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Jorge P. Zubelli§

December 28, 2010

ABSTRACT

We introduce and analyze several aspects of a new model for cell differentia-
tion that accounts for a continuous process of the differentiation of progenitor cells.
Biologically, it subsumes that the differentiation of progenitor cells is a continuous
process. From the mathematical point of view, it is based on partial differential
equations of transport type. More specifically, it consists of a structured population
equation with a nonlinear feedback loop.

We compare the model presented herein to its discrete counterpart. In particular,
we relate it with a multi-compartmental model of a discrete collection of cell subpop-
ulations that was recently proposed by Marciniak-Czochra et al. [17] to investigate
the dynamics of the hematopoietic system with cell proliferation and differentiation
regulated by a nonlinear feedback loop. One of the novelties in the model presented
in this context is the presence of nonlinearities in the coupling of the maturation
equations through a velocity function. This models the signaling process due to
cytokines, which regulates the differentiation or proliferation process.

We obtain uniform bounds for the solutions, characterize steady state solutions,
and analyze their stability. We show how persistence or extinction might occur
according to certain parameters that characterize the stem cells self-renewal. We
also perform extensive numerical simulations and discuss the qualitative behavior of
the continuous models vis a vis the discrete ones.
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Introduction

Cellular differentiation is a process by which dividing, non-specialized cells become spe-
cialized and equipped to perform specific functions such as nerve cell communication or
muscle contraction. Differentiation occurs many times during the development of a multi-
cellular organism as the organism changes from a single zygote to a complex system with
cells of different types. Differentiation is also a common process in adult tissues. During
tissue repair and during normal cell turnover a steady supply of somatic cells is ensured by
proliferation of corresponding adult stem cells, which retain the capability for self-renewal.
Also different cancers are likely to originate from a population of cancer stem cells that
have properties comparable to those of stem cells [3].

Stem cell state and fate depends on the environment, which determines that the critical
stem cell character and activity in homeostasis is conserved, and that repair and develop-
ment are accomplished [19]. Cell differentiation and the maintenance of self-renewal are
intrinsically complex processes requiring the coordinated dynamic expression of hundreds
of genes and proteins in response to external signaling cues. During differentiation, certain
genes become activated and other genes inactivated in an intricate regulated fashion. As
a result, a differentiated cell develops specific structures and performs specific functions.
There exists evidence that disorder in self-renewal behavior may lead to neoplasia [3, 4].
For example, it has been shown that acute myeloid leukemia originates from a hierarchy of
cells that differ in respect to self-renewal capacities [13, 23]. Although much progress has



A structured population model of cell differentiation 3

been made in identifying the specific factors and genes responsible for stem cells decisions
[20], the mechanisms involved in these processes remain largely unknown.

While different genetic and epigenetic processes are involved in formation and mainte-
nance of different tissues, the dynamics of population depends on the relative importance
of symmetric and asymmetric cell divisions, cell differentiation and death. The same genes
and proteins are observed to be essential for regulation of different tissues [21]. This unity
and conservation of basic processes implies that their mathematical models can apply
across the spectrum of normal and pathological (cancer stem cells) development.

One established method of modeling such systems is to use a discrete collection of
ordinary differential equations describing dynamics of cells at different maturation stages
and transition between the stages. Such multi-compartmental models are based on the
traditional assumption that in each lineage of cell precursors there exists a discrete chain
of maturation stages, which are sequentially traversed, e.g., [15, 27]. However, it is also
becoming progressively clear that these are only the differentiated precursors under home-
ostatic (steady-state) conditions, which form such sequence. Committed cells form a con-
tinuous sequence, which may involve incremental stages, part of which may be reversible.
As an example, cell differentiation without cell divisions is observed during neurogenesis.
Moreover, in some tissues such as the mammary gland, different stages of differentiation
are not well identified [9].

All these observations invoke not only the fundamental biological question of whether
cell differentiation is a discrete or a continuous process and what is the measure of cell
differentiation, but also how to choose an appropriate modeling approach. Is the pace of
maturation (commitment) dictated by successive divisions, or is maturation a continuous
process decoupled from proliferation? In leukemias, it seems to be decoupled. The classical
view in normal hematopoiesis is opposite.

To address these questions and to investigate the role of possible continuous transfor-
mations in the differentiation process, we introduce a new model based on partial differen-
tial equations of transport type and compare this model to its discrete counterpart. The
point of departure for this work is a multi-compartmental model of a discrete collection
of cell subpopulations, which was recently proposed in [17] to investigate dynamics of the
hematopoietic system with cell proliferation and differentiation regulated by a nonlinear
feedback loop. Furthermore, since self-renewal is an important parameter in our models,
the proposed models seem to be a right departure point to investigate cancer development,
in particularly in leukemias [23].

In the present paper we extend the discrete model to a structured population model
accounting for a continuous process of the differentiation of progenitor cells. Models of the
latter type have been already applied to the description of some aspects of hematopoiesis
[6, 5, 1, 2, 11]. Those models are based on the assumption that differentiation of progenitor
cells is a continuous process, which progresses with a constant velocity. This results in the
so called age-structured population equations. The model presented here is novel due to the
nonlinearities in the coupling of the model equations, in particular the nonlinear coupling
in the velocity function.

The paper is organized as follows. In Section 1, we formulate a new model, and in
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Section 1.2 the link between the discrete model of [17] and the structured population model
is accomplished. Sections 2, 3 and 4 are devoted to the analysis of the model. In Section 2
the existence and uniform boundedness of the solutions are shown. In Section 3, it is shown
that depending on the value of a parameter characterizing stem cells self-renewal model
solutions tend to zero or they stay strictly positive. Section 4 provides the structure of
steady states and conditions for existence of a positive stationary solution, and Section 4.2
is devoted to a linearized problem around the positive steady state (when it exists) to
investigate its stability. Using a characteristic equation we study some special cases, for
which we show stability or instability of the positive stationary solution. In Section 5,
a numerical approach and some results illustrating stability and instability results are
presented. We conclude in Section 5.2 with some final comments and suggestions for
further investigation.

1 A Model of Continuous Cell Differentiation

1.1 The continuous model

In the following we assume that the whole dynamics of differentiated precursors can be
approximated by a continuous maturation model. Under this assumption we extend the
multi-compartmental system from [17]. Let w(t) denote a population of stem cells, v(t)
a population of mature cells and u(x, t) a population of progenitor cells, which include
different stages between stem cells and differentiated cells. We assume that the progenitor
cells are structured by the maturity level (denoted by x). Thus, u(0, t) describes a popula-
tion of stem cells and u(x, t), for x > 0, corresponds to progenitor cells. We assume that
x = x∗ denotes the last maturity level of immature cells, and therefore, u(x∗, t) describes
the concentration of cells which differentiate into mature cells.

