
Infinite ergodic theory and Non-extensive entropies.

L.M. GAGGERO-SAGER, E.R. PUJALS AND O. SOTOLONGO-COSTA
1 Universidad Autónoma del Estado de Morelos. Facultad de Ciencias. Ave. Universidad 1001, Cuernavaca, Morelos, México
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We bring into account a series of result in the infinite ergodic theory that we believe that they
are relevant to the theory of non-extensive entropies.

PACS numbers:

I. INTRODUCTION.

In Ref. [33] it has been proposed that Non-extensive
entropies can be useful to describe the dynamics of sys-
tems with zero Lyapunov exponent but exhibiting some
weak form of sensitiveness to initial conditions. This sen-
sitiveness would be described by the q−generalized Lya-
punov exponent λq for some value of q in such a way
that the average distance between point after n−iterates
would be of the order of expq(λqn) where expq(t) =

[1 + (1 − q)t]
1

1−q . In particular, it was conjectured in
Ref. [34] that a version of Pesin’s theorem for sub-
exponential instability would relate the q−entropy with
the q−generalized Lyapunov exponent. More precisely,
they would coincide if λq > 0 and q < 1 and in this case
the average distance increases polynomially.
With this in mind, we are recalling some results in

the infinite ergodic theory, meaning the ergodic theory
of systems preserving a non-finite measure. The reason
to focus on these type of systems is because they ex-
hibit zero Lyapunov exponent and they may exhibit sub-
exponential instability. Therefore, they can be analyzed
in the framework of non-extensive entropies.
In this direction, our goal is to show that for some sys-

tems preserving an infinite measure (and therefore having
zero Lyapunov exponent) the next assertions hold:

1. they do not have a unique quantity that describes
sub-exponential instabilities;

2. sub-exponential rates can grow faster than polyno-
mial ones.

As a consequence of that, a twofold observation fol-
lows: there is no a single quantity to characterize sub-
exponential growth, and it can not necessary be under-
stood in polynomial terms.
To explain that, the following is done:

1. A class of examples having infinite invariant mea-
sure is introduced;

2. It is explained why systems having infinite invariant
measure exhibit zero Lyapunov exponents;

3. It is shown how ergodic theorems can be recovered
for infinite invariant measure and how the time av-
erages become intrinsically random making difficult
to find a unique “generalized Lyapunov” quantity;

4. It is explained how these type of systems displays
sub-exponential instabilities and it is shown differ-
ent examples where the sub-exponential instability
is not polynomial.

For this exposition, we follow Ref. [1] and Ref. [35].
We want to point out that in this note, no new theo-
rems for the infinite ergodic theory are provided; we only
present some results already proved somewhere else and
we recast them to show that they could be relevant for
the theory of non-extensive statistical mechanics.

II. INFINITE MEASURE.

Given a map T : X → X acting on a phase space
X, its action can lead to very complicated (chaotic) dy-
namics. Ergodic theory can be seen as a quantitative
theory of dynamical systems, enabling us to rigorously
deal with such situations, where it is impossible to pre-
dict when exactly some relevant event is going to take
place. For example, Birkhoff ergodic theorem, tells us
quite precisely how often an event will occur for typical
initial states. In fact, a rich quantitative theory is avail-
able for systems possessing an invariant finite measure µ,
meaning that µ ◦ T−1 = µ. Moreover, in case of smooth
systems, Birkhoff ergodic theorem allows to characterize
the rate of mixing of a system.

However, there do exist systems of interest (not nec-
essarily too exotic), which happen to have an infinite
invariant measure, i.e., measure preserved by T and that
µ(X) = ∞. The “Infinite Ergodic Theory” focuses on
such systems trying to answer the simplest quantitative
question of understanding the long-term behavior of oc-
cupation times

Sn(A) := Σn−1
k=01A(T

k(x)) (1)

where 1A is the characteristic function of the set A
(1A(x) = 1 if x ∈ A otherwise the value is zero). The
quantity Sn(A) counts the number of visits an orbit pays
to A before time n. Slightly more general, we can also
look at ergodic sums

Sn(f) := Σn−1
k=0f(T

k(x)) (2)

of measurable functions f .
Some typical examples of infinite measure preserving

transformation are:
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1. Boole maps, T : R \ {0} → R, T (x) = x− 1
x , where

the invariant measure is the Lebesgue measure in
the Real line (see Ref. [8] and [4]);

2. Pomeau-Manneville maps, T : [0, 1] → [0, 1],
T (x) = x+ cxpmod(1), in which zero is a parabolic
fixed point (T ′(0) = 1), and the invariant measure
has support in [0, 1] but gives infinite measure to
the interval (see Ref. [30, 10]);

