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ABSTRACT. Liquefied Natural Gas contracts offer cancellation options that make their pricing difficult,

especially if many gas storages need to be taken into account. We develop a valuation mechanism for

such contracts from the buyer’s perspective, a large gas company whose main interest in these contracts

is to provide a reliable supply of gas to its clients. The approach combines valuation with hedging, tak-

ing into account that price-risk is driven by international markets, while volume-risk depends on local

weather and is stagewise dependent. The methodology is based on setting risk-averse multistage sto-

chastic mixed 0-1 programs, for different contract configurations. These difficult problems are solved

with light computational effort, thanks to a robust rolling-horizon approach. The resulting pricing mech-

anism not only shows how a specific set of contracts will impact the company business, but also provides

the manager with alternative contract configurations to counter-propose to the contract seller.

AMS subject classifications: 90C15, 91B30.

1. INTRODUCTION AND BACKGROUND

For large gas companies, Liquefied Natural Gas (LNG) appears as a convenient complement to

their own natural gas (NG) resources. A proper mix of NG and LNG contracts allows a gas company

not only to diversify its portfolio, but to hedge risk better. In the gas sector, risk concerns are related

to the volatility of gas prices and also to the obligation of providing faultless delivery, especially to

“uninterruptible” clients, usually crucial customers for the business.

We consider a problem faced by large companies dealing with NG storage, wishing to contract

shipments of LNG, and having the ability to choose among various contract configurations (prices,

delivery dates, fees). Typically, LNG contracts offer the possibility to ship LNG loads at pre-specified

dates, with a cancellation option. In our application, LNG loads are seen by the company as a mecha-

nism ensuring that clients will be delivered only gas, without resorting to alternative, more expensive,

Key words and phrases. Stochastic Programming and Risk Aversion and CVaR and LNG Contracts Management and
Rolling Horizon.
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fuels. But the clients demand is subject to seasonality, making uncertain the future gas consumption.

For this reason, to hedge against volume-risk, we adopt a robust approach ensuring that the company

will always have a sufficiently high storage of NG.

As robust approaches tend to be exceedingly conservative, it is crucial to dispose of corrective

measures, to adapt better the actual NG volume to the uncertainty realization. The cancellation options

of LNG contracts help precisely in this matter, by making LNG delivery flexible and, hence, rendering

NG storage more adaptable. Admittedly, versatileness does not come for free: cancellations involve

paying a fee, which gets higher as the forecasted shipment date approaches. For a given LNG contract,

it is therefore important to determine if some loads might be cancelled, and if so, when cancellations

might occur. Both the price of each load and the cancellation fees depend on the NG spot price at the

time the load is delivered or cancelled. Since future spot prices are highly uncertain, we hedge out

the corresponding price-risk by means of a Conditional Value-at-Risk. As cancellations are modelled

by using binary variables, the optimal management of a portfolio of various NG storages and NG and

LNG contracts is a multistage stochastic linear program with mixed-integer variables.

The model considered in this work, for large NG companies dealing with storage, represents the

buyers’ point of view in a nonequilibrium context. More precisely, suppose that a manager who

operates in a vertically integrated system has the offer of different LNG contracts with cancellation

options. We give an answer to the following question: what are the acceptable contract prices in such

a setting? This viewpoint brings into consideration two challenging issues, hedging and valuation,

both of which must be handled adequately: the company’s NG portfolio needs to be managed in an

optimal manner, controlling the volume- and price-risks. From the buyer’s perspective, the value of

each LNG contract is given by the benefits the contract brings to the company business. Such value is

translated into a price that the company manager considers acceptable for contracting LNG shipments.

On the other hand, to measure the benefits of a contract for company operations, the contracted price

should be specified.

The intertwining between valuation and hedging makes the problem complex and difficult to solve.

We adopt a simple but rather realistic framework (all uncertain parameters depend affinely on the NG

spot price in a reference market) and proceed in two steps. First, we define the optimal portfolio

management problem, for a portfolio composed of NG storages, NG contracts, and a set of LNG
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contracts with fixed configuration. By fixed configuration, we mean that both the purchasing price and

cancellation fees of the LNG contracts are known affine functions of the spot price (cf. (2) below).

The associated mixed-integer multistage stochastic program is solved by a heuristic based on a robust

rolling-horizon approach that considers a sequence of risk-averse multi-stage programs, defined over

shorter and shorter horizons. The heuristic provides a policy that is implementable, feasible, and

time-consistent in the sense of [19]. The LNG pricing problem is addressed in a second step, by

simulating the optimal management of the portfolio, over a set of different contract configurations

that are considered acceptable by the seller.

Our paper is organized as follows: Section 2 reviews some relevant literature and Section 3 de-

scribes the company gas network and its dynamics. The stochastic modelling of uncertainty for this

particular problem is given in Section 4. Section 5 explains the robust rolling-horizon approach em-

ployed to make the stochastic programs tractable using the solution method in Section 6. The contract

pricing mechanism is described in Section 7. Numerical testing on a Brazilian case-study, reported in

Section 8, confirms the interest of the approach and validates the methodology.

2. RELATION TO EXISTING LITERATURE

In Europe and North America energy derivatives and physical markets monetize capital investment

in commodity storage assets. Such is not the case for our application, because the large oil and energy

company under consideration distributes NG in the Brazilian network. Price-risk is international, as it

is driven by the NG spot price in some reference market. By contrast, volume-risk is mostly national,

and varies with the pluvial regime, because in Brazil electrical power is mostly hydraulic. When

hydro-reservoirs are full, there is no thermal generation and the thermal power plants practically do

not consume any NG. When reservoirs are nearly empty, thermal power plants are dispatched at full

capacity and the NG consumption peaks out.

We refer to [9] for an overview of gas related problems and to [11] and [12] for a survey on contract

portfolio management problems. Albeit not straighforwardly applicable to our problem, for the sake

of completeness we now review some of the NG asset valuation literature.

For gas sale retailers operating in the Italian market, the model considered in [3] finds optimal

commercial policies in a deterministic framework; a risk-neutral stochastic formulation is developed
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in [16]. Since retailer companies are of reduced size, they do not have the capacity of storing gas,

which considerably simplifies the optimization process describing company operations. But when

storage is involved, any multistage stochastic NG model is doomed to suffer from the curse of dimen-

sionality, due to the presence of many state variables.

As explained in [18], valuation and hedging of real option cash flows rely on the risk-neutral dy-

namics of state variables (the various gas reservoirs in our application). For this reason, usual ap-

proaches for NG valuation from the Real Option literature, such as in [8, 22], are not applicable in our

setting, because decisions on the cancellations have to be robust with respect to demand fluctuation.

Furthermore, we are taking the manager’s point of view under a highly incomplete market context.

Since NG storages are not traded in liquid markets, in [5] the valuation of working capacity of NG

storages is modeled by replicating nontraded components of the storage option with traded instru-

ments. The approach is justified by the fact that owning storage combined with the ability to transact

in the physical market is similar to owning straddles. The optimization model is a deterministic linear

programming problem. Uncertainty in the bid and ask prices is dealt with by Monte Carlo simulation,

using historical records to run different linear programs, and by making a sensitivity analysis. Only

one NG storage is valued, without hedging, and without a cancellation option, because LNG contracts

are not considered. In [1] the problem of evaluating an investment related to NG is addressed. Since

the focus is on valuing the investment, no hedging is considered in the work. Furthermore, the model

does not include operational constraints, neither demand satisfaction by various NG storages nor LNG

contracts.

