Technical Tools for Boundary Layers and Applications to Heterogeneous Coefficients

Maksymilian Dryja ${ }^{1}$ and Marcus Sarkis ${ }^{2,3}$
${ }^{1}$ Department of Mathematics, Warsaw University, Banacha 2, 02-097 Warsaw, Poland. This work was supported in part by Polish Sciences Foundation under grant NN201006933.
${ }^{2}$ Instituto Nacional de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro 22460-320, Brazil.
${ }^{3}$ Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609, USA.

1 Summary

We consider traces and discrete harmonic extensions on thin boundary layers. We introduce sharp estimates on how to control the $H^{1 / 2}$ - or $H_{00}^{1 / 2}-$ boundary norm of a finite element function by its energy in a thin layer and vice versa, how to control the energy of a discrete harmonic function in a layer by the $H^{1 / 2}$ or $H_{00}^{1 / 2}$ norm on the boundary. Such results play an important role in the analysis of domain decomposition methods in the presence of high-contrast media inclusions, small overlap and/or inexact solvers.

2 Introduction and Assumptions

Let Ω be a well-shaped polygonal domain of diameter $O(1)$ in \Re^{2}. We assume that the substructures $\Omega_{i}, 1 \leq i \leq N$, are well-shaped polygonal domains of diameters $O\left(H_{i}\right)$, and also assume that the Ω_{i} form a geometrically conforming nonoverlapping partitioning of Ω. Let $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$ be a conforming shape-regular simplicial triangulation of Ω_{i} where h_{i} denotes the smallest diameter of the simplices of $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$. We assume that the union of the triangulations $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$, which we denote by $\mathcal{T}^{h}(\Omega)$, forms a conforming triangulation for Ω.

For purpose of analysis, let us introduce an auxiliary conforming shaperegular simplicial triangulation $\mathcal{T}^{\eta_{i}}\left(\Omega_{i}\right)$ of Ω_{i} where η_{i} denotes the smallest diameter of its simplices of $\mathcal{T}^{\eta_{i}}\left(\Omega_{i}\right)$. We do not assume that the triangulations $\mathcal{T}^{\eta_{i}}\left(\Omega_{i}\right)$ and $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$ are nested. Let us introduce the boundary layer $\Omega_{i, \eta_{i}} \subset \Omega_{i}$ of width $O\left(\eta_{i}\right)$ as the union of all simplices of $\mathcal{T}^{\eta_{i}}\left(\Omega_{i}\right)$ that touch $\partial \Omega_{i}$ in at least one point. We assume that the mesh parameter η_{i} is large enough compared to h_{i} in the sense that all simplices of $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$ that touch
$\partial \Omega_{i}$ must be contained in $\Omega_{i, \eta_{i}}$. We also introduce the boundary layer $\Omega_{i, \eta_{i}}^{\prime}$ of width $O\left(\eta_{i}\right)$ as the union of all simplices of $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$ which intersect $\Omega_{i, \eta_{i}}$, hence, it is easy to see that $\Omega_{i, \eta_{i}} \subset \Omega_{i, \eta_{i}}^{\prime}$. We denote by $\mathcal{T}^{\eta_{i}}\left(\Omega_{i, \eta_{i}}\right)$ the triangulation of $\mathcal{T}^{\eta_{i}}\left(\Omega_{i}\right)$ restricted to $\Omega_{i, \eta_{i}}$, and by $\mathcal{T}^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ the triangulation of $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$ restricted to $\Omega_{i, \eta_{i}}^{\prime}$. Throughout the paper, the notation $c \preceq d$ (for quantities c and d) means that c / d is bounded from above by a positive constant independently of h_{i}, H_{i}, η_{i} and ρ_{i}. Moreover, $c \asymp d$ means $c \preceq d$ and $d \preceq c$. We also use $c \leq d$ to stress that $c / d \leq 1$.

