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Abstract. We give a classification of pairs (F , φ) where F is a holomorphic

foliation on a projective surface and φ is a non-invertible dominant rational

map preserving F .

1. Introduction

Our goal is to give a classification of pairs (F , φ) where F is a holomorphic
singular foliation on a projective surface X, and φ : X 99K X is a dominant rational
map preserving F . When φ is birational, the situation is completely understood,
see [5, 16]. When φ is not invertible, to the best of our knowledge the only result
available in the literature is due to M. Dabija and M. Jonsson [6], and concerns the
classification of pencil of curves in P2 preserved by holomorphic self-maps of the
projective plane.

Our approach to this problem is based on foliated Mori theory [2, 3, 13, 14]
which address the problem of classification of holomorphic foliations on surfaces
by describing the numerical properties of their cotangent bundle in suitable bira-
tional models. Our main result gives a classification of pairs (F , φ) as above up to
birational conjugacy. Recall that a foliation F has a rational first integral if it is
defined by a pencil of curves in which case one says F is tangent to this pencil.

Theorem A. Suppose F is a holomorphic singular foliation on a projective surface
X without rational first integral, and φ : X 99K X is a dominant non-invertible
rational map preserving F . Then up to a birational conjugacy, there exists a φ-
invariant Zariski open dense subset U ⊂ X such that U is a quotient of C2 by a
discrete subgroup Γ ⊂ Aff(C2) acting discontinuously on C2, X is an equivariant
compactification of C2/Γ and:

• φ lifts to an affine map on C2;
• F is defined in C2 either by dx or by d(y+ex) in suitable affine coordinates.

In the case φ is birational, a similar statement holds whenever the degrees of φ
grow exponentially, see [5, Corollary 1.3].

Note that this implies F is non singular (in the orbifold sense) on the open set U ,
and has a Liouvillian first integral as in the case of foliations invariant by birational
maps, see [5, Corollary 7.4]. We shall call any rational map φ which lifts to an
affine map in C2 like in the theorem Lattès-like. This class already appears in the
classification of endomorphisms of Pk, k ≥ 1 having a non-trivial centralizer by
Dinh and Sibony [8].
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Let us comment briefly on which surfaces U may appear. When Γ is a subgroup
of (C2,+) of rank r ∈ {1, 2, 3, 4}, then U is either an abelian surface (r = 4); a
locally trivial fibration over C∗ with fiber some elliptic curve (r = 3); C × E for
some elliptic curve, or C∗ × C∗ (r = 2); or C × C∗ (r = 1). In particular any
projective1 compactification of U is birational to a torus, to P1×E for some elliptic
curve E, or to P1 × P1. Note that each of these surfaces admit Lattès-like maps.
In general, when Γ is no longer a subgroup of (C2,+), one obtains finite quotients
of these examples.

In fact, there are strong restrictions for a Lattès-like map on a surface X to
preserve a foliation in C2 which induces a holomorphic singular φ-invariant foliation
on X. Our results are actually more precise, and we give normal forms for both
the foliation and the map, see Theorems 4.3, 4.4 below in the case F has no first
integral and Theorem 4.6 when F is tangent to a pencil of curves. As a consequence
of the classification, we obtain the following result which extends [5, Corollaire 1.3]
to non-invertible maps.

Corollary B. Suppose φ : X 99K X is a dominant non-invertible rational surface
map which preserves a holomorphic foliation F which is not tangent to a rational
or an elliptic fibration. Then φ preserves at least two foliations.

The assumption is necessary, since the map (x, y) 7→ (x2, xy2) on C2 does not
preserve any other foliation than {x = cst}.

Our approach also gives an alternative to the delicate analysis of the reduced
fibers done by Dabija-Jonsson in [6]. It allows us to extend their results to arbitrary
foliations. Note that the following result is not an immediate consequence of the
previous results since it gives a classification up to PGL(3, C). Recall that the
degree of a foliation F in P2 is the number of tangencies between F and a generic
line of P2.

Theorem C. Suppose φ : P2 → P2 is a holomorphic map of degree d ≥ 2 preserving
a foliation F . Then deg(F) = 0 or 1, and in appropriate homogeneous coordinates
[x : y : z] on P2, one of the following cases holds:

(1) F is the pencil of lines given by d(x/y), and φ = [P (x, y) : Q(x, y) :
R(x, y, t)] with P,Q,R homogeneous polynomials of degree d;

(2) F is induced by d log(xλyz−1−λ) with λ ∈ C \Q, and φ = [xd : yd : zd];
(3) F is induced by d log(xξyz−1−ξ) with ξ a primitive 3-rd root of unity and

φ = [zd : xd : yd];
(4) F is induced by d(xpyq/zp+q) with p, q ∈ N∗, p 6= q, gcd{p, q} = 1, and φ =

[xd : yd : R(x, y, z)] with R = zδ
∏l

i=1(z
p+q + cix

pyq) with d = δ + l(p + q),
ci ∈ C∗.

(5) F is induced by the 1-form d log(xyz−2), φ = [yd : xd : R(x, y, z)] with
R = zδ

∏l
i=1(z

2 + cixy) and d = δ + 2l, ci ∈ C∗.

In [10], we extend our classification to rational maps preserving webs, inspired
by the work of Dabija-Jonsson [7] on endomorphisms preserving families of lines.

The plan of the paper is as follows. In Section 2, we recall basic facts about
foliations and their singularities. We then describe how the cotangent bundle of
a foliation behaves under the action of a rational map in Proposition 2.1. From

1Otherwise more examples arise like non-kählerian Kodaira surfaces.
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this key computation, we deduce a simple proof of Theorem C. In Section 3, we
present the basics of foliated Mori theory, following [2]. We deduce from it two gen-
eral statements (Proposition 3.4 and 3.5) that are important intermediate results.
Section 4 contains the classification up to finite covering and birational conjugacy
of invariant foliations without rational first integral of Kodaira dimension 0 and 1
(Theorem 4.3 and 4.4), and of invariant fibrations (Theorem 4.6). The proofs of
Theorem A and Corollary B are then given at the end of the paper.

Acknowledgements. We thank Serge Cantat, Romain Dujardin and Mattias
Jonsson for their comments.

2. Transformation of the cotangent bundle

In this section by a surface X we mean a compact complex surface with at most
quotient singularities.

