otrong duality and exact penalization for general augmented
Lagrangians

Regina S. Burachik
School of Mathematics and Statistics, University of South Australia

email: Regina.Burachik@unisa.edu.au

Alfredo N. Iusem

Instituto de Matemaética Pura e Aplicada
email: iusp@impa.br

Jefferson G. Melo

Instituto de Matematica Pura e Aplicada
email: jeferson@impa.br

‘We consider a problem of minimizing an extended real-valued function defined in a Hausdorff topological space. We
study the dual problem induced by a general augmented Lagrangian function. Under a simple set of assumptions
on this general augmented Lagrangian function, we obtain strong duality and existence of exact penalty parameter
via an abstract convexity approach. We show that every cluster point of a sub-optimal path related to the dual
problem is a primal solution. Our assumptions are more general than those recently considered in the related
literature.

Key words: Hausdorff topological spaces; Nonconvex problem; Nonsmooth optimization; General augmented
Lagrangian; Duality; Abstract convexity; Suboptimal path.

MSC2000 Subject Classification: 90C26, 49N15, 656K10, 52A01.
OR/MS subject classification:

1. Introduction. It is well known that augmented Lagrangian methods are useful for solving con-
strained (nonconvex) optimization problems. Rockafellar and Wets [9] considered a primal problem of
minimizing an extended real-valued function and proposed and analyzed a dual approach via augmented
Lagrangians. Strong duality and a criterion for exact penalty representation are shown in Rockafellar
and Wets [9, Theorems 11.59 and 11.61].

Recently, this duality approach has been studied in a more general setting. In Huang and Yang
[3] the convexity assumption on the augmenting function, which is assumed by Rockafellar and Wets
[9], is relaxed to a level boundedness assumption. Nedic and Ozdaglar [4, 5] considered a geometric
dual approach and studied a zero-duality-gap property. Many efforts have been devoted to augmented
Lagrangians with a valley-at-zero property on the augmenting function, see for example Burachik and
Rubinov [1], Rubinov et al. [12], Zhou and Yang [17] and references therein. In Wang et al. [14, section
3.1], an augmented Lagrangian type function is studied via an auxiliary coupling function, and a valley-
at-zero type property is proposed in the derivative of the coupling function with respect to the penalty
parameter. Penot and Rubinov [8] investigated the relationship between the Lagrangian multipliers and
the generalized subdifferential of the perturbation function in ordered spaces.

In the present paper, we consider a primal problem of minimizing an extended real-valued function
in a Hausdorff topological space. A main tool in our analysis is abstract convexity, which recently
became a natural language to investigate duality-schemes via augmented Lagrangian type functions, see
for example Burachik and Rubinov [1], Nedié et al. [6], Penot and Rubinov [8], Rubinov and Yang
[11], and Rubinov et al. [12]. With abstract convexity tools, we propose and analyze a duality scheme
induced by a general augmented Lagrangian function. We consider a valley-at-zero type property on
the coupling (augmenting) function, which generalizes the valley-at-zero type property proposed in the
related literature (e.g., Burachik and Rubinov [1] and references therein, Wang et al. [14, Section 3.1]),
see Section 5 in the present paper. In order to obtain our results, we demand continuity assumptions at
a fixed base point instead of at the whole space, the latter being a standard assumption in the literature
(see, e.g., Burachik and Rubinov [1]). We show that our duality scheme has a zero-duality-gap property.
A sub-optimal path related to the dual problem is considered, and we prove that all its cluster points are
primal solutions. A criterion for exact penalization was presented in Rockafellar and Wets [9, Theorem
11.61]. This criterion has been generalized, for instance, by Burachik and Rubinov [1] and Huang and



Yang [3]. We also extend this criterion to our general setting. Since no linearity on the augmented
Lagrangian is assumed, this allows us to consider our primal-dual scheme in Hausdorff topological spaces.
The main motivation for working in the framework of Hausdorff topological spaces is to develop a duality
theory that can encompass different settings found in the literature, such as metric spaces (see e.g.,
[2, 12, 7, 13]) and Banach spaces with the weak topology (see e.g., [1, 17, 18]), which in general are
not metrizable. It is also worthwhile to note that the general augmented Lagrangian considered in the
present paper, for which the valley-at-zero type property is assumed directly at the coupling function p
(see Section 2), has not been considered in the literature even in finite dimensional spaces.