We study the following selfadjoint second order elliptic problem:
Find $u^{*} \in H_{0}^{1}(\Omega)$ such that

$$
\begin{equation*}
a_{\rho}\left(u^{*}, v\right)=f(v), \quad \forall v \in H_{0}^{1}(\Omega) \tag{1}
\end{equation*}
$$

where
$a_{\rho}\left(u^{*}, v\right):=\sum_{i=1}^{N} \int_{\Omega_{i}} \rho_{i}(x) \nabla u^{*} \cdot \nabla v d x$ and $f(v):=\int_{\Omega_{i}} f v d x$ for $f \in L^{2}(\Omega)$.
We assume that $0<c_{i} \leq \rho_{i}(x) \leq C_{i}$ for any $x \in \Omega_{i}$. We note that the condition number estimates of the preconditioned systems considered in this paper do not depend on the constants c_{i} and C_{i}.

Definition: We say that a coefficient ρ_{i} satisfies the Boundary Layer Assumption on Ω_{i} if $\rho_{i}(x)$ is equal to a constant $\bar{\rho}_{i}$ for any $x \in \Omega_{i, \eta_{i}}^{\prime}$.

Definition: We say that a coefficient ρ_{i} associated to a subdomain Ω_{i} is of the Inclusion Hard type or Inclusion Soft type if the Boundary Layer Assumption holds with $\rho_{i}(x)=\bar{\rho}_{i}$ on $\Omega_{i, \eta_{i}}^{\prime}$, and

- Inclusion Hard type: $\rho_{i}(x) \succeq \bar{\rho}_{i}$ for all $x \in \Omega_{i} \backslash \Omega_{i, \eta_{i}}^{\prime}$,
- Inclusion Soft type: $\rho_{i}(x) \preceq \bar{\rho}_{i}$ for all $x \in \Omega_{i} \backslash \Omega_{i, \eta_{i}}^{\prime}$.

We allow the coefficients $\left\{\bar{\rho}_{i}\right\}_{i=1}^{N}$ to have large jumps across the interface of the subdomains $\Gamma:=\left(\cup_{i=1}^{N} \partial \Omega_{i}\right) \backslash \partial \Omega$. The results to be presented in this paper can be extended easily to moderated variations of the coefficients ρ_{i} on $\Omega_{i, \eta_{i}}^{\prime}$.

We point out that the extension of our results to problems where the coefficient ρ_{i} has large jumps inside $\Omega_{i, \eta_{i}}^{\prime}$ is not trivial. We point out, however, that for certain distributions of coefficients ρ_{i} where weighted Poincaré type inequalities are explicitly given (see [7]), the technical tools introduced here can be applied to derive sharper analysis. For instance, in the case where a hard inclusion G crosses an edge $E_{i j}:=\partial \Omega_{i} \cap \partial \Omega_{j}$, we can impose primal constraints to guarantee average continuity on each connected component of $G \cap E_{i j}$; see numerical experiments on [3]. See also the related work on energy minimizing coarse spaces [5] and on expensive and robust methods based on enhanced partition of unity coarse spaces based on eigenvalue problems [1, 8] on the diagonally scaled system, see Remark 4.1 of [1], or equivalently, using generalized eigenvalue problems on the original system [4].

3 Technical Tools for Layers

We now introduce technical tools that are essential for obtaining sharp bounds for certain domain decomposition methods. The next lemma shows how $|w|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}$ can be controlled by the energy of w on $\Omega_{i, \eta_{i}}$.

Lemma 1. Let $w \in H^{1}\left(\Omega_{i, \eta_{i}}\right)$. Then

$$
\begin{equation*}
|w|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2} \preceq \frac{H_{i}}{\eta_{i}}|w|_{H^{1}\left(\Omega_{i, \eta_{i}}\right)}^{2} . \tag{2}
\end{equation*}
$$

Proof. Let $V^{\eta_{i}}\left(\Omega_{i, \eta_{i}}\right) \subset H^{1}\left(\Omega_{i, \eta_{i}}\right)$ be the space of piecewise linear and continuous functions associated to $\mathcal{T}_{\eta_{i}}\left(\Omega_{i, \eta_{i}}\right)$. Let $\Pi^{\eta_{i}}$ be the Zhang-Scott-Clemént interpolation operator from $H^{1}\left(\Omega_{i, \eta_{i}}\right)$ to $V^{\eta_{i}}\left(\Omega_{i, \eta_{i}}\right)$. Using a triangular inequality we obtain

$$
\begin{equation*}
|w|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2} \leq 2\left(\left|w-\Pi^{\eta_{i}} w\right|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2}+\left|\Pi^{\eta_{i}} w\right|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2}\right) \tag{3}
\end{equation*}
$$

