ(3.3)

and let us denote

S := diag{S(1), S(2), · · · , S(N)}.(3.4)

Note that S(i) satisfies

〈S(i)u
(i)
Γ , u

(i)
Γ 〉 = min a(i)(w(i), w(i))(3.5)

subject to w(i) = (w(i)
I , w

(i)
Γ ) ∈ Wi(Ω(i)) with w

(i)
Γ = u

(i)
Γ on Γ(i). The bilinear form

a(i)(·, ·) is symmetric and nonnegative, see Lemma 2.1. The minimizing function
satisfying (3.5) is called discrete harmonic in the sense of a(i)(·, ·) or in the sense of
H(i). An equivalent definition of the minimizing function H(i)u

(i)
Γ is given by the

solution of

a(i)(H(i)u
(i)
Γ , v(i)) = 0, v(i) ∈

o

W i(Ω(i))(3.6)

H(i)u
(i)
Γ = u

(i)
Γ on Γ(i)(3.7)

where
o

W i(Ω(i)) is the subspace of Wi(Ω(i)) of functions which vanish on Γ(i). We note
that for substructures Ωi which intersect ∂Ω by edges, the nodal values on ∂Ωi\Γ(i)

are treated as unknowns.

Let Hiu
(i)
Γ ∈ Wi(Ω(i)) be the standard discrete harmonic function of u

(i)
Γ ∈

Wi(Γ(i)) in the sense of ai(·, ·), see (2.5). We note that the extensions Hi and H(i) dif-
fer from each other since Hiu

(i)
Γ depends only on the nodal values of u

(i)
Γ on ∂Ωi∩Γ(i)

while H(i)u
(i)
Γ depends on the nodal values on all Γ(i). The following lemma shows

the equivalence (in the energy form defined by di(·, ·)) between discrete harmonic
functions in the sense of Hi and in the sense of H(i); for the proof see Lemma 4.1 of
[9]. This equivalence allows us to take advantages of all the discrete Sobolev results
known for Hi discrete harmonic extensions.

Lemma 3.1. For u(i) ∈ Wi(Γ(i)), it holds that

di(Hiu
(i)
Γ ,Hiu

(i)
Γ ) ≤ di(H(i)u

(i)
Γ ,H(i)u

(i)
Γ ) ≤ Cdi(Hiu

(i)
Γ ,Hiu

(i)
Γ )(3.8)

where C is a positive constant independent of hi,Hi, ρi and u(i).

The next corollary follows directly from Lemma 3.1 and Lemma 2.1.

Corollary 3.2. For u(i) ∈ Wi(Γ(i)), it holds that

C0di(Hiu
(i)
Γ ,Hiu

(i)
Γ ) ≤ a(i)(H(i)u

(i)
Γ ,H(i)u

(i)
Γ ) ≤ C1di(Hiu

(i)
Γ ,Hiu

(i)
Γ )(3.9)

where C0 and C1 are positive constants independent of hi,Hi, ρi and u(i).
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Let us introduce the product space

W (Ω) :=
N∏

i=1

Wi(Ω(i)),(3.10)

i.e., u ∈ W (Ω) implies that u = {u(i)}N
i=1 with u(i) ∈ Wi(Ω(i)).

We now consider the subspace Ŵ (Ω) ⊂ W (Ω) as the space of functions which are
continuous on

Γ := ∪N
i=1(∪Fij⊂E0

i
F̄ij) = ∪N

i=1Γ
(i).(3.11)

Definition 3.3. (Space Ŵ (Ω), continuity on Γ). We say that u = {u(i)}N
i=1 ∈

W (Ω) is continuous on Γ(i) if u
(i)
j = u

(j)
j on F̄jih and u

(j)
i = u

(i)
i on F̄ijh for all

Fij ⊂ E0
i . We say that u is continuous on Γ if it is continuous on all Γ(i) i = 1, · · · , N .

The space of continuous functions on Γ is denoted by Ŵ (Ω).

