Technical Tools for Boundary Layers and Applications to Heterogeneous Coefficients

Maksymilian Dryja¹ and Marcus Sarkis^{2,3}

- ¹ Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland. This work was supported in part by Polish Sciences Foundation under grant NN201006933.
- ² Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro 22460-320, Brazil.
- ³ Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

1 Summary

We consider traces and discrete harmonic extensions on thin boundary layers. We introduce *sharp* estimates on how to control the $H^{1/2}$ – or $H_{00}^{1/2}$ – boundary norm of a finite element function by its energy in a thin layer and vice versa, how to control the energy of a discrete harmonic function in a layer by the $H^{1/2}$ or $H_{00}^{1/2}$ norm on the boundary. Such results play an important role in the analysis of domain decomposition methods in the presence of high-contrast media inclusions, small overlap and/or inexact solvers.

2 Introduction and Assumptions

Let Ω be a well-shaped polygonal domain of diameter O(1) in \Re^2 . We assume that the substructures $\Omega_i, 1 \leq i \leq N$, are well-shaped polygonal domains of diameters $O(H_i)$, and also assume that the Ω_i form a geometrically conforming nonoverlapping partitioning of Ω . Let $\mathcal{T}^{h_i}(\Omega_i)$ be a conforming shape-regular simplicial triangulation of Ω_i where h_i denotes the smallest diameter of the simplices of $\mathcal{T}^{h_i}(\Omega_i)$. We assume that the union of the triangulations $\mathcal{T}^{h_i}(\Omega_i)$, which we denote by $\mathcal{T}^h(\Omega)$, forms a conforming triangulation for Ω .

For purpose of analysis, let us introduce an auxiliary conforming shaperegular simplicial triangulation $\mathcal{T}^{\eta_i}(\Omega_i)$ of Ω_i where η_i denotes the smallest diameter of its simplices of $\mathcal{T}^{\eta_i}(\Omega_i)$. We do not assume that the triangulations $\mathcal{T}^{\eta_i}(\Omega_i)$ and $\mathcal{T}^{h_i}(\Omega_i)$ are nested. Let us introduce the boundary layer $\Omega_{i,\eta_i} \subset \Omega_i$ of width $O(\eta_i)$ as the union of all simplices of $\mathcal{T}^{\eta_i}(\Omega_i)$ that touch $\partial \Omega_i$ in at least one point. We assume that the mesh parameter η_i is large enough compared to h_i in the sense that all simplices of $\mathcal{T}^{h_i}(\Omega_i)$ that touch

 $\partial \Omega_i$ must be contained in Ω_{i,η_i} . We also introduce the boundary layer Ω'_{i,η_i} of width $O(\eta_i)$ as the union of all simplices of $\mathcal{T}^{h_i}(\Omega_i)$ which intersect Ω_{i,η_i} , hence, it is easy to see that $\Omega_{i,\eta_i} \subset \Omega'_{i,\eta_i}$. We denote by $\mathcal{T}^{\eta_i}(\Omega_{i,\eta_i})$ the triangulation of $\mathcal{T}^{\eta_i}(\Omega_i)$ restricted to Ω_{i,η_i} , and by $\mathcal{T}^{h_i}(\Omega'_{i,\eta_i})$ the triangulation of $\mathcal{T}^{h_i}(\Omega_i)$ restricted to Ω'_{i,η_i} . Throughout the paper, the notation $c \leq d$ (for quantities c and d) means that c/d is bounded from above by a positive constant independently of h_i , H_i , η_i and ρ_i . Moreover, $c \approx d$ means $c \leq d$ and $d \leq c$. We also use $c \leq d$ to stress that $c/d \leq 1$.