Large-scale NG storage valuation with uncertain price dynamics is considered in the work [14]. To

overcome the curse of dimensionality inherent to NG storage problems, the authors define an intrinsic

rolling policy that is close to our rolling-horizon approach. The work assesses different heuristics

from a trader’s perspective and does not include cancellation options for LNG contracts. Moreover,

for our application, a basic assumption of the model, requiring NG storage facilities to be located near

a liquid wholesale spot market where the company performs its physical trading, is not satisfied.

We finish this short review by mentioning the valuation proposal in [6], which also views NG

storages as straddles on gas prices. However, unlike the previous references, the optimal control model

from [6] considers 0-1 variables, to model the ability to inject or withdraw gas. Another distinctive



ROBUST MANAGEMENT AND PRICING OF LNG CONTRACTS WITH CANCELLATION OPTIONS 5

feature of the approach is that it can handle the so-called path-dependence of NG inventory. Such

wording refers to the fact that the actual NG level in the reservoir depends on the history of past

injections and withdrawals. In our context, this model would amount to having one reservoir with

the full contracted LNG, to be depleted as loads are being shipped, without injections, using only

withdrawals. The optimal switching of [6] would therefore correspond to determining cancellation

dates for the contract under consideration. Unfortunately, in our problem, the company manager needs

to choose contracts in a set, thus increasing the dimensionality of the state variable, to represent a

“vectorial” reservoir. The state dimension is further increased because uncertainty dynamics (defining

the aforementioned paths) is not Markovian. For our application, the stochastic process representing

the clients’ demand is not timewise memoryless. This is due to the fact that streamflows into the

hydro-reservoirs are periodically autoregressive; we refer to Section 4.2 for more details.

3. MODELLING NG ASSETS IN THE COMPANY PORTFOLIO

For a major company operating in a vertically integrated context of gas and energy, we now for-

malize the problem of choosing, among various LNG contracts, which ones suit the company’s needs

better. In what follows, t = 1, . . . ,T is a time step, while n and ` correspond to LNG contracts and

LNG loads, respectively.

3.1. Network representation and customers. The company owns a gas distribution network whose

operation is described schematically in Figure 1.

In addition to several NG gas storage units (corresponding to the box labelled “C” in the figure),

the company has an NG contract (box B), an alternative source of energy modelled as a reservoir (F

in the figure), and some potential future LNG loads, which might be cancelled (box E). Once a ship

arrives with a LNG load, it is docked and constitutes a temporary above-ground storage unit until

fully depleted (box D). Alternative energy, typically fuel, is delivered directly to the clients, which are

segmented into four different groups (G in the figure). Finally, gas is delivered to the clients through

the network of pipelines (A in the figure). Pipelines and storages have known minimum and maximum

capacities.

Table 3 in the Appendix summarizes the model notation. Basically, to each reservoir corresponds a

(continuous) state variable, denoted by s. Injections and withdrawals in the reservoirs are represented
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FIGURE 1. Gas supply network

by (continuous) control variables, denoted by u. Finally, there are binary control variables for each

LNG contract, denoted by y. Figure 2 shows how the reservoir control variables modify the NG flow

in the network from Figure 1.

The nodes with capital letters A to G in Figure 2 correspond to the references in the network from

Figure 1. For example, the incoming arrows for node G stand by the fact that, at each time step t,

clients receive either gas from the pipeline (A), or the alternative source of energy (F). The situation

is similar for node C in the figure, although more involved. There is one outgoing arrow, u−t
Si , for

withdrawals from the i-th NG storage into the pipeline. The three incoming arrows, ui t
L j, ui t

n`, and u+t
Si ,

show that the level of the i-th NG storage increases with injections from:

– regasified LNG from the docked ships, (ui t
L j is a fraction of the load of the j-th ship);

– regasified LNG from potential ships, corresponding to the `-th load of contract n; and

– gas from the NG contract (u+t
Si ).

Finally, demand is segmented into four groups of clients, with firm contracts having different prices

and penalties (depending affinely on the NG spot price):

Group 1: Customers whose gas can be replaced by an alternative energy source (usually more expen-

sive than NG). These clients pay the contracted price even if they get the alternative energy source
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FIGURE 2. Variables controlling the multi-commodity flow in the network

and their demand is always satisfied.

Group 2: Customers whose gas can be left undelivered without paying any penalty.

Group 3: Customers whose unsatisfied demand involves a high penalty cost.

Group 4: Thermal power plants fueled by gas with high penalties to pay when their demand, which is

highly seasonal, is left unsatisfied.

3.2. LNG contracts with cancellation options. As shown in Figure 2, at each time step a determin-

istic quantity Qt of NG is injected into the system. The amount of LNG gasified and injected into the

pipelines is uncertain and depends on each LNG contract.

Suppose there are N different contracts. For n = 1, . . . ,N, the n-th contract offers the possibil-

ity to receive `n ≥ 1 gas loads of volume Qn`. The starting time step for the contract, after which

cancellations are possible, is tn0 ≥ 0.

Let yt
n` denote a binary variable which is set to 1 if the load is cancelled at time step t or before,

and which is 0 otherwise. Loads are scheduled for arrival at pre-specified dates, tn1 ≤ tn2 ≤ . . .≤ tn`n .

If some load is not to be sent, it must be cancelled no later than time tn`−1, that is, at least one time
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step earlier than the forecasted delivery date. As a result, the relations yt
n` ≥ yt−1

n` , t = tn0 +2, . . . , tn`−1,

yt
n` ∈ {0,1}, t = tn0 +1, . . . , tn`−1

hold.

Remark 3.1. For future use, note that at time step t the number of different subvectors with 0-1

components will be equal to

(1) 2It
where It :=

N

∑
n=1

`n

∑
`=1

∣∣∣{t}∩ [tn0 +1, tn`−1]
∣∣∣.

When It = 0, there are no 0-1 variables at time step t. �

The dynamic depletion of the ship is modeled with state and control variables st
n` and u0 t

n` , repre-

senting, respectively, the gas available on the ship at the end of time step t, and the gas taken from

the ship and injected into the pipelines at time step t. The state variable is null if the load is cancelled

before the delivery date. The affine transition equations involve the binary control variable ytn`−1
n` : st

n` =
(

1− ytn`−1
n`

)
Qn` if t = tn`−1 ,

st
n` = st−1

n` −∑
NS
i=0 ui t

n`−
((

1− ytn`−1
n`

)
Qn`−wt

n`

)
Evapt , if t = tn`, . . . ,T .

Here, Evapt ∈ [0,1) stands for the fraction of the initial load that evaporated at time t, and NS denotes

the number of underground storage units, with associated control variables ui t
n`. Slack variables wt

n`,

introduced for feasibility reasons only if there is evaporation, are penalized in the objective function.

Each LNG shipment involves cancellation, purchasing, and docking costs, as shown by Figure 3.

tn`−1

Storage

tn0 +2 tn`

DELIVERY

tn0 +1tn0

Cancellations

FIGURE 3. LNG contract dynamics
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Cancellation fees and unit purchasing prices are uncertain and depend affinely on some index spot

price on the delivery date, S t , or on a stochastic variable proxied by such an index. The corresponding

slopes and intercepts are defined in the contract. We denote such costs by fn`(S
t) and pn(S t),

respectively. Likewise, for LNG loads, unit buying prices and cancellation fees take the form

(2)

 pn(S t) = S tKn + kt
n,

fn`(S
t) = β t

n` (S
tKn + kt

n)Qn`,

for known coefficients (Kn,kt
n,β

t
n`), with Kn and kt

n such that pn(S t) > S t and β t
n` ∈ (0,1) a non-

decreasing function of time. In particular, the fee to be paid is proportional (increasing with time)

to the value of the load at the cancellation time. If for some contract fees are deterministic, the

corresponding coefficient Kn is null. The interest of the relations in (2) is that uncertainty in the

objective function is fully captured by the stochastic process of spot prices along the optimization

period, that is by (S 1, . . . ,S T ).