The outline of this manuscript is as follows. Section 2 contains basic definitions and assumptions.
Also, our primal-dual scheme is stated. In Section 3 we show that our duality scheme provides strong
duality, and a criterion to exact penalty representation is presented. In Section 4 we study the convergence
properties of a sub-optimal path related to our dual problem. In the last section we present some examples
and compare our setting with the ones considered in Burachik and Rubinov [1], and Wang et al. [14,
Section 3.1].

2. Statement of the Problem and Basic Assumptions. Let Y be an arbitrary (nonempty) set.
Let X and Z be Hausdorff topological spaces. We consider the optimization problem

minimize ¢(z) subject to z in X, 1)

where the function ¢ : X - Ry := RU {400} is a proper (i.e., dom¢ # @ and ¢ > —o0) extended
real-valued function. We fix a base point in Z and denote it by 0. In order to introduce our duality
scheme, we consider a duality parameterization for ¢, which is a function f : X x Z — R := RU {00}
satisfying f(z,0) = ¢(x) for all z € X. We also consider a perturbation function 3 : Z — R, related to
this duality parameterization, given by

B(z) := inf f(=,2).

zeX

Since ¢ is proper, $(0) < +oc. The definition of the dual function and dual problem rely on the
coupling function used in the conjugation. For instance, the classical conjugate duality (in the setting
of Banach spaces) uses the Fenchel-Moreau conjugation, which is defined using the coupling function
p: X x X* = R given by po(x,z*) := (x,z*), where (-,-) stands for the duality product in a Banach
space X and its topological dual X*, i.e., (z,z*) = z*(x).

In what follows, we consider a coupling function p: Z x Y x Ry — R that satisfies the following basic
assumptions:

C1) For any (y,r) € Y x Ry the function p(-,y,r) is upper-semicontinuous at 0, and p(0,y,r) = 0.
C>) For every neighborhood V' C Z of 0, and for every (y,7) € Y x Ry, it holds that
(i)
A?‘//F(T) = inf {p(z,y,7) — p(z,y,7)} >0, forall r >T7;
’ z€Ve
(i)
lim A;j’;(r) = 00.

=00

REMARK 2.1 Condition Cs is a valley-at-zero type property, which generalizes similar properties for
augmenting functions recently introduced in the literature. Item (i) in condition C5 ensures that the
function p(z,y,-) is strictly decreasing for any fixed (y,2z) € Y x Z \ {0}. In particular, the function
A) . (F,00) = Ry is nondecreasing, ensuring that rlggo A;/, #(r) exists. See Section 5 and references

therein for more details on condition C9, and its comparison with related assumptions in the literature.

The augmented Lagrangian function £ : X x Y x R, — R induced by the coupling function p is defined
as

Uz,y,r) = inf {f(2,2) = p(z,y,r)}- 2)

The dual function ¢ : ¥ x Ry — R is defined as q(y,r) := infyex £(z,y,r) and therefore the dual
problem is stated as
maximize q(y,r) subject to (y,r)inY x Ry. (3)



It is clear that ¢(y,r) = inf,ez{B(2) — p(z,y,7)}, where 3 is the perturbation function. We denote by
M, = inf;ex ¢(z) the optimal value of the primal problem, and by Mg := sup(, ey xr, 4(y,7) the
optimal value of the dual problem.

Since f is a parameterization function, condition C; easily implies the weak duality property for
our scheme, that is, My < M,,. In this section we show that our duality scheme enjoys a strong duality
property, that is to say, the zero-duality-gap property holds (M, = My). Next we present some definitions
related to abstract convexity. For a detailed presentation of this subject, see for example, Rubinov [10].

DEFINITION 2.1 Let g: Z — R. Given ¢ > 0, we say that (y,r) is an e—abstract subgradient of g in Z
(with respect to p) if

9(z) — p(z,y,7) > 9(Z) — p(Z,y,7) —€ for all z € Z. (4)
The set of e—abstract subgradients of g in Z, denoted by 0, .9(Z), is the e—abstract subdifferential of g in
Z with respect to the coupling function p. The 0—abstract subdifferential in z is denoted by 0,9(Z), and
is called abstract subdifferential.

REMARK 2.2 Tt follows from C; and the definition of 9, .¢(0), that if (y,7) € 8,.9(0) then (y,r) €
05,:9(0) for all r > rg, using the fact that p(z,y, ) is decreasing.