2.1. Foliations on smooth surfaces. Let us consider first a smooth surface X.
We denote by TX its tangent bundle, by Ω1

X its sheaf of holomorphic 1-forms and
by KX := Ω2

X its canonical line bundle.
A (singular holomorphic) foliation F on a surface X is determined by a section

with isolated zeroes v ∈ H0(X, TX ⊗ T ∗F) for some line bundle T ∗F on X called
the cotangent bundle of F . Two sections v, v′ define the same foliation if and only
if they differ by a global nowhere vanishing holomorphic function. The zero locus
of the section v is a finite set Sing(F) called the singular locus of F . A point
x /∈ Sing(F) is said to be regular.

Concretely, given an open contractible Stein cover {Ui} of X, F is described in
each Ui by some vector field vi with isolated zeroes such that vi = gijvj on Ui ∩Uj

for some non-vanishing holomorphic functions gij ∈ O∗(Ui∩Uj). The cocycle {gij}
determines the cotangent bundle of F , and the collection {vi} induces a global
section v ∈ H0(X, TX ⊗ T ∗F).

Integral curves of the vector fields {vi} patch together to form the leaves of F .
Outside Sing(F), a local section of T ∗F is given by a holomorphic 1-form along the
leaves.

A foliation F can be described in a dual way by a section with isolated singu-
larities ω ∈ H0(X, Ω1

X ⊗ NF) for some line bundle NF called the normal bundle
of F . In a contractible Stein open cover, ω is determined by holomorphic 1-forms
ωi. The tangent spaces of leaves are then the kernels of 1-forms ωi. Notice that the
collection of 1-forms {ωi} determine the same foliation as the collection of vector
fields {vi} if and only if ωi(vi) ≡ 0 for all i.

At a regular point of F , one can contract a local section of TF with a holomorphic
2-form yielding a local section of N∗F . We thus have the isomorphism:

(2.1) KX = N∗F ⊗ T ∗F

Suppose φ : Y → X is a dominant holomorphic map between two smooth sur-
faces X, Y , and F is a foliation on X determined by a collection of 1-forms {ωi} on
some open cover {Ui} of X. The holomorphic 1-form φ∗ωi on φ−1(Ui) may have in
general non-isolated zeroes. We denote by ω̂i any holomorphic 1-form on φ−1(Ui)
with isolated zeroes which is proportional to φ∗ωi. The collection {ω̂i} then defines
a holomorphic foliation that we call the pull-back of F by φ and denote by φ∗F .
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A singular point x for a foliation F is said to be reduced if the foliation is locally
defined by a vector field v whose linear part is not nilpotent, and such that the
quotient of its two eigenvalues is not a positive rational number (it may be zero or
infinite). Reduced singularities satisfy the following property: for any composition
of point blow-ups π above p, the invertible sheaf T ∗(π∗F)−π∗T ∗F is determined by
an effective π-exceptional divisor. Note that in the smooth case then this difference
has full support on the set of π-exceptional divisors.

A separatrix at x is a germ of curve C passing through x such that C \ {x} is a
leaf of F . The singularity of F at x is said to be dicritical if there exist infinitely
many separatrices at this point. A reduced singularity is not dicritical.

It is a theorem of Seidenberg that for any foliation F there exists a composition
of point blow-ups π : Y → X such that π∗F is reduced. A reduced foliation on a
surface is a foliation with all its singularities reduced. If F is a reduced foliation on
X, and π : Y → X is a composition of point blow-ups then π∗F is again reduced.

2.2. Foliations on surfaces with quotient singularities. We shall also work
with surfaces with quotient singularities. A foliation on such a surface is a foliation
on its smooth part. Suppose (X, p) is a quotient singularity locally isomorphic to
C2/G where G is a finite subgroup of GL(2, C). A foliation F on (X, p) is the
image of a foliation on C2 which is G-invariant. A foliation on (X, p) is said to
have a reduced singularity (resp. to be smooth) at p iff its lift to C2 has reduced
singularities (resp. is smooth).

On a surface X with at most quotient singularities, there exists a natural defi-
nition of intersection of divisors. Note that the intersection product of two curves
needs not be an integer but is instead a rational number. One then defines the (ra-
tional) Neron-Severi group of X, NSQ(X), as the group of Q-divisors of X modulo
numerical equivalence.

Since X is singular, T ∗F is not necessarily a line-bundle. It is only a torsion-free
sheaf locally free outside the singular set of X. However a suitable power of T ∗F
is a line-bundle, and consequently determines a class in NSQ(X) which will also be
denoted by T ∗F . For any birational morphims π : X ′ → (X, p), one can then define
π∗T ∗F ∈ NSQ(X ′). If F has a reduced singularity at p and X ′ has only quotient
singularities, then T ∗(π∗F)− π∗(T ∗F) is determined by an effective π-exceptional
divisor just as in the smooth case (note however that the coefficients of this divisor
may be non-integral rational numbers). Again this difference has full support on
the set of π-exceptional divisors if F is smooth at p.

2.3. Rational maps. Suppose π : X ′ → X is a birational morphism and F ′ is a
foliation on X ′. Then we can push-forward F ′ outside the exceptional components
of π. This defines a foliation on the complement of a finite set in X. By Hartog’s
theorem, this foliation extends to X in a unique way: we denote it by π∗F ′.

If φ : Y 99K X is a dominant meromorphic map and F is a foliation on X then
φ∗F is defined as follows. Let Γ be a desingularization of the graph of φ. Thus there
are two holomorphic maps π : Γ → Y and f : Γ → X such that π is a composition
of point blow-ups and f = φ◦π as as indicated in the diagram below. By definition,
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φ∗F is the foliation π∗f
∗F on X.

Γ
π

��~~
~~

~~
~

f

��?
??

??
??

X
φ //_______ Y

In the sequel, a foliated surface (X,F) is a compact complex surface with at most
quotient singularities endowed with a singular holomorphic foliation. A map φ :
(Y,G) 99K (X,F) of foliated surfaces is a dominant meromorphic map φ : Y 99K X
such that G = φ∗F .