We now estimate the first term of the right-hand side of (3). Let us first define the cut-off function θ_{i} on Ω_{i} equals to one on $\partial \Omega_{i}$, equals to zero at all interior nodes of $\mathcal{T}^{\eta_{i}}\left(\Omega_{i}\right)$ and linear in each element of $\mathcal{T}^{\eta_{i}}\left(\Omega_{i}\right)$. Note that $0 \leq \theta_{i}(x) \leq 1$ for $x \in \Omega_{i}, \theta_{i}(x)=1$ for $x \in \partial \Omega_{i}, \theta_{i}(x)=0$ for $x \in \Omega_{i} \backslash \Omega_{i, \eta_{i}}$, and $\left\|\theta_{i}\right\|_{W^{1, \infty}\left(\Omega_{i, \eta_{i}}\right)} \preceq 1 / \eta_{i}$. Denoting by $z=w-\Pi^{\eta_{i}} w$ on $\Omega_{i, \eta_{i}}$ and using trace and minimal energy arguments plus standard calculations we obtain

$$
\begin{equation*}
|z|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2} \preceq\left|\theta_{i} z\right|_{H^{1}\left(\Omega_{i, \eta_{i}}\right)}^{2} \preceq|z|_{H^{1}\left(\Omega_{i, \eta_{i}}\right)}^{2}+\frac{1}{\eta_{i}^{2}}\|z\|_{L^{2}\left(\Omega_{i, \eta_{i}}\right)}^{2} . \tag{4}
\end{equation*}
$$

The right-hand side of (4) can be bounded by $|w|_{H^{1}\left(\Omega_{i, \eta_{i}}\right)}^{2}$ by using the $H^{1}\left(\Omega_{i, \eta_{i}}\right)$-stability and the $L_{2}\left(\Omega_{i, \eta_{i}}\right)$-approximation properties of the Zhang-Scott-Clemént interpolation operator $\Pi^{\eta_{i}}$. We note that the proofs of these properties are based only on local arguments, therefore, they hold also for domains like $\Omega_{i, \eta_{i}}$.

We now estimate the second term of the right-hand side of (3). We first use scaling and embedding arguments to obtain

$$
\begin{equation*}
\left|\Pi^{\eta_{i}} w\right|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2} \preceq H_{i}\left|\Pi^{\eta_{i}} w\right|_{H^{1}\left(\partial \Omega_{i}\right)}^{2} \tag{5}
\end{equation*}
$$

To bound the right-hand side of (5), let us first introduce the subregion $\hat{\Omega}_{i, \eta_{i}} \subset$ $\Omega_{i, \eta_{i}}$ as the union of elements of $\mathcal{T}^{\eta_{i}}\left(\Omega_{i, \eta_{i}}\right)$ which have an edge on $\partial \Omega_{i}$. Using only properties of linear elements of $V^{\eta_{i}}\left(\Omega_{i, \eta_{i}}\right)$ we have

$$
\begin{equation*}
H_{i}\left|\Pi \Pi^{\eta_{i}} w\right|_{H^{1}\left(\partial \Omega_{i}\right)}^{2} \preceq \frac{H_{i}}{\eta_{i}}\left|\Pi \Pi^{\eta_{i}} w\right|_{H^{1}\left(\hat{\Omega}_{i, \eta_{i}}\right)}^{2} \leq \frac{H_{i}}{\eta_{i}}\left|\Pi \Pi^{\eta_{i}} w\right|_{H^{1}\left(\Omega_{i, \eta_{i}}\right)}^{2} \tag{6}
\end{equation*}
$$

The lemma follows by using the $H^{1}\left(\Omega_{i, \eta_{i}}\right)$-stability of the Zhang-ScottClemént interpolation operator.