The abstract conjugate and biconjugate functions of g with respect to the coupling function p are
defined, respectively, by

g°(y,r) = sup{p(z,y,7) — 9(2)}
z2€Z
and

g(z)= sup A{p(z,y,7) —g°(y,7)}
(y,r)EY xRy

REMARK 2.3 Tt is easy to show that 8°7(0) = My, where 3 is the perturbation function. In particular
weak and strong duality are rewritten, respectively, as °?(0) < 8(0) and 87°(0) = $(0). In this context
strong duality is related to abstract convexity of the function 8 with respect to the family of functions
H, :={p(-,y,r) +c: (y,r,¢) €Y x Ry x R} at 0. For more details on the relationship between strong
duality and abstract convexity at a point, see for example, Rubinov and Yang [11, Chapter 2 and Section
5.2].

Consider the set of functions H, as in Remark 2.3. The set Supp(8, H,) := {h € H, : h < 8} is called
the support set of § with respect to H,. In the next proposition we relate 0,8(0), Supp(3, H,), and
dom ? to the dual function gq.

PROPOSITION 2.1 Take (3,7) €Y x Ry. Then

i) (¥,7) € 9,8(0) if and only if ¢(y,7) = B(0);
i) (g,7) € dom f* if and only if there exists ¢ € R such that p(-,4,7) + ¢ € Supp(B, H,), which in

turn is equivalent to q(y,T) > €.

PROOF. Since weak duality holds, (i) follows from the following equivalences:
@:;7) € 8,800) & B(2) —p(2,7,7) 2 B(0) (Vze€2)
& nf{f(z) - p(2,7,7)} 2 5(0)
& q(@,r) = B(0).
Since ¢(y,7) = —p*(y,T), (ii) follows from the following equivalences:
p(y,7) + € Supp(8, Hy) & B(z) 2 p(z,7,7)+¢c (Vz€Z)

& B(2)—p(z2,y,7)2¢c (VzeZ)
& inf{B(z) — p(2,5,7)} > ¢
& q(y,T)>¢C



3. Strong Duality and Exact Penalty Representation. The next theorem ensures that, under
mild assumptions, for every € > 0 the g-abstract subgradient of 8 at 0 is nonempty. As a consequence of
this fact, we establish strong duality.

THEOREM 3.1 Assume that Cy and Cy hold, that § is lsc at 0, and that there exists (g,7) € dom °.
Then 8,.3(0) # @ for all ¢ > 0. Moreover, for any € > 0 there exists o such that (y,r) € 9,.5(0) for
all r > rg.

ProOOF. First, by assumption 3(0) < oo. Second, we have that 5(0) > —oo by weak duality and the
assumption that dom 3° is nonempty. Therefore, 3(0) € R. Observe that we just need to prove the last
statement of the theorem. To arrive at a contradiction suppose that there exists £ > 0 such that for any
k > 0 there exists r, > k, 2, € Z satisfying:

,B(Zk)_p(zk,y,rk) <IB(0) —¢. (5)
Suppose that {zj}ren converges to 0. Thus
ﬁ(O) —€> ﬂ(zk) - p(zkaya T'k) > IB(zk) - p(zkayaf)

for all k > kg > 7. Hence, using C; and the lower-semicontinuity of § at 0, we have
B(0) — & > Tim inf{8(=1) — p(ax, 7,7} > B(0) — p(0,5,7) = S(0),

which is a contradiction. Therefore {z}ren does not converge to 0, which implies that there exists some
open neighborhood V' C Z of 0, and a subsequence {z, };en C V°. Now, using (5) and the fact that
there exists ¢ such that p(:,9,7) + ¢ € Supp(8, H,) (see Proposition 2.1), we have

BO)—¢& > Blzx;) — p(2k;,U,7k;)
= B(2k;) — p(zk;,9,T) + p(2;, 9, T) — p(2k;5 7, Th;)
> ¢+ Zien‘ﬁc{P(zaﬂa ) —p(2,Y,7k,) }-
Henceforth,
AV (riy) i= inf {p(e,37) = p(2Tors,)} < BO) 2=,
which contradicts Cs, because lim; 7; = co. The result follows. O

The next corollary, which extends [1, Proposition 4.2], shows that in order to check if the abstract
subgradient of 8 at 0 is nonempty we just need to verify that there exists an element (y,r) € Y x
R, satisfying the inequality (4) in a neighborhood of 0. As we will see in Theorem 3.3, under mild
assumptions, this fact is equivalent to the existence of an exact penalty representation.

COROLLARY 3.1 Suppose that the assumptions of Theorem 3.1 hold. Suppose also that there exists an
open neighborhood V. C Z of 0 such that B(z) — p(z,9,7) > B(0) for all z € V, with (y,7) € dom 3°.
Then there exists ro such that B(z) — p(z,9,r) > B(0) for all z € Z and r > 1o, i.e., (y,r) € 8,6(0) for
all T >rg.

