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Abstract. We consider a primal optimization problem in a reflexive Banach space and a duality scheme via
generalized augmented Lagrangians. For solving the dual problem, we introduce and analyze a new parameterized
Inexact Modified Subgradient (IMSg) algorithm. The IMSg generates a primal-dual sequence, and we focus on two
simple new choices of the stepsize. We prove that every weak accumulation point of the primal sequence is a primal
solution and the dual sequence converges weakly to a dual solution, as long as the dual optimal set is nonempty.
Moreover, we establish primal convergence even when the dual optimal set is empty. Our second choice of the
stepsize gives rise to a variant of IMSg which has finite termination.
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1. Introduction. The classical Lagrange function is a useful tool for dealing with constrained
optimization problems, specially when the problem is convex. When the primal problem is noncon-
vex, and the dual problem is generated by the classical Lagrange function, a nonzero duality gap
between the primal and dual problem may exist, compromising the applicability of many meth-
ods. In order to avoid this positive gap, an augmented Lagrangian function can be used instead
of the classical linear Lagrangian. A primal problem of minimizing a nonsmooth and nonconvex
extended real-valued function is considered in [18, Chapter 11], where a dual problem constructed
via augmented Lagrangians with convex augmenting functions is proposed and analyzed. Since
then, augmented Lagrangians with nonconvex augmenting functions have been intensively studied,
see for instance [7, 8, 11, 12, 17, 19, 20, 22, 23]. The dual problem generated by these augmented
Lagrangian functions is convex (i.e, the dual problem is the maximization of a concave function
over a convex set), and therefore subgradient methods and its variants are suitable methods for
solving it.

Subgradient methods have been extensively studied in the context of classical Lagrangian duality,
see for instance [15, 16] and references therein. Modified subgradient algorithms (MSG) have been
considered for the dual problem constructed via sharp Lagrangian in finite dimensional spaces, see
[2, 4, 5, 6, 9]. A property of these algorithms is that the dual values monotonically increase and
converge to the dual optimal value. In [6] the authors introduced and analyzed an inexact version
of the algorithm proposed in [2]. The stepsize rule for the algorithms considered in [2, 5, 6, 9]
depends strongly on the “a priori” knowledge of the primal optimal value. Moreover, no primal
convergence is achieved in these papers. These drawbacks were addressed in [4], where the authors
introduced a stepsize selection rule with primal convergence which does not need the “a priori”
knowledge of the primal optimal value. The method devised in [4] considers the dual problem
induced by the sharp Lagrangian in finite dimensional spaces. However, this method assumes
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exact solution of the subproblems, which is too strong a requirement in the context of nonsmooth
and nonconvex optimization. The present paper addresses this issue, by developing an infinite
dimensional modified subgradient method which accepts an inexact solution of the subproblems,
and can be applied to duality schemes induced by a wide family of augmented Lagrangians in
Banach spaces.

We consider a primal problem of minimizing an extended real-valued function (possibly non-
convex and nondifferentiable) in a reflexive Banach space. A duality scheme is considered via
augmented Lagrangian functions which include the sharp Lagrangian as a particular case (see Ex-
ample 2.1). Our dual variables belong to a Hilbert space. Such duality schemes are suitable for
solving constrained optimization problems in which the image space of the constraint function is a
Hilbert space, see e.g. [13, 14, 21, 23] and references therein. Moreover, development and analysis
of a given algorithm in infinite dimensional spaces gives a deeper insight into the properties of
that algorithm. This issue has also practical interest since usually the performance of numerical
algorithms in finite dimensions are closely related to the infinite dimensional performance, see for
example [21] and references therein.

We propose a parameterized inexact modified subgradient algorithm for solving the dual problem.
For this purpose we use a dualizing parameterization function (a function f(-,-) such that f(-,0) =
©(-), where o(-) is the primal function). To ensure a monotone improvement of the dual values,
we consider an augmenting function (not necessarily convex) similar to the one used in [10] (see
assumption (Ag) below). We prove that validity of (Ag) is necessary for having a monotone increase
of the dual values, see Proposition 3.15. Our method extends in many ways the one proposed in
[4]. First, we extend to a reflexive Banach space the (finite dimensional) MSG proposed in [4].
Also our method admits the dual variables to be in a finite or infinite dimensional Hilbert space;
as commented above this can have some advantages. Second, the convergence analysis in [4]
assumed exact solution of the subproblems, while here we establish convergence accepting inexact
iterates, which is in fact the actual situation in computational implementations. Third, the sharp
Lagrangian considered in [4] is just a simple particular case of our augmented Lagrangians (see
Example 2.1 and assumption (Ag)). Moreover, we consider in our analysis a level-boundedness
assumption on the dualizing parameterization function (Definition 2.2) which is weaker than the
compactness assumption used in [2, 4, 6, 9, 10].

We show that, in our more general setting, our algorithm generates primal and dual sequences
which are weakly convergent to primal and dual solutions. The primal sequence converges in the
sense that all its weak accumulation points are primal solutions, even when the dual solution set is
empty. We also analyze a stepsize selection rule which ensures that when the dual solution set is
nonempty, approximate primal and dual solutions are obtained after a finite number of iterations of
the algorithm (see Section 3.2). It is well known that subgradient methods with classical Lagrangian
do not always obtain a primal solution, unless ergodic averages or more sophisticated techniques
are considered, see for example [15] and references therein.

The paper is organized as follows. In Section 2 we describe the setting of our primal and dual
problems, and give some basic definitions, assumptions and examples. We also recall in this section
some useful facts. In Section 3 we consider the inexact modified subgradient algorithm (IMSg)
and establish its convergence properties which do not depend on the choice of the stepsize. In
Section 3.1 we propose a stepsize selection for IMSg and state and prove our main results. In
Section 3.2 another stepsize rule for IMSg is proposed and we show that, under this stepsize rule,
IMSg converges in a finite number of steps. In the last section we compare our algorithm with the
algorithms with sharp Lagrangian considered in [2, 4, 6, 9].