3.1 Technical Tools for DDMs

In this section we present the technical tools necessary to establish sharp analysis for exact and inexact two-dimensional FETI-DP with vertex constraints. More general technical tools can also be extended to obtain sharp analysis for non-overlapping Schwarz methods such as FETI and FETI-DP with edge and vertex primal constraints [9], Additive average Schwarz methods [2], inexact iterative substructuring methods and for three-dimensional problems; see [3].

Let $w \in V^{h_{i}}\left(\partial \Omega_{i}\right)$. Define the following discrete harmonic extensions:

1. The $\mathcal{H}_{\rho_{i}}^{(i)} w \in V^{h_{i}}\left(\Omega_{i}\right)$ as the ρ_{i}-discrete harmonic extension of w inside Ω_{i}, i.e., $\mathcal{H}_{\rho_{i}}^{(i)} w=w$ on $\partial \Omega_{i}$ and

$$
\begin{equation*}
\int_{\Omega_{i}} \rho_{i}(x) \nabla \mathcal{H}_{\rho_{i}}^{(i)} w \cdot \nabla v d x=0 \text { for any } v \in V_{0}^{h_{i}}\left(\Omega_{i}\right) \tag{7}
\end{equation*}
$$

Here, $V_{0}^{h_{i}}\left(\Omega_{i}\right)$ is the space of functions of $V^{h_{i}}\left(\Omega_{i}\right)$ which vanish on $\partial \Omega_{i}$.
2. The $\mathcal{H}_{\rho_{i}, \mathcal{D}}^{(i)} w \in V^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ as the zero Dirichlet boundary layer harmonic extension of w inside $\Omega_{i, \eta_{i}}^{\prime}$, i.e., $\mathcal{H}_{\rho_{i}, \mathcal{D}}^{(i)} w=w$ on $\partial \Omega_{i}$ and $\mathcal{H}_{\rho_{i}, \mathcal{D}}^{(i)} w=0$ on $\partial \Omega_{i, \eta_{i}}^{\prime} \backslash \partial \Omega_{i}$, and

$$
\int_{\Omega_{i, \eta_{i}}^{\prime}} \rho_{i}(x) \nabla \mathcal{H}_{\rho_{i}, \mathcal{D}}^{(i)} w \cdot \nabla v d x=0 \text { for any } v \in V_{0, \mathcal{D}}^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)
$$

Here, $V^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ is the space of continuous piecewise linear finite elements on $\mathcal{T}^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$, and $V_{0, \mathcal{D}}^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ is the space of functions of $V^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ which vanish on $\partial \Omega_{i, \eta_{i}}^{\prime}$.
3. The $\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w \in V^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ as the zero Neumann boundary layer harmonic extension of w inside $\Omega_{i, \eta_{i}}^{\prime}$, i.e., $\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w=w$ only on $\partial \Omega_{i}$ and

$$
\int_{\Omega_{i, \eta_{i}}^{\prime}} \rho_{i}(x) \nabla \mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w \cdot \nabla v d x=0 \text { for any } v \in V_{0, \mathcal{N}}^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)
$$

Here, $V_{0, \mathcal{N}}^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ is the space of functions of $V^{h_{i}}\left(\Omega_{i, \eta_{i}}^{\prime}\right)$ which vanish on $\partial \Omega_{i}$.

Lemma 2. Let us assume that the Boundary Layer Assumption holds on Ω_{i} and let $w \in V^{h_{i}}\left(\partial \Omega_{i}\right)$. Then

$$
\begin{equation*}
\left|\mathcal{H}_{\rho_{i}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i}\right)}^{2} \leq\left|\mathcal{H}_{\rho_{i}, \mathcal{D}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i, \eta_{i}}^{\prime}\right)}^{2} \preceq\left|\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i, \eta_{i}}^{\prime}\right)}^{2}+\frac{\bar{\rho}_{i}}{\eta_{i}}\|w\|_{L^{2}\left(\partial \Omega_{i}\right)}^{2} . \tag{8}
\end{equation*}
$$