3. Polynomial and rational maps on C (quotient of
polynomials acting on C) with parabolic fixed
points (points where the derivative has modulus
one) in the Julia set and no critical points there,
where the invariant measure is a h−conformal mea-
sure concentrated in the Julia set and h is the Haus-
dorff dimension of the Julia set (see Ref. [2]);

4. Some quadratic unimodal maps (or logistic type
maps) where the invariant measure is absolute con-
tinuous and giving infinite measure to the domain
(see Ref. [21, 9, 5]);

5. Horocycle flows on infinite regular covers of com-
pact hyperbolic surfaces, where the invariant mea-
sure is the classical volume measure (see Ref. [25]);

6. Two dimensional version of the Boole’s map, T :
R2\{0}×R → R2, T (x, y) = (x− 1

y , x+y− 1
y ), where

the invariant measure is the Lebesgue measure in
the whole two dimensional plane (see Ref. [12]);

7. Special flows (see Ref. [28] and [32]) which are vol-
ume preserving flows of the two dimensional torus
T2 given by solution of the equation

ẋ = f(x, y)
ẏ = f(x, y)α

where α is irrational, and f : T2 → R verifies that
f(0, 0) = 0 and f(x, y) > 0∀ (x, y) 6= (0, 0).

The first two systems are conjugated to the classical
doubling function acting on the interval [0, 1] and so their
dynamics can be described by the symbolic shift acting
on the space of sequences of two symbols. In particular,
they are topologically mixing and have infinitely many
periodic orbits. The Pomeau-Manneville maps were in-
troduced to model intermittent behavior in fluid dynam-
ics (see Ref. [30]). For those type of system, the re-
sulting behavior is an alternation of chaotic (when the
orbit stays far from the parabolic point and where the
map is similar to the bakers map) and regular when the
orbit is trapped near the parabolic point. On the other
hand, the presence of a parabolic fixed point makes those
systems to have zero Lyapunov exponent and to display
an infinite invariant measure. Moreover, for those type of
systems it had been calculated rigorously the information
content (Kolmogorov complexity) of the symbolic orbits
generated by these systems (see Ref. [6, 17]), showing

a behavior for the information that is between a posi-
tive entropy system (the information grows linearly with
time) and an integrable system (the information grows
as the logarithm of time).

Polynomial and rational maps are the typical dynam-
ics acting on the complex plane; the classical exam-
ple is given by the family of quadratical polynomials
Pµ(z) = z2 + µ. Recall that the Julia set (in the case
of polynomials) is defined as the boundary of the set of
points that its trajectory does not escape to infinite and
its concentrate all the dynamics complexity (see for in-
stance Ref. [27]).

The quadratic family is the classical example of one-
dimensional real dynamics exhibiting chaotic dynamics.
In Ref. [21, 9, 5] is shown that for certain parameters,
the associated map has an infinite absolute continuous
invariant measure.

The two dimensional version of the Boole’s map in-
troduced by Henon to model certain problem in celestial
mechanics (see Ref. [19, 20), are conjugated to the Baker
map acting on a two dimensional rectangle (see Ref. 12]).

The Horocyclic flow on compact hyperbolic surfaces is
the most classical example of minimal and ergodic dy-
namic respect to finite volume measure (fact proved by
Hedlund in 1930). They are associated to the classical
geodesic flow on hyperbolic surfaces (free motion on hy-
perbolic surfaces). However, as proved in Ref. [25], when
is considered infinite covers, the measure become infinite.

The last example, is a topologically mixing conserva-
tive system on the torus and having only one periodic
point (the point (0, 0) which is fixed). Those systems are
semiconjugated to quasi-periodic ones. The fact that the
fixed point is parabolic, allows to find an infinite invari-
ant measure.

Some of those systems were treated in the context of
non-extensive entropies, see for instance Ref. [31, 11] for
the case of the quadratic family. We want to point out
that there are many other systems having zero Lyapunov
exponent but exhibiting weak form of mixing and which
are not covered by the above list (see for instance Ref.
[13, 13, 16, 3, 15, 24]). However, in some cases it is
unknown if they have infinite invariant measure

Even though many of the above described systems
could seem very restrictive, it is important to remark
that for one-dimensional dynamics, whenever a parabolic
periodic point appear, they present anomalous statistical
behavior and for this reason they have been used as mod-
els of many interesting physical systems.

The first ergodic theorem for recurrent ergodic measure
transformation (i.e., almost every point is recurrent and
any invariant set or its complement has measure zero) in
the context of infinite measure is the following:

Theorem 1 (Birkhoff’s Pointwise Ergodic Theorem).
Let T be a recurrent ergodic measure transformation on
the infinite measure space (X;A;µ), then

1

n
Sn(f) → 0. (3)
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This theorem shows that smooth systems preserving
an infinite measure has zero Lyapunov exponent. More
precisely:

Remark 1 Observe that if T is a smooth one dimen-
sional map on the line and log T ′ ∈ L1(µ) then it follows
that

1

n
log Tn′(x) =

1

n
Sn(log T

′(x)) → 0, x a.e (4)

meaning that for almost every point the Lyapunov expo-
nent is zero.