The general model derived from the discrete one takes the form

d

dt
w(t) = [2aw(s)− 1]pw(s)w(t)− dww(t), (1)

∂tu(x, t) + ∂x[g(x, s)u(x, t)] = p(x, s)u(x, t)− d(x)u(x, t), (2)

g(0, s)u(0, t) = 2[1− aw(s)]pw(s)w(t), t > 0, (3)

d

dt
v(t) = g(x∗, s)u(x∗, t)− µv(t), (4)

together with initial data

w(0) = w0 ≥ 0, u(0, x) = u0(x) ≥ 0, v(0) = v0 ≥ 0.

Integrating formally Equation (2) and adding it to Equations (1) and (4) yields the follow-
ing cell number balance equation:

d

dt

[
w(t) +

∫ x∗

0

u(x, t)dx+ v(t)
]

= (pw(s)−dw)w(t) +

∫ x∗

0

(
p(x, s)−d(x)

)
u(x, t)dx−µv(t).

(5)
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System (1)-(4) describes the following scenario: After division a stem cell gives rise to two
progeny cells. Cell divisions can be symmetric or asymmetric. Therefore, we assume that
on the average the fraction aw of progeny cells remains at the same stage of differentiation
as the parent cell, while the 1−aw fraction of the progeny cells differentiates, i.e. transfers
to the higher differentiation stage. Parameters pw and dw denote the proliferation rate of
stem cells and their death rate, respectively. Progenitor cells differentiate further at the
rate g, which depends on their maturity stage and is also regulated by the feedback from
mature cells given by a signaling factor s. Parameters p(x) and d(x) denote the proliferation
and death rates for precursor cells and depend on the level of cell differentiation. Mature
cells do not divide any more, but die at the rate µ. The whole process is regulated by a
single feedback mechanism based on the assumption that there exist signaling molecules
(cytokines) which regulate the differentiation or proliferation process. The intensity of the
signal depends on the level of mature cells, and can be modeled using the form (similarly
as in the multi compartment model)

s = s[v(t)] =
1

1 + kv(t)
.

This dependence can be justified using a quasi-steady state approximation of the plau-
sible dynamics of the cytokine molecules, see [17]. This expression reflects the heuristic
assumption that signal intensity achieves its maximum under absence of mature cells and
decreases asymptotically to zero if level of mature cells increases.

The concentration of signaling molecules s(v) influences the length of the cell cycle
(proliferation rate p) and/or the fraction of stem cells self-renewal (aw) as well as the rate
of cell differentiation (g).
In this model, differentiation of the stem cells takes place during mitosis. The differen-
tiation of progenitor cells occurs independently of proliferation. In the other words, cells
undergo continuous transformations between divisions. In the terms of the model this
means that in an infinitesimal time interval (t, t+ dt), the following events occur to a cell
of maturity x,

1. either the cell matures to level x+ dx, which happens with probability g[x, v(t)]dt,

2. or the cell divides into 2 daughters, which happens with probability p(x)dt,

3. any other event occurs with probability of the order o(dt).

If we want to stick to the discrete model proposed in [17], we obtain the following
relations linking proliferation and maturation (though not meaning that differentiation
can only occur by division, see the discussion at the end of Section 1.2){

g(x, v) = 2[1− a(x)
1+kv(t)

]p(x),

aw = a(0), pw = p(0), 0 < aw = a(0) ≤ 1.
(6)

This leads to a simplification of the boundary condition (3) that becomes

u(x = 0, t) = w(t).
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1.2 Discrete versus Continuous Models

The General Setting

In this section we consider the relationship between the structured population model (1)-
(4) and the multicompartmental model introduced in [17]. The multicompartmental model
can be formulated in a general way (following [18]),

d

dt
u1 = p1(s)u1 − g1(u1, s)− d1u1, (7)

d

dt
ui = pi(s)ui + gi−1(ui−1, s)− gi(ui, s)− diui, for i = 1, ..., n− 1 (8)

d

dt
un = gn−1(un−1, s)− dnun, (9)

where gi(ui, s) denotes a flux of cells from the subpopulation i differentiating to the sub-
population i + 1. The terms pi(s)ui and diui describe cell fluxes due to proliferation and
death, respectively. In the general case both, proliferation and differentiation, processes
may depend on the signal intensity.

In [17], differentiation was linked to proliferation and the following formulae was pro-
posed:

gi(ui, s) = 2(1− ai
1 + kun

)piui. (10)

It is similar to what was defined for stem cells with pw and aw : here, ai
1+kun

represents the
fraction of cells remaining at the same stage of differentiation i as the parent cell while
the 1 − ai

1+kun
fraction of i− cells differentiates, i.e. transfers to the higher differentiation

stage i + 1. The formulation (7)-(9) describes the differentiation process independently
of cell proliferation in the sense that cells either multiply at stage i or differentiate from
compartment i to i+1 and so on. Assuming that cell differentiation happens at a properly-
chosen time scale compared to the time scale of the cell division process (see below), we
show in the next paragraph how to obtain, after a suitable renormalization, the structured
population model of the next paragraph.

The Continuous Limit

Let us write System (7)–(9) in a dimensionless way. We define P , D, G1, G, U1, U and
Un characteristic values for the respective quantities pi, di, g1, gi for i ≥ 2, u1, ui for
2 ≤ i ≤ n− 1, and un. We define dimensionless quantities by p̄i = pi

P etc. We assume from
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now on that gi(ui, s) = gi(s)ui. System (7)–(9) becomes

d

dt
ū1 = P p̄1(s)ū1 − G1ḡ1ū1 −Dd̄1ū1, (11)

d

dt
ū2 = P p̄2(s)ū2 + G1

U1

U
ḡ1ū1 − Gḡ2ū2 −Dd̄2ū2, (12)

d

dt
ūi = P p̄i(s)ūi + G(ḡi−1ūi−1 − ḡiūi)−Dd̄iūi, for i = 3, ..., n− 1 (13)

d

dt
ūn =

GU
Un

ḡn−1ūn−1 −Dd̄nūn. (14)

Letting the number of compartments tend to infinity, we pass from the discrete model to
the continuous model by associating to the ui’s a stepwise constant function, constant on
intervals of type (εi, ε(i + 1)), with ε → 0, i → ∞ and the product εi remaining positive
and finite - say n = nε, with εn→ x∗ ∈ R∗+ = (0,+∞). Compartment dependent constants
would tend to continuous functions, sums over the index i would be interpreted as Riemann
sums tending to integrals while finite differences would give rise to derivatives. A precise
discussion of the limiting process would lead us too far from the scope of this presentation.
Thus, we refer, for instance, to [7, 10] for recent examples of how to obtain, based on
moments estimates, such rigorous limits.

In order to interpret the term G(ḡi−1ūi−1 − ḡiūi) in Equation (13) as a finite difference
tending to a derivative, we take

G =
1

ε
.

In the same way, to interpret G1
U1

U ḡ1ū1 − Gḡ2ū2 in Equation (12), set

G1
U1

U
=

1

ε
.

Assuming that P p̄i(s)ūi and Dd̄iūi tend toward limits p(x, s)u(x, t) and d(x)u(x, t) leads
to

P = 1, D = 1.

In order to obtain
GU
Un

ḡn−1ūn−1

converging to the limit g(x∗)u(t, x∗) in Equation (14), we require

1 =
GU
Un

=
1

ε

U
Un

Un =
U
ε
.