Let us introduce a little more notation. We let Ind(φ) be the set of indeterminacy
points of φ. In terms of the diagram above, it is the finite set of points p ∈ X such
that fπ−1(p) has positive dimension. For any Cartier Q-divisor D in X, we set
φ∗D := π∗f

∗D. It is a linear map which preserves effectivity.
Then φ induces maps between the Neron-Severi groups of X and Y that we again

denote by φ∗ : NSQ(X) → NSQ(Y ).

2.4. Pull-back of foliations. Denote by ∆φ the divisor determined by the van-
ishing of the Jacobian determinant of φ. It is locally defined by the vanishing of
det Dφ, where Dφ denotes the differential of φ. Its support is the critical set of φ,
and it satisfies the equation

(2.2) KX = φ∗KY + ∆φ .

The following result is our key technical tool. When E is an irreducible curve,
and Z is any divisor we denote by ordE(Z) ∈ Z the order of vanishing of Z at a
generic point of E.

Proposition 2.1. Suppose φ : (Y,G) 99K (X,F) is a dominant meromorphic
map between foliated surfaces with at most quotient singularities. Then one has
φ∗T ∗F = T ∗G − D in NSQ(Y ) for some (non necessarily effective) divisor with
support included in the critical set of φ and satisfying D ≤ ∆φ.

Pick any critical component E, and when it is contracted to a point assume that
φ(E) is a reduced singularity of F .

(1) If E is generically transverse to G then ordE(D) = ordE(∆φ) > 0;
(2) If E is G-invariant, then ordE(D) ≥ 0.

In particular, if F has only reduced singularities then D is effective.

Proof of Proposition 2.1. Suppose F is given by a collection of holomorphic 1-forms
{ωi} on an open Stein cover {Ui} of X\Sing(X). On the open set φ−1(Ui)\Ind(φ)∪
Sing(Y ), we may write φ∗ωi = hi · ω̂i with ω̂i a holomorphic 1-form with isolated
zeroes and hi a holomorphic function whose zero set is included in the critical set
of φ. The divisors div(hi) patch together and yields a global effective divisor D0.
Outside Sing(F) ∪ Sing(X), ωi is a local generator for the invertible sheaf N∗F
over Ui, and the same is true with ω̂i for N∗G over φ−1(Ui) \ Sing(G) ∪ Sing(Y ).
Whence φ∗N∗F = N∗G−D0. By (2.1) and (2.2), we get φ∗T ∗F = T ∗G+D0−∆φ.
This proves the first part of the proposition with D = ∆φ −D0.

For the second part, we pick an irreducible component E of the critical set of φ.
By our assumption we know that either E is not contracted, or it is contracted to
a reduced singularity of F .
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Suppose first E is transversal to G. Then it cannot be contracted to a point since
a reduced singularity admits only finitely many separatrices. At a generic point on
E, and in suitable coordinates we may write φ(x1, x2) = (xa

1 , x2). On the other
hand, we may suppose that F is determined by the form dy2, hence φ∗(dy2) = dx2.
We conclude that D0 = 0 near a generic point of E, and ordE(D) = ordE(∆φ).

Suppose next E is G-invariant but is not contracted. Again we may assume
φ(x1, x2) = (xa

1 , x2), but then F is determined by dy1. Now φ∗(dy1) = axa−1
1 dx1

and detDφ = axa−1
1 so that D0 = (a − 1)E = ∆φ at a generic point of E, and

ordE(D) = 0.
Finally suppose E is G-invariant and contracted to a point p. Assume first p is

smooth on X. Let π : X̂ → X be a composition of point blow-ups such that the
map φ̂ : Y 99K X̂ satisfying π ◦ φ̂ = φ does not contract E. Write F̂ := π∗F . As p
is a reduced singularity, T ∗F̂ = π∗T ∗F + E′ with E′ an effective divisor supported
on the exceptional set of π. As E is not contracted by φ̂ we may apply our previous
arguments. We may thus write φ̂∗T ∗F̂ − T ∗G = −D̂ for some divisor D̂ such that
ordE(D̂) = 0. Now we get

φ∗T ∗F − T ∗G = φ̂∗π∗T ∗F − T ∗G = φ̂∗T ∗F̂ − T ∗G − φ̂∗E′ = −D̂ − φ̂∗E′

We conclude that ordE(D) = ordE(D̂) + ordE(φ̂∗E′) = ordE(φ̂∗E′) ≥ 0.
Suppose now E is contracted to a quotient singularity p. Consider π : (X̂, F̂) →

(X,F) a resolution of singularity of X, and let φ̂ : (Y,G) 99K (X̂, F̂) be the lift of
φ. Since T ∗F̂ = π∗T ∗F + D′ with D′ effective, we have:

φ∗T ∗F − T ∗G = φ̂∗π∗T ∗F − T ∗G = φ̂∗T ∗F̂ − T ∗G − φ̂∗(D′)

Since F̂ has reduced singularities by assumption, we may apply our former compu-
tation to φ̂ and we conclude that φ∗T ∗F − T ∗G = −D with ordE(D) ≥ 0. �

2.5. Proof of Theorem C. We actually prove a stronger result, see the proposi-
tion below.

As mentioned in the introduction deg(F), the degree of a foliation F on P2, is
defined as the number of tangencies between F and a generic line `. If F is defined
by a section with isolated zeroes ω ∈ H0(P2,Ω1

P2 ⊗ NF) and NF = OP2(k) for
some k, then the restriction ω|` is a section of H0(P1,Ω1

P1 ⊗OP1(k)). By definition
the number of zeroes of ω|` is equal to deg(F) so that

NF = OP2(deg(F) + 2) and T ∗F = OP2(deg(F)− 1).

Recall that the algebraic degree of a rational map φ : P2 99K P2 is by definition the
degree of φ−1` for a generic line `. If we apply Proposition 2.1 to reduced foliations
on P2 then we obtain the following result.

Proposition 2.2. Let φ : (P2,F) 99K (P2,F) be a dominant rational map of
algebraic degree d > 1. Suppose F is reduced or φ does not contract any curve.
Then deg(F) ≤ 1.

