Weak convergence on Douglas-Rachford method
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Abstract

We prove that the sequences generate by the Douglas-Rachford
method converge weakly to a solution of the inclusion problem
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From now on H is a real Hilbert space with inner product (-,-) and
associated norm || - [|. A point-to-set operator T : H = H is a relation
T CH x H and for z € H,

T(x)={ve H|(z,v) eT}.
An operator T : H = H is monotone if
(1 — 2,01 —v2) > 0,¥(x1,01), (T2, v2) €T

and it is mazimal monotone if it is monotone and maximal in the family of
monotone operators with respect to the partial order of inclusion.

Let A, B be maximal monotone operators in H. Consider the problem
of finding x € H such that

0 € A(x) + B(z). (1)

Douglas-Rachford method (with sumable residual error) works as follows.
Let {ax}, {Br} be sequences of positive error tolerance such that

[o.¢] (e.)
Zak < 00, Zﬁk < 00.
k=1 k=1
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Take A\ > 0, (zg,bo) € B and for k =1,2,...
(a) Find (yg,ax) such that

(Yr>ar) € A, lyp + Aag — (-1 — Abp—1)|| < o (2)
(b) Find (zy, bg) such that

(v1,b) € B, ||z + Aog — (y + Mop_1)|| < B (3)

Existence of (yg,ax), (vk,br) as above follows from Minty’s Theorem [6].
From now on {(zx,br)}3g, {(yk,ar)}3e, are sequences generated by the
above algorithm. This algorithm was proposed by Douglas and Rachford [1]
for the case where A and B are linear, and was extended to arbitrary max-
imal monotone operators by Lions and Mercier [5]. These later authors
proved that xj + Abj, converges weakly to a point Z such that, for some Z, b,

Z=x+M\, b€ B(z), —bec A).
Our aim is to prove the next theorem

Theorem 1. If A, B are maximal monotone operators and the solution set
of
0 € A(z) + B(x)

is non-empty, then the sequences {(xy,br)} and {(yk, ax)} generated by Douglas-
Rachford method converges weakly to some (Z,b) and (Z,—b) respectively,
such that

b e B(z), —b € A(%)

and hence, 0 € A(z) + B(Z).
For each k, there exists unique pairs (g, ax), (2, Z;k) such that
(Uk,ax) € A, G+ Aag = Tp—1 — b1 (4)
(@k, Bk) eB, Ip+ )\Bk = U + A _1 (5)

Existence of ({j,ax), (Zx,bx) as above follows from Minty’s Theorem [6].
Direct use of (4) and (5) shows that for k =1,2,...

wpo1 — &g = Mag +bg),  Mbp_1 — br) = &% — G (6)

and A
Tr — Ui + )\(&k + bk) = )\(dk + bk—l) =Tr_1 — Yk- (7)



Using (2), (4) and the monotonicity of A we conclude that

lye = Gell* + N llar — axll <llye — Gk + Mak — ax)]|?
=|lyx + Aax — (zp—1 — MNog_1)[|> < o  (8)

Using (5), (3), the monotonicity of B, triangle inequality and the above
inequality we have

o — 8017+ X210, = bl < o — 31+ Ao — o)

< |y + Abg — (G + Mogp—1) |1

< (||x + Abog — (g + Mop—0)|| + % — wil)?
<(ak + B)? 9)

We will use in H x H the inner product (-, -), and associated norm || - ||,

<(.CI?,’U), (x,aUI»)\ = <$,.CI}/> + )‘2<’U>U/>7 Hp”)\ =V <p,p>)\-

Note that H x H endowed with the inner product (-, -), is a Hilbert space iso-
morphic to H X H endowed with the canonical inner product ((z, v), (2’,v")) =
(x,2') + (v,v"). Hence, the strong/weak topologies of both spaces are the
same. To simplify the exposition, define

k= (zr,bp), k=0,1,....  pp=(Zrbp), k=1,2,... (10)

We have just proved in (9) that
ok = Prlly <o+ Bk, k=1,2,... (11)
The extended solution set [2] of problem (1) is
S(A,B)=Bn-A={(z,w) | (z,w) € B,(z,—w) € A}
Lemma 2. Ifp € S(A, B) then,
lpe—1 — I3 = bk — pI3 + lex—1 — Gll> = 5% — pIS + N2llax + bra ||

fork=1,2,....