If there were a cancellation, the corresponding fee would be paid at cancellation time and would

result in the cost:

(3) Ct
n` =

 yt
n` fn`(S

t) if t = tn0 +1

(yt
n`− yt−1

n` ) fn`(S
t) if t = tn0 +2, . . . , tn`−1 .

When the load is delivered, it involves a purchasing cost. Once the ship arrives, it stays in place

until all of its LNG load has been used, paying a docking cost, linear in time, to discourage a too long

gas confinement on ships. These operations induce the costs below:

(4) Ct
n` =


(

1− ytn`−1
n`

)
pn(S t)Qn`+αn`st

n` if t = tn` ,

αn`st
n` if t = tn`+1, . . . ,T ;

where αn` is the storage unit cost.

Remark 3.2. For t = tn`−1, we see from (3) and (4) that the portion of the objective function depend-

ing on the cancellation variable is yt
n`( fn`(S

t)− pn(S t+1)Qn`). This is an affine function of both S t

and S t+1. Likewise for the cost prior to the cancellation deadline, that is for t ∈ {tn0+1, . . . , tn`−2}.
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For these reasons, the costs before the delivery date depend on current and future realizations of the

uncertainty: Ct
n` = Ct

n`

(
S t ,S t+1

)
for t ∈ {tn0 +1, . . . , tn`−1} . �

3.3. Non-LNG storage dynamics. The LNG reservoir for future shipments was modelled in Sec-

tion 3.2. We now consider the remaining reservoirs, with associated nonnegative state and control

variables related by affine transition equations.

Gas can be stored in four types of reservoirs: LNG loads available at t = 0 waiting in ships, the

alternative energy storage, underground NG storage units, and the equivalent pipeline. Managing

these reservoirs has a cost that is linear in their state and control variables. In particular, the unit cost

for alternative energy depends affinely on the NG spot price: pt
A = pA(St).

3.3.1. Alternative energy and initial ships. The state equations for the alternative source of energy

and for the NLG ships available at the beginning of the optimization period are given by

st
Li = st−1

Li −
NS

∑
j=0

u j t
Li −Evapt(QLi−wt

Li) , st
A = st−1

A −
4

∑
i=1

ui t
A +u0 t

A ,

for t = 1, . . . ,T . Here, st
Li is the storage level in the i-th of the NLG ships at the end of time step t,

QLi its load, u0 t
Li the gas taken from ship i and injected into the pipeline, and u j t

Li the gas transferred

from ship i to underground storage j ∈ {1, . . . ,NS}. Similarly, st
A is the available alternative energy

at the end of time step t, u0 t
A the alternative energy bought, and for i = 1, . . . ,4, ui t

A is the alternative

energy supplied to clients from segment i, with ui t
A = 0 for i = 2,3,4 (only clients in Group 1 receive

alternative energy).

3.3.2. Underground NG storage units. The transition equation for the i-th underground storage re-

flects gas transferred to the pipeline (u−t
Si ), as well as gas injected into the storage (NG, u+t

Si , or regasi-

fied LNG coming from the ships):

st
Si = st−1

Si −u−t
Si +u+t

Si +
NLG

∑
j=1

ui t
L j + ∑

{(n`) | tn`≤t}
ui t

n` ,

for t = 1, . . . ,T , and i= 1, . . . ,NS. There are “tunneling” constraints, to keep the storage state in prede-

fined lower and upper bounds, that can vary with the season. Losses can be modeled too, multiplying

the incoming control variables (u+t
Si ,u

i t
L j,u

i t
n`) by a factor, possibly varying with time.
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3.3.3. Equivalent pipeline. If u0 t
P is the contracted NG injected into the pipeline, the injections in the

pipeline at time step t are

Int = u0 t
P + ∑

{(n`) | tn`≤t}
u0 t

n` +
NS

∑
i=1

u−t
Si +

NLG

∑
i=1

u0 t
Li .

Finally, the (more involved) transition equation of the equivalent pipeline, with state st
P at the end of

this time step, is

(5) st
P = st−1

P −
4

∑
i=1

ui t
P + Int

where ui t
P for i = 1, . . . ,4 is the gas delivered to clients in segment i. If, in addition, Ft

+ (resp. Ft
−)

and Ft
+ (resp. Ft

−) are the minimal and maximal entrance (resp. exit) flows; and Gt
max is the maximal

quantity of gas that can be regasified at time step t, the flow constraints for the pipeline are of the form

(6)

 Ft
+ ≤ Int ≤ Ft

+ , Ft
− ≤ ∑

4
i=1ui t

P ≤ Ft
− ,

∑
NLG
i=1 ∑

NS
j=0 u j t

Li +∑{(n`) | tn`≤t} ∑
NS
i=0 ui t

n` ≤ Gt
max , u0 t

P +∑
NS
i=1u+t

Si = Qt .

3.4. Demand satisfaction and objective function. At time step t, for clients in segment i, we let

ui t
NS denote the demand left unsatisfied (equal to 0 if i = 1); D i t the gas demand, so that demand

satisfaction induces the constraints

(7) ui t
NS +ui t

P +ui t
A = D i t ,

for i = 1,2,3,4 and t = 1, . . . ,T , with u1 t
NS = 0. Finally, we suppose that for each client, the unit selling

price π i t and shortage cost δ i t depend affinely on the spot price:

(π1 t ,π2 t ,π3 t ,π4 t ,δ 1 t ,δ 2 t ,δ 3 t ,δ 4 t , pt
A)
> = S tK0 + kt

0 .

Putting together all the elements above, the gas portfolio problem has an objective function given

by some penalties involving the slack variables and the terms

N

∑
n=1

`n

∑
`=1

T

∑
t=1

1
(1+ r)t C

t
n`+

T

∑
t=1

1
(1+ r)t pA(S

t)u0 t
A +

4

∑
i=1

T

∑
t=1

1
(1+ r)t

(
δ

i tui t
NS−π

i t (ui t
P +ui t

A
))

where the constat interest rate is denoted by r and the costs Ct
n` are those in Section 3.
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As explained in Remark 3.2, at some time steps the LNG contracts have a cost depending on future

realizations of the stochastic process S . For this reason, and for notational simplicity, in what follows

the gas portfolio objective function will be denoted in the shorter form

(8)
T

∑
t=1

Ct(S t ,S t+1)>zt ,

for a decision vector zt resulting from joining the various subvectors st ,yt ,ut from Section 3, and for

vectors Ct of appropriate dimensions, depending on current and future realizations of the spot price.

4. STOCHASTIC MODELLING OF UNCERTAINTY

As mentioned, uncertainty has two distinct sources: volatility of gas prices on the international

market and fluctuations in clients’ demand for gas on the local market (Brazil in our specific example).

In view of our modelling, price-risk appears only in the objective function (8), while volume-risk is

given by the contraints (7). We now consider how to model and hedge each type of uncertainty.