Proof. One has deg(φ∗T ∗F) = d·(deg(F)−1). Our assumption and Proposition 2.1
implies D = T ∗F − φ∗T ∗F is effective. Thus (deg(F)− 1)− d · (deg(F)− 1) ≥ 0,
i.e. deg(F) ≤ 1. �

Back to the proof of Theorem C. Suppose φ is holomorphic. It cannot contract
curves, hence by the previous proposition, deg(F) = 0 or 1. Having degree 0 means
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F is given by the fibration {x/y = cst}, which shows we are in case (1). When
F has degree 1, it is defined by (a) d log

(
x
y exp

(
z
y

))
or (b) d log(xλyz−1−λ) with

λ ∈ C∗, see [12, §1.2]. We now note that critical components of φ are necessarily
F-invariant, as follows from Proposition 2.1.

If we are in case (a) then there are only two φ-invariant algebraic curves, the
lines {xy = 0}, and their union is totally invariant by φ. Hence φ or its square is
equal to [xd : yd : R(x, y, z)]. A simple computation shows that a holomorphic map
of this form cannot leave invariant a foliation in the type (a) above.

Suppose now we are in case (b). If λ /∈ Q then F has only three invariant alge-
braic curves which are totally invariant by φ. We are thus in cases (2) and (3) of
the theorem. If λ = p/q, then the foliation is given by the fibration {xpyq

zp+q = cst}
which admits a unique reducible component {xy = 0}. This component is neces-
sarily totally invariant, hence φ = [xd : yd : R] or [yd : xd : R] with R homogeneous
of degree d. In the former case, since {xy = 0} is a totally invariant fiber, we may
find a polynomial P of degree d such that Rp+q(x, y, 1) = (xpyq)d P ( 1

xpyq ). This
implies all irreducible factors of R(x, y, 1) are of the form 1 + cxpyq with c ∈ C∗ as
required. In the latter case, the equation becomes Rp+q(x, y, 1) = (xqyp)d P ( 1

xpyq ).
Since R(x, y, 1) is a polynomial, this forces p = q = 1. �

3. Foliated Mori theory

3.1. Basics. For the convenience of the reader, we recall the main aspects of fo-
liated Mori theory as developed by Miyaoka, McQuillan [13], Brunella [2, 3] and
Mendes [14]. Its goal is to classify holomorphic foliations on projective surfaces in
terms of the positivity properties of their cotangent bundles.

Recall that a class α ∈ NSQ(X) is pseudo-effective if it lies in the closure of the
convex cone generated by effective divisors. It is nef if α · C ≥ 0 for any curve C.

The first important result of this theory is due to Miyaoka.

Theorem 3.1 (Miyaoka). If (X,F) is a reduced foliation on a projective surface
and T ∗F is not pseudo-effective, then F is tangent to a rational fibration.

We may thus turn our attention to reduced foliations (X,F) with T ∗F pseudo-
effective. The next fundamental result is due to McQuillan.

Theorem 3.2 (McQuillan). Suppose (X,F) is a reduced foliation and T ∗F is
pseudo-effective. Then one can find a regular birational map π : X → X0 to a
projective surface X0 with at most cyclic quotient singularities such that F0 := π∗F
is smooth at any of the singularities of X0 and a suitable power of T ∗F0 is a line
bundle which is nef.

For sake of convenience, we introduce the following terminology.

Definition 3.3. A nef foliation is a foliation F on a projective surface X with
at most cyclic quotient singularities such that: F is smooth at any of the singular
points of X; it is reduced at all regular points of X; and a suitable power of T ∗F
is a nef line bundle.

The preceding two theorems can be thus rephrased as follows: either F is tangent
to a rational pencil, or it is nef in some birational model.

The classification of nef foliations is done according to the values of two invariants
called the Kodaira dimension and the numerical Kodaira dimension. The Kodaira
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dimension of a reduced foliation (X,F) is by definition the Kodaira-Iitaka dimension
of its cotangent bundle, that is:

kod(F) = lim sup
n→∞

log h0(X, (T ∗F)⊗n)
log n

.

It is not hard to check that two reduced foliations that are birationally equivalent
have the same Kodaira dimension. The numerical Kodaira dimension of a reduced
foliation (X,F) is defined in terms of the Zariski decomposition of T ∗F . If T ∗F
is pseudo-effective then we can write T ∗F = PF + NF in NSQ(X) with PF a
nef Q-divisor and NF an effective Q-divisor with contractible support such that
PF · NF = 0. Such a decomposition is unique. Notice that T ∗F = PF for nef
foliations. Then we set:

ν(F) =


−∞ when T ∗F is not pseudo-effective;

0 when PF = 0;
1 when P 2

F = 0 but PF 6= 0;
2 when P 2

F > 0.

Again two birationally conjugated reduced foliations have the same numerical Ko-
daira dimension. The classification of foliated surfaces is summarized in the follow-
ing table:

ν(F) kod(F) Description
−∞ −∞ Rational fibration
0 0 F is the quotient of a foliation generated by a global

holomorphic vector field by a finite cyclic group.
1 −∞ Hilbert Modular foliation
1 1 Riccati foliation

Turbulent foliation
Nonisotrivial elliptic fibration
Isotrivial fibration of genus ≥ 2

2 2 General type

Recall that a foliation is a Riccati (resp. turbulent) foliation, if there exists a fi-
bration π : X → B whose generic fiber is rational (resp. elliptic), and transversal to
F . A foliation (X,F) is a Hilbert modular foliation if, up to birational morphisms,
there exists a Zariski open subset U of X which is isomorphic to the quotient space
H2/Γ where H is the upper half plane and Γ is an irreducible lattice in the product
PSL(2, R)× PSL(2, R) and the restriction of F to U is the quotient by Γ of one of
the two natural fibrations H2 → H .

3.2. General properties of φ-invariant nef foliations.

Proposition 3.4. Suppose (X,F) is a nef foliation, and φ is a dominant non-
invertible rational map preserving F . Then, we have:

(T ∗F)2 = 0 and φ∗T ∗F = T ∗F in NSQ(X) .

Moreover, the critical set of φ is invariant by F .