ProOOF. Take V as in the assumption. Consider z € V¢ and € > 0. By Theorem 3.1 there exists
re > 0 such that (y,r.) € 9,,.8(0). Thus

/B(z) > ﬂ(0)+p(zay7r€)_6
= B(0) +p(

zayaT)+p(z7yarE)_p(zayaT)_E (6)
> ﬂ(O) (zaya ’I') + uienéc{p(uaya 7'5) - p(uaya ’I')} —¢&.

+p
+p
By Cs there exists r; > r. such that ien‘ﬁc{p(u,y, re) — p(u,y,7)} > ¢ for all » > ry. Using this
estimate in (6) we obtain ((z) > B(0) + p(z,7,r) for all z € V¢ and r > r;. Since, by assumption,

B(z) > B(0) + p(z,7,7) for all z € V, the result follows by taking ro = max{%,r;} and observing that
p(z,y,-) is nonincreasing in Ry for each (z,y) € Z x Y. O



THEOREM 3.2 Under the assumptions of Theorem 3.1, the zero-duality-gap property holds for the primal-
dual pair of problems (1)-(3).

PRrOOF. Take ¢ > 0. By Theorem 3.1, there exists (7,7.) € 0,,6(0). Hence we have

BPP(0) = sup{p(0,y,7) = B*(y,r)} = sup =B’ (y,r)

(y,r) (y,r)

> =pr(y,re) = inf{B(2) = p(2,9,rc)} 2 B(0) — e,

using C in the second equality and the fact that (g,7.) € 9,,.6(0) in the last inequality. It follows that
B°P(0) > B(0) — e. Since ¢ is arbitrary, we have that 8°?(0) > £(0), and the reverse inequality is the
weak duality property. We conclude that 8°°(0) = 5(0), i.e. the zero-duality-gap property holds. O

REMARK 3.1 Corollary 3.1 and Theorem 3.2 generalize Burachik and Rubinov [1, Propositions 4.2 and
4.1], respectively. Observe also that we just use the lower-semicontinuity of 8 at 0, while in Burachik and
Rubinov [1] S is assumed to be lsc in all the space.

Exact penalty representation for augmented Lagrangian function was defined and studied in Rockafellar
and Wets [9, Section 11]. A criterion for such a representation was presented in Rockafellar and Wets [9,
Theorem 11.61]. This criterion has been studied for more general augmented Lagrangians, for instance,
by Burachik and Rubinov [1], and Huang and Yang [3]. In the next theorem we extend this criterion to
our more general setting.

DEFINITION 3.1 Consider the primal and dual problems (1)-(3). An element § € Y is said to support
an exact penalty representation for problem (1) if there exists ro € Ry such that for any r > rq,

Ey) B0) = q(,r);

E5) argmin zo(x) = argmin ,l(z,7,r).

THEOREM 3.3 Assume that
a) the parameterization function f satisfies: f(x,-) islsc at 0 for every z € X;
b) conditions Cy and Cy are satisfied;
¢) there ezists (y,T) € dom 3.
Then the following assertions are equivalent:
i) There exist an open neighborhood V' C Z of 0 and ro > 0 such that
B(z) = B(0) + p(2,7,r0) for all z € V;

it) 7 supports an exact penalty representation for problem (1).

Proor. First, we prove that (ii) = (7). By E; there exists 79 > 0 such that Vr > rq
In particular, for any open neighborhood V' C Z of 0, we have that 5(0) < 8(z2) — p(2,7,r) forall z € V
and r > rg, which proves (7).

Let us now prove that (i) = (#¢). By condition (¢) and Corollary 3.1 we obtain that there exists 71
such that (g,r) € 0,8(0), for all r > 1. ;From Proposition 2.1 we conclude that E; holds for all r > r;.
Take r > r;. We prove now that E» holds.

C) Take z* € argmin ,p(z). Then
W g,r) = inf{f(z",2) = p(2,9,7)} < f(=",0) + p(0,7,7) = ¢(z")
/8(0) = Q(y; T) = inf, l(maya T)a



where the second equality follows from C; and the fact that f(x,0) = ¢(z) for all x € X, and the fourth
equality follows from E; (already proved). From these estimates we obtain that z* € argmin ;I(z,7,7).
Since z* is arbitrary, we conclude that the announced inclusion holds.