2. Preliminaries. Let X be a reflexive Banach space and H a Hilbert space. We denote by
(-,-) the scalar product in H, and by || - || the norm, where the same notation will be used for the
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norm both in X and H. We consider the optimization problem
min () s.t. z in X, (2.1)

where the function ¢ : X — Ry := RU {400} is a proper (i.e., domp # 0 and ¢ > —o0)
weakly lower semicontinuous (w-lsc) function. We also assume that ¢ has weakly compact sublevel
sets. In order to introduce our duality scheme, we consider a dualizing parameterization for (2.1),
which is a function f : X x H — R := Ry, U{—o00} that verifies f(z,0) = p(z) for all z € X.
The perturbation function induced by this dualizing parameterization is the function 8 : H — R
defined by

B(z) := inf f(=,2).

zeX

Because ¢ is proper, we have 3(0) < +0o. Next we define a level-bounded augmenting function.
Augmenting functions were introduced in [18, Definition 11.55]. See [11, 7] and references therein
for other generalizations of augmenting functions.

DEFINITION 2.1. A function o : H — Ry is said to be a level-bounded augmenting function if
it is proper, w-lsc, level-bounded on H, 0(0) = 0 and argmin yo(y) = {0}.

The augmented Lagrangian function £ : X x H x R, — R is defined as

Uz,y,r) = inf {f(2,2) = (2,9) + ro(2)}. (2.2)

The dual function ¢ : H x Ry — RU{—o0} is defined as ¢q(y, r) := inf e x £(z, y,r) and therefore
the dual problem is stated as

max q(y,r) s.t. (y,r) € HxRy. (2.3)

Denote by Mp := infyex ¢(z) and by Mp := sup(, ,)cmxr, 4(y,7) the optimal values of the
primal and dual problem, respectively. The primal and dual solution sets are denoted by P, and
D, respectively.

ExaMPLE 2.1. Consider the following equality constrained problem
min ¢(z) s.t.z € K,h(z) =0, (2.4)

where h : X — H has a weakly closed graph, i.e., G(h) := {(z, h(z)) : © € K} is weakly closed in
XxH,¢y:X — Risw-lsc, and K C X is weakly closed. We consider the following equivalent
unconstrained problem:

min ¢(z) := P(z) + oy (x), st.z€ X,

where V := {z € K : h(z) = 0} and dy(z) = 0if z € V, dy(z) = oo otherwise. Consider the

augmenting function given by o(-) = || - ||, and the canonical dualizing parameterization function
given by
P(x) if z € K and h(z) = z,
flz,2) = .
0, otherwise.

By definition, we have (z,y,r) = iéllf{{f(w,z) —{z,y) + ro(z)}, which in this case becomes the
z
sharp Lagrangian proposed in [18, Example 11.58]:

¥(z) — (y, h(z)) + r[[h(z)|| if z € K,
00 otherwise.

Uz, y,r) = {
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The dual function induced by this Lagrangian is
iy, 7) = inf {(z) — (v, h(a)) +rl[A()},
and the dual problem is

max §(y,r) s.t. (y,r) € HxRy.

A modified subgradient algorithm has been considered in [9, 2, 6, 4] for the primal-dual scheme
described in Example 2.1, under the assumptions that X = R", H = R™ and K is a compact set.

As in [10, Eq. (8.1)], we make the following assumption on the augmenting function.
(Ao): o(z) > ||z|| for all z € H.
Next we list some examples of augmenting functions that satisfy (A4p).

i) Let opq : H — R be defined as

Opg(2) == 2P if [lz]] <1,
i/ [|2]|? otherwise,

with0<p<1<q.
ii) Let H =R", and o, : R* — R be defined as o4 (z) := (31, |2i|¥)*, with k € N.

The next definition has been considered in [7, Section 5] and it is a natural generalization of [18,
Definition 1.16].

DEFINITION 2.2. A function f : X x H = R is said to be weakly level-compact if for every
zZ € H and a € R there exist a weak neighborhood V. C H of z, and a weak compact set B C X,
such that

Lysa) ={ze€X: f(z,2) <a}CB foralzeV.

REMARK 2.1. If f verifies Definition 2.2 then every sequence in Ly, ¢(a) has a weakly conver-
gent subsequence. It is not difficult to see that the canonical dualizing parameterization function
considered in Example 2.1 is weakly level-compact if K is a weakly compact set. We will only
consider dualizing parameterization functions which are proper, weakly level-compact and w-Isc.
Next we consider some basic properties of the dual function.

PROPOSITION 2.3. ¢) The dual function q is concave and weakly upper-semicontinuous (w-usc)
function.

1) If r > ¢ then q(y,r) > q(y,c) for all y € H. In particular, if (y,c) is a dual solution, then also
(y,7) is a dual solution for all v > c.

Proof. Ttem (i) follows from the fact that ¢ is the infimum of affine functions. Item (i) follows
from the fact that the penalty function ¢ is nonnegative. O

Augmented Lagrangians are a special case of abstract Lagrangians (see for instance, [7] and [19,
Section 5.2]). In [7, Proposition 4.1] the authors obtained strong duality for abstract Lagrangians
in the framework of abstract convexity. The next theorem is a consequence of [7, Proposition 4.1].
It ensures that there is no duality gap between the primal problem (2.1) and its dual problem
(2.3).

THEOREM 2.4. Consider the primal problem (2.1) and its dual problem (2.3). Assume that the
dualizing parameterization function f: X x H — R for the primal function ¢ is proper, w-lsc and
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weakly level-compact. Suppose that there exists some (y,r) € H x Ry such that q(y,r) > —oc.
Then zero duality gap holds, i.e. Mp = Mp.

Proof. The result is an immediate consequence of [7, Proposition 4.1]. Our duality scheme
is a special case of the one considered in [7]; see [7, Remark 3.5], and observe also that level
bounded augmenting functions are a special case of the augmenting functions considered in [7].
It follows from [7, Proposition 5.1] that if the dualizing parameterization function f is weakly
level-compact then the perturbation function S(y) = inf, f(z,y) is w-lsc. Thus we just need to
ensure that the support of the perturbation function, in the sense of [7, Remark 3.3], is nonempty,
but it is elementary to show that this is equivalent to the existence of (y,c¢) € H x Ry such that
q(y,c) > —oo, which is part of our hypotheses. O

(From now on we assume that the hypotheses of Theorem 2.4 are verified. We give next some
definitions.

