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1 Summary

We consider traces and discrete harmonic extensions on thin boundary lay-
ers. We introduce sharp estimates on how to control the H1/2− or H

1/2
00 −

boundary norm of a finite element function by its energy in a thin layer and
vice versa, how to control the energy of a discrete harmonic function in a
layer by the H1/2 or H

1/2
00 norm on the boundary. Such results play an impor-

tant role in the analysis of domain decomposition methods in the presence of
high-contrast media inclusions, small overlap and/or inexact solvers.

2 Introduction and Assumptions

Let Ω be a well-shaped polygonal domain of diameter O(1) in <2. We assume
that the substructures Ωi, 1 ≤ i ≤ N , are well-shaped polygonal domains of di-
ameters O(Hi), and also assume that the Ωi form a geometrically conforming
nonoverlapping partitioning of Ω. Let T hi(Ωi) be a conforming shape-regular
simplicial triangulation of Ωi where hi denotes the smallest diameter of the
simplices of T hi(Ωi). We assume that the union of the triangulations T hi(Ωi),
which we denote by T h(Ω), forms a conforming triangulation for Ω.

For purpose of analysis, let us introduce an auxiliary conforming shape-
regular simplicial triangulation T ηi(Ωi) of Ωi where ηi denotes the smallest
diameter of its simplices of T ηi(Ωi). We do not assume that the triangula-
tions T ηi(Ωi) and T hi(Ωi) are nested. Let us introduce the boundary layer
Ωi,ηi ⊂ Ωi of width O(ηi) as the union of all simplices of T ηi(Ωi) that touch
∂Ωi in at least one point. We assume that the mesh parameter ηi is large
enough compared to hi in the sense that all simplices of T hi(Ωi) that touch
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∂Ωi must be contained in Ωi,ηi
. We also introduce the boundary layer Ω′

i,ηi

of width O(ηi) as the union of all simplices of T hi(Ωi) which intersect Ωi,ηi ,
hence, it is easy to see that Ωi,ηi

⊂ Ω′
i,ηi

. We denote by T ηi(Ωi,ηi
) the tri-

angulation of T ηi(Ωi) restricted to Ωi,ηi , and by T hi(Ω′
i,ηi

) the triangulation
of T hi(Ωi) restricted to Ω′

i,ηi
. Throughout the paper, the notation c � d (for

quantities c and d) means that c/d is bounded from above by a positive con-
stant independently of hi, Hi, ηi and ρi. Moreover, c � d means c � d and
d � c. We also use c ≤ d to stress that c/d ≤ 1.

We study the following selfadjoint second order elliptic problem:
Find u∗ ∈ H1

0 (Ω) such that

aρ(u∗, v) = f(v), ∀v ∈ H1
0 (Ω) (1)

where

aρ(u∗, v) :=
N∑

i=1

∫
Ωi

ρi(x)∇u∗ ·∇v dx and f(v) :=
∫

Ωi

fv dx for f ∈ L2(Ω).

We assume that 0 < ci ≤ ρi(x) ≤ Ci for any x ∈ Ωi. We note that the
condition number estimates of the preconditioned systems considered in this
paper do not depend on the constants ci and Ci.

Definition: We say that a coefficient ρi satisfies the Boundary Layer As-
sumption on Ωi if ρi(x) is equal to a constant ρ̄i for any x ∈ Ω′

i,ηi
.

Definition: We say that a coefficient ρi associated to a subdomain Ωi

is of the Inclusion Hard type or Inclusion Soft type if the Boundary Layer
Assumption holds with ρi(x) = ρ̄i on Ω′

i,ηi
, and

• Inclusion Hard type: ρi(x) � ρ̄i for all x ∈ Ωi\Ω′
i,ηi

,
• Inclusion Soft type: ρi(x) � ρ̄i for all x ∈ Ωi\Ω′

i,ηi
.