We study the following selfadjoint second order elliptic problem:

Find $u^* \in H^1_0(\Omega)$ such that

$$a_{\rho}(u^*, v) = f(v), \quad \forall v \in H_0^1(\Omega)$$

$$\tag{1}$$

where

$$a_{\rho}(u^*, v) := \sum_{i=1}^{N} \int_{\Omega_i} \rho_i(x) \nabla u^* \cdot \nabla v \, dx \text{ and } f(v) := \int_{\Omega_i} fv \, dx \text{ for } f \in L^2(\Omega).$$

We assume that $0 < c_i \leq \rho_i(x) \leq C_i$ for any $x \in \Omega_i$. We note that the condition number estimates of the preconditioned systems considered in this paper do not depend on the constants c_i and C_i .

Definition: We say that a coefficient ρ_i satisfies the Boundary Layer Assumption on Ω_i if $\rho_i(x)$ is equal to a constant $\bar{\rho}_i$ for any $x \in \Omega'_{i,\eta_i}$.

Definition: We say that a coefficient ρ_i associated to a subdomain Ω_i is of the *Inclusion Hard* type or *Inclusion Soft* type if the *Boundary Layer* Assumption holds with $\rho_i(x) = \bar{\rho}_i$ on Ω'_{i,n_i} , and

- Inclusion Hard type: $\rho_i(x) \succeq \bar{\rho}_i$ for all $x \in \Omega_i \setminus \Omega'_{i,\eta_i}$,
- Inclusion Soft type: $\rho_i(x) \preceq \bar{\rho}_i$ for all $x \in \Omega_i \setminus \Omega'_{i,\eta_i}$.

We allow the coefficients $\{\bar{\rho}_i\}_{i=1}^N$ to have large jumps across the interface of the subdomains $\Gamma := (\bigcup_{i=1}^N \partial \Omega_i) \setminus \partial \Omega$. The results to be presented in this paper can be extended easily to moderated variations of the coefficients ρ_i on $\Omega'_{i,n}$.

We point out that the extension of our results to problems where the coefficient ρ_i has large jumps inside Ω'_{i,η_i} is not trivial. We point out, however, that for certain distributions of coefficients ρ_i where weighted Poincaré type inequalities are explicitly given (see [7]), the technical tools introduced here can be applied to derive sharper analysis. For instance, in the case where a hard inclusion G crosses an edge $E_{ij} := \partial \Omega_i \cap \partial \Omega_j$, we can impose primal constraints to guarantee average continuity on each connected component of $G \cap E_{ij}$; see numerical experiments on [3]. See also the related work on energy minimizing coarse spaces [5] and on expensive and robust methods based on enhanced partition of unity coarse spaces based on eigenvalue problems [1, 8] on the diagonally scaled system, see Remark 4.1 of [1], or equivalently, using generalized eigenvalue problems on the original system [4].

3 Technical Tools for Layers

We now introduce technical tools that are essential for obtaining sharp bounds for certain domain decomposition methods. The next lemma shows how $|w|_{H^{1/2}(\partial \Omega_i)}$ can be controlled by the energy of w on Ω_{i,η_i} .

Lemma 1. Let $w \in H^1(\Omega_{i,\eta_i})$. Then

$$w|_{H^{1/2}(\partial\Omega_i)}^2 \preceq \frac{H_i}{\eta_i} |w|_{H^1(\Omega_{i,\eta_i})}^2.$$

$$\tag{2}$$

Proof. Let $V^{\eta_i}(\Omega_{i,\eta_i}) \subset H^1(\Omega_{i,\eta_i})$ be the space of piecewise linear and continuous functions associated to $\mathcal{T}_{\eta_i}(\Omega_{i,\eta_i})$. Let Π^{η_i} be the Zhang-Scott-Clemént interpolation operator from $H^1(\Omega_{i,\eta_i})$ to $V^{\eta_i}(\Omega_{i,\eta_i})$. Using a triangular inequality we obtain

$$|w|_{H^{1/2}(\partial\Omega_i)}^2 \le 2\left(|w - \Pi^{\eta_i}w|_{H^{1/2}(\partial\Omega_i)}^2 + |\Pi^{\eta_i}w|_{H^{1/2}(\partial\Omega_i)}^2\right).$$
(3)