Proof. Denote by e(φ) the topological degree of φ: by assumption it is an integer
greater or equal to 2. Consider π : X̂ → X the minimal desingularization of X.
By Theorem 3.2 the lift F̂ of F to X̂ has reduced singularities everywhere. We
may thus apply Proposition 2.1 to the map φ̂ : (X,F) 99K (X̂, F̂) induced by φ.
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Since π∗T
∗F̂ = T ∗F , we have the equality φ∗T ∗F = T ∗F −D in NS(X) with D

effective.
Because T ∗F is nef, we get (T ∗F)2 ≥ (φ∗T ∗F)2. But the latter term is always

greater or equal to e(φ) ·(T ∗F)2, see for instance [9, Corollary 3.4], hence (T ∗F)2 =
0. We also get 0 ≤ φ∗T ∗F · T ∗F ≤ (T ∗F)2 = 0, hence φ∗T ∗F = λT ∗F in NSQ(X)
for some non negative constant λ by Hodge index theorem. Since φ preserves the
lattice in NSQ(X) generated by classes associated to curves, and since φ∗T ∗F ≤
T ∗F , we have λ = 1 or 0. But the relation φ∗φ

∗ = e(φ)id implies that φ∗ is
injective. We thus have φ∗T ∗F = T ∗F in NSQ(X) whence D = 0 numerically.
But D is effective according to final remark in Proposition 2.1, so that D = 0 as
a divisor. Hence the critical set of φ must be F-invariant. This concludes the
proof. �

Proposition 3.5. Suppose (X,F) is a nef foliation, and φ is a dominant non-
invertible rational map preserving F . Denote by C the closure of the F-invariant
compact curves, and write U := X \ C.

Then either U is empty and F is tangent to a fibration; or U is a Zariski-dense
open subset of X. In the latter case, we may contract finitely many curves on X
such that F remains a nef foliation and φ induces a holomorphic proper unramified
finite covering φ : U → U . In particular, X \ U is a φ-totally invariant proper
analytic subset of X which is maximal for the inclusion.

Note that U may be equal to X. Notice also that U may have quotient singular-
ities. When it is the case φ is unramified in the orbifold sense, which means that
the critical locus of φ is empty outside the singular points, and φ has finite fibers
and is proper. For sake of convenience, we introduce the following terminology

Definition 3.6. Suppose (X,F) is a nef foliation, and φ is a dominant rational
map preserving F . Then the foliation F is φ-prepared if the complement U of
all F-invariant curves is a non-empty dense Zariski open subset of X which is φ-
invariant, and such that the restriction map φ : U → U is an unramified orbifold
cover.

Proposition 3.5 says that any nef foliation without a rational first integral admits
a model in which it is φ-prepared.

Proof. By Jouanolou’s theorem, if F admits infinitely many invariant compact
curves, then it is tangent to a fibration. Thus U is either empty or the complement
of finitely many algebraic curves, hence Zariski-dense. For the rest of the proof,
assume we are in the latter case. We let Γ be a desingularization of the graph of φ,
and π : Γ → X, f : Γ → X be the two natural projections with π birational, and
f = φ ◦ π.

Proposition 3.4 implies φ∗T ∗F = T ∗F . Thus there is no critical curve intersect-
ing U according to Proposition 2.1 (1).

Suppose p ∈ Ind(φ) ∩ U . Pick a resolution π : X̂ → X of X at p such that
the induced map φ̂ : X̂ → X is holomorphic at any point in π−1(p), and pick a
neighborhood V around p. Then f induces a proper holomorphic map from the
neighborhood π−1(V ) of the divisor C := π−1(p) in Γ to a neighborhood of f(C)
that is unramified outside C. When p is smooth, V \{p} is simply connected, hence
f is birational, and we may contract f(C) to a smooth point. When p is a quotient
singularity, we can still contract f(C) to a point q. Since φ induces an unramified
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cover of a complement of a small neighborhood p onto a complement of a small
neighborhood of q, q is also a quotient singularity and F is smooth at q. But this
implies the restriction of T ∗F to f(π−1(V )) to have full support on f(C) and to
be effective. Since f(C) is contractible, the intersection form on the free abelian
group of divisors supported on f(C) is negative definite. Thus T ∗F cannot be nef
which yields a contradiction.

We conclude that we may contract finitely many curves in C such that F remains
nef and φ becomes holomorphic at any point in U .

We now show that U is totally invariant by φ. It is clear that it is forward
invariant. Since F has no dicritical singularities, for any point of indeterminacy
p ∈ X the divisor f(π−1(p)) is F-invariant, hence included in C. Suppose by
contradiction that there exists a connected curve C ⊂ C contracted by φ to a
point p ∈ U . By the preceding remark, C does not intersect Ind(φ). Replace
C by the connected component of φ−1(p) containing it, and pick a small tubular
neighborhood U of C. Then φ induces a holomorphic map from U onto its image,
whose critical set is included in C. We thus get an unramified finite covering
from U \ C onto the complement of p in a small neighborhood. As before we can
contract C to a smooth point, and after finitely iterations we get a new model in
which π(f−1(U)) ⊂ U . The inclusion is in fact an equality since f is surjective from
Γ onto X. We conclude that φ induces a proper finite unramified map from U onto
itself. �

4. The classification

4.1. Kodaira dimension 0. If (X,F) is a nef foliation of Kodaira dimension zero
then, according to [13, Theorem IV.3.6], (X,F) is the quotient of a foliation (Y,G)
with trivial canonical bundle on a smooth surface Y by a finite cyclic group H acting
on Y without pseudo reflections. Thus the action has isolated fixed points and the
points in X below these fixed points are singular. We summarize the possibilities
in the following table, for the order of the groups see [17].

Ambient Space Y Foliation G order of H

Sesquielliptic surface Isotrivial elliptic fibration 1,2,3,4,6

Abelian Surface any vector field not tangent 1,2,3,4,5,
to an elliptic fibration 6,8,10,12

extension of an elliptic curve by C∗ Suspension of a representation 1,2,3,4,6
compactified as a P1-bundle π1(E)→ C∗

extension of an elliptic curve by C Suspension of a representation 1,2
compactified as a P1-bundle π1(E)→ C
C∗ × C∗ compactified any irrational vector field in the 1,2,3,4,6
as P2 or P1 × P1 Lie algebra of C∗ × C∗

C∗ × C compactified any vector field in the 1,2
as P2 or P1 × P1 Lie algebra of C∗ × C with non

trivial projections to both factors

From the classification, and as pointed out in [13], follows the following fact.
Fact: when the original foliation has no rational first integral, the space Y is
a compactification of a complex Lie group G with abelian Lie algebra and the
foliation G, when restricted to the Lie group, is induced by a Lie subalgebra. In
all these cases G is the quotient of (C2,+) by a subgroup Γ of translations, the
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pullback of G to C2 is a linear foliation and H is generated by a cyclic element
h ∈ GL(2, C) with both eigenvalues distinct from one.