When $\rho_{i}(x) \preceq \bar{\rho}_{i}$ (Inclusion Soft type) on Ω_{i}, then

$$
\begin{equation*}
\left|\mathcal{H}_{\rho_{i}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i}\right)}^{2} \preceq \bar{\rho}_{i}|w|_{H^{1 / 2}\left(\partial \Omega_{i}\right)}^{2} \preceq \frac{H_{i}}{\eta_{i}}\left|\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i, \eta_{i}}^{\prime}\right)}^{2} . \tag{9}
\end{equation*}
$$

Proof. The result (8) follows from [6]; see also [3] for an alternative proof. The result (9) follows from Lemma 1 and the fact that $\Omega_{i, \eta_{i}} \subset \Omega_{i, \eta_{i}}^{\prime}$.

Let E be an edge of $\partial \Omega_{i}$ and $I^{H_{i}} w: V^{h_{i}}\left(\partial \Omega_{i}\right) \rightarrow V^{H_{i}}(E)$ be the linear interpolation of w on E defined by the values of w on ∂E. Using some of the ideas shown in the proof of Lemma 1 (see [3] for details), it is possible to prove the following lemma:

Lemma 3. Let us assume that the Boundary Layer Assumption holds on Ω_{i} and let $w \in V^{h_{i}}\left(\partial \Omega_{i}\right), v_{E}:=w-I^{H_{i}} w$ on E and $v_{E}:=0$ on $\partial \Omega_{i} \backslash E$. Then

$$
\begin{gather*}
\bar{\rho}_{i}\left\|v_{E}\right\|_{H_{00}^{1 / 2}(E)}^{2} \preceq\left(\frac{H_{i}}{\eta_{i}}\left(1+\log \frac{\eta_{i}}{h_{i}}\right)+\left(1+\log \frac{\eta_{i}}{h_{i}}\right)^{2}\right)\left|\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i, \eta_{i}}^{\prime}\right)}^{2}, \tag{10}\\
\left|\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} v_{E}\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i, \eta_{i}}^{\prime}\right)}^{2} \preceq\left(1+\log \frac{\eta_{i}}{h_{i}}\right)^{2}\left|\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i, \eta_{i}}^{\prime}\right)}^{2}, \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{\bar{\rho}_{i}}{\eta_{i}}\left\|v_{E}\right\|_{L^{2}(E)}^{2} \preceq \frac{H_{i}^{2}}{\eta_{i}^{2}}\left(1+\log \frac{\eta_{i}}{h_{i}}\right)\left|\mathcal{H}_{\rho_{i}, \mathcal{N}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i, \eta_{i}}^{\prime}\right.} . \tag{12}
\end{equation*}
$$

When $\bar{\rho}_{i} \preceq \rho_{i}(x)$ (Inclusion Hard type) on Ω_{i}, then

$$
\begin{equation*}
\frac{\bar{\rho}_{i}}{\eta_{i}}\left\|v_{E}\right\|_{L^{2}(E)}^{2} \preceq \frac{H_{i}}{\eta_{i}}\left(1+\log \frac{\eta_{i}}{h_{i}}\right)\left|\mathcal{H}_{\rho_{i}}^{(i)} w\right|_{H_{\rho_{i}}^{1}\left(\Omega_{i}\right)}^{2} . \tag{13}
\end{equation*}
$$

4 Dual-Primal Formulation

The discrete problem associated to (1) will be formulated below in (17) as a saddle-point problem. We follow [9] for the description of the FETI-DP method.

Let $V^{h_{i}}\left(\Omega_{i}\right)$ be the space of continuous piecewise linear functions on $\mathcal{T}^{h_{i}}\left(\Omega_{i}\right)$ which vanish on $\partial \Omega_{i} \cap \partial \Omega$. The associated subdomain stiffness matrices $A^{(i)}$ and the load vectors $f^{(i)}$ from the contribution of the individual elements are given by
$v^{(i)^{T}} A^{(i)} u^{(i)}:=a_{\rho_{i}}\left(u^{(i)}, v^{(i)}\right):=\int_{\Omega_{i}} \rho_{i} \nabla u^{(i)} \cdot \nabla v^{(i)} d x, \quad \forall u^{(i)}, v^{(i)} \in V^{h_{i}}\left(\Omega_{i}\right)$
and

$$
v^{(i)^{T}} f^{(i)}:=\int_{\Omega_{i}} f v^{(i)} d x, \quad \forall v^{(i)} \in V^{h_{i}}\left(\Omega_{i}\right)
$$