We now estimate the first term of the right-hand side of (3). Let us first define the cut-off function θ_i on Ω_i equals to one on $\partial\Omega_i$, equals to zero at all interior nodes of $\mathcal{T}^{\eta_i}(\Omega_i)$ and linear in each element of $\mathcal{T}^{\eta_i}(\Omega_i)$. Note that $0 \leq \theta_i(x) \leq 1$ for $x \in \Omega_i$, $\theta_i(x) = 1$ for $x \in \partial\Omega_i$, $\theta_i(x) = 0$ for $x \in \Omega_i \setminus \Omega_{i,\eta_i}$, and $\|\theta_i\|_{W^{1,\infty}(\Omega_{i,\eta_i})} \leq 1/\eta_i$. Denoting by $z = w - \Pi^{\eta_i} w$ on Ω_{i,η_i} and using trace and minimal energy arguments plus standard calculations we obtain

$$|z|^{2}_{H^{1/2}(\partial\Omega_{i})} \leq |\theta_{i}z|^{2}_{H^{1}(\Omega_{i,\eta_{i}})} \leq |z|^{2}_{H^{1}(\Omega_{i,\eta_{i}})} + \frac{1}{\eta^{2}_{i}} ||z||^{2}_{L^{2}(\Omega_{i,\eta_{i}})}.$$
 (4)

The right-hand side of (4) can be bounded by $|w|^2_{H^1(\Omega_{i,\eta_i})}$ by using the $H^1(\Omega_{i,\eta_i})$ -stability and the $L_2(\Omega_{i,\eta_i})$ -approximation properties of the Zhang-Scott-Clemént interpolation operator Π^{η_i} . We note that the proofs of these properties are based only on local arguments, therefore, they hold also for domains like Ω_{i,η_i} .

We now estimate the second term of the right-hand side of (3). We first use scaling and embedding arguments to obtain

$$|\Pi^{\eta_i}w|^2_{H^{1/2}(\partial\Omega_i)} \preceq H_i |\Pi^{\eta_i}w|^2_{H^1(\partial\Omega_i)}.$$
(5)

To bound the right-hand side of (5), let us first introduce the subregion $\Omega_{i,\eta_i} \subset \Omega_{i,\eta_i}$ as the union of elements of $\mathcal{T}^{\eta_i}(\Omega_{i,\eta_i})$ which have an edge on $\partial\Omega_i$. Using only properties of linear elements of $V^{\eta_i}(\Omega_{i,\eta_i})$ we have

$$H_{i}|\Pi^{\eta_{i}}w|^{2}_{H^{1}(\partial\Omega_{i})} \leq \frac{H_{i}}{\eta_{i}}|\Pi^{\eta_{i}}w|^{2}_{H^{1}(\hat{\Omega}_{i,\eta_{i}})} \leq \frac{H_{i}}{\eta_{i}}|\Pi^{\eta_{i}}w|^{2}_{H^{1}(\Omega_{i,\eta_{i}})}.$$
 (6)

The lemma follows by using the $H^1(\Omega_{i,\eta_i})$ -stability of the Zhang-Scott-Clemént interpolation operator.

3.1 Technical Tools for DDMs

In this section we present the technical tools necessary to establish sharp analysis for exact and inexact two-dimensional FETI-DP with vertex constraints. More general technical tools can also be extended to obtain sharp analysis for non-overlapping Schwarz methods such as FETI and FETI-DP with edge and vertex primal constraints [9], Additive average Schwarz methods [2], inexact iterative substructuring methods and for three-dimensional problems; see [3].