Lemma 4.1. Let φ : (X,F) 99K (X,F) be a rational self-map of a nef foliation
with kod(F) = 0. Assume F is φ-prepared. If we write (X,F) as the quotient of
(Y,G) by a cyclic group H as in the beginning of this section then the map φ lifts
to a rational map φ̂ : (Y,G) 99K (Y,G).

Remark 4.2. Below we give a topological proof. Another proof can be obtained in
the spirit of [5, p.209-210].

Proof. Let U be the complement of all F-invariant curves. Because π : Y → X
is a finite map and U is Zariski dense, it suffices to lift the restriction of φ to U .
Note that the preimage of U by π coincides with the Lie group G alluded to above.
By assumption, the map φ|U is an orbifold covering of U . Since the restriction to
G = π−1(U) of the natural quotient map π : Y → X is also an orbifold covering ,
the composition map g = φ ◦ π : G → U is an orbifold covering. It follows from the
diagram

G

π

��

g

��@
@@

@@
@@
∃φ̂|G?

//___ G

π

��
U

φ|U // U
that to lift φ|U to φ̂ : Y 99K Y it suffices to check that g∗π1(G) ⊂ π∗π1(G), where
g∗ : π1(G) → πorb

1 (U) is the natural map induced by g. For the definition of the
orbifold fundamental group πorb

1 and its basic properties, the reader can consult
[11, 18].

Since g is an orbifold covering , g∗ is injective. In particular, every element in
g∗π1(G) distinct from the identity has infinite order. To conclude it is sufficient to
prove that any element f 6= id ∈ πorb

1 (U) of infinite order belongs to π∗π1(G). The
group πorb

1 (U) can be interpreted as a subgroup of Aff(2, C). Write f(z) = Az + B
with A ∈ GL(2, C) and B ∈ C2. Recall from the fact above that πorb

1 (U) is an
extension of a finite cyclic group generated by some element h ∈ GL(2, C) which
is not a pseudo-reflection by a subgroup of translations canonically isomorphic to
π1(G). If A 6= id, then A is a power of h, hence is periodic of period k > 1. Since
h is not a pseudo-reflection, one has f◦k(z) = Akz +

(∑k−1
i=0 Ai

)
· B = z . This

contradicts our assumption. Whence f is a translation, and belongs to π∗π1(G).
This concludes the proof. �

Theorem 4.3. Let (X,F) be a foliation on a projective surface with kod(F) = 0
and without rational first integral. Suppose φ is a dominant non-invertible rational
map preserving F . Then up to birational conjugacy and to a finite cyclic covering
of order N , we are in one of the following five cases.
κ0(1): The surface is a torus X = C2/Λ, F is a linear foliation and φ is a linear

diagonalizable map.
In this case N ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}.

κ0(2): The surface is a ruled surface over an elliptic curve π : X → E whose
monodromy is given by a representation ρ : π1(E) → (C∗,×). In affine
coordinates x on C∗ and y on the universal covering of E, F is induced by
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the 1-form ω = dy + λx−1dx where λ ∈ C, and φ(x, y) = (xk, ky) where
k ∈ Z \ {−1, 0, 1}.
In this case N ∈ {1, 2, 3, 4, 6}.

κ0(3): Same as in case κ0(2) with ρ : π1(E) → (C,+), ω = dy +λdx where λ ∈ C,
φ(x, y) = (ζx + b, ζy) where b ∈ C, and ζ ∈ C∗ with |ζ| 6= 1.
In this case N ∈ {1, 2}.

κ0(4): The surface is P1 × P1, the foliation F is given in affine coordinates by the
form λx−1dx+dy and φ(x, y) = (xk, ky) with λ ∈ C∗ and k ∈ Z\{−1, 0, 1}.
In this case N ∈ {1, 2}.

κ0(5): The surface is P1 × P1, the foliation F is given in affine coordinates by the
form λx−1dx + µy−1dy and φ(x, y) = (xayb, xcyd) where λ, µ ∈ C∗, with
M =

[
a b
c d

]
∈ GL(2, Z), with λ/µ /∈ Q+, |ad−bc| ≥ 2, and M diagonalizable

over C.
In this case N ∈ {1, 2, 3, 4, 6}.

Proof. Most of the proof follows immediately from the classification stated in the
beginning of this section and Lemma 4.1. What is perhaps not completely evident
is the assertion that φ is a linear diagonalizable map in cases κ0(1) and κ0(5). Let
us comment on that. Suppose we are in case κ0(1), and φ is not diagonalizable.
Then in C2 we can write φ(x, y) = (ζx + y, ζy) for some ζ ∈ C∗, and φ preserves
a lattice Λ ⊂ C2. Forgetting about the complex structure, we may now view φ as
a linear map on R4 preserving Z4 with eigenvalues ζ and ζ̄ (each of multiplicity
2). The characteristic polynomial of φ is thus the square of a quadratic polynomial
X2 − aX + b with integral coefficients. From the Jordan decomposition of φ, we
see that there exists a unique φ-invariant 2 dimensional real plane P . In R4, it is
given by P = ker (φ2 − aφ + bid), and is hence defined over Z. In C2, it equals
P = {y = 0} and is invariant under complex conjugation. We have thus proved that
the intersection of Λ with the complex line {y = 0} is a rank 2 lattice. It follows
that the foliation dy has a compact leaf. Since translations act transitively on C2/Λ
by preserving the foliation, we see that all leaves of the foliations are elliptic curves
which implies the foliation to have a rational first integral. A contradiction.

In the case κ0(5), the matrix is again diagonalizable. Otherwise, one has
φ(x, y) = (xd, xyd) with d ∈ Z, and the invariant foliation is the rational fibra-
tion given by {x = cst}. �

4.2. Kodaira dimension 1. The next result classifies the pairs (F , φ) when F has
Kodaira dimension one and does not admit a rational first integral.

Theorem 4.4. Let (X,F) be a foliation on a projective surface with kod(F) = 1
and without rational first integral. Suppose φ is a dominant non-invertible rational
map preserving F . Then up to birational conjugacy and to a finite cyclic covering
generated by an automorphism τ of order N , we are in one of the following two
cases.