D) Consider r > r; and take z, € argmin ,I(z,7,r). We know that E; holds, and therefore
/B(O) = q(ya 7’) = infw l(xaya T’) = l(xf‘aya 7’)
= Hzlf{f(xra Z) - p(zaya T’)} (7)
= lim {f(xf‘vzk) _p(zkayar)}
k— oo
for some minimizing sequence {zy }ren. We analyze two possible cases:

1) the sequence {zj}, converges to 0;

2) the sequence {z }x does not converge to 0.
In the first case we get from (7) that
/8(0) = lim {f(mrazk) - p(zk;ga T)}
k—o0
= lim inf{f(mﬂ zk) - p(zkaya T)}
k— o0
> f(.’ET,O)—p(O,y,T’) =f(.’ll'7-,0) :QO('TT‘)

where the inequality follows from (a) and Ci, included in (b), and the third equality also follows from
Ci. We conclude that in this case x, € argmin ;¢(z). Since x, is arbitrary, the proof will be complete if
we prove that case (2) cannot occur. Suppose by contradiction that case (2) holds. Thus there exist an
open neighborhood V' C Z of 0 and a subsequence zj; := z;, such that z; € V¢ for all j € N. Then,

f(xT‘sz)_p(zj7§7'r) = f(m'razj)_P(Zja@Tl)‘*‘P(zjaﬂaTl)_P(Zj;yﬂ')
> inf{f(z;,2) = p(z,5:m)} + inf {p(z,5,71) = p(z,7,7)}
Z q(yvrl)+zien‘§c{p(zayvrl) —P(z,yﬂ")}

ﬂ(O) + zien‘gc{p(zaya Tl) - p(zaya T)}
Taking limits with j — oo in the inequalities above and using (7), we obtain that
B(O) 2ﬂ(0)+zi€n‘£c{p(z7yarl) _p(zayar)}‘ (8)

Since $(0) € R and r > 71, (8) contradicts condition C5 (%), included in (b). We conclude that case (2)
cannot occur, which completes the proof. O

REMARK 3.2 Theorem 3.3 extends Burachik and Rubinov [1, Theorem 6.2] to our more general setting.
Observe that we just use the lower semicontinuity of f(z,-) at 0 for all z, instead of assuming that f is
Isc in all the space, as is the case in Burachik and Rubinov [1, Theorem 6.2].

4. Sub-optimal path. In general, getting an exact optimal solution of an optimization problem is
very hard or even impossible, but when the optimal value is finite, approximate solutions always exist
and in general they are easier to find than exact solutions. In Wang et al. [15], the authors defined a sub-
optimal path related to the dual problem and established some convergence results in finite dimensional
spaces. In this section we consider a sub-optimal path related to our duality scheme and analyze its
convergence properties. This result is related to Burachik and Rubinov [1, Theorem 6.1], where the
authors consider an optimal path in the sense that all the subproblems are supposed to be solved exactly.
Also, as we will see in Section 5, our duality scheme includes the one considered in Burachik and Rubinov

[1]-

Recall that the calculation of the dual function leads to the following problem:

inf{f(z,2) — p(z,y,7) : (x,2) € X x Z}. 9)



DEFINITION 4.1 Let I C R be unbounded above, and for each r € I take e, > 0. The set {(zy,2,)}rer C
X X Z is called a sub-optimal path of problem (9) if
f(@r,zr) — plzr,y,m) < qly,r) +er (10)

for all v € I. When (z,,2,) satisfies (10) with e, = 0 for all r € I, the set {(zr,2:)}rer is called an
optimal path.

In the next theorem we analyze limit points of a sub-optimal path, where {¢, } ¢y satisfies lim &, = 0.
T—00

THEOREM 4.1 Assume that
a) there exists (y,T) € dom 3°;

b) the parameterization function f islsc at (x,0) for each x € X, and there exist an open neighbor-
hood W C Z of 0, a real number o > 3(0), and o compact subset B C X such that

Liw(a):={ze€X: f(z,2) <a} CB, foralzeW.

Then
i) there exists a sub-optimal path {(x,,z;)}r>7.

i) Take a set I C R unbounded above and consider a sub-optimal path {(z,,zr)}rer satisfying

E}im er = 0. Then {2, }rcr converges to 0, and the set of cluster points of {z,;}rer is a
rel,r—oo

nonempty set contained in the primal optimal solution set.

PRrROOF. Since p(z,y,") is a nonincreasing function, we have that ¢(7,-) is nondecreasing. Thus, if
r > 7 then ¢(y,r) > —o0, by item (a) and Proposition 2.1. Thus the existence of a sub-optimal path is
trivially ensured, which proves ().