It is natural to ask if it is possible to find a sequence {an}
of positive normalizing constants, such that for all A ∈ A,
follows that 1

an
Sn(1A) → µ(A) and for any f ∈ L1(µ)

follows that 1
an

Sn(f) →
∫
fdµ. This could be regarded as

an appropriate version of the ergodic theorem for spaces
with infinite measure. The following shows that this is
not possible:

Theorem 2 Let T be a recurrent ergodic measure trans-
formation on the infinite measure space (X;A;µ), and let
any sequence {an}n∈ . Then for all f ∈ L1(µ) either

lim sup
1

an
Sn(f) = 0 (5)

or

lim sup
1

an
Sn(f) = ∞. (6)

The previous theorem shows that any potential nor-
malizing sequence either over or underestimates the ac-
tual size of ergodic sums. Moreover, this points out that
in infinite measure systems, the time average of an ob-
servation function fluctuates.
To find the appropriate normalizing sequences an (or

time rescaling), it is needed to define the dual operator

T̂ : L1(µ) → L1(µ) given by T̂ (f) = f ◦ T−1, which
describes the evolution of measures under the action of
T in the level of densities:

Definition 1 It is said that the system is pointwise dual
ergodic, if there exist constants an = an(T ), n ∈ N, such
that for any L1(µ) it follows that

lim
1

an
Σn−1

k=0 T̂
k(f) =

∫
f du (7)

The sequence an = an(T ) is uniquely determined up
to asymptotic equality, and is called the return sequence
of T. Moreover, when the map is pointwise dual ergodic,
there exists sets A ∈ A with µ(A) < +∞ such that

lim
1

an
Σn−1

k=0 T̂
k(1A) = µ(A). (8)

This type of sets are called Darling-Kac (DK) sets. This
means that the measure of the set A is recovered by

pulling back the Lebesgue measure in A and averaged
by the sequences {an}. The next result shows that the
proper normalized time rescaling of an observation func-
tion converges in distribution, provided that the return
sequence has certain properties.

If the return sequence is regularly varying with index

α ∈ [0, 1] (i.e. an(T ) = nαh(n) and for any c > 0 h(cn)
h(n) →

cα), the asymptotic behavior of Sn(f) can be described
almost surely in distribution as follows, whenever it is
assumed that the map is a recurrent ergodic measure
transformation:

Theorem 3 (Aaronson’s Darling-Kac Theorem) Let T
be a recurrent ergodic measure transformation on the in-
finite measure space (X;A;µ). Assume there is some
DK-set A ∈ A. If an = an(T ) is regularly varying of
index 1− α (for some α ∈ [0; 1]), then for all f ∈ L1(µ)
and all t > 0

µA(
1

an
Sn(f) < t) → Pr[Mα(t)

∫
X

fdµ] as n → ∞. (9)

In previous theorem, µA denotes the measure µ re-
stricted to the set A (and can be replaced by any prob-
ability absolutely continuous respect to µ), and Mα, α ∈
[0; 1] denotes a non-negative real random variable dis-
tributed according to the (normalized) Mittag-Leffler dis-
tribution of order α, which can be characterized by its
moments

E[Mr
α] = r!

Γ(1 + α)r

Γ(1 + rα)
, r ≥ 0. (10)

Going back to the problem of finding the sub-exponential
Lyapunov exponents, the previous theorem shows that in
certain cases it is not possible to find a unique quantity
for almost every point even in the case of ergodic systems.
Actually, the “Lyapunov exponent“ behaves as a random
variable. In particular, assuming that the transforma-
tion T is one-dimensional and smooth, if f = log(T ′)
then the hypothesis of theorem 3 hold and α 6= 0, it
follows that given three points t1 < t2 < t3 there is
a set of positive measure of initial conditions such that
exp(ant1) < (Tn)′(x) < exp(ant2) (provided n large) and
a set of positive measure of initial conditions such that
exp(ant2) < (Tn)′(x) < exp(ant3).