Proof. First note that p = (x,b) with b € B(z) and —b € A(x). Using the
first equality in (6), the monotonicity of B and the monotonicity of A we



conclude that

<xk,1 — T, T — LU> :)\<dk + [A)k,i’k — a:)

=\ <&k+b,ﬁik—$>+<gk—b7i‘k_$>]

>Mag + b, 2 — )

=X{(ar + b, — i) + (ar + b, I —1’)] > Nay + b, & — Gk)

Using the above inequality, the second equality in (6) and (10) we have

(Phe1 — Phs Pk — D)y =(Tho1 — Tk B — ) + N2(bp_1 — by, by — b)

> Mg + b, &% — Gi) + M — G, b — 0)
=& — Uk, ax + br)
Using (10) and (6) we have
1 — Pl = Nllaw + bell* + & — gull?
Therefore,
2 L2 A . 2
lPk—1 = pIIX =llPr—1 — BrllX + 2{pr—1 — Dr. B — p) 5 + [P — PIIX
>N2||ag + bi||? + |2k — Grll® + 2\ @k — Gk, ax + b)
. 2
+ [l5% — plly
=1 — pIX + 12 — Gk + Albx + ax)|®
To end the proof, use the above inequality and (7). O

Corollary 3. The sequence {py} is Quasi-Fejer convergent to S(A,B).
Therefore it has at most one weak cluster point in this set, and it is bounded

if S(A, B) # 0.
Proof. Take p € S(A, B). Using (11) and Lemma 2 we have
Ipe — pll < llpk — Drell + 1Px — pll < ok + Br + llpk—1 — pl|

which proves that {py} is Quasi-Fejer convergent to S)(A, B). The last part
of the corollary follows from this result and also from Opial’s Lemma [7]. O



Proof of Theorem 1. We are assuming that problem (1) has a solution. There-
fore, S(A,B) # (). Using Corollary 3 we conclude that {py} is bounded.
Take

p € S(A,B)

and let
M =1+ sup|jpr — plly

Using Lemma 2 we have, for k =1,2,...
Ik = I3 < llpe—1 — I3 — lzp-1 — vil*-

Therefore, using also the concavity of ¢ — /¢t we conclude that

1

<2
Pk — pllx < k=1 — D\ — m”iﬂk—l — Ukl

Hence, combining the above inequality with (11) and triangle inequality we
obtain

ok — pll\ <llpx — Drllx + 15k — plly

1 .
<(ag + Br) + lpk—1 — pll\ — m”xkq — G2

Adding the above inequality for £ = 1,2,...,n we conclude that

1 < R &
oYVi D k-1 = dell* < llpo — plly + > (k + Br)
k=1 k=1

Therefore
[oe)

Z lze—1 — 9kl < o0
k=1

and, using also (7), we conclude that
lim zp_1 — 9 = lim ap +bp_1 =0
k—o0 k—o00
Using (8) we have
lim yr — g = lim ap — ax = 0.
k—o00 k—oo

Therefore
lim zp_1 —yr = lim ap +bp_1 =0 (12)
k—o0 k—oo



and sequence {(yx, br)} is also bounded.

Since the sequence {p;} is bounded and H x H (endowed with the norm
| <1l,) is reflexive, this sequence has weak cluster points. Let (Z,b) be a
weak cluster point of the bounded sequence {py = (zk,bx)}. Using again the
fact that H x H is reflexive, we conclude that there exists a subsequence
{(xx,,br,)} converging weakly to (z,b) and hence

xkjga’:, bkjﬂi), as j — 00,
which, together with (12) implies also that
wo _ w 7 .
Yk;—1 — T, ap,—1 — —b, asj — oo.

