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Abstract
We prove that the sequences generate by the Douglas-Rachford

method converge weakly to a solution of the inclusion problem
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From now on H is a real Hilbert space with inner product 〈·, ·〉 and
associated norm ‖ · ‖. A point-to-set operator T : H ⇒ H is a relation
T ⊂ H ×H and for x ∈ H,

T (x) = {v ∈ H | (x, v) ∈ T}.

An operator T : H ⇒ H is monotone if

〈x1 − x2, v1 − v2〉 ≥ 0,∀(x1, v1), (x2, v2) ∈ T

and it is maximal monotone if it is monotone and maximal in the family of
monotone operators with respect to the partial order of inclusion.

Let A,B be maximal monotone operators in H. Consider the problem
of finding x ∈ H such that

0 ∈ A(x) +B(x). (1)

Douglas-Rachford method (with sumable residual error) works as follows.
Let {αk}, {βk} be sequences of positive error tolerance such that

∞∑
k=1

αk <∞,
∞∑
k=1

βk <∞.
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Take λ > 0, (x0, b0) ∈ B and for k = 1, 2, . . .

(a) Find (yk, ak) such that

(yk, ak) ∈ A, ‖yk + λak − (xk−1 − λbk−1)‖ ≤ αk (2)

(b) Find (xk, bk) such that

(xk, bk) ∈ B, ‖xk + λbk − (yk + λbk−1)‖ ≤ βk (3)

Existence of (yk, ak), (xk, bk) as above follows from Minty’s Theorem [6].
From now on {(xk, bk)}∞k=0, {(yk, ak)}∞k=1 are sequences generated by the
above algorithm. This algorithm was proposed by Douglas and Rachford [1]
for the case where A and B are linear, and was extended to arbitrary max-
imal monotone operators by Lions and Mercier [5]. These later authors
proved that xk +λbk converges weakly to a point z̄ such that, for some x̄, b̄,

z̄ = x̄+ λb̄, b̄ ∈ B(x̄), −b̄ ∈ A(x̄).

Our aim is to prove the next theorem

Theorem 1. If A,B are maximal monotone operators and the solution set
of

0 ∈ A(x) +B(x)

is non-empty, then the sequences {(xk, bk)} and {(yk, ak)} generated by Douglas-
Rachford method converges weakly to some (x̄, b̄) and (x̄,−b̄) respectively,
such that

b̄ ∈ B(x̄), −b̄ ∈ A(x̄)

and hence, 0 ∈ A(x̄) +B(x̄).

For each k, there exists unique pairs (ŷk, âk), (x̂k, b̂k) such that

(ŷk, âk) ∈ A, ŷk + λâk = xk−1 − λbk−1 (4)

(x̂k, b̂k) ∈ B, x̂k + λb̂k = ŷk + λbk−1 (5)

Existence of (ŷk, âk), (x̂k, b̂k) as above follows from Minty’s Theorem [6].
Direct use of (4) and (5) shows that for k = 1, 2, . . .

xk−1 − x̂k = λ(âk + b̂k), λ(bk−1 − b̂k) = x̂k − ŷk. (6)

and
x̂k − ŷk + λ(âk + b̂k) = λ(âk + bk−1) = xk−1 − ŷk. (7)
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Using (2), (4) and the monotonicity of A we conclude that

‖yk − ŷk‖2 + λ2‖ak − âk‖ ≤‖yk − ŷk + λ(ak − âk)‖2

=‖yk + λak − (xk−1 − λbk−1)‖2 ≤ α2
k (8)

Using (5), (3), the monotonicity of B, triangle inequality and the above
inequality we have

‖xk − x̂k‖2 + λ2‖bk − b̂k‖ ≤
∥∥∥xk − x̂k + λ(bk − b̂k)

∥∥∥2

≤‖xk + λbk − (ŷk + λbk−1)‖2

≤ (‖xk + λbk − (yk + λbk−1)‖+ ‖ŷk − yk‖)2

≤(αk + βk)2 (9)

We will use in H×H the inner product 〈·, ·〉λ and associated norm ‖ · ‖λ,

〈(x, v), (x′, v′)〉λ = 〈x, x′〉+ λ2〈v, v′〉, ‖p‖λ =
√
〈p, p〉λ.

Note that H×H endowed with the inner product 〈·, ·〉λ is a Hilbert space iso-
morphic toH×H endowed with the canonical inner product 〈(x, v), (x′, v′)〉 =
〈x, x′〉 + 〈v, v′〉. Hence, the strong/weak topologies of both spaces are the
same. To simplify the exposition, define

pk = (xk, bk), k = 0, 1, . . . , p̂k = (x̂k, b̂k), k = 1, 2, . . . (10)

We have just proved in (9) that

‖pk − p̂k‖λ ≤ αk + βk, k = 1, 2, . . . (11)

The extended solution set [2] of problem (1) is

S(A,B) = B ∩ −A = {(z, w) | (z, w) ∈ B, (z,−w) ∈ A}

Lemma 2. If p ∈ S(A,B) then,

‖pk−1 − p‖2λ ≥ ‖p̂k − p‖
2
λ + ‖xk−1 − ŷk‖2 = ‖p̂k − p‖2λ + λ2‖âk + bk−1‖2

for k = 1, 2, . . . .