Note that there is a one-to-one correspondence between vectors in the spaces
X(Ω) and Ŵ (Ω). We introduce the restriction matrices RΩ(i) : X(Ω) → Wi(Ω(i))
which assign the vector values of u = {ui}N

i=1 ∈ X(Ω) into the vector values of u(i)

at the nodes of Ω(i) only. Note that u = {u(i)}N
i=1 ∈ Ŵ (Ω). Hence, we can represent

uniquely u ∈ X(Ω) as u = {u(i)}N
i=1 ∈ Ŵ (Ω). Note that the discrete problem (2.2)

can be written as a system of algebraic equations

Âu∗ = f(3.12)

with u∗ ∈ X(Ω) and f = {fi}N
i=1 ∈ X(Ω), where fi is the load vector associated with

individual subdomains Ωi. The stiffness matrix Â can be obtained by restricting the
block diagonal matrix, see (3.2)

A := diag{A(1), A(2), · · · , A(N)}(3.13)

from W (Ω) to Ŵ (Ω), that is,

Â =
N∑

i=1

RT
Ω(i)A

(i)RΩ(i) .

Note that Â is no longer block diagonal since there are couplings between substruc-
tures due to the continuity on Γ.

Note also that X(Ω) can be componentwise represented by X(Ω) = X(I)⊕X(Γ)
where I = ∪iIi and Γ defined in (3.11), and also W (Ω) can be represented by W (Ω) =
Ŵ (I)⊕W (Γ) where

Ŵ (I) =
N∏

i=1

Ŵi(Ii) and W (Γ) =
N∏

i=1

Wi(Γ(i)).

We introduce the restriction matrices RIi
: X(I) → Ŵi(Ii) and RΓ(i) : X(Γ) →

Wi(Γ(i)) by assigning values of uI to u
(i)
i at nodes of Ii, and values of uΓ to uΓ(i) on
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nodes of Γ(i), respectively. By eliminating the variable u∗I from (3.12), see (3.2) and
(3.3), it is easy to see that

Ŝu∗Γ = ĝΓ(3.14)

where

Ŝ =
N∑

i=1

RT
Γ(i)S

(i)RΓ(i) and ĝΓ = fΓ −
N∑

i=1

RT
Γ(i)A

(i)
ΓI(A

(i)
II )−1fi.(3.15)

It is also easy to see from (3.6) and (3.7) that(
v
(i)
I

v
(i)
Γ

)T (
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ.

)(
Ĥ(i)u

(i)
Γ

u
(i)
Γ

)
= 〈S(i)u

(i)
Γ , v

(i)
Γ 〉.(3.16)

Note that Ŵ (Γ) is the natural space for defining 〈Ŝ ·, ·〉 due to (3.15), (3.16) and
the continuity of Ŵ (Γ) on Γ.

4. FETI-DP with corner constraints. We now design a FETI-DP method
for solving (3.14). We follow the abstract approach described in pages 160-167 in [28].

We introduce the nodal points associated to the corners unknowns by

V := ∪N
i=1Vi where Vi := {∪Fij⊂E0

i
∂Fij}.(4.1)

Let W̃ (Γ) be the subspace of W (Γ) of functions which are continuous on V in the
sense that the finite element functions u = {u(i)}N

i=1 ∈ W (Γ) satisfy

u
(i)
i (x) = u

(j)
i (x) for all x ∈ ∂Fij for all Fij ⊂ E0

i(4.2)

and

u
(j)
j (x) = u

(i)
j (x) for all x ∈ ∂Fji for all Fji = Fij ⊂ E0

i .(4.3)

Here and below Fji = Fij ⊂ E0
i means that Fji is such that Fji = Fij with Fij ⊂ E0

i .

Note that

Ŵ (Γ) ⊂ W̃ (Γ) ⊂ W (Γ).(4.4)

Note that a function u ∈ W̃ (Γ) does not imply that u
(i)
i = u

(i)
j at points of ∂Fij =

∂Fji.

Let Ã be the stiffness matrix which is obtained by restricting the matrix A defined
in (3.13) from W (Ω) to W̃ (Ω). Note that Ã is no longer block diagonal since there
are couplings between variables at points of V. We represent u ∈ W̃ (Ω) as u =
(uI , uΠ, u4) where the subscript I refers to the interior degrees of freedom at nodal
points of all Ωi ∪E∂

i , the Π to the corners of all Vi, and the 4 to the remaining nodal
points, i.e. of the Γ(i)\V. The vector u = (uI , uΠ, u4) ∈ W̃ (Ω) is obtained from the
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vector u = (uI , uΓ) ∈ W (Ω) using the equations (4.2), (4.3), i.e., the continuity of u
on V. Using the decomposition u = (uI , uΠ, u4) ∈ W̃ (Ω) we can partition Ã as

Ã =

 AII AIΠ AI4
AΠI AΠΠ AΠ4
A4I A4Π A44

 .(4.5)

We note that the only couplings across subdomains are through the variables Π where
the matrix AΠΠ is subassembled.