Let $w \in V^{h_i}(\partial \Omega_i)$. Define the following discrete harmonic extensions:

1. The $\mathcal{H}_{\rho_i}^{(i)} w \in V^{h_i}(\Omega_i)$ as the ρ_i -discrete harmonic extension of w inside Ω_i , i.e., $\mathcal{H}_{\rho_i}^{(i)} w = w$ on $\partial \Omega_i$ and

$$\int_{\Omega_i} \rho_i(x) \nabla \mathcal{H}_{\rho_i}^{(i)} w \cdot \nabla v \, dx = 0 \text{ for any } v \in V_0^{h_i}(\Omega_i).$$
(7)

Here, $V_0^{h_i}(\Omega_i)$ is the space of functions of $V^{h_i}(\Omega_i)$ which vanish on $\partial \Omega_i$. 2. The $\mathcal{H}_{\rho_i,\mathcal{D}}^{(i)} w \in V^{h_i}(\Omega'_{i,\eta_i})$ as the zero Dirichlet boundary layer harmonic

2. The $\mathcal{H}_{\rho_i,\mathcal{D}}^{(i)} w \in V^{n_i}(\Omega'_{i,\eta_i})$ as the zero Dirichlet boundary layer harmonic extension of w inside Ω'_{i,η_i} , i.e., $\mathcal{H}_{\rho_i,\mathcal{D}}^{(i)} w = w$ on $\partial \Omega_i$ and $\mathcal{H}_{\rho_i,\mathcal{D}}^{(i)} w = 0$ on $\partial \Omega'_{i,\eta_i} \setminus \partial \Omega_i$, and

$$\int_{\Omega'_{i,\eta_i}} \rho_i(x) \nabla \mathcal{H}^{(i)}_{\rho_i,\mathcal{D}} w \cdot \nabla v \ dx = 0 \text{ for any } v \in V^{h_i}_{0,\mathcal{D}}(\Omega'_{i,\eta_i}).$$

Here, $V^{h_i}(\Omega'_{i,\eta_i})$ is the space of continuous piecewise linear finite elements on $\mathcal{T}^{h_i}(\Omega'_{i,\eta_i})$, and $V^{h_i}_{0,\mathcal{D}}(\Omega'_{i,\eta_i})$ is the space of functions of $V^{h_i}(\Omega'_{i,\eta_i})$ which vanish on $\partial \Omega'_{i,\eta_i}$.

3. The $\mathcal{H}_{\rho_i,\mathcal{N}}^{(i)} w \in V^{h_i}(\Omega'_{i,\eta_i})$ as the zero Neumann boundary layer harmonic extension of w inside Ω'_{i,η_i} , i.e., $\mathcal{H}_{\rho_i,\mathcal{N}}^{(i)} w = w$ only on $\partial \Omega_i$ and

$$\int_{\Omega'_{i,\eta_i}} \rho_i(x) \nabla \mathcal{H}^{(i)}_{\rho_i,\mathcal{N}} w \cdot \nabla v \ dx = 0 \text{ for any } v \in V^{h_i}_{0,\mathcal{N}}(\Omega'_{i,\eta_i}).$$

Here, $V_{0,\mathcal{N}}^{h_i}(\Omega'_{i,\eta_i})$ is the space of functions of $V^{h_i}(\Omega'_{i,\eta_i})$ which vanish on $\partial \Omega_i$.

Lemma 2. Let us assume that the Boundary Layer Assumption holds on Ω_i and let $w \in V^{h_i}(\partial \Omega_i)$. Then

$$|\mathcal{H}_{\rho_{i}}^{(i)}w|_{H_{\rho_{i}}^{1}(\Omega_{i})}^{2} \leq |\mathcal{H}_{\rho_{i},\mathcal{D}}^{(i)}w|_{H_{\rho_{i}}^{1}(\Omega_{i,\eta_{i}})}^{2} \leq |\mathcal{H}_{\rho_{i},\mathcal{N}}^{(i)}w|_{H_{\rho_{i}}^{1}(\Omega_{i,\eta_{i}})}^{2} + \frac{\bar{\rho_{i}}}{\eta_{i}}\|w\|_{L^{2}(\partial\Omega_{i})}^{2}.(8)$$