4.1. Natural Gas spot prices. In our specific application, the stochastic process of the NG spot

price is modelled by the two-factor Schwartz and Smith model [17]. This model has been used for

modelling oil prices [17], natural gas [7] and commodities such as corn, soybeans, and wheat [20]. The

Schwartz and Smith (S&S) model decomposes the logarithm of the spot price lnS t = set + ξ t + χ t

into a seasonal part set and two unobserved processes, ξ t and χ t . The first process is modelled as a

geometric Brownian motion dξ t = µξ dt +σξ dWξ , while the second one is an Ornstein-Uhlenbeck

process dχ t = −κχ tdt +σχdWχ , with Wξ and Wχ correlated Brownian motions, i.e., satisfying the

relation dWχdWξ = ρχξ dt. In [17] it is shown that the corresponding expectation, given χ0 and ξ0,

has the explicit expression

(9)
ln(E[S t |χ0,ξ 0]) = exp(−κt)χ0 +ξ 0 +µξ t + 1

2 (1− exp(−2κt))
σ2

χ

2κ

+1
2

(
σ2

ξ
t +2(1− exp(−κt))

ρχξ σχ σξ

κ

)
.

Model calibration. For commodities such as NG, it is generally assumed that the spot price is not

available (there is in general a lack of reliable spot price time series and there are different markets

with different transaction processes and prices). There can also be local peak prices in local markets

and a lack of liquidity. The usual way of dealing with the non-observable nature of spot prices is to
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use the closest future prices as an approximation. With the S&S model, such prices (observable) are

known functions of the unobserved processes χ t and ξ t . The calibration of the S&S model is then

done based on maximum likelihood, by using the Kalman filter [13] or particle filters [2] to restore

the unobserved processes. We refer to [18] for a different approach, focusing on the valuation and

hedging performance of a family of multifactor models in the context of a specific real option.

Hedging price-risk. Price-risk appears in the objective function (8), so uncertain future values are

controlled by their Conditional Value-at-Risk (CVaR). If the continuous random variable X repre-

sents a cost, [23] shows that its Conditional Value-at-Risk of confidence level ε is given by

(10) CVaRε(X ) = min
w0∈R

(
w0 +

1
ε
E(X −w0)

+

)
where (z)+ = max(z,0) is the positive-part function. After calibration of the S&S model, by gener-

ating NP scenarios for the spot price, (9) gives an empirical estimate for the expectation in (10); see

(16) below.

4.2. Natural Gas demand. The volume-risk, given by the contraints (7), is modelled by generating

future demand scenarios over the optimization period. To generate such scenarios for each client seg-

ment, we consider separately the first three groups of clients, for which no historical data is available

in our application, and the fourth segment, composed of thermal power plants.

For the first three segments, future demand slowly increases with a seasonal component, according

to a Buys-Ballot model:

(11) D i t = D i
init +µit +D i t

S + ε
i t ,

where D i t
S is one year periodic on t and noises ε i t ∼ N (0,σ2

i ) are independent (we assume the

parameters of the model are known). These processes are discretized to sample NDi = 200 scenarios

from the distribution of (ε i 1, . . . ,ε i T ) for Group i. As a result, for all i = 1,2,3,

(12)

∀t = 1, . . . ,T , given demand realizations D̃ i t , future uncertain demands D i τ
t remain bounded.

In this expression, time steps t and τ have different meanings, related to our rolling-horizon method-

ology, described in Section 5 below. For the moment, we just mention that the approach solves at
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each time step t a multi-stage problem with future stage variables in the horizon [t +1,T ]. So at each

time step t the clients demand D̃ t is known and conditions uncertainty, corresponding to future time

stages, τ = t +1, . . . ,T . The dependence of future demand on the current realization is made explicit

by the subindex t in the notation D i τ
t . Actually, the stochastic processes for the first three segments of

clients is Markovian, making future uncertain demands in (12) independent of t. Such is not the case

of the fourth group, corresponding to thermal power plants. The reason is that in a hydro-dominated

power system like Brazil’s, thermal power mainly complements hydro-power. So, depending on the

streamflows arriving into the reservoirs over a given year, thermal energy may vary from zero up to

the maximal thermal generation capacity. Accordingly, the fourth segment of demand depends on

the streamflows’ stochastic process, that is interstage dependent, usually periodic autoregressive and

multivariate [15]. In our application we first discretize the autoregressive process of inflows into a

tree with ND4 scenarios. Then, the optimal thermal power generation is simulated over the tree, us-

ing a model described in [10]. The computed thermal dispatch scenarios are finally transformed into

demand scenarios of gas by means of a suitable conversion factor.

With the construction above, relation (12) also holds when i = 4. Since we will make use of this

boundedness property to write down the robust counterpart of the demand constraint, we state it as

the following assumption

(A1)


for all t = 1, . . . ,T and each τ = t +1, . . . ,T ,

given a realization D̃ t , the future demand Dτ remains in a box:

Dτ ∈
[
0,Dτ

t
]

almost surely.

Hedging volume-risk. As mentioned, the NG network should be designed to satisfy, most of the

time, all of the clients’ demand by delivering gas only, without using the expensive alternative energy.

This rule applies even when customer demand is high. In such a context, the machinery of robust

optimization [4] is at first sight suitable to control risk. For robust optimization to apply, constraints

(7) must be reformulated so that uncertainty (the demand) appears only in inequality constraints.

A first observation is that, due to the particular structure of objective function (8) in the current

setting, the reformulation with (7) written as inequality constraints can result in an optimum for which

some of such inequality constraints are not binding. This indicates that the inequality reformulation



ROBUST MANAGEMENT AND PRICING OF LNG CONTRACTS WITH CANCELLATION OPTIONS 15

is not equivalent to the original problem. More seriously, this means that the robust constraints have

the pernicious effect of over-delivering some customers. This is because the model does succeed in

delivering as much gas as possible, without using alternative energy. But then, since each group of

clients only sets lower bounds on gas demand and since the gas buying price is lower than the gas

selling price, a client can get more gas than requested.

Instead of the traditional approach, our robust counterparts for future demand constraints are

(13) uτ
P +uτ

A +uτ
NS = Dτ

t ,τ = t +1, . . . ,T ,

where the vectorial equality holds for all the clients. By assumption (A1), the relation above is well

defined. As for its physical meaning, it designs an NG portfolio able to respond to demand even at

the highest peaks. This feature responds to the company manager’s desire of providing to the clients

only gas. But, since highest peaks are not frequent, NG storage units may be too full. As mentioned,

the cancellation options of LNG contracts compensate for such conservatism.

Remark 4.1. Alternative robust reformulations of the demand constraint, unsastisfactory for the

physics of our problem, can be obtained by using (7) written for a future time step τ ∈ [t + 1,T ]

to eliminate some variables. Suppose we choose the amount of gas delivered to clients and write the

identity uτ
P = Dτ −uτ

NS−uτ
A. The right-hand side is then used in all inequality constraints involving

uτ
P, replacing Dτ by its extreme values 0 and D τ

t from Assumption (A1). More specifically, consider

constraints (6), written for the future period [t +1,T ] for an equivalent pipeline with capacity limited

in [sP,sP]. Consider τ = t + 1, . . . ,T , then, because uτ
P ≥ 0, the robust counterpart of the uncertain

constraints amounts to setting

(14)



0≥ ui τ
A +ui τ

NS, i = 1, . . . ,4 (a)
4

∑
i=1

D iτ
t −Fτ

− ≤
4

∑
i=1

(
ui τ

A +ui τ
NS

)
≤−Fτ

− (b)

sP +
τ

∑
k=t+1

4

∑
i=1

D ik
t ≤ ŝ τ

P ≤ sP , (c)

where ŝ τ
P = ŝ τ−1

P + Inτ +∑
4
i=1

(
ui τ

A +ui τ
NS

)
if τ > t +1, starting with ŝ t+1

P = st+1
P .

Constraint (c) forces the network to “keep” as much gas as possible, even in the case when the demand

attains its upper bound for all the clients. Whenever F− is null (a realistic situation), satisfaction of
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(a) and (b) forces uτ
NS = uτ

A = 0, that is, there is no shortage and only gas can be delivered to the

customers, as desired. However, by the inequalities in (c), the robust setting (14) also imposes the

(unreasonable) relation
τ

∑
k=t+1

4

∑
i=1

D ik
t ≤ sP− sP .