We allow the coefficients {ρ̄i}N
i=1 to have large jumps across the interface of

the subdomains Γ := (∪N
i=1∂Ωi)\∂Ω. The results to be presented in this paper

can be extended easily to moderated variations of the coefficients ρi on Ω′
i,ηi

.
We point out that the extension of our results to problems where the

coefficient ρi has large jumps inside Ω′
i,ηi

is not trivial. We point out, however,
that for certain distributions of coefficients ρi where weighted Poincaré type
inequalities are explicitly given (see [7]), the technical tools introduced here
can be applied to derive sharper analysis. For instance, in the case where a
hard inclusion G crosses an edge Eij := ∂Ωi ∩ ∂Ωj , we can impose primal
constraints to guarantee average continuity on each connected component of
G∩Eij ; see numerical experiments on [3]. See also the related work on energy
minimizing coarse spaces [5] and on expensive and robust methods based on
enhanced partition of unity coarse spaces based on eigenvalue problems [1, 8]
on the diagonally scaled system, see Remark 4.1 of [1], or equivalently, using
generalized eigenvalue problems on the original system [4].
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3 Technical Tools for Layers

We now introduce technical tools that are essential for obtaining sharp bounds
for certain domain decomposition methods. The next lemma shows how
|w|H1/2(∂Ωi) can be controlled by the energy of w on Ωi,ηi .

Lemma 1. Let w ∈ H1(Ωi,ηi). Then

|w|2H1/2(∂Ωi)
� Hi

ηi
|w|2H1(Ωi,ηi

). (2)

Proof. Let V ηi(Ωi,ηi
) ⊂ H1(Ωi,ηi

) be the space of piecewise linear and contin-
uous functions associated to Tηi(Ωi,ηi). Let Πηi be the Zhang-Scott-Clemént
interpolation operator from H1(Ωi,ηi) to V ηi(Ωi,ηi). Using a triangular in-
equality we obtain

|w|2H1/2(∂Ωi)
≤ 2

(
|w −Πηiw|2H1/2(∂Ωi)

+ |Πηiw|2H1/2(∂Ωi)

)
. (3)

We now estimate the first term of the right-hand side of (3). Let us first
define the cut-off function θi on Ωi equals to one on ∂Ωi, equals to zero at
all interior nodes of T ηi(Ωi) and linear in each element of T ηi(Ωi). Note that
0 ≤ θi(x) ≤ 1 for x ∈ Ωi, θi(x) = 1 for x ∈ ∂Ωi, θi(x) = 0 for x ∈ Ωi\Ωi,ηi

,
and ‖θi‖W 1,∞(Ωi,ηi

) � 1/ηi. Denoting by z = w − Πηiw on Ωi,ηi and using
trace and minimal energy arguments plus standard calculations we obtain

|z|2H1/2(∂Ωi)
� |θiz|2H1(Ωi,ηi

) � |z|2H1(Ωi,ηi
) +

1
η2

i

‖z‖2
L2(Ωi,ηi

). (4)

The right-hand side of (4) can be bounded by |w|2H1(Ωi,ηi
) by using the

H1(Ωi,ηi
)-stability and the L2(Ωi,ηi

)-approximation properties of the Zhang-
Scott-Clemént interpolation operator Πηi . We note that the proofs of these
properties are based only on local arguments, therefore, they hold also for
domains like Ωi,ηi .

We now estimate the second term of the right-hand side of (3). We first
use scaling and embedding arguments to obtain

|Πηiw|2H1/2(∂Ωi)
� Hi|Πηiw|2H1(∂Ωi)

. (5)

To bound the right-hand side of (5), let us first introduce the subregion Ω̂i,ηi ⊂
Ωi,ηi as the union of elements of T ηi(Ωi,ηi) which have an edge on ∂Ωi. Using
only properties of linear elements of V ηi(Ωi,ηi

) we have

Hi|Πηiw|2H1(∂Ωi)
� Hi

ηi
|Πηiw|2

H1(Ω̂i,ηi
)
≤ Hi

ηi
|Πηiw|2H1(Ωi,ηi

). (6)

The lemma follows by using the H1(Ωi,ηi)-stability of the Zhang-Scott-
Clemént interpolation operator.
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3.1 Technical Tools for DDMs

In this section we present the technical tools necessary to establish sharp anal-
ysis for exact and inexact two-dimensional FETI-DP with vertex constraints.
More general technical tools can also be extended to obtain sharp analysis for
non-overlapping Schwarz methods such as FETI and FETI-DP with edge and
vertex primal constraints [9], Additive average Schwarz methods [2], inexact
iterative substructuring methods and for three-dimensional problems; see [3].