When $\rho_i(x) \preceq \bar{\rho}_i$ (Inclusion Soft type) on Ω_i , then

$$|\mathcal{H}_{\rho_{i}}^{(i)}w|_{H_{\rho_{i}}^{1}(\Omega_{i})}^{2} \leq \bar{\rho}_{i}|w|_{H^{1/2}(\partial\Omega_{i})}^{2} \leq \frac{H_{i}}{\eta_{i}}|\mathcal{H}_{\rho_{i},\mathcal{N}}^{(i)}w|_{H_{\rho_{i}}^{1}(\Omega_{i,\eta_{i}}^{\prime})}^{2}.$$
(9)

Proof. The result (8) follows from [6]; see also [3] for an alternative proof. The result (9) follows from Lemma 1 and the fact that $\Omega_{i,\eta_i} \subset \Omega'_{i,\eta_i}$.

Let *E* be an edge of $\partial \Omega_i$ and $I^{H_i}w : V^{h_i}(\partial \Omega_i) \to V^{H_i}(E)$ be the linear interpolation of *w* on *E* defined by the values of *w* on ∂E . Using some of the ideas shown in the proof of Lemma 1 (see [3] for details), it is possible to prove the following lemma:

Lemma 3. Let us assume that the Boundary Layer Assumption holds on Ω_i and let $w \in V^{h_i}(\partial \Omega_i)$, $v_E := w - I^{H_i}w$ on E and $v_E := 0$ on $\partial \Omega_i \setminus E$. Then

$$\bar{\rho}_{i} \| v_{E} \|_{H_{00}^{1/2}(E)}^{2} \leq \left(\frac{H_{i}}{\eta_{i}} \left(1 + \log \frac{\eta_{i}}{h_{i}} \right) + \left(1 + \log \frac{\eta_{i}}{h_{i}} \right)^{2} \right) \| \mathcal{H}_{\rho_{i},\mathcal{N}}^{(i)} w \|_{H_{\rho_{i}}^{1}(\Omega_{i}',\eta_{i})}^{2}, \tag{10}$$

$$|\mathcal{H}_{\rho_{i},\mathcal{N}}^{(i)}v_{E}|^{2}_{H^{1}_{\rho_{i}}(\Omega_{i,\eta_{i}}^{\prime})} \leq (1 + \log \frac{\eta_{i}}{h_{i}})^{2} |\mathcal{H}_{\rho_{i},\mathcal{N}}^{(i)}w|^{2}_{H^{1}_{\rho_{i}}(\Omega_{i,\eta_{i}}^{\prime})},$$
(11)

and

$$\frac{\bar{\rho}_i}{\eta_i} \| v_E \|_{L^2(E)}^2 \preceq \frac{H_i^2}{\eta_i^2} \, (1 + \log \frac{\eta_i}{h_i}) \, |\mathcal{H}_{\rho_i,\mathcal{N}}^{(i)} w|_{H^1_{\rho_i}(\Omega'_{i,\eta_i})}. \tag{12}$$

When $\bar{\rho}_i \leq \rho_i(x)$ (Inclusion Hard type) on Ω_i , then

$$\frac{\bar{\rho}_i}{\eta_i} \|v_E\|_{L^2(E)}^2 \preceq \frac{H_i}{\eta_i} \left(1 + \log\frac{\eta_i}{h_i}\right) |\mathcal{H}_{\rho_i}^{(i)}w|_{H^1_{\rho_i}(\Omega_i)}^2.$$
(13)

4 Dual-Primal Formulation

The discrete problem associated to (1) will be formulated below in (17) as a saddle-point problem. We follow [9] for the description of the FETI-DP method.