This condition is unlikely to hold for large T , taking into account that pipelines have often a fixed

capacity, so sP = sP. Other robust alternatives, for instance eliminating shortage variables uNS in (7),

also give robust models that are unsatisfactory for the physics of the problem. �

5. THE ROLLING-HORIZON RISK-AVERSE OPTIMAL PORTFOLIO PROBLEM

For convenience, we write down the optimal portfolio problem in a more compact form. We start

by recalling that, as explained in Remark 3.1, the decision variable zt has 2It
binary components. The

remaining components are continous and belong to a polyhedron, that we denote by Z t . Furthermore,

since all state equations and constraints in Section 3 are affine, for matrices At , Bt , Et and a vector at

of appropriate dimensions, the constraint set has the form

zt ∈Z t ×{0,1}It
, Atzt ≥ Btzt−1 +at , Etzt = D t .

This representation makes explicit the fact that in our application inequality constraints are all deter-

ministic and that the uncertain rightmost equality refers to the demand constraint (7).

With respect to uncertainty, we assume that the stochastic processes S and D are independent and

have been discretized to define a multi-stage scenario tree.

We now explain how to build a rolling-horizon policy that is both feasible and risk-averse for the

problem under consideration.

5.1. Rolling horizon methodology. The rolling-horizon model is similar (but not identical) to the

one in [10]. In the Stochastic Programming terminology, the methodology could be labeled “here-

and-now looking-forward”. For comparison purposes, we first consider how a dynamic programming

approach would look for a solution to a stochastic program defined over a multi-stage scenario tree.

Basically, dynamic programming makes a nested stagewise decomposition, using the Bellman

equation. However, when uncertainty is not memoryless, but interstage dependent, state variables
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need to be augmented with the uncertainty history. Such is precisely the case for the stochastic pro-

cess of the demand of thermal power plants and for the gas spot price process.

Instead, the rolling-horizon approach considers T − 1 successive multi-stage problems, each one

defined for a time t = 1,2, . . . ,T −1. In Figure 4, the left and right graphs correspond, respectively,

t = 2t = 1 t = T

D̃1

t = 2t = 1 t = T

D̃1

D̃2

t = 3

First risk-averse problem: first stage t = 1
Future stages: [2,T ].

Second risk-averse problem: first stage t = 2
Future stages: [3,T ].

FIGURE 4. Successive multi-stage programs in the rolling-horizon approach.

to the first and second of such problems. For t < T , the t-th problem is a multi-stage program defined

over the horizon [t,T ], with the first stage given by present time t (with deterministic constraints), and

with T − t subsequent stages covering the future [t +1,T ] (with uncertain constraints). In the figure,

future stages are shown with a blue box. Similarly, the considered subtrees are surrounded by a red

polyhedron, “descending” from t-th stage node until final stage T . Regarding Assumption (A1), the

dependence of the bounds therein with respect to t is now made clear. For each τ = 3, . . . ,T , the right

graph in Figure 4 shows that (for the fourth group of clients) the maximal demand Dτ
t is the maximum

over all nodes at time stage τ of the subtree in red, a subtree which depends on t via D̃ [t], the history

of realizations until time t.

5.2. Risk-averse subproblems and policy. For the t-th subproblem, zt
t and (zt+1

t , . . . ,zT
t ) denote the

first and subsequent stage variables, respectively. Since the current constraint is deterministic and
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future constraints are uncertain, the feasible set is defined by

(15)

 zt
t ∈Z t ×{0,1}It

, Atzt
t ≥ Btzt−1

t +at , Etzt
t = D̃ t ,

zτ
t ∈Z τ ×{0,1}Iτ

, Aτzτ
t ≥ Bτzτ−1

t +aτ , Eτzτ
t = Dτ

t , for τ = t +1, . . . ,T .

The initial state is known and is given by zt−1
t := z̄t−1

t−1, the (t−1)-th component of the solution to

the previous risk-averse program. As explained, constraint uncertainty is hedged with a worst-case

approach for future demand, using the upper bound in Assumption (A1).

Also as mentioned, for handling uncertainty in the objective function (8), we set a conditional

value-at-risk considering only the times steps relevant for the t-th problem. We obtain the following

t-th risk-averse subproblem, depending on given parameters θ ∈ [0,1] and ε ∈ (0,1):

(16)


min θE

( T

∑
τ=t

Cτ(S τ ,S τ+1)>zτ
t

)
+(1−θ)CVaRε

( T

∑
τ=t

Cτ(S τ ,S τ+1)>zτ
t

)
s.t. (zt

t ,z
t+1
t , . . . ,zT

t ) satisfies (15) .

In what follows, a particular realization of the NG spot price at time t is denoted by S̃ t , and a

trajectory until time step t is denoted by S̃ [t]. Note that both the expectation and the CVaR in (16)

are conditioned to the history S̃ [t].

Each risk-averse problem is a deterministic MILP, with the important property that its decision

variables (zt
t , . . . ,z

T
t ) are of type “here-and-now”: they do not depend on future realizations of the

underlying stochastic processes. With this modelling choice, basically done for tractability reasons,

to define a feasible policy, only the t-th component of an optimal decision vector is used. Specifically,

if (z̄t
t , . . . , z̄

T
t ) denotes a solution to the t-th risk-averse problem, then, after solving the T MILPs (16),

the policy is defined by the decisions (z̄1
1, z̄

2
2, . . . , z̄

T
T ). Under the assumption of relatively complete

recourse, such a rolling-horizon risk-averse policy is also feasible.

6. APPROXIMATIONS AND THE ALGORITHM

We now present a heuristic algorithm for solving approximations of the risk-averse problems (16).

Such approximations refer not only to the estimation of the S&S model parameters, but also to the

actual computation of the objective function terms in (16).



ROBUST MANAGEMENT AND PRICING OF LNG CONTRACTS WITH CANCELLATION OPTIONS 19

6.1. Expectation and CVaR estimation. Since in the model all relations are affine, each individual

cost vector in problem (16) has the expression

(17) Cτ(S τ ,S τ+1) = a1S
τ +a2S

τ+1 +a3 ,

for certain vectors a1 ,a2 ,a3, depending on both τ and t. By (9), an estimate Ê for the expected values

in (17) is available. Since, in addition, the expectation operator is linear, the first term in the objective

function in (16) has the following empirical estimate

(18) Ê
( T

∑
τ=t

Cτ(S τ ,S τ+1)>zτ
t

)
=

T

∑
τ=t

(
a1Ê

(
S τ |S̃ [ t]

)
+a2Ê

(
S τ+1|S̃ [ t]

)
+a3

)>
zτ

t .

The CVaR estimation requires an additional approximation, based on the equivalent minimization

formulation in (10). Specifically, given a trajectory realization until time step t, say S̃ [t], the full spot

price process is simulated by generating NP realizations of prices between times t +1 and T :

S̃
[T ]
1 ,S̃

[T ]
2 , . . . ,S̃

[T ]
NP .

By relation (17), price scenarios also sample the cost terms, yielding in (10) the estimation

CVaRε

( T

∑
τ=t

Cτ(S τ ,S τ+1)>zτ
t

)
≈ min

w0∈R

(
w0 +

1
ε

1
NP

NP

∑
i=1

(Cτ
i
>zτ

t −w0)
+

)
(19)

with Cτ
i := a1S̃

τ
i +a2S̃

τ+1
i +a3

for i = 1, . . . ,NP.