DEFINITION 2.5. Let H be a Hilbert space and q : H — R_ a concave function. Take r > 0.
The r-superdifferential of q at yo € dom(q) := {y € H : q(y) > —oo} is the set 0,q(yo) defined by

0rq(yo) :=={v € H : q(y) < q(yo) + (v,y —yo) +r Vy € H}.

DEFINITION 2.6. We say that z. € X is an e.-optimal primal solution if p(z.) < Mp + €x;
we say that (y«,cx) € H X Ry is an e,-optimal dual solution if q(y«,cx) > Mp — €.

For r > 0 consider the following set
Ar(y,c) ={(z,2) € X x H: f(z,2) = (2,y) + co(2) < q(y,c) +r}. (2.5)

By definition of ¢ and (2.2), we see that A, (y,c) is nonempty for all r > 0 and all (y, c) such that
q(y,c) > —oo. Fix (y,c) € H x Ry and define &, ) : X x H — R as

B(y0(2,7) = £(3,2) — (2,0) + o 2). (2.6)

Observe that computation of an element in A, (y, ¢) is tantamount to an approximate unconstrained
minimization of ®(, (-, ), with tolerance r.

3. Inexact Modified Subgradient Algorithm (IMSg). We state next the Inexact Mod-
ified Subgradient Algorithm (IMSg).

Step 0. Choose (yo,co) € H x Ry such that g(yo,co) > —o0, and exogenous parameters €, > 0 (a
prescribed tolerance), § < 1, {ax} C (0, ) for some a > 0, and {r;} C R such that rp, — 0. Let
k:=0.

Step 1. (Subproblem and Stopping Criterion)
a) Find (zg,2x) € Ar, (Ur, k),
b) if 2, = 0 and 7y, < e, stop,
¢) if zx = 0 and ri > €4, then 7 := dry, and go to (a),
d) if z, # 0 go to Step 2.
Step 2. (Selection of the stepsize and Updating the Variables)
Consider s;, a stepsize and define
Ye+1 = Yk — SkZk,

Cp41 = C + (ak + l)ska(zk),
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k:=k+1, go to Step 1.

Note that IMSg has the general form of standard augmented Lagrangian methods: in Step 1 the
primal variables are updated through the approximate solution of an unconstrained minimization
problem (in this case producing the pair (z,z)), and then in Step 2 the dual variables (yg,ck) is
updated through an explicit formula, in this case moving along a direction of dual ascent. Observe
also that here the penalty parameters {c,} are considered as variables. The parameters {ay}
ensure monotonic increase of the dual values; see Theorem 3.3.

First, we present some results which do not depend on the selection of the stepsize. The next
proposition establishes the relation between the approximate minimization implicit in A,(y,¢) and
the approximate superdifferential 9,q(y, c).

PROPOSITION 3.1. The following facts hold for IMSg.
i) If (2,2) € Ar(3,¢), then (=2,0(2)) € Orq(3,¢), for all v > 0.

i) If (Ao) holds then IMSg generates a dual bounded sequence {(yx, cy)} if and only if 3, spo(z) <
+00.

i11) If IMSg stops at iteration k, then xp, is an e.-optimal primal solution, and (yg,cr) is an €.-
optimal dual solution.

Proof. i) For all (y,c) € H x Ry we have:

q(y,c) = inf(y ) {f(2,2) = (z,y) + co(2)}

f(2,2) = (2,y) + co(2) (3.1)
f(2,2) = (2,9) + ¢0(2) + (=2,y — ) + (c — &)o(2).

Using that (£,2) € A-(4,¢) in (3.1), we obtain

IN

N>

Q(yac) < Q(gaé) +T+<_25y_y> + (c—é)a(é)
= q(gaé) + <(_270(2))7 (yac) - (gaé» +r.
Therefore, (—2,0(2)) € 0-q9(§, €).

ii)Using (Ao) and simple manipulations in the definition of {yx}, we obtain

k k k
k1 —voll <D lyirn —will = D sillzll <D sio(z)) (3:2)
j=0 j=0 J=0
On the other hand,
k k
Cp41 — Co = ZC]'+1 —Cj = Z(Oéj + ].)S]'O'(Zj). (33)
Jj=0 J=0

Since {a4} is bounded, (i¢) follows from (3.2) and (3.3).

For proving (iii), observe that if IMSg stops at iteration k, then zp = 0 and r, < €,. Therefore
we have (see Theorem 2.4):

Mp = Mp < p(zr) = f(or,0) — (Y, 0) + c£0o(0) < q(yg,cr) + 14
< Q(ykack) + e < Mp + €4,

which implies that Mp < q(y, cx) + €4, and p(zr) < Mp + €,. That is to say, z is an e,-optimal
primal solution, and (y,cx) is an e,-optimal dual solution.
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Next we establish boundedness properties of the sub-level sets of @, (-, ).

LEMMA 3.2. Let (y,cy) € H x Ry be such that q(y,cy) > —00. The set
Lr(ya C) = {(.73,2’) : (I)(y,c)(xaz) = f(.fL’,Z) - (z,y) + CO'(Z) < Mp + T‘}

is nonempty and weakly-compact for each v > 0 and ¢ > cy. In particular, for each r > 0 and
¢ > ¢y there ezists some (Z,Z) such that

q(y,C) = f('i'az) - <'§7y> + CO’(Z).