A Schur complement of Ã with respect to the 4-unknowns (eliminating the I-
and the Π-unknowns) is of the form

S̃ := A44 − (A4I A4Π)
(

AII AIΠ

AΠI AΠΠ

)−1(
AI4
AΠ4

)
.(4.6)

A vector u ∈ W̃ (Γ) can uniquely be represented by u = (uΠ, u4), therefore,
we can represent W̃ (Γ) = ŴΠ(Γ) ⊕ W̃4(Γ), where ŴΠ(Γ) refers to the Π-degrees of
freedom of W̃ (Γ) while W̃4(Γ) to the 4-degrees of freedom of W̃ (Γ). The vector
space W̃4(Γ) can be decomposed as

W̃4(Γ) =
N∏

i=1

Wi,4(Γ(i))(4.7)

where the local space Wi,4(Γ(i)) refers to the degrees of freedom associated to the
nodes of Γ(i)\V. Hence, a vector u ∈ W̃ (Γ) can be represented as u = (uΠ, u4) with
uΠ ∈ ŴΠ(Γ) and u4 = {u(i)

4 }N
i=1 ∈ W̃4(Γ) where u

(i)
4 ∈ Wi,4(Γ(i)). Note that S̃, see

(4.6), is defined on the space W̃4(Γ), and the following lemma follows (cf. Lemma
6.22 in [28] and Lemma 4.2 in [25]):

Lemma 4.1. Let u4 ∈ W̃4(Γ) and let S̃ and Ã, defined in (4.6) and (4.5),
respectively. Then,

〈S̃u4, u4〉 = min〈Ãw,w〉(4.8)

where the minimum is taken over w = (wI , wΠ, u4) ∈ W̃ (Ω).

Let us take u ∈ W̃ (Γ) as u = (uΠ, u4) with uΠ ∈ ŴΠ(Γ) and u4 ∈ W̃4(Γ). We
have u4 = {u(i)

4 }N
i=1 with u

(i)
4 ∈ Wi,4(Γ(i)). The vector u

(i)
4 ∈ Wi,4(Γ(i)) can be

partitioned as

u
(i)
4 = {(u(i)

4 )i, {(u(i)
4 )j}Fji=Fij⊂E0

i
}

where

(u(i)
4 )i = u

(i)
4|

∂Ωi\E∂
i

and (u(i)
4 )j = u

(i)
4|Fji

.

In order to define the jumping matrices B4, consider u4 ∈ W̃4(Γ) such that

u
(i)
4|Fij

− u
(j)
4|Fij

= 0, i.e., (u(i)
4 )i − (u(j)

4 )i = 0 on Fijh for Fij ⊂ E0
i ,(4.9)
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u
(j)
4|Fji

− u
(i)
4|Fji

= 0, i.e., (u(j)
4 )j − (u(i)

4 )j = 0 on Fjih for Fji = Fij ⊂ E0
i ,

and we denote these constraints, taking them for all i = 1, · · · , N, by

B4u4 = 0, B4 = (B(1)
4 , B

(2)
4 , · · · , B(N)

4 ).(4.10)

The rectangular matrix B
(i)
4 consists of columns of B4 attributed to the (i)-th com-

ponent of the product space W̃4(Γ). The entries of the rectangular matrix consist of
values of {0, 1,−1}, and B4u4, for u4 ∈ W̃4(Γ), measures the jump of u4 across
the 4-nodes. It is easy to see that B4 is full rank.