6.2. Rolling Horizon Risk-Averse Algorithm. The algorithm is initialized by selecting risk aver-

sion coefficients θ ∈ [0,1] and confidence levels ε ∈ (0,1), possibly depending on t = 1, . . . ,T . Initial

storage levels s0 and cancellation variables y0 are given. For the first three groups of clients, ND1,2,3

gas demand scenarios are generated, and the corresponding components for the upper bound in As-

sumption (A1) are computed for each time step. The time step counter is set to t = 1.

Algorithm 1 (ROLLING HORIZON RISK-AVERSE CANCELLATION STRATEGY).

Step 1 (Statistical toolbox) Having the history of uncertainty realization until time step t (streamflows

for the fourth segment of clients and NG spot prices S̃ [t]):
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- generate ND4 future scenarios of gas demand for the fourth segment to obtain the maximal demand

D τ
t for τ = t +1, . . . ,T ;

- calibrate the spot price model, to estimate the S&S parameters from Section 4.1; and

- generate NP spot price scenarios S̃
[T ]
i , for i = 1, . . . ,NP.

Step 2 (Approximate risk-averse subproblem) For τ = t, . . . ,T compute the empirical expectation

(18) and generate the samples Cτ
i , i = 1, . . . ,NP from (19). Solve the following approximation of

(16), on variables (zt
t ,z

t+1
t , . . . ,zT

t ) and (w0,w1, . . . ,wNP):

(20)


min θ Ê

( T

∑
τ=t

Cτ(S τ ,S τ+1)>zτ
t

)
+(1−θ)

(
w0 +

1
ε

1
NP

NP

∑
i=1

wi

)
s.t. (zt

t ,z
t+1
t , . . . ,zT

t ) satisfies (15) ,w0 ≥ 0

wi ≥ 0 and wi ≥ Cτ
i
>zτ

t −w0 for i = 1, . . . ,NP.

Step 3 (Policy definition) Let z̄t be a solution to (20), split into subvectors s̄t , ȳt , ūt . Save ūt
t , the t-th

component of the computed optimal controls for time step t.

Step 4 (Load cancellation) Apply any of the rules below:

(A) Cancel at time t all loads (n, `) such that the component of ȳt
t corresponding to load (n, `) is

equal to 1.

(B) For any time τ ∈ {t, . . . ,T}, cancel at time τ all loads (n, `) such that the component of ȳτ
t

corresponding to load (n, `) is equal to 1.

(C) Apply B above only at the first time step, when t = 1, thus fixing 0-1 variables for the subsequent

problems (20). With this rule, Step 4 is skipped for all t > 1.

Step 5 (Update and Loop) If t = T , stop. Otherwise, increase t by 1, update reservoir levels st , and

loop to Step 1. �

Some comments regarding Algorithm 6.2 are now in order. Step 4 applies three alternative heuris-

tics to deal with 0-1 variables in an economic, yet reasonable, manner. Variant A uses the rolling-

horizon philosophy from Section 5 for the 0-1 variables: the cancellation strategy at time step t is

defined by the t-th component of a solution to (20). Variant B offers the possibility of eliminating

more 0-1 variables, making the subsequent risk-averse problems (20) easier. As for Variant C, it is the

simplest to implement, because it solves (20) with 0-1 variables only at the first time step. For t > 1,
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cancellation decisions are those obtained for t = 1 (seen as “here-and-now” decision variables) and

problems (20) are linear programs.

The feasible sets considered by Variant A contain those considered by Variant B, which are in turn

larger than the ones used with Variant C. Thus, the corresponding problems (20) are easiest to solve

with Variant C, but they also give higher costs. However, because the robust counterpart of the demand

constraint is formulated as an equality, even the most costly Variant C avoids the pernicious effect of

over-delivery, mentioned in Section 4.2,

We finish by mentioning that when θ = 1 in (16), the number of 0-1 variables can be substantially

reduced. By linearity of the corresponding objective function in (16), without CVaR term, it is possible

to reformulate the problem using only one 0-1 variable per load, at the time step tmin
n` , when the mean

fee E[ fn`(S
τ |S̃ [t])] is minimal among all time steps τ = t + 1, . . . ,T . In this context, the sets Iτ in

(15) have the expression Iτ := ∑
N
n=1 ∑

`n
`=1 |{τ}∩{tmin

n` }|, to be compared with (1).

7. PRICING MECHANISM

We now explain a heuristic procedure for the company manager to determine a set of admissible

prices for the portfolio of LNG contracts.

Pricing a contract amounts to establishing a fair price to pay for each load and the cancellation

fees. As mentioned, these are affine functions of the NG spot price, with slope and intercepts in (2)

specified by the LNG seller in the contract. It is therefore natural for the manager to request from the

seller of the n-th contract a set of parameters considered acceptable from the seller’s point of view.

The seller then proposes a set with On configurations for the parameters

(21) ∆n :=
On⋃
i=1

{(
Ki

n ,k
i t
n ,β i t

n` for t = tn0 +1, . . . , tn`−1 , `= 1, . . . , `n

)}
.

The manager can then modify the optimal portofolio problem (16), written for t = 1, to price a set

of contracts, determining which sellers and which of the configurations offered by the sellers are the

most suitable for the company. Basically, any element in ∆n becomes a decision variable, introducing

a binary variable ri
n, set equal to 1 if contract n with configuration i is taken, and set to 0 otherwise.

The relation ri
n = 0 is equivalent to ri

n = 1, if all the contract loads are cancelled without paying a fee.
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For this reason, the new feasible set in (16) has the additional constraints
ri

n ∈ {0,1} for i = 1, . . . ,On ,n = 1, . . . ,N

∑
On
i=1 ri

n ≤ 1 for n = 1, . . . ,N

(ri
n−1)(yt

n`−1) = 0, for t = tn0 +1, . . . , tn`−1 , `= 1, . . . , `n ,n = 1, . . . ,N .

As for the objective function, terms (3) and (4) now include new binary variables:

Ct
n` =

On

∑
i=1

ri
nC

i t
n`

where Ci t
n` is the cost induced at time step t by load (n, `) if configuration i of contract n is taken. Such

a cost is obtained by replacing fn`(S
t) and pn(S t) in (3) and (4) by the respective expressions in (2),

written with coefficients (Ki
n,k

i t
n ,β i t

n` ).

Suppose that the manager applies Algorithm 6.2 and uses Variant C as a cancellation strategy. The

modified problem (16), written with t = 1, is a bilinear program with mixed 0-1 variables, difficult to

solve. We use a heuristic valuation, based on Monte Carlo simulation, in which the manager chooses a

set R of fixed values r̄i
n satisfying the first two constraints above for all the contracts and configurations.

The corresponding 0-1 variables are now fixed, and the manager can generate a set of scenarios for

both the spot prices and future demand, and apply Algorithm 6.2 to determine for each scenario the

corresponding optimal management cost (as well as the cancellation dates and gas/alternative energy

transfers). The process is repeated for as many different sets R as the manager desires to examine.

Furthermore, if desired, the manager can set an upper bound Cmax on the mean LNG management

cost, induced by load purchases and/or cancellations. To compute such a mean cost, the probability

Πt
n`(R), of cancelling load (n`) at time step t under the set of configurations R, needs to be estimated.