Proof. Since the function ¢(-) = f(-,0) is w-Isc and weakly-level compact, there exists a global
minimizer z* of @, so that (z*,0) € L,(y, ¢) for all y,cand r > 0, ensuring that L,(y, ¢) is nonempty.
For proving that L. (y, ¢) is bounded, suppose by contradiction that L, (y, ¢) is unbounded for some
y, ¢, with ¢ > ¢, and r > 0, so that there exists some unbounded sequence {(z,z2x)} C Ly (y, ¢).
Therefore

Mp+r > f(xr,2k) — {2k, y) + co(zx) = f(zr, 2x) — (2k,Y) + cyo(zx) + (¢ — cy)o(21)
> q(y,cy) + (c —cy)a(zk) > q(y,cy) + (¢ — ¢yl 2kl
implying that

Mp+r— c
el < Mt T i)
c—¢y

and hence {z} is bounded. Without loss of generality we can assume that the whole sequence
{21} converges weakly to some z. Since {2} is bounded and o(z) > 0 for all z, we have

f@e,2e) < Mp + 1+ |lylllzll < & (3.4)

for some @ € R. Take a weak compact set B C X and a weak neighborhood V of z given by the
level compactness property of f related to z and & (see Definition 2.2). We know that there exists
ko such that z, € V for all kK > ko. Thus {zj}r>k, C Lv,f(&) C B, by (3.4). Therefore {z}} is
bounded, and hence {(z, 2x)} is bounded, which is a contradiction, establishing boundedness of
L.(y,c). Since the function ®(, .(-,-) given by (2.6) is w-Isc, L,(y,c) is also weakly-closed, and
so L,(y,c) is weakly-compact, by Banach-Alaoglu theorem. The last assertion of the Lemma is
equivalent to

(%,2) € argmin (; \ex x#P(y,0) (2, 2).

Indeed, (%, Z) verifies the inclusion above if and only if

q(y,C) = (z,z)ig‘f;(xH(I)(y’c) (.’L‘,Z) = <D(y,c)('ﬁa’g) = f(';i;:g) - (2,]/) + CO'(Z), (35)
where we use the definitions of <I>(y,c)(-, -) and ¢. Note also that X x H is reflexive and L,(y,c)
is a nonempty weakly-compact sub-level set of @(y,c)(-, -), as we have already established. Since
®(y,0)(-,-) is w-Isc, we know (see for example [3, Proposition 3.1.15]) that @, (-,-) attains its
minimum (%, %) on L,(y,c), which must coincide with the unconstrained minimum. In view of
(3.5), we conclude that (%, 2) verifies

Q(yac) = f(fi.a'%) - <2;y> + Ca'(z).
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The following theorem guarantees a special property of IMSg, which is not verified by the
classical subgradient algorithm. It states that IMSg guarantees a monotonic increase of the dual
function.

THEOREM 3.3. Let {2z} be the sequence generated by IMSg. If zi, # 0 and (y, cx) is not a dual
solution, then q(yr+1,cr+1) > q(Yk, cx)-

Proof. For all k consider €, := aysg. Using the update rule to the dual variables we have

q(Yr+1,Chy1) = (lwnf) {f(@,2) = (%, Yk+1) + cr10(2)}
= (lgcnf) {f(@,2) = (2, 9k) + sklz, zk) + [cx + (ex + sk)o(2k)]o(2) }
= (;nf){f(x,z) (2,9k) + (ck + €ex0(21))0(2) + (0(2k)0(2) + (2, 2k)) sk }
> 1$n£ {f(2,2) — (2, yk) + (ck + exllzelDo(z) + (lzellllzll + (2, zx)) 51}

where the inequality follows from (4g). Now we obtain, using Cauchy-Schwarz inequality,

nrscenn) > il 112) — (50e) + (e + alllo(2)
= q(ykack + Ek”Zk”) > q(ykack)a

where the second inequality follows from Proposition 2.3 (ii). Thus for all k¥ we have

qWrt1,Ch41) > q(Wk, ek + €xllzll) > a(yr, cr)- (3.6)

In particular we have q(yry1,cry1) > q(yr, ce) for all k. Since go = q(yo,co) > —o0, we conclude
that q(yg,cr) > —oo for all k. Therefore we obtain from Lemma 3.2 that, fixing k such that z; # 0,
there exists (%, Z) such that

a(yk, cx + exllzell) = f(Z,2) — (£, k) + (cx + exll2k)o(2). (3.7)

If Z =0, then we get from (3.7) that gy, cr + €xl|2x]|) = F(&,0) = (&) > Mp > q(y,cr), where
the last strict inequality follows from the fact that (yx,ck) is not a dual solution. Therefore we
conclude from (3.6) that q(yr+1,ck+1) > q(yk,cr).- If Z # 0, then, since 2z, # 0 and ¢, > 0, we
obtain from (3.6) and (3.7) that

q(Wr+1, chr1) > @Yk, k) + exllzelllIZl] > a(ye, cx),
using (Ag) and definition of q. The proof is complete. O

(From now on we assume that z; # 0 for all k. In other words, we assume from now on that
the method generates an infinite sequence.

LEMMA 3.4. Let {(yx,ck)} be the sequence generated by IMSg and consider a sequence {zy}
such that (z, zx) € Ar, (Yk,cr) for all k. Then, the sequence {o(zk)} is bounded and in particular
{21} is bounded.

Proof. ;From (3.2) and (3.3) we obtain, for all k > 1,

k—1

¢k — co 2 [lyk — yoll + Za]‘SjO'(Zj) > |lyx — yoll + a,
=0

for some a > 0, ( e.g., we may take a = apsgo(2¢)). Hence we have

llye — yoll + co — cx < —a. (3.8)
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On the other hand, by Proposition 3.1, (—zk,0(zx)) € 9¢r, (Y, cx). Thus

g0 = q(o,c0) < qUr,ck) + (—2k-Yo — Yr) + (co — cx)o(2x) + T

< Mp + |lzkllllye — yoll + (co — cx)o(zx) + 7
< Mp 4 o(ze)(|lyx — yoll +co —cx) + 7
< Mp — aa(zk) + Tk,

using Cauchy-Schwarz inequality in the second inequality, (Ag) in the third one, and (3.8) in the
last one. It follows that

qgo < Mp — ao(z) + rg- (3.9)
Rewriting (3.9) we have

Mp — r Mp — g
o(m) < —RTREIE L TDZWIT oy,

where 7 > 0 is an upper bound for {ry}. Since ||zx|| < o(zx) < b for all k > kg, the proof is
complete. 00