This means that the order of magnitude of the number of mature cells is much larger than
the one of the maturing cells and stem cells. This scaling follows also from mass balance
considerations: System (7)–(9) leads to the following mass balance

d

dt
u1 +

d

dt

n−1∑
i=2

ui +
d

dt
un = p1u1 +

n−1∑
i=2

piui − d1u1 −
n−1∑
i=2

diui − dnun, (15)
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meaning that the exchange between compartments by maturation rate gi does not influence
the total growth of the population. In this equation, we want to keep the specific values
u1 and un and to interpret the sum for 2 ≤ i ≤ n− 1 as an integral; indeed we have

d

dt
u1 +

d

dt

n−1∑
i=2

ui +
d

dt
un =

d

dt
U1ū1 + U d

dt

n−1∑
i=2

ūi + Un
d

dt
ūn,

which leads to the following choice

U
Un

=
U
U1

= ε.

With this choice and the previous relations, we are led to choose G1 = 1, which allows
a proper limit for Equation (11). We notice however that it means a different order of
magnitude for G1 and for G; the interpretation could be that we have more or less divided
the previous discrete compartments into smaller ones, of size ε, where division does not
occur but where maturation progresses. In this framework, G1 is not homogeneous to G
but rather to the integral of G over a small compartment of size ε.

Under these assumptions, let us set

χεi (x) = χ[iε,(i+1)ε)(x),

with χA the indicator function of a set A. We introduce the piecewise constant function

uε(x, t) :=
nε∑
i=1

ui(t)χ
ε
i (x).

On the same token, we associate the following functions to the coefficients

dε(x) :=
nε∑
i=1

diχ
ε
i (x), pε(x, s) :=

nε∑
i=1

pi(s)χ
ε
i (x), gε(x, u(x), s) :=

nε∑
i=1

gi(ui, s)χ
ε
i (x).

We make the following continuity assumptions on the dimensionless system:

∃K > 0 s.t. |gi|+ |di|+ |pi| ≤ K, |gi+1 − gi|+ |di+1 − di|+ |pi+1 − pi| ≤ K
i

pi, gi are uniformly continuous with respect to the variable s.
(16)

We define the piecewise constant functions gε, dε and pε on the respective basis of the
discrete coefficients gi, di and pi as uε was defined on the basis of ui. Assumption (16)
leads to their convergence (up to subsequences) to continuous functions g, d and p of both
variables x and s (see Lemma 1 of [10] for instance). We can prove (based e.g. on [7, 10])
the following result.
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Proposition 1.1 Suppose that uεi is a solution of Equation (13) verifying (ui(t = 0)) ∈ l1.
Under Assumption (16), for all T > 0, there exists a subsequence of (uεi ) converging towards
a limit u ∈ C(0, T ;M1([0, x∗])−weak−∗) solution of Equation (2), uε1 to a limit u1 ∈ C(0, T )
solution of Equation (1) where s = s(v) with v a limit of a subsequence of uεn. If moreover uεi
converges strongly in C(0, T ;L1(R+)) to u(x, t), the boundary condition (3) is satisfied in a
distributional sense and Equation (5) is satisfied, what is equivalent to a weak formulation
of the boundary condition (4).

We notice that we have strongly used the fact that maturation and proliferation are
decorrelated. If this were not the case, it would be impossible to make a 1/ε factor appear
in G, since P = 1. In such case in the limit equation the transport appears as a first order
corrective term and Equation (2) is replaced by

∂tu(x, t) + ε∂x[g(x, s)u(x, t)] = p(x, s)u(x, t)− d(x)u(x, t). (17)

See Figure 1 in Section 5.2 for related numerical simulations.

2 Uniform Bounds for the Continuous Model

In the remainder of this work we will consider a special version of the above model assuming
time independent proliferation rates p(x), and zero decay rates of undifferentiated cells
dw = 0 and d(x) = 0. Indeed, neglecting death rates of immature cells does not change the
analysis. Concerning the feedback loops it was shown in [17] for the discrete model that
the feedback on the stem cells self-renewal fraction and on the maturation speed g is much
more important for the efficiency of the process than the feedback on the proliferation
rate p(x). Therefore, in the reminder of this work we focus on the model with regulated
self-renewal and maturation. We also introduce simpler notation which makes it easier for
analysis. This yields the following system of differential equations for t > 0, x > 0.

d

dt
w(t) = α(v(t))w(t), (18)

∂tu(x, t) + ∂x[g(x, v(t))u(x, t)] = p(x)u(x, t), (19)

u(0, t) = w(t), (20)

d

dt
v(t) = g(x∗, v(t))u(x∗, t)− µv(t), (21)

together with initial data

w(0) = w0 ≥ 0, u(0, x) = u0(x) ≥ 0, v(0) = v0 ≥ 0. (22)

We obtain the cell number balance law

d

dt

[
w +

∫
u(x, t)dx+ v

]
= [α(v) + g(0, v)]w +

∫
p(x)u(x, t)dx− µv(t), (23)
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corresponding to the fact that the total population can only change by proliferation or
death (indeed, one can interpret α + g(0, v) as the stem cells proliferation rate, see above
sections and Equation (5)).
In the sequel we will study model (18)–(21) under the following assumptions

gx, gxx ∈ L∞([0, x∗]× R+), α(x) ∈ C([0,∞)), p(x) ∈ C1([0, x∗]), (24)

α(v) ∈ [α∞, α0], α is decreasing , α(+∞) := α∞ < 0, (25)

0 < g− ≤ g(x, v) ≤ g+ <∞, ∀(x, v) ∈ [0, x∗]× R+, (26)

First we show that the model solutions are uniformly bounded

Theorem 2.1 Under assumptions (24)–(26) and that u0(x) ∈ C1([0, x∗]), the solution to
System (18)–(22) is uniformly bounded. More precisely, all the components w(t), u(x, t),
v(t) are uniformly bounded.

The remainder of the section is devoted to the proof of this result, which uses some technical
lemmas. We first prove the following estimate

Lemma 2.2 Under the assumptions of Theorem 2.1, the function z(x, t) = ∂x(lnu) is
uniformly bounded on [0, x∗]× R+.

Proof. The equation for z reads{
∂tz + ∂x(gz) = −gxx + px,

z(0, t) = −α(v)−p(0)
g(0,v)

− gx(0,v)
g(0,v)

∈ L∞(0,+∞).
(27)

Indeed, we have z(0, t) = ux(0,t)
u(0,t)

and thus we can compute

z(0, t) = −∂tu(0, t)− p(0)u(0, t) + gx(0, v)u(0, t)

g(0, v)u(0, t)

= −α(v)− p(0)

g(0, v)
− gx(0, v)

g(0, v)
.

And we conclude that z(0, t) is uniformly bounded by assumptions (24)–(26).
Next, we rewrite the equation for z as

∂tz + g∂xz = −gxz +Q(x, v), (28)

where Q = −gxx + px is a bounded function of v and x.