We can reformulate the problem (3.14) as the variational problem with constraints
in W̃4(Γ) space: Find u∗4 ∈ W̃4(Γ) such that

J(u∗4) = min J(v4)(4.11)

subject to v4 ∈ W̃4(Γ) with constraints B4v4 = 0, where

J(v4) := 1/2〈S̃v4, v4〉 − 〈g̃4, v4〉(4.12)

where S̃ is defined in (4.6) and

g̃4 := f̃4 − (A4I A4Π)
(

AII AIΠ

AΠI AΠΠ

)−1(
fI

f̂Π

)
.(4.13)

Here we note that f = {fi}N
i=1 ∈ X(Ω) can be represented f = (fI , f̂Π, f̃∆), where

f̃∆ = {f̃i,∆}N
i=1 and f̃i,∆ are the load vectors associated with the individual subdo-

mains Ωi, i.e., the entries f̃i,∆ are defined as
∫
Ωi

fvi
∆dx when vi

∆ are the canonical
basis functions of W̃i,∆(Γ(i)). Note that S̃ is symmetric and positive definite since Ã
has these properties; see also Lemma 4.1. Introducing Lagrange multipliers λ ∈ V ,
where V := range(B4), the problem (4.11) reduces to the saddle point problem of
the form: Find u∗4 ∈ W̃4(Γ) and λ∗ ∈ V such that{

S̃u∗4 + BT
4λ∗ = g̃4

B4u∗4 = 0.
(4.14)

Hence, (4.14) reduces to

Fλ∗ = g(4.15)

where

F := B4S̃−1BT
4, g := B4S̃−1g̃4.(4.16)

When λ∗ is computed, u∗4 can be found by solving the problem

S̃u∗4 = g −BT
4λ∗.(4.17)
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4.1. Dirichlet Preconditioner. We now define the FETI-DP preconditioner.
Let S

(i)
4 be the Schur complement of S(i), see (3.3), restricted to Wi,4(Γ(i)) ⊂

Wi(Γ(i)), i.e., taken S(i) on functions of Wi(Γ(i)) which vanish on V ∩ Γ(i). Let

S4 := diag{S(i)
4 }N

i=1.(4.18)

In other words, S
(i)
4 is obtained from S(i) by deleting rows and columns corresponding

to nodal values at nodal points of V ∩ Γ(i).

Let us introduce diagonal scaling matrices D
(i)
4 for i = 1, · · · , N . The D

(i)
4 maps

Wi,4(Γ(i)) into itself and the diagonal entries are defined by

D
(i)
4 =

ργ
j

ργ
i + ργ

j

on Fijh ∪ Fjih, for all Fij ⊂ E0
i with Fji = Fij ⊂ E0

i(4.19)

for γ ∈ [1/2,∞), see [27], and define

BD,4 := (B(1)
4 D

(1)
4 , · · · , B(N)

4 D
(N)
4 ).(4.20)

Let

P4 := BT
D,4B4(4.21)

which maps W̃4(Γ) into itself. It is easy to check that for w4 = {w(i)
4 }N

i=1 ∈ W̃4(Γ)

with w
(i)
4 ∈ Wi,4(Γ(i)) and w

(j)
4 ∈ Wj,4(Γ(j)) it holds:

(P4w4(x))(i)i =
ργ

j

ργ
i + ργ

j

[(w(i)
4 (x))i − (w(j)

4 (x))i], x ∈ Fijh(4.22)

(P4w4(x))(i)j =
ργ

j

ργ
i + ργ

j

[(w(i)
4 (x))j − (w(j)

4 (x))j ], x ∈ Fjih.(4.23)

Note that

(P4w4(x))(j)j =
ργ

i

ργ
i + ργ

j

[(w(j)
4 (x))j − (w(i)

4 (x))j ], x ∈ Fjih(4.24)

(P4w4(x))(j)i =
ργ

i

ργ
i + ργ

j

[(w(j)
4 (x))i − (w(i)

4 (x))i], x ∈ Fijh.(4.25)

It is easy to see that P4 preserves jumps in the sense that

B4P4 = B4.(4.26)

From this follows that P4 is a projection (P 2
4 = P4).

In the FETI-DP method the preconditioner is of the form

M−1 := BD,4S4BT
D,4 =

N∑
i=1

B
(i)
4 D

(i)
4 S

(i)
4 D

(i)
4 (B(i)

4 )T .(4.27)
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Note that M−1 is a block-diagonal matrix and each block is invertible since S
(i)
4 and

D
(i)
4 are invertible and B

(i)
4 is a full rank matrix. The following theorem holds:

Theorem 4.2. For any λ ∈ V it holds that

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ C(1 + log
H

h
)2〈Mλ, λ〉(4.28)

where C is a positive constant independent of hi,Hi, λ and the jumps of ρi. Here and
below, log(H

h ) := maxN
i=1 log(Hi

hi
).