{From now on we use the notation ¢, := ¢(yx, cy) for all k, and §:= Mp.
LeEMmMA 3.5. Consider the sequences {(zk,2r)}, {(yk,ck)} generated by IMSg algorithm.
a) The following estimates hold for all k > 1

@k, zk) — {2k, 90) < @k + 7%, and (3.10)

ZO‘JSJ o(zj)0(zk) < qx — qo + Tk (3.11)

b) Assume that the dual solution set D, is nonempty. If (y,¢) € D4 then for all k,

B B Srol(z —q+r B
ks — 12 < llge — 9112 + 250 () (2008 L B THTe o N (3
2 o(zk)

Proof. ;From the update formula for {(ys,cg)} we have

k—1 k—1
Yk = Yo — Z sjz; and ¢ = co + Z(l + aj)sjo(z5). (3.13)
7=0 7=0

Hence
(Yk, 2k) = (Yo, 2k) ZSJ Zjy 2k)-
By Cauchy Schwarz inequality and (Ay),
k—1
(> 2k) < (Yo, 21) + Y 850(25)0(21)-
=0
Using the expression for ¢, given in (3.13) in the inequality above, we obtain

(k> 2k) < (Yo, 2k) — coo(2k) Z%S; o(z;)o(zk) + cko(2k)-
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Adding f(z,2r) to both sides of this inequality, and observing that o > 0, we have, after some
simple algebra,

k—1

F@r,2) — (o, 26y < flzk, 2k) — (Yo, 26) + coo(zk) + D ajsjo(z;)o(zk)
=0
@k, 2k) — Uk, 2k) + cko(2k) Squ + 7.

IA

i From these inequalities, using the definition of ¢, we obtain

k—1

@k, z1) — (Yo, zk) < gk + 7 and go + Zajsjd(zj)U(zk) < qr + 1k,
=0

which are the statements of (a). For proving (b), take (g, ¢) € D,. For all k we have

lye+1 — 9lI> = llye — sezr — 9l

llye — 7l1* + sillzell® + 25k (T — Yk, 2x)

< lye — 9l1> + s20(2k)? + 2sk(qe — G+ 7% + 0(2) (€ — cx))

e SEo(zk qr, — q+rr  _
- ||yk—y||2+2ska<zk)( (26) +c_ck)

2 g (Z k)
where the inequality follows from (A4g) and the supergradient inequality. The result follows. O

LEMMA 3.6. If the sequence {z} converges weakly to 0, then {qx} converges to g, the primal
sequence {x} is bounded, and all its weak accumulation points are primal solutions.

Proof. Take an upper bound r of {r}. By Lemma 3.5(a), we have, for all k,
f(@r,z1) — (Yo, zk) < @i +me < T+
Rearranging this inequality and using Cauchy Schwarz inequality, we obtain
F@rsze) < llgollllzrll + @+ < b:= |lyollb+ g+ for all k, (3.14)

where b is an upper bound for {||z;||}. Now by the level compactness assumption on f, there exists
a weak open neighborhood V' C H of 0 and a weakly compact set B C X such that

Lys(b) ={z: f(z,2) <b} C B, forall z € V.
Since {2} is weakly convergent to 0, z; € V for k sufficiently large. Hence z € Ly ;(b) for
k sufficiently large, by (3.14). Therefore {z;} is bounded. Take a weak accumulation point Z of
{z}. Thus there exists a subsequence {z, } which converges weakly to Z. In particular {(zx;,2x;)}
converges weakly to (Z,0). Since f(-,-) is w-lsc, we obtain

(@) = f(2,0) < limjinf(f(ﬂfkj,zkj) — (Yo, 2x;)) < limjinf(% +7;) < q, (3.15)

where the second inequality follows from Lemma 3.5 (a), and the third follows from the fact that
{rr} converges to 0. Since § = Mp by Theorem 2.4, we obtain from (3.15) that ¢(Z) = Mp,
and then Z is a primal solution. In particular, all inequalities in (3.15) are equalities. Since {rj}
converges to 0, we obtain that limj inf g, = q. Since {q} is increasing by Theorem 3.3, we conclude

that {gx} converges to . The proof is complete. O

In order to obtain our results we consider the following assumption on the error sequence.
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(A1): There exists R > 0 such that 7y < § — qx + Ro(z) for all k.

REMARK 3.1. We mention that the verification of condition (A4;) is not immediate, since in
general at iteration k we ignore the values of both § and ¢. One alternative is to think of an “a

posteriori” verification of (A1), meaning that we check the boundedness of the sequence {7755}

Indeed, note that when the latter sequence is bounded, then (A;) holds, because Z(_z’i’“) > 0. The
situation improves considerably when we know the optimal dual value g, a situation which occurs
in many “real life” problems. In this case, we can verify condition (A4;) along the iterations of the
algorithm. In order to do this, we observe that the value Ly := f(zk, 2x) — (Y, 2k) + cko(zr) is
computable, and satisfies 7y := Ly — g < 1t for each k. The (unknown) value 7 is in fact the
actual error in the kth-iteration, while the (known) value rj can be seen as an estimate of 7. We
assert that we can take 7 instead of 7 in condition (A;). Observe that, since Ly = qx + 7, we

should verify the following condition:

(Al): There exists R > 0 such that Ly < g+ Ro(zg) for all k.

This condition is checkable when we know the optimal dual value ¢ = Mp. Another possibility

is to think of IMSg as “measuring” at each iteration the boundedness of %, meaning that we
observe whether the condition % < R is satisfied, where R > 0 is an “a priori” given parameter.
For those values of k such that this inequality does not hold, one should consider an exact step
(rr = 0). Another option consists of applying the inexact algorithm IMSg just for a finite number

of iterations and then switch to the exact version of IMSg, i.e., with r, = 0.

LEMMA 3.7. If {ck} is bounded then {yi} is also bounded. If the dual solution set is nonempty
then the converse of the previous statement holds.