In the following, we show that the solution to (28) satisfies the estimate

||z(x, t)||L∞ ≤M :=

(
sup
t
|z(0, t)|+ sup

x
|z(x, 0)|+ x∗ ||Q

g
||L∞

)
ex
∗|| gx

g
||L∞ . (29)
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Indeed, since g ≥ g− > 0, we can rewrite Equation (28) as

∂xz +
1

g
∂tz = −gx

g
z +

Q(x, v)

g
,

and apply the method of characteristics by defining as usual (except that x plays the role
of time),

dT

dx
(x, t) =

1

g
(x, v(T (x, t))), T (x = 0, t) = t,

dT−1

dx
(x, t′) = −1

g
(x, v(T−1(x, t′))), T−1(x = 0, t′) = t′.

We look for solutions of the form Z(x, t) = z(x, T (x, t)), which satisfy the following equa-
tion

∂xZ +
gx
g

(x, T (x, t))Z = ∂x(Ze

x∫
0

gx
g

(ζ,T (ζ,t))dζ
)e
−
x∫
0

gx
g

(ζ,T (ζ,t))dζ
=
Q

g
(x, v(T (x, t))).

Integrating the above equation yields

Z(x, t)e

x∫
0

gx
g

(ζ,T (ζ,t))dζ
= Z(0, t) +

x∫
0

Q

g
(ξ, v(T (ξ, t)))e

ξ∫
0

gx
g

(ζ,T (ζ,t))dζ
dξ,

Z(x, t) = Z(0, t)e
−
x∫
0

gx
g

(ζ,T (ζ,t))dζ
+

x∫
0

Q

g
(ξ, v(T (ξ, t)))e

−
x∫
ξ

gx
g

(ζ,T (ζ,t))dζ

dξ,

z(x, T (x, t)) = z(0, t)e
−
x∫
0

gx
g

(ζ,T (ζ,t))dζ
+

x∫
0

Q

g
(ξ, v(T (ξ, t)))e

−
x∫
ξ

gx
g

(ζ,T (ζ,t))dζ

dξ.

Defining t̄ = T (x, t), or yet t = T−1(x, t̄), yields T−1 ≥ 0 for t̄ ≥ x∗

gmin
, and we obtain

z(x, t̄) = z(0, T−1(x, t̄))e
−
x∫
0

gx
g

(ζ,T (ζ,T−1(x,t̄)))dζ
+

x∫
0

Q

g
(ξ, v(T (ξ, T−1(x, t̄))))e

−
x∫
ξ

gx
g

(ζ,T (ζ,T−1(x,t̄)))dζ

dξ.

Therefore, for t̄ ≥ x∗

gmin
it holds

||z||L∞ ≤ (|z(0, ·)|+ x∗||Q
g
||L∞)ex

∗|| gx
g
||L∞ .

From Lemma 2.2, we deduce several useful estimates

Lemma 2.3 There exist positive constants M1, M2, M3 such that the solutions to system
(18)–(22) satisfy
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(i) w(t) ≤M1u(x, t),

(ii) w(t) ≤M2v(t),

(iii) u(x, t) ≤M3w(t).

Proof (i) Boundedness of −z = − ∂
∂x

lnu results in the following inequality

ln
1

u
≤ ln

1

w
+Mx,

which in turn yields assertion (i) with M1 = eMx∗ .

(ii) To bound w by v, we calculate

d

dt

w

v
=
w

v

(
α(v(t))− g(x∗, v(t))

u(x∗, t)

v
+ µ

)
.

Since α(v) ≤ α(0), g(x∗, v(t)) ≥ g− and u(x∗, t) ≥ w(t)/M1 we obtain

d

dt

w

v
≤ w

v

(
α(0) + µ− g−

M1

w

v

)
.

This yields the estimate

w(t) ≤ v(t) max

(
w(0)

v(0)
,M1

α(0) + µ

g−

)
:= M2v(t),

and the assertion (ii) is proved.

(iii) The proof follows as in (i), departing from lnu(x, t) ≤ lnw(x, t) +Mx.

As a consequence of Lemma 2.3, we derive

Corollary 2.4 Under the assumptions of Theorem 2.1, the components w(t), u(x, t) and
v(t) of the solutions to System (18)–(22) are uniformly bounded.

Proof. Applying Lemma 2.3 (ii) to equation (18), we obtain

dw

dt
≤ α

(
w

M2

)
w.

This yields boundedness of w by Assumption (25).
Boundedness of w yields also boundedness of u using Lemma 2.3 (iii). Finally, bound-

edness of v results from Equation (21) due to boundedness of u(x∗, t) because g ≤ g+.

The proof of Theorem 2.1 is now complete.

We also state another result, in the spirit of Lemma 2.3, that is used later on
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Lemma 2.5 There exists a constant M4 > 0 and 0 < γ < 1 such that v(t) ≤M4w
γ(t).

Proof. We calculate

d

dt

v

wγ
≤M3g(x∗, v(t))w1−γ − v

wγ
(µ+ γα(v)).

We choose γ > 0 small enough such that µ + γα∞ := µ1 > 0 and γ < 1. Since w is
uniformly bounded, we find

d

dt

v

wγ
≤ C − v

wγ
µ1

which yields boundedness of v
wγ

.

Finally, we conclude this section with an elementary consequence of Theorem 2.1.

Corollary 2.6 Under the Assumptions (24)–(26) and that u0(x) ∈ C1([0, x∗]), System (18)–
(22) has a unique global solution. Furthermore, such solution is uniformly bounded.

Proof. Local in time existence of the unique solution follows from the Cauchy-Lipschitz
theorem. Theorem 2.1 provides uniform boundedness of solutions and hence the global
existence.

3 Extinction and Persistence

In this section we provide conditions for extinction and persistence of positive solutions.

First, we consider a case when α(0) < 0. In this case there exists only a trivial steady
state of the model and

Theorem 3.1 Assume (24)–(26). If α(0) < 0, then all solutions of system (18)–(22)
converge to zero at an exponential rate.

Proof First of all, notice that, since α(v) ≤ α(0) < 0, it is obvious from equation (18)
that w converges to 0 exponentially.
For the other components, we consider a functional γw(t) +

∫ x∗
0
e−βxu(x, t)dx + e−βx

∗
v,

with positive constants γ and β to be chosen later. We compute its time derivative,

d

dt

(
γw(t) +

∫ x∗

0

e−βxu(x, t)dx+ e−βx
∗
v
)

= γα(v)w(t)− β
∫ x∗

0

e−βxg(x, v)u(x, t)dx− e−βx∗g(x∗, v)u(x∗, t)

+g(0, v)u(0, t) +

∫ x∗

0

p(x)u(x, t)e−βxdx+ g(x∗, v)u(x∗, t)e−βx
∗ − µe−βx∗v

= [γα(v) + g(0, v)]w(t) +

∫ x∗

0

e−βxu(x, t)
(
p(x)− βg(x, v)

)
dx− µe−βx∗v.
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Since α(v) ≤ α(0) < 0 we may choose γ such that γα(0)+supv g(0, v) ≤ −Γ < 0. Moreover,
choosing β such that p(x)− βg(x, v) < −Γ implies that

d

dt

(
γw(t) +

∫ x∗

0

e−βxu(x, t)dx+ e−βx
∗
v
)
≤ −Γw(t)− Γ

∫ x∗

0

e−βxu(x, t)dx− µe−βx∗v.