Here and below we use the same notation to denote both finite element functions and their vector representations. We denote by $V^{h}(\Omega)$ the product space of the $V^{h_{i}}\left(\Omega_{i}\right)$ and represent a vector (or function) $u \in V^{h}(\Omega)$ as $u=\left\{u^{(i)}\right\}_{i=1}^{N}$ where $u^{(i)} \in V^{h_{i}}\left(\Omega_{i}\right)$.

Let the interface $\Gamma:=\left(\cup_{i=1}^{N} \partial \Omega_{i}\right) \backslash \partial \Omega$ be the union of interior edges and vertices. The nodes of an edge are shared by exactly two subdomains, and the edges are open subsets of Γ. The vertices are endpoints of the edges. For each subdomain $\bar{\Omega}_{i}$, let us partition the vector $u^{(i)}$ into a vector of primal variables $u_{\Pi}^{(i)}$ and a vector of nonprimal variables $u_{\Sigma}^{(i)}$. We choose only vertices as primal nodes since we are considering only two dimensional problems. Let us partition the nonprimal variables $u_{\Sigma}^{(i)}$ into a vector of interior variables $u_{I}^{(i)}$ and a vector of edge variables $u_{\triangle}^{(i)}$. We will enforce continuity of the solution in the primal unknowns of $u_{\Pi}^{(i)}$ by making them global; we subassemble the subdomain stiffness matrix $A^{(i)}$ with respect to this set of variables and denote the resulting matrix by \tilde{A}. For the remaining interfaces variables, i.e., the edge variables $u_{\triangle}:=\left\{u_{\triangle}^{(i)}\right\}_{i=1}^{N}$, we will introduce Lagrange multipliers to enforce continuity. We also refer to the edge variables as dual variables.

Here we include more details: we partition the stiffness matrices according to the different sets of unknowns and obtain

$$
A^{(i)}=\left[\begin{array}{cc}
A_{\Sigma \Sigma}^{(i)} & A_{\Pi \Sigma}^{(i)}{ }^{T} \tag{14}\\
A_{\Pi \Sigma}^{(i)} & A_{\Pi \Pi}^{(i)}
\end{array}\right], \quad A_{\Sigma \Sigma}^{(i)}=\left[\begin{array}{cc}
A_{I I}^{(i)} & A_{\triangle I}^{(i)}{ }^{T} \\
A_{\triangle I}^{(i)} & A_{\triangle \triangle}^{(i)}
\end{array}\right],
$$

and

$$
f^{(i)}=\left[f_{\Sigma}^{(i)^{T}} f_{I}^{(i)^{T}}\right]^{T}, \quad f_{\Sigma}^{(i)}=\left[f_{I}^{(i)} f_{\triangle}^{(i)}\right]^{T}
$$

Next we define the block diagonal matrices

$$
A_{\Sigma \Sigma}=\operatorname{diag}_{i=1}^{N}\left(A_{\Sigma \Sigma}^{(i)}\right), \quad A_{\Pi \Sigma}=\operatorname{diag}_{i=1}^{N}\left(A_{\Pi \Sigma}^{(i)}\right), \quad A_{\Pi \Pi}=\operatorname{diag}_{i=1}^{N}\left(A_{\Pi \Pi}^{(i)}\right),
$$

and load vectors

$$
f_{\Sigma}=\left\{f_{\Sigma}^{(i)}\right\}_{i=1}^{N}, \quad f_{\Pi}=\left\{f_{\Pi}^{(i)}\right\}_{i=1}^{N} .
$$

Assembling the local subdomain matrices and load vectors with respect to the primal variables, we obtain the partially assembled global stiffness matrix \tilde{A} and the load vector \tilde{f},

$$
\tilde{A}=\left[\begin{array}{ll}
A_{\Sigma \Sigma} & \tilde{A}_{\Pi \Sigma}^{T} \tag{15}\\
\tilde{A}_{\Pi \Sigma} & \tilde{A}_{\Pi \Pi}
\end{array}\right], \quad \tilde{f}=\left[\begin{array}{c}
f_{\Sigma} \\
\tilde{f}_{\Pi}
\end{array}\right]
$$

where a tilde refers an assembled quantity. It is easy to see that the matrix \tilde{A} is positive definite.