Proof. The first statement follows directly from (3.2) and (3.3). For proving the last statement,
we rewrite the supergradient inequality as follows:

Qe — @+ 7k — (U — Yg, 2k)
a(zk)

where (7,¢) € D,. Using (Ag), (41) and Cauchy-Schwarz inequality we obtain
ek ST+ R+ (17— yll (3.16)

cp <Cc+

)

where the constant R is given by (A4;). The last statement now follows from (3.16). O

Next we propose and analyze two algorithms related to IMSg. We remark that the difference
between them lies in the stepsize selection rule.

3.1. Algorithm 1. Take two parameters 8 > n > 0. In Step-2 of the k-th iteration of IMSg,
take ny, := min{n, ||zx||} and By := max{B,0(zx)}, and choose a stepsize s € [nx, fx], for all k.
We denote this algorithm by IMSg-1.

REMARK 3.2. By definition of ng, 8r and (Ag) we have 1, < ||zx]| < o(zk) < Bk. In particular
we see that ||z || and o(z) are simple choices for the stepsize s,. Observe that since [n, 8] C [k, Bk]
for all k, we can choose any stepsize s € [n, 8]. In particular, a constant stepsize for all iterations
is admissible.

The next theorem establishes some basic convergence properties of the dual sequence generated
by IMSg-1.

THEOREM 3.8. Assume that IMSg-1 generates an infinite dual sequence {(yx,cr)}. If the dual
optimal set is nonempty then {(yk,cr)} is bounded and all its weak accumulation points are dual
solutions; if the dual optimal set is empty then {(yk,cr)} is unbounded.

Proof. First, we prove that {(yg,cr)} is bounded when D, # (. Observe that sy < B <
max{f3, b}, where b is an upper bound for o(z) (see Lemma 3.4). Thus sio(z;) < b := max{b3,b*}
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for all k. Let R be asin (4;), and take (§,¢) € D.. If we show that {c} is bounded, then {(yx,ck)}
will be bounded, by Lemma 3.7. Suppose by contradiction that {cj} is not bounded. Thus there

b
exists kg such that ¢, > M = 2 + R+ ¢ for all k > ky. Using these estimates in (3.12), we obtain

~

_ _ b _ _
lyr+1 = Il < llyx — 7ll + 25£0(21) (5 +R+c— Ck) < lyr, — 7ll,

for all k > kq. It follows that {yx} is bounded. This entails a contradiction, in view of Lemma 3.7.
Therefore the dual sequence is bounded.

Let us prove now that all weak accumulation points of {(yy, cx)} are dual solutions. In particular
this also proves the last statement of the theorem by contradiction. Since {(yg,ck)} is bounded,
we know that ), sxo(2x) < oo, by Proposition 3.1. In particular {szo(z;)} converges to 0. On
the other hand, using (Ag) and the fact that s > min{n, ||2x||} we obtain

sk (2x) > min{n|lzll, |2x [} > 0.

Since np > 0, we conclude that {||zg||} converge to 0. In particular {z;} converges weakly to 0. Now
Lemma 3.6 ensures that {gz} converges to §. Take a weak accumulation point (g, ¢) of {(yk,ck)},
so that there exists a subsequence {(yx,,cx,;)} weakly convergent to (7, ¢). Since the dual function
is w-usc (see Proposition 2.3), we have

q > q(9,¢) > limsup q(yx;, crj) = lim gy; = g-
j
Hence ¢(7, ¢) = g and we conclude that (7, ¢) is a dual optimal solution. In particular, boundedness
of the dual sequence implies that the dual solution set D, is nonempty, which establishes the
theorem. O

Theorem 3.8 establishes dual convergence results of IMSg-1. The next theorem establishes
primal convergence results.

THEOREM 3.9. Consider the primal sequence {x} generated by IMSg-1. Suppose that there
exists & > 0 such that @ < ay, for all k. Then {qr} converges to g, the primal sequence {z}} is
bounded and all its weak accumulation points are primal solutions.

Proof. Take the dual sequence {(yx,ck)} generated by IMSg-1. If {(yx,cx)} is bounded, we can
use the same argument used in the second part of the proof of Theorem 3.8 for ensuring that {2y}
converges weakly to 0. Thus, in the case that {(yg,cx)} is bounded the result follows from Lemma
3.6. Hence we just need to consider the case in which the dual sequence is unbounded. In this case
we get from Lemma 3.5(a)

k—1
Zajsj‘f(zj)a(zk) < gk —qo+ Tk (3.17)
7=0

On the other hand, {ry} is bounded and g — go < g — go for all k. Thus there exists M > 0 such
that gr — go + 7 < M for all k. Using this estimate in (3.17), together with the fact that ap > @
for all k, we obtain

a is,-a(zj) o(z) <M (3.18)

for all £ > 1. Since the dual sequence is unbounded, Proposition 3.1(ii) implies that Z;’io sjo(zj) =
00. Using this fact in (3.18), since @ > 0, it follows that {o(z)} converges to zero. By assumption
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(Ag) we get that {||zk||} converges to 0, and thus {z} converges weakly to 0. The result now
follows from Lemma 3.6. O

In order to establish convergence of the whole dual sequence, we need some preliminary material
on Fejér convergence.

DEFINITION 3.10. Let H be a Hilbert space and V a nonempty subset of H. A sequence
{21} C H is said to be quasi-Fejér convergent to V if and only if for all Z € Vthere exists some
sequence {pp} C Ry such that ), pr < oo and

ks = 2I1* < llok — 211* + g

LEMMA 3.11. Consider a Hilbert space H and o sequence {&} C H. If {&:} is quasi-Fejér
convergent to some set V # (), then
a) The sequence {&} is bounded;

b) {||éx — ||} is convergent for all v € V;

¢) if all the weak accumulation points of {x} are in V', then the sequence {&x} is weakly convergent
to some v € V.

Proof. See for example [1, Proposition 1]. O

Next we establish Fejér convergence of the dual sequence generated by IMSg-1 to an appropriate
subset of the dual solution.