Proof. First note that p = (x, b) with b ∈ B(x) and −b ∈ A(x). Using the
first equality in (6), the monotonicity of B and the monotonicity of A we
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conclude that

〈xk−1 − x̂k, x̂k − x〉 =λ〈âk + b̂k, x̂k − x〉

=λ
[
〈âk + b, x̂k − x〉+ 〈b̂k − b, x̂k − x〉

]
≥λ〈âk + b, x̂k − x〉

=λ
[
〈âk + b, x̂k − ŷk〉+ 〈âk + b, ŷk − x〉

]
≥ λ〈âk + b, x̂k − ŷk〉

Using the above inequality, the second equality in (6) and (10) we have

〈pk−1 − p̂k, p̂k − p〉λ =〈xk−1 − x̂k, x̂k − x〉+ λ2〈bk−1 − b̂k, b̂k − b〉
≥λ〈âk + b, x̂k − ŷk〉+ λ〈x̂k − ŷk, b̂k − b〉
=λ〈x̂k − ŷk, âk + b̂k〉

Using (10) and (6) we have

‖pk−1 − p̂k‖2λ = λ2‖âk + b̂k‖2 + ‖x̂k − ŷk‖2

Therefore,

‖pk−1 − p‖2λ =‖pk−1 − p̂k‖2λ + 2〈pk−1 − p̂k, p̂k − p〉λ + ‖p̂k − p‖2λ
≥λ2‖âk + b̂k‖2 + ‖x̂k − ŷk‖2 + 2λ〈x̂k − ŷk, âk + b̂k〉

+ ‖p̂k − p‖2λ
=‖p̂k − p‖2λ + ‖x̂k − ŷk + λ(bk + ak)‖2

To end the proof, use the above inequality and (7).

Corollary 3. The sequence {pk} is Quasi-Fejer convergent to S(A,B).
Therefore it has at most one weak cluster point in this set, and it is bounded
if S(A,B) 6= ∅.

Proof. Take p ∈ S(A,B). Using (11) and Lemma 2 we have

‖pk − p‖ ≤ ‖pk − p̂k‖+ ‖p̂k − p‖ ≤ αk + βk + ‖pk−1 − p‖

which proves that {pk} is Quasi-Fejer convergent to Sλ(A,B). The last part
of the corollary follows from this result and also from Opial’s Lemma [7].
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Proof of Theorem 1. We are assuming that problem (1) has a solution. There-
fore, S(A,B) 6= ∅. Using Corollary 3 we conclude that {pk} is bounded.
Take

p ∈ S(A,B)

and let
M = 1 + sup ‖pk − p‖λ

Using Lemma 2 we have, for k = 1, 2, . . .

‖p∗k − p‖
2
λ ≤ ‖pk−1 − p‖2λ − ‖xk−1 − y∗k‖2.

Therefore, using also the concavity of t 7→
√
t we conclude that

‖p∗k − p‖λ ≤ ‖pk−1 − p‖λ −
1

2M
‖xk−1 − ŷk‖2

Hence, combining the above inequality with (11) and triangle inequality we
obtain

‖pk − p‖λ ≤‖pk − p̂k‖λ + ‖p̂k − p‖λ

≤(αk + βk) + ‖pk−1 − p‖λ −
1

2M
‖xk−1 − ŷk‖2

Adding the above inequality for k = 1, 2, . . . , n we conclude that

1
2M

n∑
k=1

‖xk−1 − ŷk‖2 ≤ ‖p0 − p‖λ +
n∑
k=1

(αk + βk)

Therefore
∞∑
k=1

‖xk−1 − ŷk‖2 <∞

and, using also (7), we conclude that

lim
k→∞

xk−1 − ŷk = lim
k→∞

âk + bk−1 = 0

Using (8) we have

lim
k→∞

yk − ŷk = lim
k→∞

ak − âk = 0.

Therefore
lim
k→∞

xk−1 − yk = lim
k→∞

ak + bk−1 = 0 (12)
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and sequence {(yk, bk)} is also bounded.
Since the sequence {pk} is bounded and H×H (endowed with the norm

‖ · ‖λ) is reflexive, this sequence has weak cluster points. Let (x̄, b̄) be a
weak cluster point of the bounded sequence {pk = (xk, bk)}. Using again the
fact that H × H is reflexive, we conclude that there exists a subsequence
{(xkj

, bkj
)} converging weakly to (x̄, b̄) and hence

xkj

w→ x̄, bkj

w→ b̄, as j →∞,

which, together with (12) implies also that

ykj−1
w→ x̄, akj−1

w→ −b̄, as j →∞.