This can be done by simulating the optimal management strategy with Algorithm 6.2. Then, once the

empirical estimations Π̂t
n` are computed for each set R, the manager can then choose the set R with

maximal mean income satisfying the desired bound

N

∑
n=1

`n

∑
`=1

(
tn`−1

∑
t=tn0+1

Π̂t
n`(R)

(1+ r)t β
t
n`
(
E(S t)Kn + kt

n
)

Qn`

+ (1−
tn`−1

∑
t=tn0+1

Π̂
t
n`(R))

(
E(S tn`)Kn + ktn`

n )
) Qn`

(1+ r)tn`

)
≤ Cmax .
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The left-hand side is the empirical mean cost (computed over the simulated scenarios) induced by the

LNG contracts. When at Step 4 in Algorithm 6.2 loads are cancelled using Variant C, the probabilities

Πt
n` are known, because cancellation decisions are taken at the first time step. Then, either Πt

n`(R) = 1

if, under configuration R, load (n`) is cancelled at time t, or the probability is 0 otherwise.

8. NUMERICAL ASSESSMENT

In this section we illustrate the methodology on an example based on realistic data for the Brazilian

gas industry, for a company manager using Algorithm 6.2 with Variant C in Step 4. Specifically, for

a time horizon of 2 years with monthly time steps (T = 24) and two LNG contracts (N = 2), we

analyze the sensitivity of the model with respect to variations of the different parameters. In Section

8.2, we study how cancellation strategies vary with different slope and intercept configurations for the

contracts, as well as with volatility in demand. Section 8.3 reports the cost distributions for different

risk-aversion parameters, as well as a cost sensitivity study on the fees and buying prices (2).

The model was implemented in MATLAB with the Mosek optimization toolbox http://mosek.

com/. This is a reliable general purpose solver that is free for academic use, with a built-in mixed-

integer solver available only for evaluation purposes (combining Branch and Bound with relaxation

techniques). In our simulations, a solution to (20) was often rapidly found with Mosek default settings.

If, with these settings, the method did not converge, Algorithm 6.2 proceeded ahead, with the best

feasible point found by Mosek.

8.1. Data and simulation protocol. The LNG and NG contracts data is given in the third column in

Table 3. There are two LNG contracts (N = 2), each one with `n = 22 loads. The delivery dates for

the first (resp. second) contract are 2i (resp. 2i+1) for i = 1, . . . ,11.

The equivalent pipeline has no initial gas, neither limits (sP = 0 and sP = +∞). The maximal

quantity of gas that can be regasified per day is 20 million cubic meters (Gt
max = 30.44× 20× 106

cubic meters). The alternative energy source is not stored, so st
A ≡ 0.

For the first three groups of clients, parameters in (11) are given in Table 1 in the Appendix. To

compute the maximal demands for the first three groups, a set of ND1,2,3 = 200 scenarios for each

client is generated. The fourth segment, corresponding to thermal power plants, uses a scenario tree
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of inflows with ND4 = 5000 scenarios and data from [10]. For illustration, some demand scenarios

for Groups 3 and 4 are represented in Figure 5.
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FIGURE 5. Monthly gas scenarios of demand, for customers in Group 3 (on the left),
in Group 4 over 10 years (middle), and in Group 4 for the two years of the optimiza-
tion period (right).

The S&S model for spot prices was calibrated for January 2nd, 2008 by using 6 years of 8 future

prices and taking a seasonal part set as in Table 2 in the Appendix.

Figure 6 shows scenarios of Henry Hub spot prices, generated after the first time step, as well as an

estimation of the maximal total demand.
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FIGURE 6. Spot price scenarios (left) and estimated maximal demand and contracted
NG (right).

For a confidence level ε = 0.1, the CVaR estimation (19) uses NP ∈ {20,100,200} scenarios de-

pending on the study.

With this data, using NP = 100 scenarios to approximate the CVaRε , when t = 1 problem (20)

has 253 binary and 915 continuous decision variables. There are 798 affine constraints (barring box
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constraints). The runs were done on a Dell PowerEdge 2900 server with 2 CPUs Intel Xeon E5345

(2.33 GHz, 8M of cache memory, 1333 MHz FSB), running under CentOS release 5, with 48 GB of

RAM. The average CPU time to solve (exactly or approximately, depending on the instance) such an

MILP was a few minutes, with large variability (for some instances, only a few seconds were needed,

while others took several hours).

8.2. Sensitivity of the cancellations to different parameters. The graph on the right in Figure 6

shows that the contracted NG is not enough to satisfy maximal demands. Hence, we expect the model

not to cancel all of the LNG loads. In order to see how the choice of different parameters affects the

number of cancellations, in Figure 7 we report its sensitivity to variations of some of the data in the

third column of Table 3, for three values of risk aversion parameter θ .

More precisely, to induce larger penalty fees, we multiply the coefficients β t
n` from (2) by a factor

varying in the set {0.25,0.5,0.75,1,2+ 4i, i = 0, . . . ,87}. The corresponding results are reported in

the left graph in Figure 7.
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FIGURE 7. Cancellation sensitivity to the fees (left), NG buying prices (middle), and
penalty levels (right).

We see in Figure 7 that in all cases the sensitivity is alike for the three different values of risk

aversion. We also observe a natural behaviour in the left graph: the higher the fees, the lesser the can-

cellations. When fees are low, in particular for the initial values, only 5 loads are shipped (at the first

time step) and 17 are cancelled. The shipped loads are enough to satisfy the maximal demand from

time step 6 on. When fees are very large, it is more interesting to buy all the available loads, without

any cancellation, even if these loads will not be used immediatly (such large fees are considered only

to test the coherence of the cancellation policy, they would never be used in practice).
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The middle graph in Figure 7 shows the number of cancellations is a non-decreasing function of the

buying price. The NG purchasing price variation corresponds to taking Kn in (2) in the range {1.05+

0.05i, i = 0, . . . ,29}. As expected, when prices get high enough, all loads are cancelled. Finally,

the graph on the right in Figure 7 shows a non-increasing relation of the number of cancellations on

variations of the penalty levels δ i t ∈ {0.05(i− 1)S t , i = 1, . . . ,71}. Naturally, when penalties fall

below a certain threshold, all loads are cancelled. Beyond this threshold, once the necessary loads

(booked early) for satisfying the maximal demand have arrived, increasing the penalty no longer

forces the system to ship more loads.

Figure 8 reports the sensitivity of cancellations to demand volatility (of customers in the first three

segments) and to variations in the volume of contracted NG. The left graph in Figure 8 shows a high
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FIGURE 8. Cancellation sensitivity to demand volatility (left) and to contracted NG (right).

sensitivity to variations on the noise standard deviation σi in Table 1, chosen so that σi
D i

init
∈ [0.005,0.4].

The fact that to higher demand volatility corresponds less cancellations is consistent with our model,

designed to ensure a reliable supply of gas even in the worst case. In particular, when the volatility

is very large (making higher demand more likely), not a single load is cancelled. As before, the

behaviour is similar for the three tested values of risk aversion.

The sensitivity on NG volume variation is reported in the graph on the right in Figure 8, for con-

tracted NG volumes ranging in 30.44× 60× 106× (0.8+ 0.005(i− 1)), i = 1, . . . ,81. We see that

the number of cancelled loads depends strongly on this parameter. When the NG contribution is suf-

ficiently large, all of the 22 LNG loads are cancelled. We note that now the risk perception of the

manager impacts the output. When θ = 1 (risk neutral case), cancellation of a load always occurs as
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far as possible from the delivery date. When θ = 0.6 and θ = 0.9 (decreasing risk aversion), a few

loads (almost none) are cancelled just two months (one month) before the delivery date.