Proof. By the general abstract theory for FETI-DP developed by [25], see also
Theorem 6.35 of [28], the proof of the theorem follows by checking Lemma 4.3 and
Lemma 4.4 below. The proofs of these lemmas are presented separately below.

Lemma 4.3. For u4 ∈ W̃4(Γ) it follows that

〈S̃u4, u4〉 ≤ 〈S4u4, u4〉.(4.29)

Proof. The proof follows from Lemma 4.1 and from

〈S̃u4, u4〉 = min〈Ãw,w〉 ≤ min〈Ãv, v〉 = 〈S4u4, u4〉(4.30)

where the minima are taken over w = (wI , wΠ, u4) ∈ W̃ (Ω) and v = (vI , 0, u4) ∈
W̃ (Ω).

Lemma 4.4. For any u4 ∈ W̃4(Γ), it holds that

‖ P4u4 ‖2
S4
≤ C(1 + log

H

h
)2 ‖ u4 ‖2

S̃
(4.31)

where C is a positive constant independent of hi,Hi, u4 and the jumps of ρi.
Proof. We first consider the case when the the edges is a single interval only. Let

u4 ∈ W̃4(Γ) and let u = (uΠ, u4) ∈ W̃ (Γ) be the solution of

〈S̃u4, u4〉 = min〈Sw,w〉 =: 〈Su, u〉,(4.32)

where the minimum is taken over w = (wΠ, u4) ∈ W̃ (Γ) with wΠ ∈ ŴΠ(Γ) and S is
defined in (3.4).

Let us represent the u as {u(i)}N
i=1 ∈ W (Γ) where u(i) ∈ Wi(Γ(i)). Let IFij u

(i)

be the linear function on F̄ijh and F̄jih defined by values of u(i) at ∂Fij and ∂Fji,
respectively. Let û = {û(i)}N

i=1 where û(i) ∈ Wi(Γ(i)) be defined as

û
(i)
i = IFij

u
(i)
i on F̄ijh for all Fij ⊂ E0

i

and

û
(i)
j = IFji

u
(i)
j on F̄jih for all Fji = Fij ⊂ E0

i

Note that û ∈ Ŵ (Γ). Therefore, representing û = (ûΠ, û4) we have B4û4 = 0.
Using this we have, see (4.21),

P4u4 ≡ BT
D,4B4u4 = BT

D,4B4(u4 − û4) = P4(u4 − û4).



FETI-DP for DG Discretizations 13

Define v ∈ W (Γ) to be equal to P4(u4− û4) at the 4-nodes and u4− û4, which
is equal to zero, at the Π-nodes. Let us represent v = {v(i)}N

i=1 with v(i) ∈ Wi(Γ(i)).
We have

‖ P4u4 ‖2
S4

=‖ v ‖2
S=

N∑
i=1

‖ v(i) ‖2
S(i)(4.33)

in view of the definition of S
(i)
4 and S, see (4.18) and (3.4), hence, to prove the lemma

it remains to show that

N∑
i=1

‖ v(i) ‖2
S(i)≤ C(1 + log H/h)2‖u‖2

S(4.34)

since by (4.32) we obtain (4.31). By Corollary 3.2 we need to show

N∑
i=1

d̃i(v(i), v(i)) ≤ C(1 + log H/h)2
N∑

i=1

d̃i(u(i), u(i))(4.35)

where, see (2.8),

d̃i(v(i), v(i)) := di(Hiv
(i),Hiv

(i))

and so

d̃i(v(i), v(i)) = ρi ‖ ∇v
(i)
i ‖2

L2(Ωi)
+
∑

Fij⊂Ei

ρiδ

lijhij
‖ v

(i)
i − v

(i)
j ‖2

L2(Fij)
,(4.36)

where v
(i)
i = Hiv

(i) and u
(i)
i = Hiu

(i) inside the subdomains Ωi.