Using the two above equations, (12) and Lemma 5 (see Appendix A) applied
to the subsequences {(xkj

, bkj
}, {(ykj−1, akj−1}, we conclude that (x̄, b̄) ∈ B,

(x̄,−b̄) ∈ A, that is, (x̄, b̄) ∈ S(A,B).
We have proved that the sequence {pk} has weak cluster points and

that all these weak cluster points are in S(A,B). Using these results and
Corollary 3 we conclude that {pk} has only one weak cluster point (x̄, b̄),
and this (weak cluster) point belongs to S(A,B). As {pk} is bounded and
H ×H is reflexive, the sequence {pk} converges weakly to such point (x̄, b̄),
which is equivalent

xk
w→ x̄, bk

w→ b̄, as k →∞,

To end the proof, use the above equation and (12) to conclude that

yk
w→ x̄, ak

w→ −b̄, as k →∞.

The convergence analysis presented is are based on the framework and
techniques introduced in [2, 3], and becomes more intuitive using this frame-
work and results. To make this note shorter, we do not presented this frame-
work here. For historical reasons, here we used the classical sumable error
tolerance.

A An auxiliary result

Let X be a real Banach space with topological dual X∗. For x ∈ X, x∗ ∈ X∗
we use the notation 〈x, x∗〉 = x∗(x). An operator T : X ⇒ X∗ is monotone
if 〈x− y, x∗ − y∗〉 ≥ 0 for all (x, x∗), (y, y∗) ∈ T , and is maximal monotone
if it is monotone and maximal in the family of monotone operators with
respect to the partial order of inclusion.

6



Lemma 4. Let X be a real Banach space with topological dual X∗. If
T : X ⇒ X is maximal monotone, {(xi, x∗i )}i∈I is a net in T which converges
in the weak×weak∗ topology to (x̄, x̄∗), then

lim inf
i→∞
〈xi, x∗i 〉 ≥ 〈x̄, x̄∗〉.

Moreover, if the above inequality holds as an equality, then (x, x∗) ∈ T .

Proof. Let ϕ : X ×X∗ → R̄,

ϕ(x, x∗) = sup
(y,y∗)∈T

〈x, y∗〉+ 〈y, x∗〉 − 〈y, y∗〉

The function ϕ is Fitzpatrick minimal function [4] of T , it is lower semicon-
tinuous in the weak×weak∗ topology, ϕ(x, x∗) ≥ 〈x, x∗〉 for all (x, x∗) and
this inequality holds as an equality if and only if (x, x∗) ∈ T . Therefore
〈xi, x∗i 〉 = ϕ(xi, x∗i ) for all i ∈ I and

lim inf
i→∞
〈xi, x∗i 〉 = lim inf

i→∞
ϕ(xi, x∗i ) ≥ ϕ(x̄, x̄∗) ≥ 〈x̄, x̄∗〉

To end the proof, use the fact that ϕ is bounded below by the duality product
and coincide with the duality product if and only if (x, x∗) ∈ T .

Lemma 5. Let X be real Banach space. If T1, . . . , Tm : X ⇒ X∗ are
maximal monotone operators and {(xk,i, x∗k,i)}i∈I are bounded nets such that
(xk,i, x∗k,i) ∈ Tk for all k = 1, . . . ,m i ∈ I, and

xk,i − xj,i → 0 j, k = 1, . . . ,m
m∑
k=1

x∗k,i → x̄∗

xk,i
w→ x̄, x∗k,i

w∗→ x̄∗k k = 1, . . . ,m

as i→∞, then (x̄, x̄∗k) ∈ Tk for k = 1, . . . ,m.

Proof. In view of the above assumptions,

m∑
k=1

x̄∗k = x̄∗

Define
αk,i = 〈xk,i, x∗k,i〉 − 〈x̄, x̄∗k〉, k = 1, . . . ,m i ∈ I.
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Direct algebraic manipulations yield

m∑
k=1

αk,i =

(
m∑
k=0

〈xk,i, x∗k,i〉

)
− 〈x̄, x̄∗〉

=

(
m∑
k=0

〈xk,i − x1,i, x
∗
k,i〉

)
+

〈
x1,i,

(
m∑
k=0

x∗k,i

)
− x̄∗

〉
+ 〈x1,i − x̄, x̄∗〉,

which ready implies, in view of the assumptions of the lemma, that

lim
i→∞

m∑
k=1

αk,i = 0

Using the first part of Lemma 4 we have

lim sup
i→∞

αk,i ≥ 0, k = 1, . . . ,m.

Combining the two above equations we conclude that limi→∞ αk,i = 0 for
k = 1, . . . ,m, that is

lim
i→∞
〈xk,i, x∗k,i〉 = 〈x̄, x̄∗k〉

To end the proof, use the above equation and the second part of Lemma 4.
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