To enforce the continuity on the dual variables u_{\triangle}, we introduce a jump matrix B_{\triangle} with entries $0,-1$ and 1 given by

$$
\begin{equation*}
B_{\triangle}=\left[B_{\triangle}^{(1)}, \cdots, B_{\triangle}^{(N)}\right] \tag{16}
\end{equation*}
$$

where $B_{\triangle}^{(i)}$ consists of columns of B_{\triangle} attributed to the i-th component of the dual variables. The space $\Lambda:=\operatorname{range}\left(B_{\triangle}\right)$ is used as the space for the Lagrange multipliers λ. The Dual-Primal saddle point problem is given by

$$
\left[\begin{array}{cccc}
A_{I I} & A_{\Delta I}^{T} & \tilde{A}_{\Pi I}^{T} & 0 \tag{17}\\
A_{\Delta I} & A_{\Delta \Delta} & \tilde{A}_{\Pi \Delta}^{T} & B_{\Delta}^{T} \\
\tilde{A}_{\Pi I} & \tilde{A}_{\Pi \Delta} & \tilde{A}_{\Pi \Pi} & 0 \\
0 & B_{\Delta} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
u_{I} \\
u_{\Delta} \\
\tilde{u}_{\Pi} \\
\lambda
\end{array}\right]=\left[\begin{array}{c}
f_{I} \\
f_{\triangle} \\
\tilde{f}_{\Pi I} \\
\lambda
\end{array}\right]
$$

where $A_{I I}:=\operatorname{diag}_{i=1}^{N}\left(A_{I I}^{(i)}\right)$ and $\tilde{u}_{I I}$ means the primal unknowns at the vertices of the substructures Ω_{i}. By eliminating $u_{I}:=\left\{u_{I}^{(i)}\right\}_{i=1}^{N}, u_{\triangle}:=\left\{u_{\triangle}^{(i)}\right\}_{i=1}^{N}$ and \tilde{u}_{Π} from (17), we obtain a system on the form

$$
\begin{equation*}
F \lambda=d \tag{18}
\end{equation*}
$$

where

$$
F=B_{\Sigma} \tilde{A}^{-1} B_{\Sigma}^{T}, \quad d=B_{\Sigma} \tilde{A}^{-1}\left[f_{\Sigma}^{T} \tilde{f}_{I}^{T}\right]^{T} \quad \text { with } \quad B_{\Sigma}=\left(0, B_{\Delta}\right)
$$

5 FETI-DP Preconditioner

To define the FETI-DP preconditioner M for F, we need to introduce a scaled variant of the jump matrix B_{\triangle}, which we denote by

$$
B_{D, \triangle}=\left[D_{\triangle}^{(1)} B_{\triangle}^{(1)}, \cdots, D_{\triangle}^{(N)} B_{\triangle}^{(N)}\right]
$$

The diagonal scaling matrices $D_{\triangle}^{(i)}$ operates on the dual variables $u_{\triangle}^{(i)}$ and they are defined as follows. Let \mathcal{J}_{i} be the indices of the substructures which share an edge with Ω_{i}. An edge shared by Ω_{i} and Ω_{j} is denoted by $E_{i j}$, and the set of dual nodes on $\mathcal{T}^{h_{i}}\left(\partial \Omega_{i}\right)$ on $E_{i j}$ is denoted by $E_{i j, h}$. The diagonal $\operatorname{matrix} D_{\triangle}^{(i)}$ is defined via $\delta_{i}^{\dagger}(x)$ where

$$
\delta_{i}^{\dagger}(x):=\frac{\bar{\rho}_{i}}{\bar{\rho}_{i}+\bar{\rho}_{j}}(x) \quad x \in E_{i j, h} \quad \text { and } j \in \mathcal{J}_{i}
$$

and let

$$
\begin{equation*}
P_{\triangle}:=B_{D, \triangle}^{T} B_{\triangle} . \tag{19}
\end{equation*}
$$