PROPOSITION 3.12. Consider the dual sequence {(yx,cr)} generated by IMSg-1. If D, is
nonempty, then {(yx,cr)} is quasi-Fejér convergent to the set Vi, = {(y,c) € D. : ¢ > ¢, Vk}.

Proof. Since D, is nonempty, it follows from Theorem 3.8 and Proposition 2.3 (ii) that there
exists some (y,¢) € D, such that ¢ > ¢ for all k, i.e., Vi is nonempty. Take any (7,¢) € Vi.
Consider di, := ||(§,¢) — (yk,ck)||- Using the updating formula for the dual sequence, we have, for
all k,

2y = |@,8) — (yk — skzrscx + (1 + ok)sko(2k)) ||2
= di + spllzxll? + (1 + aw)?sio ()
+ 25: [ — yk> 2k) — (14 cr)o(z) (€ — cx)]
< @+ sio(z)? + (1 + a)?sio(zk)?
+ 25k [(F — Yk, 2k) — 0 (2k) (€ — cx)],

where the inequality follows from (Ag) and the fact that o > ay > 0. Now, using the supergradient
inequality, we obtain

@2 <E+ 1+ (1+a)?)sio(e)? + 2sk(qr — T+ k) (3.19)

By (A1) we get R > 0 such that gr —§+rr < Ro(zx). Using this estimate in (3.19) and considering
& :=1+ (1+ a)?, we have

dpy1 < di + éaspo(2k)® + 2Rspo(zp). (3.20)

On the other hand, Theorem 3.8 ensures boundedness of the dual sequence. Hence we have
Zska(zk) < 00, by Proposition 3.1, which in turn implies that Zs%a(zk)z < o00. Consider
k k
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pr := asso(zx)? + 2Rsgo(zy) for all k. We see that Y, ur < oo and by (3.20) we obtain
diyy < di + e

for all k. The result follows from Definition 3.10. O

Now we establish weak convergence of the whole dual sequence generated by IMSg-1 to a dual
solution.

THEOREM 3.13. If the dual solution set is nonempty, then the dual sequence generated by
IMSg-1 is weakly convergent to some dual solution.

Proof. By Theorem 3.8, the dual sequence {(y, cr)} is bounded and all its weak accumulation
points belong to Vi = {(yx«,¢«) € Dy : ¢ > ¢, Vk} (observe that {c; } is increasing). By Proposition
3.12 this sequence is quasi-Fejér convergent to V. By Lemma 3.11(c), the sequence is weakly
convergent to some (§,¢) € Vi, C D,. O

3.2. Algorithm 2. In this section we propose a stepsize selection which ensures that IMSg
converges in a finite number of steps.

Take 8 > 0 and a sequence {6} C R} such that Zj 0; = 00, and 8 < 3 for all k. In Step-2 of the

Ok B
—— and By == ——
o) "
for all k. IMSg with this stepsize selection is denoted by IMSg-2.

k-th iteration of IMSg, consider n := , and choose a stepsize sy, € [0, Bk,

THEOREM 3.14. a) Suppose that the dual solution set D, is nonempty. Let {(zk,2r)} and
{(yk,ck)} be the primal and dual sequences generated by IMSg-2. Then there exists a k such that
IMSg-2 stops at iteration k. As a consequence x3, and (yz,cg) are ex-optimal primal and e.-optimal
dual solutions respectively.

b) Suppose that IMSg-2 generates infinite primal dual sequences {(zr,2r)} and {(yk,ck)}, (in this
case D, is empty by (a)). Then {(yr,ck)} is unbounded, {||z||} converges to 0, and {qr} converges
to the optimal value §. The primal sequence {x} is bounded and all its weak accumulation points
are primal solutions.

Proof. a) Taking an upper bound b for {szo(z;)} and repeating the first part of the proof of
Theorem 3.8, it follows that {(yg,ck)} is bounded. In particular, we obtain Zj sjo(zj) < 00, in
view of Proposition 3.1. Observe now that the criterion ry < e. in Step-1 of IMSg-2 is satisfied
after a finite number of iterations, because {r;} converges to 0. Take k such that r, < e, for
all £ > lAc, and suppose that the stopping criterion of IMSg-2 is not satisfied for k£ < k . In this
situation IMSg-2 stops at iteration k (with k > k) if and only if zz = 0. On the other hand we
know, by the stepsize selection rule of IMSg-2, that if z; # 0 at some iteration j then s;o(z;) > 6;.
Hence the fact that ), sjo(z;) < oo and 3, 60; = oo, ensures that there exists k > k such that
2z = 0. Therefore IMSg-2 stops at iteration k, and by Theorem 3.1 we conclude that z is an
e.-optimal primal solution and {(yg,c;)} is an e,-optimal dual solution.

For proving (b) we observe that since IMSg-2 generates infinite primal and dual sequences, we
have 2z # 0 for all k. By the stepsize selection rule of IMSg-2 we have spo(2) > 6y for all k. In
particular ), s;0(2x) = oo, which is equivalent to {(yx,c)} be unbounded, by Proposition 3.1.
Now the result follows by using the same argument of the second part of Theorem 3.9. O

The next proposition establishes that if Assumption (Ag) does not hold, then the conclusion of
Theorem 3.3 may fail.