Let w ∈ V hi(∂Ωi). Define the following discrete harmonic extensions:

1. The H(i)
ρi w ∈ V hi(Ωi) as the ρi-discrete harmonic extension of w inside

Ωi, i.e., H(i)
ρi w = w on ∂Ωi and∫

Ωi

ρi(x)∇H(i)
ρi

w · ∇v dx = 0 for any v ∈ V hi
0 (Ωi). (7)

Here, V hi
0 (Ωi) is the space of functions of V hi(Ωi) which vanish on ∂Ωi.

2. The H(i)
ρi,Dw ∈ V hi(Ω′

i,ηi
) as the zero Dirichlet boundary layer harmonic

extension of w inside Ω′
i,ηi

, i.e., H(i)
ρi,Dw = w on ∂Ωi and H(i)

ρi,Dw = 0 on
∂Ω′

i,ηi
\∂Ωi, and∫

Ω′
i,ηi

ρi(x)∇H(i)
ρi,Dw · ∇v dx = 0 for any v ∈ V hi

0,D(Ω′
i,ηi

).

Here, V hi(Ω′
i,ηi

) is the space of continuous piecewise linear finite elements
on T hi(Ω′

i,ηi
), and V hi

0,D(Ω′
i,ηi

) is the space of functions of V hi(Ω′
i,ηi

) which
vanish on ∂Ω′

i,ηi
.

3. The H(i)
ρi,Nw ∈ V hi(Ω′

i,ηi
) as the zero Neumann boundary layer harmonic

extension of w inside Ω′
i,ηi

, i.e.,H(i)
ρi,Nw = w only on ∂Ωi and∫

Ω′
i,ηi

ρi(x)∇H(i)
ρi,Nw · ∇v dx = 0 for any v ∈ V hi

0,N (Ω′
i,ηi

).

Here, V hi

0,N (Ω′
i,ηi

) is the space of functions of V hi(Ω′
i,ηi

) which vanish on
∂Ωi.

Lemma 2. Let us assume that the Boundary Layer Assumption holds on Ωi

and let w ∈ V hi(∂Ωi). Then

|H(i)
ρi

w|2H1
ρi

(Ωi)
≤ |H(i)

ρi,Dw|2H1
ρi

(Ω′
i,ηi

) � |H(i)
ρi,Nw|2H1

ρi
(Ω′

i,ηi
) +

ρ̄i

ηi
‖w‖2

L2(∂Ωi)
.(8)

When ρi(x) � ρ̄i (Inclusion Soft type) on Ωi, then

|H(i)
ρi

w|2H1
ρi

(Ωi)
� ρ̄i|w|2H1/2(∂Ωi)

� Hi

ηi
|H(i)

ρi,Nw|2H1
ρi

(Ω′
i,ηi

). (9)
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Proof. The result (8) follows from [6]; see also [3] for an alternative proof. The
result (9) follows from Lemma 1 and the fact that Ωi,ηi

⊂ Ω′
i,ηi

.