Remark 8.1. In the terminology of [21], Figures 7 and 8 provide willingness-to-buy curves: from

the left graph in Figure 7, for instance, it is possible to relate fees to amounts of LNG to buy. Since

each load has the same volume, the multiplication of such a volume by the difference between the

total number of loads and the number of cancellations gives the total volume of LNG the company is

willing to buy for each given fee. A similar interpretation can be done for all figures in this section.
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8.3. Cost sensitivity and pricing. In order to determine the impact of different contract configu-

rations, we took different combinations of parameters Kn and β t
n` in (2). For these runs, the CVaR

estimation (19) uses NP = 200 scenarios. We consider all combinations (buying price, fee) with Kn ∈



28 VINCENT GUIGUES, CLAUDIA SAGASTIZÁBAL, AND JORGE P. ZUBELLI

{1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,2} and the fees βn` from Table 3, multiplied by (0.5,1,2,5)

and 10+15(i−1) for i = 0, . . . ,13.

Figure 9 reports the corresponding computed mean income and −CVaR0.1(Cost) (which is the

empirical mean income for the 20 scenarios of lowest income). For a fixed fee β t
n`, the income values

naturally tend to decrease when Kn increases. Similarly, for a fixed price Kn, the incomes also tend to

decrease when the fees increase. The graph also confirms the observation that the lowest admissible

values will be chosen if the seller only fixes lower bounds for the set ∆n, defining admissible prices.

Otherwise, some of the values in the grid from Figure 9 may not be feasible, in which case the fees

and prices providing the lowest mean income and CVaR, weighted by the risk aversion parameter θ ,

should be chosen.

The manager’s perception of risk enters the problem by means of the parameter θ . Figure 10 shows

the cost distribution, obtained with Variant C of Algorithm 6.2 on a set of 200 scenarios of demand

and gas spot prices for θ ∈ {1,0.9,0.6}, corresponding to a risk-neutral, moderately risk-averse and

risk-averse manager.
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FIGURE 10. Empirical distribution of the cost for different values of θ .

We observe that all the distributions have a similar shape, in particular their empirical mean and

CVaR0.1 of the income are close. However, as expected, as θ gets lower and risk aversion increases, the

estimate−CVaR0.1(Cost) gets higher. This is confirmed by the graph on the left in Figure 11, reporting

the empirical estimation of the mean of the 20 scenarios of lowest income for θ ∈ [0.3,1]. Naturally,

lower values of θ tend to limit the number of scenarios of very low income. An additional analysis

from Figure 9 is reported in the graph on the right in Figure 11. More precisely, assume that the

seller already proposed a contract configuration, for instance corresponding to the values in Table 3.
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Then, by running Algorithm 6.2 on a set of scenarios with different contract configurations (different

combinations of Kn and β t
n`, including the seller values), the manager can compute the corresponding

empirical mean and CVaR0.1 of the cost. With this information, the manager can negotiate with

the seller a different configuration, proposing a combination with mean income and/or −CVaR0.1 of

the cost higher than the initial ones. For illustration, the graph on the right in Figure 11 represents

the percentual increase I of −CVaR0.1 of the cost, with respect to variations in the parameters from

Table 3, using the grid used in Figure 9. In Figure 11 a filled triangle corresponds to the initial values

of the parameters, while a black (respectively red) symbol corresponds to an increase in −CVaR0.1 of

the cost (respectively, decrease). Any configuration with a black symbol could be counter-proposed

to the seller. To help the negotiation, black points that increase at least one of the seller coefficients

(Kn,β
t
n`) should be proposed.

9. CONCLUDING REMARKS AND CONTRIBUTIONS

We have presented a computational model that is both realistic and tractable for pricing LNG con-

tracts from a buyers’ perspective. From the NG asset valuation viewpoint, our work permits to large

NG companies dealing with storage to simultaneously hedge and valuate LNG contracts with can-

cellation options. For the company manager, an interesting feature of our pricing proposal is that it



30 VINCENT GUIGUES, CLAUDIA SAGASTIZÁBAL, AND JORGE P. ZUBELLI

explicitly incorporates in the pricing process the actual strategy that will be eventually applied by the

company to manage the selected LNG contracts. The computational tool developed in this work not

only provides the manager with additional insight of how a specific LNG contract configuration will

benefit the company business, but also with different contract configurations to counter-propose to the

seller for negotiation.

From the Stochastic Programming point of view, our model builds risk-averse feasible policies for

a multi-stage mixed-integer stochastic problem that is linear, but with uncertainty that is not stage-

wise independent. This is a challenging issue in the area. The rolling-horizon approach, which is not

new, provides a mechanism to hedge risk in a tractable manner. The numerical results on a simplified

yet realistic case-study, illustrate the potential of the methodology. In particular, its relatively light

computational effort gives the corporate manager a versatile pricing tool that takes explicitly into

account the strategy the company will apply on the portfolio of contracts eventually selected.

An interesting extension would be to consider uncertain contracted NG volumes, Qt . Indeed, if

important reductions in the contracted volumes are forecast, it would be appealing to increase the

number of loads. Also, since LNG markets are not liquid and the NG spot price tends to increase, it

is important to book loads with enough anticipation. But this involves taking a large time horizon T ,

which in turn makes it unrealistic considering that the delivered NG is deterministic. Our methodol-

ogy is applicable in this setting, working with uncertainty sets for the corresponding NG flows and

applying the robust optimization paradigm.
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Appendix with notation and data

Group
1 2 3

Monthly demand Dinit
(30.44×107 million of NG m3/day)

10 2 30

Tendencyµi 0.001D i
init

Seasonal componentD i
S

t = 1 : 6
t = 7 : 12

0.1,0.05,0,−0.1,−0.1,0
0.05,0.1,0.05,−0.05,0.05,0.1

}
D i

init

Noise ε i t ∼N (0,σ2
i ) σi = 0.01D i

init
TABLE 1. Groups 1, 2, and 3 demand.

Mean of process ξ µξ = 0.15
Standard deviation for ξ σξ = 0.16
Standard deviation for χ σχ = 0.65
Linear correlation coefficient ρχξ =−0.000413
Mean reverting parameter κ = 1.28
Seasonal component set = 0.7+0.07×cos(2×π×(22t +7.45)/250)
Starting values for ξ and χ (ξ̃ 0, χ̃0) = (2,0)

TABLE 2. Parameters of the S&S model.
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Number of periods T 24
Number of LNG contracts N 2
Number of NG contracts 1 1
Number of storage facilities NS 0
Number of ships in the port at t = 1 NLG 0
Number of loads for contract n `n 22
Contracted NG at t Qt 30.44×60×106m3

Quantity of gas for load (n, `) Qn` 83×106 m3

Fraction of evaporated gas at t in the ships Evapt 0

Delivery date for load (n, `) tn`

{
2` for n = 1
2`+1 for n = 2

Time step after which loads from contract n
can be cancelled tn0 0

Demand for time step t, group of client i D ti Buys-Ballot model
Maximal/minimal entrance flow at time step t Ft

+/Ft
+ +∞/0

Maximal/minimal exit flow at time step t Ft
−/Ft

− +∞/0
NG spot price at time t S t Two-factor SS model
Gas selling price for clients in group i at t π it 1.4S t

Alternative energy unit price at t pA(S t) 2S t

Penalties paid for clients in group i at t δ it 3S t for i=3,4
Coefficients in (2) (Kn,kt

n) (1.05,0)
β t

n` (0.01,0.025,0.05)
Unit price of each load in contract n pn(S t) 1.05 S t

Fee paid at t for load (n, `) fn`(S
t)

 0.01pn(S t)Qn` if t < tn`−2
0.025pn(S t)Qn` if t = tn`−2
0.05pn(S t)Qn` if t = tn`−1

Storage cost (in US$ per m3 ) for future load (n, `) αn` 20
Cost induced at time t for load (n, `) Ct

n`
TABLE 3. Main parameters for the gas portfolio problem. The third column contains
the values taken in Section 8.