Let $V^{h_i}(\Omega_i)$ be the space of continuous piecewise linear functions on $\mathcal{T}^{h_i}(\Omega_i)$ which vanish on $\partial \Omega_i \cap \partial \Omega$. The associated subdomain stiffness matrices $A^{(i)}$ and the load vectors $f^{(i)}$ from the contribution of the individual elements are given by

$$v^{(i)T}A^{(i)}u^{(i)} := a_{\rho_i}(u^{(i)}, v^{(i)}) := \int_{\Omega_i} \rho_i \,\nabla u^{(i)} \cdot \nabla v^{(i)} \, dx, \quad \forall \ u^{(i)}, v^{(i)} \in V^{h_i}(\Omega_i)$$

and

$$v^{(i)T} f^{(i)} := \int_{\Omega_i} f v^{(i)} dx, \quad \forall v^{(i)} \in V^{h_i}(\Omega_i).$$

Here and below we use the same notation to denote both finite element functions and their vector representations. We denote by $V^h(\Omega)$ the product space of the $V^{h_i}(\Omega_i)$ and represent a vector (or function) $u \in V^h(\Omega)$ as $u = \{u^{(i)}\}_{i=1}^N$ where $u^{(i)} \in V^{h_i}(\Omega_i)$.

Let the interface $\Gamma := (\cup_{i=1}^{N} \partial \Omega_i) \backslash \partial \Omega$ be the union of interior edges and vertices. The nodes of an edge are shared by exactly two subdomains, and the edges are open subsets of Γ . The vertices are endpoints of the edges. For each subdomain $\overline{\Omega}_i$, let us partition the vector $u^{(i)}$ into a vector of primal variables $u_{\Pi}^{(i)}$ and a vector of nonprimal variables $u_{\Sigma}^{(i)}$. We choose only vertices as primal nodes since we are considering only two dimensional problems. Let us partition the nonprimal variables $u_{\Sigma}^{(i)}$ into a vector of interior variables $u_{I}^{(i)}$ and a vector of edge variables $u_{\Delta}^{(i)}$. We will enforce continuity of the solution in the primal unknowns of $u_{\Pi}^{(i)}$ by making them global; we subassemble the subdomain stiffness matrix $A^{(i)}$ with respect to this set of variables and denote the resulting matrix by \tilde{A} . For the remaining interfaces variables, i.e., the edge variables $u_{\Delta} := \{u_{\Delta}^{(i)}\}_{i=1}^{N}$, we will introduce Lagrange multipliers to enforce continuity. We also refer to the edge variables as dual variables.

Here we include more details: we partition the stiffness matrices according to the different sets of unknowns and obtain

$$A^{(i)} = \begin{bmatrix} A_{\Sigma\Sigma}^{(i)} & A_{\Pi\Sigma}^{(i)} \\ A_{\Pi\Sigma}^{(i)} & A_{\Pi\Pi}^{(i)} \end{bmatrix}, \quad A_{\Sigma\Sigma}^{(i)} = \begin{bmatrix} A_{II}^{(i)} & A_{\Delta I}^{(i)} \\ A_{\Delta I}^{(i)} & A_{\Delta \Delta}^{(i)} \end{bmatrix},$$
(14)

and

$$f^{(i)} = [f_{\Sigma}^{(i)T} f_{\Pi}^{(i)T}]^{T}, \quad f_{\Sigma}^{(i)} = [f_{I}^{(i)} f_{\Delta}^{(i)}]^{T}.$$

Next we define the block diagonal matrices

$$A_{\Sigma\Sigma} = \operatorname{diag}_{i=1}^{N}(A_{\Sigma\Sigma}^{(i)}), \quad A_{\Pi\Sigma} = \operatorname{diag}_{i=1}^{N}(A_{\Pi\Sigma}^{(i)}), \quad A_{\Pi\Pi} = \operatorname{diag}_{i=1}^{N}(A_{\Pi\Pi}^{(i)}),$$

and load vectors

$$f_{\Sigma} = \{f_{\Sigma}^{(i)}\}_{i=1}^{N}, \quad f_{\Pi} = \{f_{\Pi}^{(i)}\}_{i=1}^{N}.$$