For proving (i7), let {(x,, 2,)}rer be a sub-optimal path. Assume that lim &, = 0. Suppose by

rel,r—oco
contradiction that {z,},cr does not converge to 0 when r — co. Thus there exist an open neighborhood

V C Z of 0 and J C I, unbounded above, such that {z,},cq C V¢, (for instance, we can take Jj :=
INk,00), for k € N, and hence there exists ry € Ji, such that z,, € V¢; then J = {ry}, is unbounded
above). Therefore we have

B(0) + <,

vV

q@,r) +er > f(r, 2:) = p(27,7,7)
= f(whzr) - p(zrayaf) + P(zm?j) - p(zraya T)
> a(y,7) + f {p(z,5,7) = p(z.7,7)}

Since Ilim er = 0, we conclude that there exists rq € J such that for all » > rq,r € J, we have
rel,r—oo

IB(O) +1- q(ya F) > Zien‘ﬁc{p(z’y’ F) - P(Z7§7 T)}7

which contradicts Ca, because J is unbounded above and §(0),¢(7,7) € R It follows that {zx},cr
converges to 0. Consider an open neighborhood W C Z of 0 and a > $(0) as in assumption (b). Since
{zr}rer converges to 0, there exists ro € I such that {z,},>ryrer C W. Take t := a— 3(0) > 0. The
function p(-,y,7) is upper-semicontinuous at 0 by condition C;. Thus there exists some 71 > max{rg,7}
such that p(z,,7,7) < £ and e, < £ for all r > ry,r € I. Therefore, for all 7 > ry,7 € I,

IB(O) + % > q(y,T) +er 2 f(mrazr) - p(zrayar)

Z f(mhzT) _p(zﬁyaf) Z f(mTazT‘) - %
Hence
f(xr,2zp) <BO)+t=q, forall r>r,rel,
that is to say {@r}r>r,,rer C Lyw(c). Assumption (b) implies that {z,},>r,,rer C B, where B is a
compact set. In particular, since {z,},cr converges to 0, the set of cluster points of the sub-optimal path
{(zr,2r) : r € I} is nonempty. Moreover every cluster point has the form (z*,0). Let us prove that z*



is a primal optimal solution, where 2* is an arbitrary cluster point of {2, },cr. Take a subnet {z,,};cs
converging to z*, and jo € J satisfying r; > 7 for all j > jo,j € J. Observe that {z,;};cs converges to

0. Thus
6(0) + Er;

vV

q(¥,r;) + e,
f(@rjs20;) = p(205,7,75)
> f(r;,2r;) = p(2r;,7,7)
for all j > jo,j € J. If we take the liminf;c; in these inequalities, we obtain
B0) > f(z*,0) — p(0,7,7) = f(z*,0) = p(z”),

using conditions (b) and C;. Thus z* is a primal solution. The theorem is proved. O

vV

REMARK 4.1 In connection with the compactness assumption of Theorem 4.1, we mention that when
X is an infinite dimensional reflexive Banach space with the weak topology (which is not metrizable),
Banach-Alaoglu’s Theorem implies that a set is weakly compact if and only if it is bounded and weakly
closed. In particular, closed balls (in the strong topology) are weakly compact in such spaces. Thus,
a parametrization function f such that some sub-level set of f(-,2) is uniformly bounded and weakly
closed when z runs over a neighborhood of 0, provides an example for which assumption (b) of Theorem
4.1 holds. This situation is indeed a prototypical and nontrivial case to which Theorem 4.1 applies. We
remind also that sub-level sets of convex and lsc functions are always weakly closed, so that in the convex
case it suffices to check the uniform boundedness of the sub-level sets of f(-, z).

REMARK 4.2 Theorem 4.1 is related to Burachik and Rubinov [1, Theorem 6.1], where the authors con-
sidered an optimal path (in a reflexive Banach space) instead of a sub-optimal path, and the compactness
assumption on the sub-level sets of f(-, z) is assumed locally at all z, instead of just at z = 0, as assumed
in the present paper. Also, in Burachik and Rubinov [1, Theorem 6.1] it is assumed that the compactness
property holds for all sub-level sets of f(-,z), while Theorem 4.1 assumes compactness of just one of
them, corresponding to o > 3(0). Since we are not assuming convexity of f(-,z), compactness of just
one sub-level set of f(-,z) is not equivalent to compactness of all of them.