We conclude that the solutions converge to zero at an exponential rate for t→∞.

Secondly, if it is the case that α(0) > 0, then we conclude that the solutions to the
system cannot extinct.

Theorem 3.2 Assume (24)–(26), w(0) > 0 and u0(x) ∈ C1([0, x∗]). If α(0) > 0, the
solution u, v, w of system (18)-(21) with positive initial conditions remain bounded away
from zero.

Proof Applying Lemma 2.5 to equation (18), we obtain

dw

dt
≥ α (M4w

γ)w,

and the assumption α(0) > 0 allows us to conclude. Then, the estimates of Lemma 2.3
conclude for u and v.

4 Stationary States and Their Stability

4.1 Stationary Solutions

As usual in biophysical systems, a very natural question concerns the existence of stationary
solutions. We shall now investigate this issue.

In our case, the steady states are given by the solutions (w̄, ū, v̄) to the system

α(v̄)w̄ = 0, (30)

d

dx
[ḡ(x)ū(x)] = p(x)ū(x), (31)

ū(0) = w̄, (32)

ḡ(x∗)ū(x∗)− µv̄ = 0, (33)

where ḡ(x) := g(x, v̄).
System (18)–(21) always admits the trivial steady state w = 0, u = 0,v = 0, which we

discard henceforth. Depending upon the value α(0) it may also have exactly one positive
steady state (w̄, ū, v̄), as we state it in the

Lemma 4.1 Under the Assumptions (24)–(26), the System (18)-(21) possesses a strictly
positive steady state if and only if α(0) > 0. Furthermore, it is unique.
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This condition is in agreement with biological observations concerning self-renewal of
stem cells subpopulation [12] and an analogous condition for the compartmental model
was discussed in [18].

Proof Since we discard the trivial steady state, from equation (30) we obtain the con-
dition α(v̄) = 0. As we know that α decreases to α∞ < 0 at infinity, there exists a unique
solution v̄ to

α(v̄) = 0, (34)

if and only if the condition α(0) > 0 holds. Thus, we may compute

ū(x∗) =
µv̄

ḡ(x∗)
.

Solving differential equation (31) with this boundary condition in x = x∗ yields,

ū(x) =
ḡ(x∗)

ḡ(x)
ū(x∗) exp

{
−
∫ x∗

x

p(ξ)

ḡ(ξ)
dξ
}
. (35)

We finally identify w̄ by the boundary condition at x = 0, w̄ = ū(0) that is

w̄ =
ḡ(x∗)

ḡ(0)
ū(x∗) exp

{
−
∫ x∗

0

p(ξ)

ḡ(ξ)
dξ
}

=
µv̄

ḡ(0)
exp

{
−
∫ x∗

0

p(ξ)

ḡ(ξ)
dξ
}
. (36)

This gives explicit values of the model and completes the proof.

For α given explicitly by (6), we may compute{
v̄ = 2aw−1

k
,

ū(x∗) = µ
kp(x∗)

aw(2aw−1)
2aw−a(x∗)

.
(37)

4.2 The Linearized Problem around the Steady State

In order to investigate local linear stability, we consider in this section the linearization
around the positive steady state. We first derive a general characteristic equation for the
eigenvalue problem; one knows that the signs of the real parts of these eigenvalues give
stability (if they all are negative) or instability (if there exists one with positive real part).
In order to emphasize our main point, which is that stability as well as instability of the
positive steady state can take place for a suitable choice of model parameters, we shall
focus on some simpler cases where stability analysis is more transparent.
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The Characteristic Equation in the General Case

We denote by (w̄, ū, v̄) the steady state solution to Equations (30)–(33). Positivity of the
considered steady state yields α(v̄) = 0. The linearized problem reads

d

dt
w(t) =

dα

dv
(v̄)w̄v(t), (38)

∂tu(x, t) + ∂x[g(x, v̄)u(x, t)] + ∂x[
∂g

∂v
(x, v̄)ū(x)]v(t) = p(x)u(x, t), (39)

u(0, t) = w(t), (40)

d

dt
v(t) = g(x∗, v̄)u(x∗, t) +

∂g

∂v
(x∗, v̄)ū(x∗)v(t) − µv(t), (41)

where w, u, and v denote now the deviation of the solution from the steady state. The
eigenvalue problem takes the form

ΛW =
dα

dv
(v̄)w̄V, (42)

ΛU(x) + ∂x[g(x, v̄)U(x)] + ∂x[
∂g

∂v
(x, v̄)ū(x)]V = p(x)U(x), (43)

U(0) = W, (44)

ΛV = g(x∗, v̄)U(x∗) +
∂g

∂v
(x∗, v̄)ū(x∗)V − µV. (45)

Defining an auxiliary function f(x)

f(x)e

x∫
0

−p(s)
g(s,v̄)

ds
= −∂x[

∂g

∂v
(x, v̄)ū(x)],

we obtain

∂x[g(x, v̄)U(x)e

x∫
0

Λ−p(s)
g(s,v̄)

ds
] = f(x)V e

x∫
0

Λ
g(s,v̄)

ds
,

g(x, v̄)U(x) = g(0, v̄)U(0)e
−
x∫
0

Λ−p(s)
g(s,v̄)

ds
+ V e

−
x∫
0

Λ−p(s)
g(s,v̄)

ds
x∫

0

f(s)e

s∫
0

Λ
g(σ,v̄)

dσ
ds.

Hence, using (42) and (44)

g(x∗, v̄)U(x∗) =

(
g(0, v̄)

dα

dv
(v̄)

w̄

Λ
+

x∗∫
0

f(s)e

s∫
0

Λ
g(σ,v̄)

dσ
ds

)
V e
−
x∗∫
0

Λ−p(s)
g(s,v̄)

ds
.

We insert this expression in Equation (45) and obtain the characteristic equation in full
generality

Λ + µ− dg

dv
(x∗, v̄)ū(x∗) =

(
g(0, v̄)

dα

dv
(v̄)

w̄

Λ
+

x∗∫
0

f(s)e

s∫
0

Λ
g(σ,v̄)

dσ
ds

)
e
−
x∗∫
0

Λ−p(s)
g(s,v̄)

ds
. (46)
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The Simplest Case: g independent of v

We first focus on the simplest case when the maturation rate g(x, v) = g(x) does not
depend on v. In other words, the feedback loop only affects stem cells. Although this
case is very restrictive compared to the original discrete model, since it does not include
relation (6), it is an illustrative example of a possible general behavior. Instability and
appearance of the oscillations in this model suggest that a regulation of the processes solely
on the stem cells level is not enough to stabilize the system. Moreover, regulatory feedback
between mature cells and progenitor cells has a stabilizing effect and is essential for efficient
regulation of the process.
Since we have f = 0, combining Equation (36) with Equation (46), we arrive at

Λ2 + µΛ = µv̄
dα

dv
(v̄)e−τΛ, τ =

x∗∫
0

1

g(s)
ds > 0. (47)

We now recognize the characteristic equation of a delay differential system: Indeed, Prob-
lem (18)–(21) can be reformulated as a delay differential system. We obtain the following
result

Proposition 4.2 Assume that Equations (24)–(26) hold, α(0) > 0, and g is independent
of v. Consider the steady state (ū, v̄, w̄) given in Lemma 4.1. Then, for 1 < τv̄ |dα

dv
(v̄)| < π

2
,

the system undergoes a Hopf bifurcation for a single value µ0 > 0 of the parameter µ.
Therefore the steady state can be either locally stable or instable.