κ1(1): The surface X is P1 × P1, the foliation is a Riccati foliation given in coor-
dinates by the form

ω =
dy

y
+

m dx

(k − 1) x
+ µxndx ,
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and φ(x, y) = (λx, xmyk), where λ, µ ∈ C∗, k ∈ Z \ {−1, 0, 1}, m ∈ Z,
n ∈ Z \ {−1}, such that λ is not a root of unity and k = λn+1. Moreover
n /∈ {−2,−1, 0} if m = 0.
In this case, N ∈ {1, 2}, and τ = (±x±1,±y±1).

κ1(2): The surface X is P1 × E where E is an elliptic curve, the foliation is a
turbulent foliation induced by the form

ω = dy + xndx ,

where x is a coordinate on P1 and y on the universal covering of E, and
φ(x, y) = (λx, λn+1y) with λ ∈ C∗ not a root of unity, n ∈ Z \ {−2,−1, 0}.
In this case, τ = (ζx, ξy), N = 1 when n ≥ 1, and N ∈ {1, 2, 3, 4, 6}
otherwise.

Proof. As before, we may suppose (X,F) is a nef foliation such that the complement
of the compact F-invariant curves is Zariski dense and totally invariant by φ. Under
the additional condition that kod(F) = 1, we shall need the following result.

Lemma 4.5. There exists a rational or elliptic fibration π : X → P1 whose generic
fiber is transversal to F and that admits one or two F-invariant fibers. Moreover,
one can find f ∈ Aut(P1) which is not periodic, such that π ◦ φ = f ◦ π. In
particular, the F-invariant fibers are totally invariant by φ. Finally singularities of
the ambient space X are all located on F-invariant fibers.

A proof is given at the end of this section.

1. Suppose first that π is a rational fibration. Then we may make a sequence
of modifications centered on one of the F-invariant fibers such that X becomes
P1×P1. Note that the condition on F being nef may not be satisfied anymore, but
we can keep the properties listed in Lemma 4.5. Let us consider the component
∆⊥ of the critical set of φ which is not invariant by the fibration. A non-invertible
rational map of P1 has at least two critical points, hence ∆⊥ · π−1(b) ≥ 2. On
the other hand, by Propositions 2.1 and 3.5, ∆⊥ is an F-invariant compact curve
that is totally invariant by φ, so that ∆⊥ · π−1(b) = 2. If ∆⊥ is irreducible, the
fiber product ∆⊥ ×π X is a two-fold covering of X ramified over ∆⊥. Replacing
X by this fiber product if necessary, we may assume that ∆⊥ has two irreducible
components C1 and C2.

We now pick coordinates (x, y) ∈ P1 × P1 such that π(x, y) = x, C1 = {y = 0},
C2 = {y = ∞}. We assume π−1(∞) is an F-invariant fiber, and the other F-
invariant (if it exists) is π−1(0). The foliation F can thus be defined by a form
ω = y−1dy + h(x)dx for some rational function h. Poles of h correspond to F-
invariant fibers, hence we may write h(x) = xnp(x) for some n ∈ Z, and some
polynomial p ∈ C[x] with p(0) 6= 0. We also have φ(x, y) = (f(x), a(x)yk) with
a(x) ∈ C(x) and f(x) = x + 1 or = λx with λ ∈ C∗ not a root of unity.

Assume first that f(x) = λx. Since F is φ-invariant, we have φ∗ω = b · ω for
some meromorphic function b. Expanding this equation in terms of x and y, and
identifying both hand sides, we find that xn(kp(x)−λn+1p(λx)) = a′(x)/a(x). The
left-hand side is holomorphic outside 0 ∈ C, thus a(x) = a0x

m for some m ∈ Z.
By changing the coordinate y by a

1/k−1
0 y, we may assume a0 = 1. Therefore, we

obtain
xn+1

(
kp(x)− λn+1p(λx)

)
= m .
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Elementary considerations now show that we necessarily have

φ(x, y) = (λx, xmyk), and ω =
dy

y
+

m dx

(k − 1)x
+ µxndx .

with λ ∈ C∗, µ ∈ C, k ≥ 2, m ∈ Z, n ∈ Z \ {−1}, such that λ is not a root of unity
and k = λn+1.

Since F has no rational first integral, µ is non zero. One can then compute T ∗F
by relating it to π∗KP1 , see for instance [2, §4]:

T ∗F = π∗OP1(−2) + max{1,−n}π−1(0) + max{1, n + 2}π−1(∞) if m 6= 0,
T ∗F = π∗OP1(−2) + max{0,−n}π−1(0) + max{0, n + 2}π−1(∞) if m = 0 .(4.1)

Whence kod(F) = 1 if and only if m 6= 0 and n 6= −1; or m = 0 and n 6= −2,−1, 0
as required.

Assume now that f(x) = x+1. The fiber π−1(0) being not φ-invariant, it is not
F-invariant, and thus h(x) is a polynomial. Similarly to the previous case, we need
to solve kh(x) − h(x + 1) = a′(x)/a(x). Because the left-hand side has no poles
a(x) must be constant, and consequently h must satisfies the functional equation
kh(x)−h(x + 1) = 0, which is impossible. This concludes the proof of the theorem
in the case π is a rational fibration.
2. Suppose now that π is an elliptic fibration. By Lemma 4.5, the action of φ on
the base of the fibration is not periodic, hence the fibration is isotrivial. As in the
previous case, pick coordinates x ∈ P1 such that the fiber π−1(∞) is F-invariant,
and the other possible F-invariant fiber is π−1(0). Then f(x) = λx with λ ∈ C∗
not a root of unity, or f(x) = x + 1. We also pick an affine coordinate y on the
universal covering of E.