We first estimate the first term of (4.36). We have

‖ ∇v
(i)
i ‖2

L2(Ωi)
≤ C

∑
Fij⊂E0

i

‖ v
(i)
i ‖2

H
1/2
00 (Fij)

(4.37)

by the well-known estimate, see [28], and the fact that v
(i)
i = 0 at corners of ∂Ωi. Note

that for subdomains Ωi which intersect ∂Ω by edges we use the obvious inequality

‖ ∇v
(i)
i ‖2

L2(Ωi)
≤‖ ∇ṽ

(i)
i ‖2

L2(Ωi)

where ṽ
(i)
i is the stardard discrete harmonic extension on Ωi with ṽ

(i)
i = v

(i)
i on E0

i

and ṽ
(i)
i = 0 on E∂

i . For the case Fij ⊂ E0
i , we use (4.22) to get

ρi ‖ v
(i)
i ‖2

H
1/2
00 (Fij)

=
ρiρ

2γ
j

(ργ
i + ργ

j )2
‖ (u− û)(i)i − (u− û)(j)i ‖2

H
1/2
00 (Fij)

≤

≤ 3 {ρi ‖ (u− û)(i)i ‖2

H
1/2
00 (Fij)

+ρj ‖ (u− û)(j)j ‖2

H
1/2
00 (Fji)

+(4.38)

+
ρiρ

2γ
j

(ργ
i + ργ

j )2
‖ (u− û)(j)i − (u− û)(j)j ‖2

H
1/2
00 (Fij)

}
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where we have used that
ρiρ

2γ
j

(ργ
i +ργ

j )2
≤ min{ρi, ρj} if γ ∈ [1/2,∞), see [27].

For estimating the first term of the right-hand side of (4.38), it is well-known
that, see [28],

ρi ‖ (u− û)(i)i ‖2

H
1/2
00 (Fij)

≤ C(1 + log
Hi

hi
)2ρi ‖ ∇u

(i)
i ‖2

L2(Ωi)
≤(4.39)

≤ C(1 + log
Hi

hi
)2di(u(i), u(i))

since û
(i)
i = IFij

u
(i)
i is the linear interpolant of u

(i)
i on Fij with values u

(i)
i on ∂Fij .

The estimate for the second term of the right-hand side of (4.38) is similar.

It remains to estimate the third term of the right-hand side of (4.38). We have

‖ (u− û)(j)i − (u− û)(j)j ‖2

H
1/2
00 (Fij)

=(4.40)

= |(u− û)(j)i − (u− û)(j)j |2H1/2(Fij)
+
∫

Fij

((u− û)(j)i − (u− û)(j)j )2

dist(s, ∂Fij)
ds.

The first term of (4.40) is estimated as follows. Let Qi be the L2 projection on
Xi(Fij), the restriction of Xi(∂Ωi) to F̄ij with hi -triangulation on Fij . Using the
inverse inequality, the H1/2 and L2 stabilities of the L2 projection we have

|(u− û)(j)i − (u− û)(j)j |2H1/2(Fij)
≤ C {|Qi(u

(j)
i − u

(j)
j )|2H1/2(Fij)

+(4.41)

+|Qi(u
(j)
j − û

(j)
j )|2H1/2(Fij)

+ |(u− û)(j)j |2H1/2(Fij)
+ |û(j)

i − û
(j)
j |2H1/2(Fij)

}

≤ C{ 1
hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
+|û(j)

i − û
(j)
j |2H1/2(Fij)

+ |(u− û)(j)j |2H1/2(Fij)
} ≤

≤ C{ 1
hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
+max

∂Fij

(u(j)
i − u

(j)
j )2 + (1 + log

Hj

hj
)2 ‖ ∇u

(j)
j ‖2

L2(Ωj)
}

since û
(j)
i and û

(j)
j are linear on Fij and Fji and Fij = Fji. The second term of RHS

of last inequality of (4.41) is estimated as follows. Let ū
(j)
j be the average of u

(j)
j on

Fji. We obtain

max
∂Fij

(u(j)
i − u

(j)
j )2 ≤ 3 { max

∂Fij

(Qi(u
(j)
i − u

(j)
j ))2 +

+max
∂Fij

(Qi(u
(j)
j − ū

(j)
j ))2 + max

∂Fij

(u(j)
j − ū

(j)
j )2} ≤(4.42)

≤ C{ 1
hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
+max

∂Fij

(Qi(u
(j)
j − ū

(j)
j ))2 + max

Fji

(u(j)
j − ū

(j)
j )2 }.