Using the two above equations, (12) and Lemma 5 (see Appendix A) applied
to the subsequences {(z;, bi; }, {(yk;—1, ak;—1}, we conclude that (z, b) € B,
(z,—b) € A, that is, (z,b) € S(A, B).

We have proved that the sequence {py} has weak cluster points and
that all these weak cluster points are in S(A, B). Using these results and
Corollary 3 we conclude that {p} has only one weak cluster point (z,b),
and this (weak cluster) point belongs to S(A, B). As {px} is bounded and
H x H is reflexive, the sequence {p;} converges weakly to such point (z,b),
which is equivalent

Ty — T, by —b, ask— oo,

To end the proof, use the above equation and (12) to conclude that

w w 7
Yy — T, ap — —b, as k — oo.

O

The convergence analysis presented is are based on the framework and
techniques introduced in [2, 3], and becomes more intuitive using this frame-
work and results. To make this note shorter, we do not presented this frame-
work here. For historical reasons, here we used the classical sumable error
tolerance.

A An auxiliary result

Let X be a real Banach space with topological dual X*. For x € X, z* € X*
we use the notation (x,z*) = z*(x). An operator T': X = X* is monotone
if (x —y,z* —y*) >0 for all (z,2*), (y,y*) € T, and is maximal monotone
if it is monotone and maximal in the family of monotone operators with
respect to the partial order of inclusion.



Lemma 4. Let X be a real Banach space with topological dual X*. If
T : X = X is mazimal monotone, {(x;, z}) }icr is a net in T which converges
in the weakx weakx topology to (Z,z*), then

lim inf (x;,z]) > (z,z").
1— 00

Moreover, if the above inequality holds as an equality, then (z,z*) € T.

Proof. Let ¢ : X x X* — R,

oz, z*) = sup (2,y") + (y,2") — (y,9")
(y,y*)eT

The function ¢ is Fitzpatrick minimal function [4] of T', it is lower semicon-
tinuous in the weak xweaks* topology, ¢(x,z*) > (z,z*) for all (z,z*) and
this inequality holds as an equality if and only if (x,2*) € T. Therefore
(xi,x}) = p(z4,z7) for all i € I and

lim inf (z;,z}) = lim inf @(x;,z}) > o(z,z%) > (Z,T")
1—00 1—00
To end the proof, use the fact that ¢ is bounded below by the duality product
and coincide with the duality product if and only if (z,2*) € T. O

Lemma 5. Let X be real Banach space. If Ty,...,T, : X = X* are
mazimal monotone operators and {(zy,i, 5 ;) ier are bounded nets such that
(wpg, 2y ;) €Ty for allk =1,...,mic I, and

*

m
xk,i_xj,i_>0 j,kzl,...,m E $z7l—>f

k=1
Thi — T, xr . 2 T k=1,...,m
as i — oo, then (z,z}) € Ty, fork=1,...,m.
Proof. In view of the above assumptions,
m
>si =
k=1
Define
Qi = (Thi, Tpy) — (T,75), k=1,...,mi€el



Direct algebraic manipulations yield

> = (Z(xk,i7$2,¢>> — (T, 7%)
k=1

k=0

m m
= <Z<$kz - xl,ia$2,¢>> + <~”U1,zw <Z 9672,¢> - 9?“*> + (21 — T, T7),
k=0 k=0

which ready implies, in view of the assumptions of the lemma, that

m
'lim E Qi = 0
1— 00

k=1

Using the first part of Lemma 4 we have

lim sup ay; > 0, k=1,....,m.
17— 00
Combining the two above equations we conclude that lim; . o ; = 0 for
k=1,...,m, that is
lim (a0, 0;) = (2, 77)
71— 00

To end the proof, use the above equation and the second part of Lemma 4.
O
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