Further bifurcations also occur for τ v̄ |dα
dv

(v̄)| > 2kπ + π
2

and k ≥ 1 for at least one
value µk > 0 .

Because in the special case at hand, the system can be reduced to a delay differential
equation, we know (see [8, 16] and the references therein) that the nonlinear system un-
dergoes a Hopf bifurcation for these values of the parameter and the analysis of the linear
operator is enough.

Proof. In order to identify the parameter values for which the bifurcation occurs, we look
for purely imaginary solutions Λ = iω with ω ∈ R. We obtain the two following relations

ω2 = µv̄ |dα
dv

(v̄)| cos(τω), τω = τ v̄ |dα
dv

(v̄)| sin(τω).

By symmetry, we only consider ω > 0. The second relation gives a single value τω0 ∈ (0, π
2

as soon as 1 < τv̄ |dα
dv

(v̄)| < π
2
. Then, we can obviously enforce the first relation for a single

µ because cos(τω0) > 0. This proves our first statement for Hopf bifurcation.
For τ v̄ |dα

dv
(v̄)| > 2kπ + π

2
and k ≥ 1, the equation τω = τ v̄ |dα

dv
(v̄)| sin(τω) also has

a root τωk ∈ (2kπ, 2kπ + π
2
, for which cos(τωk) > 0 and thus we can find again a µk for

which the first equation is satisfied. But there might be multiple compatible crossings and
several bifurcations are possible.
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We now proceed numerically using, for instance Matlab’s device DDE BIFTOOL. We
check that for the values µ = τ = 1, we get stability for µv̄ dα

dv
(v̄) = −1 and instability for

µv̄ dα
dv

(v̄) = −2.
This proposition as well as numerical simulations (see Figures 4 and 5) show that instability
occurs through a Hopf bifurcation, and that regular oscillations appear.

A Case Motivated by the Discrete Model

In this section we will study more closely the case given by the relations (6). We can use
the values of the steady state computed in Equations (34)–(36), keeping g(x, v) and p(x)
fully general. It implies, denoting ḡ(x) = g(x, v̄)

dα

dv
(v̄) = − 2kawpw

(1 + kv̄)2
= −kpw

2aw
, w̄ =

ḡ(x∗)

pw
ū(x∗)exp

{
−
∫ x∗

0

p(ξ)

ḡ(ξ)
dξ
}
.

We can show (see the Appendix for detailed calculations) that Equation (46) can be written
as

Λ + µ =
µ

k
(2aw − 1)

(
k

2aw

(
−pw

Λ
+ 1
)

+

x∗∫
0

∂g

∂v
(x, v̄)

Λ− p(x)

ḡ(x)2
e

x∫
0

Λ
ḡ(s)

ds
dx

)
e
−
x∗∫
0

Λ
ḡ(s)

ds
. (48)

Case of α(v) = pw( 2aw
1+kv
− 1) and g independent of x

Since g(v) is now x-independent, we have that for all x

g(x, v) = g(0, v) = pw − α(v) = 2pw(1− aw
1 + kv

) .

In particular g(v̄) = pw so dg
dv

(v̄) = pw
k

2aw
. We now substitute g(x, v̄) = g(v̄) everywhere in

Equation (48) and obtain

Λ + µ = µ
2aw − 1

2aw

(
−pw

Λ
+ 1 +

x∗∫
0

Λ− p(x)

pw
e

x∫
0

Λ
pw
ds
dx

)
e
−
x∗∫
0

Λ
pw
ds
.

We compute the first part of the integral term:
x∗∫
0

Λ
pw
e

x∫
0

Λ
pw
ds
dx = e

Λ
pw
x∗ − 1, and so

Λ +
µ

2aw
= − µ

2aw
(2aw − 1)

(
pw
Λ

+

x∗∫
0

p(x)

pw
e

Λ
pw
xdx

)
e−

Λ
pw
x∗ . (49)
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Proposition 4.3 Let α(v) be defined by (6) with aw > 1
2
, and (ū, v̄, w̄) be defined by

Equations (34)–(36) the unique steady state solution of System (18)–(21). If the maturation
rate g(x, v) is independent of the maturity of the cell x and if the proliferation rate p
is constant, then the steady state (ū, v̄, w̄) is locally linearly stable. For non-decreasing
proliferation rate, instability may appear.

We treat a case of non-decreasing proliferation rate because it is the most biologically
relevant; however instability may appear for other cases, and is even easier to exhibit, as
the proof (postponed to the Appendix) shows. Figures 2 and 3 below illustrate a case of
instability with a nondecreasing proliferation rate.

5 Numerical Simulations

This section concerns a number of numerical simulations we performed. We start with a
description of the numerical methods used.

5.1 The Numerical Scheme

We build a simple numerical scheme for System (18)–(21). We discretize the problem on a
grid chosen to be regular in space and adaptive in time. We denote by ∆tk = tk+1− tk the
time step between time tk+1 and time tk, by ∆x = x∗/I the spatial step, where I denotes
the number of points: xi = i∆x, 0 6 i 6 I.

We use an explicit upwind finite volume method for u

uki =
1

∆x

x
i+ 1

2∫
x
i− 1

2

u(tk, y)dy,
1

∆tk

∆tk∫
0

u(tk + s, xi+ 1
2
)ds ≈ uki .

For the time discretization, we use a marching technique. At each time tk, we choose the
time step ∆tk so as to satisfy the largest possible CFL stability criteria

θ := g
∆tk

∆x
≤ 1,

so

∆tk =
∆x

Maxxg(x, vk)
.

In order to avoid a vanishing time step, it is necessary here to suppose g ∈ L∞. Also, more
efficient schemes (of WENO type for instance, see [24, 22]) could be used if we want to
capture discontinuities of g.

The algorithm is essentially the following:
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• Initialization

We use the initial data

w0 = w0, u0
j =

1

∆x

x
i+ 1

2∫
x
i− 1

2

u0(y)dy, v0 = v0.

• From tk to tk+1 :

– We calculate αk = α(vk) and define wk+1 = (1 + ∆tkαk)wk.

– We calculate ∆tk = ∆x
Maxig(xi,vk)

and define tk+1 = tk + ∆tk.

– For a boundary condition at i = 0, we define uk+1
0 = wk+1.

– We define uk+1
i by the following scheme

uk+1
j − ukj

∆tk
+
g(xj, v

k)ukj − g(xj−1, v
k)ukj−1

∆x
= pju

k
j .