PROPOSITION 4.1 Let f : X X Z — R be a function lsc at (x,0) for each x € X. Take 5(2) := inf, f(z,2).
Suppose that 3(0) > —oo and that there exist an open neighborhood W C Z of 0, a > (0) and a compact
subset B C X, such that

Liw(a) :={z€ X : f(z,z) <a} CB, foralzeW.

Then the perturbation function B is lsc at 0.

ProoFr. Let J be the set of all neighborhoods of 0. We know that J is a directed set with the partial
order V3 > V5 iff Vi C V5. Suppose by contradiction that £ is not lsc at 0. Then there exists € > 0 such
that

sup inf (v) <B(0) —e.

Thus, 125 Bw) < B(0) —e for all V € J. In particular for each V' € J there exists zy € V such that
v
B(zv) < B(0) — e, which in turn implies that for each V' € J there exists zy € X satisfying

flzv,zv) < B(0) —e. (11)

By construction the net {zy }yes converges to 0. Taking W and « as in the assumption, It follows that
I:'={V € J:V >W}is a terminal subset of J such that {zy}yec;r C W and {zy }ver C Ly w(a) C B,
where B is the compact set given by hypothesis. Hence there exists a subnet {ns}scs of {zy}ver
convergent to some T. This means that ns = x,(,), where g : S — I is a function such that for every
U € I there exists an sy € S satisfying g(s) > U for all s > sy, s € S. In particular, the set {ts}ses,
where t, := zy(,) for all s € S, is a subnet of {zv }ves converging to 0, and f(ns,ts) < B(0) — ¢ for all
s € S, by (11). Therefore, using the lower semicontinuity of f in (Z,0) we obtain

B(0) < f(,0) < liminf f(n,,t,) < B(0) —e,

entailing a contradiction. O



ExamMPLE 4.1 Consider the following constrained optimization problem
minimize h(z) subject to z in C, (12)

where h : X — R is a Isc function such that L, := {z € X : h(z) < a} is compact for some a >
infzcc h(z), and C is a closed subset of X. Take a mapping D : Z = X such that D(0) = C and
suppose that D has a closed graph, that is, the set {(z,u) : u € D(z),z € Z} is closed (in the case
that C := {z : g;(x) <0, j = 1,...,m}, where g; : X — R is Isc for j = 1,...,m, a canonical such
mapping is D(z) = {z : gj(z) < 25, § = 1,...,m}). A canonical dualizing parameterization function for
problem (12) is f(z,2) = h(z) + dp(.)(x), where éy(z) = 0 if 2 € V and dy(z) = oo otherwise. It is
not difficult to see that f satisfies the assumptions of Proposition 4.1. Thus the perturbation function
B(z) = inf,cp-1(;) h(z) is Isc at 0. See also Proposition 5.2 in Burachik and Rubinov [1], where a similar
result is stated.

Next we show some examples of general augmented Lagrangians and compare our setting with the
ones considered in Burachik and Rubinov [1] and Wang et al. [14, Section 3.1].

5. Augmented Lagrangian. Consider a coupling function p: Z xY x Ry — R such that p(z,y,-)
is differentiable. A valley-at-zero type property of pl.(z,y,-) was introduced in Wang et al. [14, Section
3.1] where X,Y and Z are finite dimensional vector spaces. Also the primal problem is an inequality
constrained problem, which is a particular case of the primal problem considered in the present paper.
We state next the valley-at-zero property given in Wang et al. [14, Section 3.1] in our general setting.

A1) There exists a € [0,1) such that, for every open neighborhood V C Z of 0, and y € Y,

My.:= inf 7%.(u,y,7) >0
V,e ueve,r>e pr( »Y, )

for all € > 0.

REMARK 5.1 Wang et al. [14, Section 3.1] also assume that pl(0,y,r7) = 0. We do not assume this
condition. Regarding our condition C1, it is a standard assumption, used both in Burachik and Rubinov
[1] and Wang et al. [14]. Therefore, is enough for us to study the relationship between our condition Cs
and related assumptions in the aforementioned papers.

Wang et al. [14] use as coupling function p := —p in the construction of the Lagrangian scheme.
PROPOSITION 5.1 Take a function p satisfying Ay. Then the function p := —p satisfies condition Cs.