PROPOSITION 3.15. Let H be a Hilbert space. Suppose that there exists some 0 # 4 € H such
that o(@) = n||a|| with 1 < 1. Moreover suppose that o(—a) = Yz||a||, with 1172 < 1. In this
situation, the conclusion of Theorem 3.3 may fail.
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Proof. Observe that we only need to find a problem such that ¢; < g9 < Mp. First, consider
a w-lsc function g : H — R, such that @, —a € argmin (g + ¢) and min(g + o) = 0 < g(0), (for
example g(z) = —o(z) if z € {u,—u}, g(x) = 1 otherwise). Let K C H be a weakly compact set
such that {@,—@,0} C K. Consider the following primal problem

min f(z) := g(z) + (4,z) st.z € K, h(z) :=z = 0. (3.21)

Let C ={z € K : h(z) = 0} and dc(z) = 0 if z € C, ¢ (x) = oo otherwise (observe that C = {0},
because 0 € K and h(z) = z). Take ¢(x) = f(z) + dc(x) for each x € H. Therefore the problem
(3.21) is equivalent to

min ¢(z) s.t.z € H,

Consider now a dualizing parameterization function given by

f(w,u):{f(x) ifa:EI.(andx:u,
o0 otherwise.
Then
(2,9,) = inf{F(,u) — (g, ) + co(w)} = {f () = () - eol) ifr e K
u IS otherwise,

and therefore
a(y,0) = inf U(z,y,0) = inf {f(@) — (y,2) +co(a)} = inf {g(x) — (y — @,2) + co (@)}

Since K is weakly compact and f is w-Isc, the hypotheses of Theorem 2.4 are satisfied, and therefore

sup  q(y,c) = inf @(x) =: v (observe that v = g(0)). We can easily verify that
(y,c)EHXR 4 zeH

a(@,1) = inf {g(z) +0(2)} = g(u) + (@) = 0.

Observe also that 0 = g(u) +o(u) = f(u,u) — (@, ) + o (w). Therefore, (w,u) € AT, 1) := Ao (g, 1),
(see definition of A,(y,c) in (2.5)). Consider yog = @, co = 1 and ro = 0 in Step-0 of IMSg. If we
take (u,u) € A(yo,co) as the solution of the subproblem (see IMSg) then

Y1 = Yo — Sol, and ¢1 = ¢o + (1 + @) soo(u),

1
where s > 0 is an initial stepsize and «q satisfies ag < —— — 1. Hence
M2

U(—a,y1,¢1) = f(=u)+ (y1,4) + cro(—a)
J(=u) + {yo — sou,u) + [co + (1 + ao)soo(u)] o(—u)
f(=a) + ||a]|* + o(—u) + so [(1 + ao)o(@)o(—a) — ||al|?]

where we use yo = u and ¢g = 1. Observing that g(—u) + o(—u) = 0 and using the definition of f
we obtain

U=, y1,¢1) = s0 [(1+ ag)o(@)a(—a) — ||al*] = so[(1 + ao)y1re — 1] |lal* <0,
where we use the assumptions on o (%), (—%) and ag. Now by definition of ¢(y1,c1) we get

q(y1,c1) < L(—1,y1,¢1) <0 =q(yo,co0) < g(0) =,
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that is, ¢(y1,c¢1) < q(yo,c0) < v = Mp. The proof is complete. O

REMARK 3.3. The assumption vy < 1 used in Proposition 3.15 is satisfied when o is even
(i.e., when o(z) = o(—=2) for all z) and there exists some % such that o(@) < ||a||. An example of
such a function is o(z) = ||2||* for ¢ > 1. Another choice of o for which Theorem 3.3 may be false
is when o(-) > || - || with 0 < v < 1. In the latter case, the following simple modification of the
algorithm ensures the increasing property of the dual values. Consider a sequence {t;} such that
ty > ;—2 for all k, and update the parameter ¢, as follows,

Ck+1 ‘= Cp + (Oék + tk)SkO'(Zk).

The proof of the increasing property of the dual values is similar to the one given in Theorem 3.3
and it is omitted. We claim also that if we consider {¢;} C [%,dl] for some d; > % > 0, then
Theorems 3.8, 3.9, 3.13 and Theorem 3.14 remain valid for this modification with essentially the
same proofs.

3.3. Modified Subgradient Algorithm with Sharp Lagrangian. Some versions of the
modified subgradient algorithm (MSG) with sharp Lagrangian in finite dimensional spaces were
proposed in [2, 4, 9, 6]. In [10] the authors considered an optimization problem which contains
just one inequality constraint and analyzed a version of MSG for the dual problem generated via
augmented Lagrangian. The MSG proposed in [2, 6, 9, 10] depends strongly on the knowledge of
the primal optimal value. This drawback was avoided in [4]. In the present paper we propose an
inexact version of the MSG proposed in [4] and we extend the convergence results to augmented
Lagrangians more general than the sharp Lagrangian. In [6] the authors proposed an inexact
version of MSG proposed in [2]. In this section we compare our algorithm with these previous
versions of MSG, giving special attention to the search direction. We also compare our assumption
(A;) with the assumption on the error sequence {7} used in [6]. For this purpose, consider
Example 2.1, for which we have

Ar(y,¢) = {(2,2) € X X H : f(z,2) = (y,2) + cllzl| < gy, ¢) + 1}

= {(z,h(z)) € K x H : {p(z) — (y, h(x)) + c[|h(2)[| < q(y,c) +r}
= {(&,h(z)) : z € Tv(y,0)},

where I';.(y,¢) = {z € K : L(z,y,c) := ¢¥(x) — (y, h(x)) + c||h(z)|| < q(y,c) + r}, which is precisely
the set X, (y,c) considered in [6, Equation (6)] in a finite dimensional setting. Moreover, the set
A, (y,c) is completely determined if we know I'.(y,c). Therefore, at iteration k we update the
search direction as (—zk,0(2x)) = (=h(zk),||h(zk)|]) with zx € T, (yk,ck), which is the same
search direction considered in [6]. In particular, for r;, = 0 for all k, we obtain the MSG proposed
in [4], which is the exact version of IMSg with sharp Lagrangian. Thus we have also extended to
reflexive Banach spaces the MSG method proposed in [4]. We also consider more general augmented
Lagrangian functions than the sharp Lagrangian considered in [4, 2, 9, 6].

Next, we compare our assumption on the error sequence {ry} (condition (A;)) with the assump-
tion considered in [6]. First, we look again at Example 2.1 in a finite dimensional setting, with
a() = || - ||, and zx = h(zg) . It is easy to see that assumptions (A;) and (As) considered in [6,
Section 4] are equivalent to the following assumption: there exist 7 > 0 and M > 0 such that, for
all k,

(@—ax+ri)

o (28) < spo(z) < M.

In particular, from these inequalities we obtain 7, < %J(zk) for all k. We remark that our
assumption (A4;) on the error sequence {ry} is an improvement over this last estimate.
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