– We define vk+1 by
vk+1 − vk

∆tk
= g(xI , v

k)ukI − µvk+1,

where the right term implying v being implicit for stability reasons 1.

• Cell number balance. From Equation (18)–(21) we have obtained the cell number
balance (23). We check the equivalent discrete mass balance:

wk+1 − wk

∆tk
+

I∑
j=0

uk+1
j − ukj

∆tk
+
vk+1 − vk

∆tk
=

(
αk + g(x0, v

k)
)
wk +

I∑
i=0

pju
k
j∆x− µvk+1.

5.2 Numerical Simulations

First we compare results of the numerical simulations of the discrete and the continuous
models. To do so, we depart from the discrete values of parameters given in [25]. The
notations are those of System (7)-(9), with gi(s, ui) = 2[1− ai(s)]piui, pi independent of s,
di = 0 for i < n and ai(s) = ai

1+kun
. It corresponds to the model 1 studied in [17, 18].

1The reason for the choice of uk
I instead of uk+1

I in the right-hand side of this last scheme is due to cell
number balance considerations as shown below.
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Parameter Value Parameter Value Parameter Value

a1 0.77 p1 2.151̇0−3 day−1 d8 0.6925 day−1

a2 0.7689 p2 11.211̇0−3 day−1 k 12.8.10−10

a3 0.7359 p3 5.661̇0−2 day−1

a4 0.7678 p4 0.1586 day−1

a5 0.154 p5 0.32 day−1

a6 0.11 p6 0.7 day−1

a7 0.605 p7 1 day−1

To make comparison easier, for the continuous model, we replace the interval [0, x∗] by
the interval [1, 7] (7 being the number of maturing steps in the discrete model) and we
define a(x) and p(x) from parameters in Table 5.2 by piecewise linear continuous functions
valuing ai and pi at x = i. We take them along a regular grid to obtain approximations of
a(x) and p(x).

In Figure 1, the results of the discrete model are rigorously the ones of the continuous
model if the grid is equal to X = [1, 2, ...7] (case I = 6). If the grid becomes finer, we
observe a slower convergence toward the steady state together with an increase of the
relative importance of the stem cell population. It shows the limit of the comparison
between the two models: they exhibit different quantitative properties (see [18] for a study
of the discrete model properties), as well as conditions for nontrivial steady state. Moreover,
we see that the typical parameter sizes have to be adapted: indeed, the time evolution is
much too slow compared to experimental data.

Let us now focus on the stability or instability properties, in order to illustrate the
theoretical results of Propositions 4.2 and 4.3.

Figures 2 and 3 are an illustration of the instability case stated in Proposition 4.3.
Here, we took a maturity interval [0, X∗] with X∗ = 50, and a proliferation rate p(x) =
pw + Bχx≥Y ∗ with pw = 30, Y ∗ = 20, B = 50. We keep a(x) constant equal to aw = 0.75
and k = 1.28.10−9 as in the discrete code. The maturation speed g(x) is given by Equation
(6). We see that the destabilization is very slow, and our example is very unrealistic, since
the stem cell population level is tiny.

In Figures 4 and 5 similarly, we illustrate instability in the case of Proposition 4.2. We
have taken here X∗ = 1, constant proliferation rate p(x) = pw = 6 and maturation speed
g(x) = 1 and α(v) = ( 2aw

1+kv
− 1)pw with aw = 0.75 and k = 1.28.10−9.

Final Remarks

In this paper we have developed a structured population model of cell differentiation and
self-renewal with a nonlinear regulatory feedback between the level of mature cells and
the velocity of the maturation process. We showed that perturbations in the regulatory
mechanism may lead to the destabilization of the positive steady state, which corresponds
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to the healthy state of the tissue. In particular, we showed that the regulation of stem
cells self-renewal is not enough for the stability of the system and the lack of the regulation
on the level of progenitor cells may lead to the persistent oscillations. This and other
stability results suggest how despaired regulation of cell self-renewal and differentiation
may lead to the destabilization of the system, which is observed during development of
some cancers, such as leukemias. The model developed in this paper is rather general
and, after adjusting it to specific biological assumptions, may serve as a tool to explore
the role of different regulatory mechanisms in the normal and pathological development.
It may help to explain the advantage of cancer over normal precursors and to understand
evolution of drug resistance in cancer stem cells.

Comparing the model to its discrete counterpart we addressed the question of the
choice the right class of models (discrete compartments or continuous maturation, just
punctuated by division events). We showed that the models may exhibit different dynamics.
Interestingly, the structure of steady states differs and the discrete, compartmental model
admits semi-trivial steady states, having the form (0, .., 0, ūi, .., ūn), which do not exist
in the continuous differentiation model. To understand the difference between the two
models, we derived a limit equation for the discrete model assuming that a continuum of
differentiation stages can be defined. The rationale for such assumption is provided by
the fact that differentiation is controlled by intracellular biochemical processes, which are
indeed continuous in time. Consequently, for the proper time scaling we have to assume
that commitment and maturation of cell progenitors does not proceed by the division clock
(one division = one step in the maturation process) but is a continuous process and can take
place between the divisions. This observation explains the fundamental difference between
the two models. The structured population model is indeed not a limit of the discrete model
with the transitions between compartments correlated to the division of the cells. However,
the models can exhibit exactly the same dynamics for a suitable choice of the maturation
velocity function g. The difference between the qualitative behavior of the solutions of
structured population model and the discrete model indicates also that the numerical
discretization of the model should be treated carefully and analytical understanding of the
model dynamics is an important issue.
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Figure 1: Comparison of different grids on the interval [1, 7], from I = 6 (7 points, maturity
step dx = 1, discrete model) to I = 100. Left: mature cells evolution with time. Right:
distribution of cell density along the maturation level, at steady state. One sees that the
model is extremely sensitive to the number of steps (even 7 to 10): small numbers seem to
be unstable, whereas for large numbers the numerical scheme converges.
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Figure 2: Example of instability, in illustration of Proposition 4.3. Left: evolution of
mature cells. Right: evolution of stem cells.



A structured population model of cell differentiation 24

0 10 20 30 40 50
0

1

2

3

4

5

6 x 105

xMaturity level

Ma
tur

ity-
lev

el d
istr

ibu
tion

 at
 fin

al t
ime

80 90 100 110 120
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Time

Figure 3: Same case as in Figure 2. Left: final distribution of cells according to their
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√∫
| ∂
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u(x,t)|2dx∫
|u(x,t)|2dx , to measure the trend to a stable

maturity level distribution.
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Figure 4: Example of instability, in illustration of Proposition 4.2. Left: evolution of
mature cells. Right: evolution of stem cells.
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maturity level. Right: time evolution of
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|u(x,t)|2dx , to measure the trend to a stable

maturity level distribution.
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A Appendix: Proofs of the Results in Section 4.2

A.1 The Characteristic Equation in the Case Derived from the
Discrete Model

With the definitions given in (6), Equation (46) becomes

Λ + µ− dg

dv
(x∗, v̄)ū(x∗) =

(
− k

2aw
pw
ḡ(x∗)

Λ
ū(x∗) + e

∫ x∗
0

p(ξ)
ḡ(ξ)

dξ

x∗∫
0

f(s)e

s∫
0

Λ
g(σ,v̄)

dσ
ds

)
e
−
x∗∫
0

Λ
g(s,v̄)

ds
.