Hence, using a discrete Sobolev inequality, see [28], and the H1/2 stability of the L2

projection we obtain

max
∂Fij

(Qi(u
(j)
j − ū

(j)
j ))2 ≤ C(1 + log

Hi

hi
)|u(j)

j |2H1/2(Fji)
≤ C(1 + log

Hi

hi
) ‖ ∇u

(j)
j ‖2

L2(Ωj)

and so

max
∂Fij

(u(j)
i − u

(j)
j )2 ≤ C{ 1

hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
+(4.43)

+ (1 + log
H

h
) ‖ ∇u

(j)
j ‖2

L2(Ωj)
}.
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Substituting this into (4.41), we get

|(u− û)(j)i − (u− û)(j)j |H1/2F (ij) ≤(4.44)

≤ C(1 + log
H

h
)2{‖ ∇u

(j)
j ‖2

L2(Ωj)
+

1
hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
}.

We now estimate the second term of (4.40) as follows. In order to simplify notation
we take Fij as the interval [0, H]. Note that

∫
Fij

((u− û)(j)i − (u− û)(j)j )2

dist(s, ∂Fij)
ds ≤(4.45)

≤ C{
∫ H/2

0

((u− û)(j)i − (u− û)(j)j )2

s
ds +

∫ H

H/2

((u− û)(j)i − (u− û)(j)j )2

(H − s)
ds}.

Let us estimate the first term of RHS of (4.45). Let hi ≤ hj (the proof for hi > hj is
similar).

∫ H/2

0

((u− û)(j)i − (u− û)(j)j )2

s
ds =

∫ hi

0

((u− û)(j)i − (u− û)(j)j )2

s
ds +

+
∫ H/2

hi

((u− û)(j)i − (u− û)(j)j )2

s
ds ≤ C{[(u− û)(j)i (hi)− (u− û)(j)j (hi)]2 +

+(1 + log
Hi

hi
) max

Fij

((u− û)(j)i − (u− û)(j)j )2} ≤

≤ C(1 + log
Hi

hi
) max

Fij

((u− û)(j)i − (u− û)(j)j )2 ≤

≤ C(1 + log
Hi

hi
){max

Fij

(u(j)
i − u

(j)
j )2 + max

Fij

(û(j)
i − û

(j)
j )2} ≤

≤ C(1 + log
Hi

hi
) max

Fij

(u(j)
i − u

(j)
j )2 ≤

≤ C(1 + log
H

h
)2{ 1

hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
+ ‖ ∇u

(j)
j ‖2

L2(Ωj)
}.

We have used (4.42) and (4.43) to obtain the last inequality. Using this estimate in
(4.45) we get∫

Fij

((u− û)(j)i − (u− û)(j)i )2

dist(s, ∂Fij)
ds ≤(4.46)

C(1 + log
H

h
)2{‖ ∇u

(j)
j ‖2

L2(Ωj)
+

1
hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
}.

Substituting (4.44) and (4.46) for i and j into (4.40) we get

‖ (u− û)(j)i − (u− û)(j)j ‖2

H
1/2
00 (Fij)

≤(4.47)

C(1 + log
H

h
)2{‖ ∇u

(j)
j ‖2

L2(Fij)
+

1
hi
‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
}.
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Substituting this and (4.39) into (4.38) we get

ρi ‖ v
(i)
i ‖2

H
1/2
00 (Fij)

≤ C(1 + log
H

h
)2{d̃i(u(i), u(i)) + d̃j(u(j), u(j))}(4.48)

It remains to estimate the second term of the right-hand side of (4.36). The case
Fij ∈ E∂

i is trivial. For the case Fij ⊂ E0
i we have, see (4.22) - (4.23),

ρi ‖ v
(i)
i − v

(i)
j ‖2

L2(Fij)
=

ρiρ
2γ
j

(ργ
i + ργ

j )2
×

× ‖ [(u− û)(i)i − (u− û)(j)i ] + [(u− û)(j)j − (u− û)(i)j ] ‖2
L2(Fij)

≤(4.49)