Let E be an edge of ∂Ωi and IHiw : V hi(∂Ωi) → V Hi(E) be the linear
interpolation of w on E defined by the values of w on ∂E. Using some of the
ideas shown in the proof of Lemma 1 (see [3] for details), it is possible to prove
the following lemma:

Lemma 3. Let us assume that the Boundary Layer Assumption holds on Ωi

and let w ∈ V hi(∂Ωi), vE := w − IHiw on E and vE := 0 on ∂Ωi\E. Then

ρ̄i‖vE‖2

H
1/2
00 (E)

�
(

Hi

ηi
(1 + log

ηi

hi
) + (1 + log

ηi

hi
)2

)
|H(i)

ρi,Nw|2H1
ρi

(Ω′
i,ηi

),

(10)
|H(i)

ρi,N vE |2H1
ρi

(Ω′
i,ηi

) � (1 + log
ηi

hi
)2 |H(i)

ρi,Nw|2H1
ρi

(Ω′
i,ηi

), (11)

and
ρ̄i

ηi
‖vE‖2

L2(E) �
H2

i

η2
i

(1 + log
ηi

hi
) |H(i)

ρi,Nw|H1
ρi

(Ω′
i,ηi

). (12)

When ρ̄i � ρi(x) (Inclusion Hard type) on Ωi, then

ρ̄i

ηi
‖vE‖2

L2(E) �
Hi

ηi
(1 + log

ηi

hi
) |H(i)

ρi
w|2H1

ρi
(Ωi)

. (13)

4 Dual-Primal Formulation

The discrete problem associated to (1) will be formulated below in (17) as
a saddle-point problem. We follow [9] for the description of the FETI-DP
method.

Let V hi(Ωi) be the space of continuous piecewise linear functions on
T hi(Ωi) which vanish on ∂Ωi ∩ ∂Ω. The associated subdomain stiffness ma-
trices A(i) and the load vectors f (i) from the contribution of the individual
elements are given by

v(i)T
A(i)u(i) := aρi

(u(i), v(i)) :=
∫

Ωi

ρi ∇u(i)· ∇v(i) dx, ∀ u(i), v(i) ∈ V hi(Ωi)

and
v(i)T

f (i) :=
∫

Ωi

fv(i) dx, ∀ v(i) ∈ V hi(Ωi).

Here and below we use the same notation to denote both finite element func-
tions and their vector representations. We denote by V h(Ω) the product space
of the V hi(Ωi) and represent a vector (or function) u ∈ V h(Ω) as u = {u(i)}N

i=1

where u(i) ∈ V hi(Ωi).
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Let the interface Γ := (∪N
i=1∂Ωi)\∂Ω be the union of interior edges and

vertices. The nodes of an edge are shared by exactly two subdomains, and
the edges are open subsets of Γ . The vertices are endpoints of the edges.
For each subdomain Ωi, let us partition the vector u(i) into a vector of primal
variables u

(i)
Π and a vector of nonprimal variables u

(i)
Σ . We choose only vertices

as primal nodes since we are considering only two dimensional problems. Let
us partition the nonprimal variables u

(i)
Σ into a vector of interior variables u

(i)
I

and a vector of edge variables u
(i)
4 . We will enforce continuity of the solution

in the primal unknowns of u
(i)
Π by making them global; we subassemble the

subdomain stiffness matrix A(i) with respect to this set of variables and denote
the resulting matrix by Ã. For the remaining interfaces variables, i.e., the edge
variables u4 := {u(i)

4 }N
i=1, we will introduce Lagrange multipliers to enforce

continuity. We also refer to the edge variables as dual variables.
Here we include more details: we partition the stiffness matrices according

to the different sets of unknowns and obtain

A(i) =

[
A

(i)
ΣΣ A

(i)
ΠΣ

T

A
(i)
ΠΣ A

(i)
ΠΠ

]
, A

(i)
ΣΣ =

[
A

(i)
II A

(i)
4I

T

A
(i)
4I A

(i)
44

]
, (14)

and
f (i) = [f (i)

Σ

T
f

(i)
Π

T
]T , f

(i)
Σ = [f (i)

I f
(i)
4 ]T .

Next we define the block diagonal matrices

AΣΣ = diagN
i=1(A

(i)
ΣΣ), AΠΣ = diagN

i=1(A
(i)
ΠΣ), AΠΠ = diagN

i=1(A
(i)
ΠΠ),

and load vectors
fΣ = {f (i)

Σ }N
i=1, fΠ = {f (i)

Π }N
i=1.