(50)
Let us calculate now the term with f :

x∗∫
0

f(x)e

x∫
0

Λ
g(s,v̄)

ds
dx =

x∗∫
0

−∂x[
∂g

∂v
(x, v̄)ū(x)]e

x∫
0

Λ−p(s)
g(s,v̄)

ds
dx

= +

x∗∫
0

∂g

∂v
(x, v̄)ū(x)∂x[e

x∫
0

Λ−p(s)
g(s,v̄)

ds
]dx− ∂g

∂v
(x∗, v̄)ū(x∗)e

x∗∫
0

Λ−p(s)
g(σ,v̄)

ds
+
∂g

∂v
(0, v̄)ū(0)

= +

x∗∫
0

∂g

∂v
(x, v̄)ū(x)

Λ− p(x)

g(x, v̄)
e

x∫
0

Λ−p(s)
g(s,v̄)

ds
dx− ∂g

∂v
(x∗, v̄)ū(x∗)e

x∗∫
0

Λ−p(s)
g(σ,v̄)

ds
+

k

2aw
pww̄.

We put it in Equation (50):

Λ+µ =

(
− k

2aw
pw
ḡ(x∗)

Λ
ū(x∗)+e

∫ x∗
0

p(ξ)
ḡ(ξ)

dξ( x∗∫
0

∂g

∂v
(x, v̄)ū(x)

Λ− p(x)

ḡ(x)
e

x∫
0

Λ−p(s)
ḡ(s)

ds
dx+

k

2aw
pww̄

))
e
−
x∗∫
0

Λ
ḡ(s)

ds
.

Due to the definition of w̄ given by Equation (36), the first and the last term of the
right-hand side can be written together as

Λ+µ =

(
k

2aw
ḡ(x∗)ū(x∗)

(
−pw

Λ
+1
)
+e

∫ x∗
0

p(ξ)
ḡ(ξ)

dξ( x∗∫
0

∂g

∂v
(x, v̄)ū(x)

Λ− p(x)

ḡ(x)
e

x∫
0

Λ−p(s)
ḡ(s)

ds
dx
))
e
−
x∗∫
0

Λ
ḡ(s)

ds
.

Using Equation (35), we have that

ū(x)
Λ− p(x)

ḡ(x)
e

x∫
0

Λ−p(s)
ḡ(s)

ds
= ḡ(x∗)ū(x∗)e

−
x∗∫
0

p(s)
ḡ(s)

dsΛ− p(x)

ḡ(x)2
e

x∫
0

Λ
ḡ(s)

ds
.

So finally, using Equations (33) and (34), we write ḡ(x∗)ū(x∗) = µ
k
(2aw − 1) we get the

expression given by Equation (48).
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Proof of Proposition 4.3

The local linear stability is equivalent to the fact that all eigenvalues Λ ∈ C solutions of
Equation (49) have negative real parts.

First step: Λ is solution of the following equation:

Λ2 + CΛ +D = − µ

2aw
(2aw − 1)Λ

x∗∫
0

b(x)e
Λ
pw

(x−x∗)dx (51)

with C = µ
2aw

> 0, D = pwµ
2aw−1

2aw
> 0, and b(x) = p(x)−pw

pw
≥ 0 a non-decreasing function.

Indeed, with this definition of b(x) we rewrite Equation (49) under the form

Λ +
µ

2aw
= − µ

2aw
(2aw − 1)

(
pw
Λ

+

x∗∫
0

(1 + b(x))e
Λ
pw
xdx

)
e−

Λ
pw
x∗ ,

and integration by parts gives pw
Λ

+
x∗∫
0

e
Λ
pw
xdx = pw

Λ
e

Λ
pw
x∗ .

Second step: the limiting case is for b(x) = 0, i.e. p independent of x. In this case,
the eigenvalues are given by

Λ± =
−C ±

√
C2 − 4D

2
.

If C2 − 4D > 0, these two eigenvalues are negative. If C2 − 4D < 0, they are complex
conjugated with negative real parts. In any case, the steady state is locally linearly stable ;
the first part of the proposition is proved.

Third step: In the general case, in order to study the sign of the real part of the
eigenvalues Λ, we look for values of the parameters such that Λ = iω with ω ∈ R. It
corresponds to Hopf bifurcation and it leads to:

−ω2+iCω+D = − µ

2aw
(2aw−1)iω

x∗∫
0

b(x) cos(
ω

pw
(x−x∗))dx+

µ

2aw
(2aw−1)ω

x∗∫
0

b(x) sin(
ω

pw
(x−x∗))dx.

Taking the imaginary part of this equation gives, since ω 6= 0 :

C = − µ

2aw
(2aw − 1)

x∗∫
0

b(x) cos(
ω

pw
(x− x∗))dx = − µ

2aw
(2aw − 1)

x∗∫
0

b(x∗ − y) cos(
ω

pw
y)dy

Since b is increasing, b(x∗ − ·) is decreasing. This leads to

Min(x∗, pw
ω
π)∫

0

b(x∗ − y) cos(
ω

pw
y)dy ≥ 0.
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Indeed, either x∗ ≤ π
2
pw
ω
, in which case it is evident because b(x∗ − y) cos( ω

pw
y) ≥ 0 for all

0 ≤ x ≤ x∗, or x∗ ≥ π
2
pw
ω

and we can write

Min(x∗, pw
ω
π)∫

0

b(x∗−y) cos(
ω

pw
y)dy ≥ b(x∗−π

2

pw
ω

)

π
2
pw
ω∫

0

cos(
ω

pw
y)dy−b(x∗−π

2

pw
ω

)|

pw
ω
π∫

π
2
pw
ω

cos(
ω

pw
y)dy = 0.

To end the proof, let us simply exhibit an example where instability can occur: Let χ
denote the Heaviside function, we define

b(x) = Bχy∗≤x≤x∗ .

We compute explicitly:

−ω2+i
µω

2aw
+pwµ

2aw − 1

2aw
= −pwµ

2aw − 1

2aw
iB sin(

ω

pw
(x∗−y∗))+pwµ

2aw − 1

2aw
B
(
cos(

ω

pw
(x∗−y∗))−1

)
.

It provides two relations:

ω
pw

= −(2aw − 1)B sin( ω
pw

(x∗ − y∗)),

ω2

p2
w

2aw
2aw−1

= µ
pw

(
1 +B

(
1− cos( ω

pw
(x∗ − y∗))

))
.

It is obvious that there exist sets of parameters such that both of these relations are
satisfied: for instance, for given aw, B, pw, if ω is such that

ω

pw(2aw − 1)B
≤ 1,

we can always find Z = x∗ − y∗ such that the first relation is satisfied, and we then fix µ
by the second relation.
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