However, theorem 3 gives the range of fluctuation of
the Lyapunov exponent and the sequences an provides up
to a constant that depends on set of initial conditions, the
rate of separation of trajectories. In fact for almost every
point x, there exists t(x) such that for any ε > 0 if n is
large enough then

exp(an(t(x)− ε)) < (Tn)′(x) < exp(an(t(x) + ε)). (11)

So, for some of the maps described before, we are going
to explicit the normalizing sequences an = an(T ) and we
are going to apply theorem 3:

1. For the Pomeau-Mannivelle maps, an = n
1
p if p >

1, an = n
logn if p = 1;
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2. For the Boole map, an =
√
n;

3. For rational maps on on C with parabolic points
in the Julia set, an = nβ−1 for 1 < β < 4 and
an = n

log n if β = 4 with β = p
p+1h where p is the

first integer larger than one such that the derivative
at the parabolic fixed point does not vanish and h
is the Hausdorff dimension of the Julia set J ;

4. Horocycle flows on periodic hyperbolic surfaces,
a(t) = t

ln(t)k
with k ∈ 1

2 depending on the surface

(see Ref. [26]).

Observe that in same cases, the rescaling of time has
a polynomial fashion, but the situation for the asymp-
totic growth of the derivative is quite different. So
now, using that in the one-dimensional log(Tn′(x)) =
Σn−1

j=0 log(T ′(T j(x))), theorem 3 and the explicit calcula-
tion of the sequences an one can provide the asymptotic
growth of the derivative and therefore the rate of sub-
exponential instability:

1. Sub-exponential Lyapunov exponents for Pomeau-
Manneville maps: Given any pair of positive num-
bers t1 < t2, in the case that p > 1 it follows that
for large n there is a positive set of initial condition

that exp(t1n
1
p ) < (Tn)′(x) < exp(t2n

1
p ). If p = 1

it follows that for large n there is a positive set
of initial condition that exp(t1

n
ln(n) ) < (Tn)′(x) <

exp(t2
n

ln(n) ).

2. Sub-exponential Lyapunov exponents for maps on C
with parabolic points in the Julia set: it is similar
to the Pomeau-Manneville maps.

3. Sub-exponential Lyapunov exponents for Boole
maps: There is a positive set of initial conditions
for which exp(t1

√
n) < (Tn)′(x) < exp(t2

√
n).

In any case, it follows that the sub-exponential growth
of the derivative by iteration is larger than the growth of
any polynomial and therefore it can not be described by
any expq for any value of q.
For the case of quadratic family, no explicit calculation

have been performed, however a vast range of different
type of sub-instability can be expected. This is discussed
latter at the end of the present section.
Even theorem 3 shows that normalized time averages

only converge to distributions, it is natural to wonder if
the double average of the weighted Birkhoff sums con-
verge. In fact, the following theorem shows how the ex-
pected value of normalized time averages also has a limit:

Theorem 4 Assume that an = nαh(n) is regularly vary-
ing with index α ∈ (0, 1] or α = 0 and with h(n) ≈
exp(

∫ t

1
η(t)
t dt), where η is monotonic, η(t) → 0 as t → ∞

and η(t)
log t → ∞ as t → ∞. Then for any function

f ∈ L1(u)

lim
1

N
Σ

1

an
Sn(f) =

∫
f du (12)

in measure.

So, previous theorem applied to the case that T is
a one-dimensional smooth maps (recall remark 1) gives
the expected value of the random fluctuation of the sub-
exponential rate of separation. More precissely,

lim
1

N
Σ

1

an
(Tn)′(x) =

∫
ln(T ′)(x) du. (13)

It is important also to point out, that in certain cases
(for instance for the Boole maps and Pomeau-Mannivelle
maps), the rates an are related to the induced map (or
return map): Given a set A with µ(A) < +∞ and as-
suming that almost every return point (which is the case
in the examples considered and in the hypothesis of the
theorems), then for almost every point x it can be de-
fined n(x) = min{n ≥ 1 : Tn(x) ∈ A} and then, is
defined the map x → Tn(x). It turns out that the mea-
sure µ restricted to A is ergodic and finite. Moreover,
the examples of unimodal maps (quadratic-type maps)
with infinite measure is obtained through a return map
construction (usually called towers) and showing a type
of non-integrability condition for the return times (see
Ref. [5] for details). These analysis would provide a pre-
cise description of the sub-exponential instability. Pre-
cise studies of quantitative recurrence in systems having
an infinite invariant measure have been performed also
in Ref. [18]. Moreover, in Ref. [7] is done, through a
series of examples, a detailed investigation of the rela-
tionships between quantitative recurrence indicators and
algorithmic complexity of orbits in weakly chaotic dy-
namical systems.

The problem of finding a Pesin’s type formula that
relates the “sub-exponential Lyapunov exponent” with
some generalized entropy, was answered positively in Ref.
[23] for the case of the Pomeau-Manneville maps. In this
paper, is related the quantity (13) with the entropy in-
troduced by Krengel in Ref. [22], which is the normalized
Kolmorgorov-Sinai entropy for the first return map de-
fined above.
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