Assembling the local subdomain matrices and load vectors with respect to the primal variables, we obtain the partially assembled global stiffness matrix \tilde{A} and the load vector \tilde{f} ,

$$\tilde{A} = \begin{bmatrix} A_{\Sigma\Sigma} & \tilde{A}_{\Pi\Sigma}^T \\ \tilde{A}_{\Pi\Sigma} & \tilde{A}_{\Pi\Pi} \end{bmatrix}, \quad \tilde{f} = \begin{bmatrix} f_{\Sigma} \\ \tilde{f}_{\Pi} \end{bmatrix}, \tag{15}$$

where a tilde refers an assembled quantity. It is easy to see that the matrix A is positive definite.

To enforce the continuity on the dual variables u_{\triangle} , we introduce a jump matrix B_{\triangle} with entries 0, -1 and 1 given by

$$B_{\Delta} = [B_{\Delta}^{(1)}, \cdots, B_{\Delta}^{(N)}], \tag{16}$$

where $B^{(i)}_{\Delta}$ consists of columns of B_{Δ} attributed to the *i*-th component of the dual variables. The space $\Lambda := range(B_{\Delta})$ is used as the space for the Lagrange multipliers λ . The Dual-Primal saddle point problem is given by

Boundary Layer Technical Tools

$$\begin{bmatrix} A_{II} & A_{\Delta I}^T & \tilde{A}_{\Pi I}^T & 0\\ A_{\Delta I} & A_{\Delta \Delta} & \tilde{A}_{\Pi \Delta}^T & B_{\Delta}^T\\ \tilde{A}_{\Pi I} & \tilde{A}_{\Pi \Delta} & \tilde{A}_{\Pi \Pi} & 0\\ 0 & B_{\Delta} & 0 & 0 \end{bmatrix} \begin{bmatrix} u_I \\ u_{\Delta} \\ \tilde{u}_{\Pi} \\ \lambda \end{bmatrix} = \begin{bmatrix} f_I \\ f_{\Delta} \\ \tilde{f}_{\Pi} \\ \lambda \end{bmatrix}$$
(17)

where $A_{II} := \operatorname{diag}_{i=1}^{N}(A_{II}^{(i)})$ and \tilde{u}_{II} means the primal unknowns at the vertices of the substructures Ω_i . By eliminating $u_I := \{u_I^{(i)}\}_{i=1}^N$, $u_{\triangle} := \{u_{\triangle}^{(i)}\}_{i=1}^N$ and \tilde{u}_{II} from (17), we obtain a system on the form

$$F\lambda = d \tag{18}$$

where

$$F = B_{\Sigma} \tilde{A}^{-1} B_{\Sigma}^{T}, \quad d = B_{\Sigma} \tilde{A}^{-1} [f_{\Sigma}^{T} \ \tilde{f}_{\Pi}^{T}]^{T} \quad \text{with} \quad B_{\Sigma} = (0, B_{\Delta}).$$

5 FETI-DP Preconditioner

To define the FETI-DP preconditioner M for F, we need to introduce a scaled variant of the jump matrix B_{Δ} , which we denote by

$$B_{D,\triangle} = [D_{\triangle}^{(1)} B_{\triangle}^{(1)}, \cdots, D_{\triangle}^{(N)} B_{\triangle}^{(N)}].$$