≤ 2ρi ‖ u
(i)
i − u

(i)
j ‖2

L2(Fij)
+2ρj ‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)

since û
(i)
i = û

(j)
i and û

(j)
j = û

(i)
j on Fij and Fji, respectively. Hence

∑
Fij⊂E0

i

ρiδ

lijhij
‖ v

(i)
i − v

(i)
j ‖2

L2(Fij)
≤

≤ C
∑

Fij⊂E0
i

δ

lijhij
{ρi ‖ u

(i)
i − u

(i)
j ‖2

L2(Fij)
+ρj ‖ u

(j)
i − u

(j)
j ‖2

L2(Fij)
}(4.50)

≤ C
∑

Fij⊂E0
i

{d̃i(u(i), u(i)) + d̃j(u(j), u(j))}.

Substituting (4.48) and (4.50) into (4.36) we get

d̃i(v(i), v(i)) ≤ C(1 + log
H

h
)2{d̃i(u(i), u(i)) +

∑
Fij⊂Ei

d̃j(u(j), u(j))}.(4.51)

Summing the inequalities (4.51) for i from 1 to N and noting that the number of
edges of each subdomain can be bounded independently of N , we obtain (4.35) and
(4.34).

The proof also works with minor modifications for the case when Fij is a contin-
uous curve of intervals. For that, we should consider discrete Sobolev tools for non
straight edges, see for instance [18], and interpret IFij

u(i) and IFji
u(j) as the linear

function with respect to parametrized path on the edge defined by the nodal value of
u(i) or u(j) at ∂Fij and ∂Fji.

5. Implementation. The problem (4.15) can be solved efficiently by the pre-
conditioned conjugate gradient method with the preconditioner M defined in (4.27).
To simplify the presentation we only discuss the Richardson’s method. For the system
of algebraic equations, see (4.15),

Fλ∗ = g(5.1)

the Richardson iterative method is of the form: with given λ0 and for k = 0, 1, · · ·

λk+1 = λk − τoptM
−1(Fλk − g)(5.2)
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where τopt = 2/(C(1 + log H/h)2 + 1)), see (4.28). We need to compute first

r̃k := Fλk − g = B4S̃−1(BT
4λk − g̃4) = B4S̃−1g̃k(5.3)

and then, see (4.27),

rk := M−1r̃k =
N∑

i=1

B
(i)
4 D

(i)
4 S

(i)
4 D

(i)
4 (B(i)

4 )T r̃k(5.4)

where r̃k = {r̃(i)
k }N

i=1 ∈ W̃4(Γ) with r̃
(i)
k ∈ Wi,4(Γ(i)).

To compute r̃k we need to solve a system

S̃vk = g̃k.(5.5)

Note that S̃ is a global matrix but with very weak couplings only through the cor-
ners of substructures Ωi for i = 1, · · · , N . Hence, the system with S̃ is solved by a
special algorithm based on the Cholesky factorization. For the conforming case this
algorithm is described in the book [28], see pp. 166-167. We modify this algorithm
to solve (5.5). The main modification corresponds to the fact that in our case in a
common corner of substructures Ωi we have multiple unknowns while in the conform-
ing case we have only one value. A computation of BT

4v, see (4.9) and (4.10), for a

given v = {v(i)}N
i=1, reduces to multiply the rectangular matrices (B(i)

4 )T with entries

{0, 1,−1} by the subvector of v(i) belonging to W
(i)
i,4(Γ(i)).

To compute M−1r̃k, see (5.4), we need to compute for i = 1, · · · , N

S
(i)
4 D

(i)
4 (B(i)

4 )T r̃k =: S
(i)
4 ṽ

(i)
k .(5.6)

A computation of ṽ
(i)
k := D

(i)
4 (B(i)

4 )T r̃k reduces to a multiplication of r̃k by (B(i)
4 )T

and then by the diagonal scaling matrix D
(i)
4 , see (4.19). In turn, a computation of

S
(i)
4 ṽ

(i)
k is reduced to solving a local problem defined on Γ(i), see (4.18), with zero val-

ues of ṽ(i) at the corners V in Ω(i). These problems involve the solution the problem
S(i) on each Ω(i) with Dirichlet data on Γ(i). We point out that the local problems
are independent so they can be solved in parallel.

Finally compute

λk+1 = λk − τoptrk

with the computed above rk.
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