The FETI-DP preconditioner is defined by

$$
\begin{gathered}
M^{-1}=P_{\triangle} S_{\triangle \triangle} P_{\triangle}^{T} \text { where } \\
S_{\triangle \triangle}:=\operatorname{diag}_{i=1}^{N}\left\langle S_{\triangle \triangle}^{(i)}\right\rangle, \quad\left\langle S_{\triangle \triangle}^{(i)} w_{\triangle}^{(i)}, w_{\triangle}^{(i)}\right\rangle:=\int_{\Omega_{i}} \rho_{i} \nabla \mathcal{H}_{\rho_{i}}^{(i)} w_{\triangle}^{(i)} \cdot \nabla \mathcal{H}_{\rho_{i}}^{(i)} w_{\triangle}^{(i)} d x
\end{gathered}
$$

where $w_{\triangle}^{(i)}$ is identified with a function on $V^{h_{i}}\left(\partial \Omega_{i}\right)$ which vanishes at the vertices of Ω_{i}. Using Lemma 2 and Lemma 3, it is possible to prove (see [3] for details) the following theorem:

Theorem 1. Let us assume that the Boundary Layer Assumption holds for any substructures Ω_{i}. Then, for any $\lambda \in \Lambda$ we have:

$$
\langle M \lambda, \lambda\rangle \leq\langle F \lambda, \lambda\rangle \leq \lambda_{\max }\langle M \lambda, \lambda\rangle
$$

where

$$
\lambda_{\max } \preceq \max _{i=1}^{N} \frac{H_{i}^{2}}{\eta_{i}^{2}}\left(1+\log \frac{\eta_{i}}{h_{i}}\right) .
$$

When the coefficients $\rho_{i}, 1 \leq i \leq N$, are simultaneously of the Inclusion Hard type, or are simultaneously of the Inclusion Soft type, then:

$$
\lambda_{\max } \preceq \max _{i=1}^{N}\left\{\frac{H_{i}}{\eta_{i}}\left(1+\log \frac{\eta_{i}}{h_{i}}\right)+\left(1+\log \frac{\eta_{i}}{h_{i}}\right)^{2}\right\} .
$$

The linear dependence result on H_{i} / η_{i} for Inclusion Soft type coefficients is the first one given in the literature. The bounds in Theorem 1 hold also for the FETI method and are sharper than $O\left(\frac{H_{i}}{\eta_{i}}\left(1+\log \frac{H_{i}}{h_{i}}\right)^{2}\right)$ obtained in [6] for Inclusion Hard type coefficients.

References

[1] M. Brezina, C. Heberton, J. Mandel, and P. Vanek. An iterative method with convergence rate chosen a priori. UCD/CCM Report 140, 1999.
[2] M. Dryja and M. Sarkis. Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients. To appear in Comput. Methods Appl. Math., 2010.
[3] M. Dryja and M. Sarkis. Boundary layer technical tools for domain decompostion methods. In preparation, 2010.
[4] Y. Efendiev and J. Galvis. Domain decomposition preconditioners for multiscale problems. Texas A \& M, Preprint, 2009.
[5] V. J. Lent, R. Scheichl, and I. Graham. Energy minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs. Numer. Lin. Alg. Appl., 16:775-779, 2009.
[6] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs. Numer. Math., 111(2):293-333, 2008.
[7] C. Pechstein and R. Scheichl. Analysis of FETI methods for multiscale PDEs - Part II: Interface variation. Bath Institute for Complex Systems, University of Bath, Preprint 7/09, 2009.
[8] M. Sarkis. Partition of unity coarse spaces: enhanced versions, discontinuous coefficients and applications to elasticity. In Domain decomposition methods in science and engineering, pages 149-158. Natl. Auton. Univ. Mex., México, 2003.
[9] A. Toselli and B. O. Widlund. Domain Decomposition Methods - Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.