The diagonal scaling matrices $D_{\Delta}^{(i)}$ operates on the dual variables $u_{\Delta}^{(i)}$ and they are defined as follows. Let \mathcal{J}_i be the indices of the substructures which share an edge with Ω_i . An edge shared by Ω_i and Ω_j is denoted by E_{ij} , and the set of dual nodes on $\mathcal{T}^{h_i}(\partial \Omega_i)$ on E_{ij} is denoted by $E_{ij,h}$. The diagonal matrix $D_{\Delta}^{(i)}$ is defined via $\delta_i^{\dagger}(x)$ where

$$\delta_i^{\dagger}(x) := \frac{\bar{\rho}_i}{\bar{\rho}_i + \bar{\rho}_j}(x) \quad x \in E_{ij,h} \text{ and } j \in \mathcal{J}_i,$$

and let

$$P_{\Delta} := B_{D,\Delta}^T B_{\Delta}. \tag{19}$$

The FETI-DP preconditioner is defined by

$$M^{-1} = P_{\triangle} S_{\triangle \triangle} P_{\triangle}^T$$
 where

$$S_{\triangle \triangle} := \operatorname{diag}_{i=1}^N \langle S_{\triangle \triangle}^{(i)} \rangle, \ \langle S_{\triangle \triangle}^{(i)} w_{\triangle}^{(i)}, w_{\triangle}^{(i)} \rangle := \int_{\Omega_i} \rho_i \nabla \mathcal{H}_{\rho_i}^{(i)} w_{\triangle}^{(i)} \cdot \nabla \mathcal{H}_{\rho_i}^{(i)} w_{\triangle}^{(i)} \, dx,$$

where $w^{(i)}_{\Delta}$ is identified with a function on $V^{h_i}(\partial \Omega_i)$ which vanishes at the vertices of Ω_i . Using Lemma 2 and Lemma 3, it is possible to prove (see [3] for details) the following theorem:

7

Theorem 1. Let us assume that the Boundary Layer Assumption holds for any substructures Ω_i . Then, for any $\lambda \in \Lambda$ we have:

$$\langle M\lambda,\lambda\rangle \leq \langle F\lambda,\lambda\rangle \leq \lambda_{\max}\langle M\lambda,\lambda\rangle$$

where

$$\lambda_{\max} \preceq \max_{i=1}^{N} \frac{H_i^2}{\eta_i^2} \ (1 + \log \frac{\eta_i}{h_i}).$$

When the coefficients ρ_i , $1 \le i \le N$, are simultaneously of the Inclusion Hard type, or are simultaneously of the Inclusion Soft type, then:

$$\lambda_{\max} \preceq \max_{i=1}^{N} \left\{ \frac{H_i}{\eta_i} \left(1 + \log \frac{\eta_i}{h_i} \right) + \left(1 + \log \frac{\eta_i}{h_i} \right)^2 \right\}.$$

The linear dependence result on H_i/η_i for Inclusion Soft type coefficients is the first one given in the literature. The bounds in Theorem 1 hold also for the FETI method and are sharper than $O(\frac{H_i}{\eta_i}(1 + \log \frac{H_i}{h_i})^2)$ obtained in [6] for Inclusion Hard type coefficients.

References

- M. Brezina, C. Heberton, J. Mandel, and P. Vanek. An iterative method with convergence rate chosen a priori. UCD/CCM Report 140, 1999.
- [2] M. Dryja and M. Sarkis. Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. To appear in Comput. Methods Appl. Math., 2010.
- [3] M. Dryja and M. Sarkis. Boundary layer technical tools for domain decomposition methods. In preparation, 2010.
- [4] Y. Efendiev and J. Galvis. Domain decomposition preconditioners for multiscale problems. Texas A & M, Preprint, 2009.
- [5] V. J. Lent, R. Scheichl, and I. Graham. Energy minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs. *Numer. Lin. Alg. Appl.*, 16:775–779, 2009.
- [6] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs. Numer. Math., 111(2):293–333, 2008.
- [7] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs – Part II: Interface variation. Bath Institute for Complex Systems, University of Bath, Preprint 7/09, 2009.
- [8] M. Sarkis. Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity. In *Domain decomposition methods in science and engineering*, pages 149–158. Natl. Auton. Univ. Mex., México, 2003.
- [9] A. Toselli and B. O. Widlund. Domain Decomposition Methods Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.