Assembling the local subdomain matrices and load vectors with respect to the
primal variables, we obtain the partially assembled global stiffness matrix Ã
and the load vector f̃ ,

Ã =
[

AΣΣ ÃT
ΠΣ

ÃΠΣ ÃΠΠ

]
, f̃ =

[
fΣ

f̃Π

]
, (15)

where a tilde refers an assembled quantity. It is easy to see that the matrix Ã
is positive definite.

To enforce the continuity on the dual variables u4, we introduce a jump
matrix B4 with entries 0, −1 and 1 given by

B4 = [B(1)
4 , · · · , B

(N)
4 ], (16)

where B
(i)
4 consists of columns of B4 attributed to the i-th component of

the dual variables. The space Λ := range(B4) is used as the space for the
Lagrange multipliers λ. The Dual-Primal saddle point problem is given by
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AII AT

4I ÃT
ΠI 0

A4I A44 ÃT
Π4 BT

4
ÃΠI ÃΠ4 ÃΠΠ 0

0 B4 0 0




uI

u4
ũΠ

λ

 =


fI

f4
f̃Π

λ

 (17)

where AII := diagN
i=1(A

(i)
II ) and ũΠ means the primal unknowns at the vertices

of the substructures Ωi. By eliminating uI := {u(i)
I }N

i=1, u4 := {u(i)
4 }N

i=1 and
ũΠ from (17), we obtain a system on the form

Fλ = d (18)

where

F = BΣÃ−1BT
Σ , d = BΣÃ−1[fT

Σ f̃T
Π ]T with BΣ = (0, B∆).

5 FETI-DP Preconditioner

To define the FETI-DP preconditioner M for F , we need to introduce a scaled
variant of the jump matrix B4, which we denote by

BD,4 = [D(1)
4 B

(1)
4 , · · · , D

(N)
4 B

(N)
4 ].

The diagonal scaling matrices D
(i)
4 operates on the dual variables u

(i)
4 and

they are defined as follows. Let Ji be the indices of the substructures which
share an edge with Ωi. An edge shared by Ωi and Ωj is denoted by Eij , and
the set of dual nodes on T hi(∂Ωi) on Eij is denoted by Eij,h. The diagonal
matrix D

(i)
4 is defined via δ†i (x) where

δ†i (x) :=
ρ̄i

ρ̄i + ρ̄j
(x) x ∈ Eij,h and j ∈ Ji,

and let
P4 := BT

D,4B4. (19)

The FETI-DP preconditioner is defined by

M−1 = P4S44PT
4 where

S44 := diagN
i=1〈S

(i)
44〉, 〈S(i)

44w
(i)
4 , w

(i)
4 〉 :=

∫
Ωi

ρi∇H(i)
ρi

w
(i)
4 · ∇H(i)

ρi
w

(i)
4 dx,

where w
(i)
4 is identified with a function on V hi(∂Ωi) which vanishes at the

vertices of Ωi. Using Lemma 2 and Lemma 3, it is possible to prove (see [3]
for details) the following theorem:
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Theorem 1. Let us assume that the Boundary Layer Assumption holds for
any substructures Ωi. Then, for any λ ∈ Λ we have:

〈Mλ, λ〉 ≤ 〈Fλ, λ〉 ≤ λmax〈Mλ, λ〉

where

λmax �
N

max
i=1

H2
i

η2
i

(1 + log
ηi

hi
).

When the coefficients ρi, 1 ≤ i ≤ N , are simultaneously of the Inclusion Hard
type, or are simultaneously of the Inclusion Soft type, then:

λmax �
N

max
i=1

{
Hi

ηi
(1 + log

ηi

hi
) + (1 + log

ηi

hi
)2

}
.

The linear dependence result on Hi/ηi for Inclusion Soft type coefficients is
the first one given in the literature. The bounds in Theorem 1 hold also for
the FETI method and are sharper than O(Hi

ηi
(1 + log Hi

hi
)2) obtained in [6]

for Inclusion Hard type coefficients.
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