ProoF. Fix an open neighborhood V' C Z of 0, y € Y, and # > 0. For every z € V¢ and r > 7 there
exists 6, € (7,r) such that

p(zayar) - p(zay7f) = p;-(z7y707‘)(r - TA) Z (,,.l—a - ,Fl_a)egp;-(zagheT): (13)

where the inequality follows from the following estimates:
r> 0, = =1 > g2
where a € [0,1) is given by A;; analogously we have 7 = #1=27% < 717292 Thus we get
R D e L (i e B

Take 0 < € < 7. From (13) we obtain

A%

p(zayar) _p(zyyaf.) (rl—a _rAl_a) ir;f;Tap;(Z,y,T)

v

(oo =)

(Tl_a _ ,,ql—a)MV,E

for all z € V¢. Therefore

iean {p(zayalr) _p(zayaﬁ)} Z (,,,l—a - ,Fl_a)MV,E-
2EVe



It is easy to see that C5 follows from the last estimate above and A;, observing that p = —p and « € [0, 1).
O

The above result shows that our setting is more general than the one considered in Wang et al. [14].
In order to show that our setting is more general than the one considered in Burachik and Rubinov [1],
we recall next their main assumptions.

Consider a function s : R2 — R such that s(0,0) = 0 and for every a € R and b; > bs, it satisfies
S(aabl) —S(a,bg) Z¢(b1 _bZ)a (14)
where ¢ : Ry — R, is a strictly increasing function such that 1(0) = 0 and %) is coercive, that is,
lim (t) = oo.
t—o0
Let {vp}yev, be a family of upper semicontinuous functions satisfying
v,(0) =0 for all n € Un, (15)

and {0, },cv, be a family of augmenting functions which have a valley-at-zero property, that is, for every
w €U, 0,:7Z — Ry is proper, Isc and satisfies

0,(0) =0 and inf o,(z) >0, (16)
z€Ve
for every open neighborhood V C Z of 0.

The coupling function considered in Burachik and Rubinov [1] is p(z, (n, 1), 1) = s(vy(2), —ro,(2)),
where the families {v;,}ncv, and {0, }ucu, satisfy (14)-(16).

Since we are not supposing any structure on the set Y, we can consider Y := U; x Us. In the next

proposition we show that our primal-dual scheme includes the one in Burachik and Rubinov [1].

PROPOSITION 5.2 Take p(z,y,r) := s(vy(2), —10,(2)), where y = (n, u) and the functions {vy}ycv, and
{ou}ucu, satisfy (14)-(16). Then condition Cy is satisfied.
Proor. Fix an open neighborhood V.C Z of 0,y € Y and 7 > 0. For all »r > 7 and z € V¢ we have
p(z,y,7) = p(z,y,7) = s(y(2), —Tou(2)) — s(vy(2), —rou(2))
z P((r —Tou(2))
= P((r =T)My),

where the first inequality follows from the property of the function p, and the second inequality follows
from the fact v is increasing and My := 1En‘£ ou(u) > 0. It follows that
weve

\%

Jnf p(2,9,7) = p(z,9,7) 2 9((r —T)My).
Using this last estimate and the property of the function ¢, we conclude that Cs is satisfied. O

REMARK 5.2 The coercivity property lim; o, 1(t) = oo was not explicitly required in Burachik and
Rubinov [1], but it was used in the proof of Burachik and Rubinov [1, Theorem 4.1], and this theorem is
applied throughout the paper.

ExAMPLE 5.1 Let Z be a reflexive Banach space. Take a coupling function g : ¥ x Z — R such that
g(y, ) is weakly upper semicontinuous and g(y,0) = 0 for each y € Y. Let p(z,y,7) := 9(y, 2) — ra(2),
where o is an augmenting function with a valley-at-zero (i.e., o satisfies (16)). In this case, we recover
the augmented Lagrangian studied in Zhou and Yang [18]:

Uz,y,r) = inf{p(z,2) — g(y, 2) + ro(2)}.

EXAMPLE 5.2 Let Z be a Hilbert space. Consider a continuous and invertible map A : Z — Z, and
suppose that Y = Z. Let the coupling function p be defined by p(z,y,7) = (y, Az) — ro(Az), where
o : Z — R is an augmenting function, i.e. a proper, lsc and convex function satisfying:

0(0) =0 and Argmino = {0}.



In this context our nonlinear augmented Lagrangian is the A-augmented Lagrangian proposed and studied
in Yang and Zhang [16]:

ba(z,y,r) = zlrelg{qﬁ(m,z) —{y, Az) + ro(Az2)}.

The A-augmented Lagrangian was studied in finite dimensional space, and some additional conditions
are imposed on the mapping A, see Yang and Zhang [16]. In particular, when A = I, that is, Az = z for
all z € Z, we recover the classical augmented Lagrangian proposed in Rockafellar and Wets [9, Chapter
11], which is also an example of the augmented Lagrangians proposed in Burachik and Rubinov [1].
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