Suppose first f(x) = λx. After a base change of the form x 7→ xl, one can assume
that X = P1×E for some elliptic curve E. We may thus write φ(x, y) = (λx, ϕ(y))
for some non-invertible ϕ ∈ End(E), and the foliation F is induced by a form
ω = dy + h(x)dx with h ∈ C(x) with poles only at 0 and ∞. Denote by ϕ0 the
multiplier of ϕ. It is an integer if E has no complex multiplication, and a quadratic
integer otherwise. Since |ϕ0|2 is the topological degree of f , we have |ϕ0| > 1.
The φ-invariance of F reads in this case as λh(λx) = ϕ0 · h(x). Thus h(x) = µxn,
ϕ0 = λn+1 with n ∈ Z \ {−1} and µ ∈ C∗. Replacing x by µ1/n+1x, we may take
µ = 1. This shows φ = (λx, λn+1y) and ω = dy + xndx. Finally T ∗F can be
computed as before. One finds that it satisfies (4.1). Hence kod(F) = 1 if and only
if n 6= −2,−1, 0 as required.

Suppose now f(x) = x + 1. Then there is only one F-invariant fiber, namely
π−1(∞). Since C is simply connected, the monodromy of the fibration is trivial,
and we may assume X = P1×E, φ(x, y) = (x+1, ϕ(y)) and F is induced by a one-
form ω = dy+h(x)dx as before. The φ-invariance of F implies h(x+1) = ϕ0 ·h(x).
But this equation has no solution when |ϕ0| > 1. This concludes the proof. �

Proof of Lemma 4.5. Since kod(F) = 1 and F does not admit a rational first in-
tegral, for suitably large n, the natural map X → P(H0(T ∗F⊗n))∗ induced by the
complete linear series induces a fibration π : X → B whose generic fiber is either
rational or elliptic. By construction, the class of a generic fiber of π is a multi-
ple of (T ∗F). The foliation is moreover transversal to a generic fiber of π, see [2,
§9.2]. Since φ∗T ∗F = T ∗F in NSQ(X) by Proposition 3.4, the map φ preserves this
fibration and induces a holomorphic map f on the base that is invertible.
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Suppose first that f = id in B. Then φ induces a holomorphic map on a generic
fiber whose topological degree is e(φ) ≥ 2. In particular, replacing φ by a suitable
iterate, we may assume that it admits at least three fixed points that are repelling
along the fiber. Let C be the irreducible component of the fixed point set of φ
passing through such a point p. Then we have π(C) = B, and C · π−1(b) ≥ 3 for
any b ∈ B. At any point near p, the differential of φ has two eigenvectors, one
with eigenvalue 1 and tangent to C, and the other one with eigenvalue of modulus
> 1 and tangent to the fiber. Since φ preserves F and the foliation is transversal
to π, we conclude that C is an F-invariant curve. By Proposition 3.5, the set
of F-invariant compact curves is totally invariant by φ. But no non-invertible
holomorphic self-map on a rational or an elliptic curve admits a totally invariant
finite set of cardinality greater or equal to 3. We conclude that f 6= id. The same
argument shows that f is not periodic, and thus the base B is either elliptic or
rational.

Note that we may push this argument further. Indeed, if f admits no totally
invariant finite subsets, then the fibration has no F-invariant fiber. In this case, F
is a suspension and has Kodaira dimension 0. Therefore B is a rational curve, and
f has either one or two totally invariant points, each one of them corresponding to
an F-invariant fiber of the fibration.

To conclude the proof, we need to show that the singular set of X is included
in the F-invariant fibers. To do so, pick an arbitrary point p ∈ X not lying on an
F-invariant fiber. A local neighborhood U of p is given by the quotient of C2 by a
cyclic group generated by a map h(x, y) = (ζx, ξy) for some roots of unity ζ and ξ.
Denote by g the natural projection g : C2 → U . The foliation g∗F is smooth since
F is a nef foliation. The fibration induced by π ◦ g in C2 has to be transversal to
g∗F otherwise F and the fibration would have some tangencies near p. Using the
invariance by h, we conclude that π ◦ g(x, y) = x, and F is given by dy. Now at
a generic point of the fiber containing p, the differential of the map π has rank 1,
because f is invertible. This forces ζ = 1, whence X is smooth at p. �

4.3. The case of a fibration. We now deal with foliations admitting rational first
integrals.

Theorem 4.6. Let φ be a dominant non-invertible rational map preserving a fi-
bration π : X → B. Up to birational conjugacy and to a finite cyclic cover, we are
in one of the following four mutually exclusive cases.

(Fib1) The surface X = B×F is a product of two Riemann surfaces with g(F ) ≥ 1
and g(B) ≤ 1, the fibration is the projection onto the first factor B×F → B,
and φ = (f(x), ϕ(y)) is a product map with f not periodic.

(Fib2) The surface is the torus X = E ×E for some elliptic curve, and φ is skew
product φ = (f(x), ϕ(x)(y)) with f not periodic, and ϕ : E → End(E) is
holomorphic and non constant.

(Fib3) The fibration is elliptic and the action of φ is periodic on the base. In other
words, some iterate of φ is an endomorphism of an elliptic curve over the
function field C(B).

(Fib4) The fibration is rational, π : X := P1 × B → B, and φ is a skew product
φ(x, y) = (f(x), ϕ(x)(y)) where f is a holomorphic map on B, and ϕ is
rational map from B to the space of rational maps of a fixed degree on P1.
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Proof. Let f be the induced map on the base. We may assume π is not a rational
fibration, otherwise we are in case (Fib4). If f is periodic, since φ is not invertible
the generic fiber is elliptic and we are in case (Fib3). If f is not periodic, the fibra-
tion is isotrivial: there exists a Riemann surface F such that π−1(b) is isomorphic
to F for almost all b. By the semi-stable reduction theorem, see [1, III.10], up
to birational conjugacy, a local model near a singular fiber is given by a quotient
D × F by a cyclic group generated by a map of the form (x, y) 7→ (ζx, h(y)) with
ζ a root of unity, and h a finite order automorphism of F . To any such singular
fiber π−1(b) with b ∈ B, we let n(b) ∈ N∗ be the order of its associated group.
The divisors DB =

∑
(n(b) − 1)[b] and D =

∑
(n(b) − 1)π−1(b) induce natural

orbifold structures on B and X respectively and we denote by Borb, Xorb the as-
sociated orbifolds. Then one can rephrase the semi-stable reduction theorem by
saying that π : Xorb → Borb is a locally trivial fibration in the orbifold sense. Any
rational map preserving such a fibration is holomorphic, see for instance [4]. Since
f : Borb → Borb is holomorphic and not periodic, we are in one of the following
situations: (B,DB) = (P1, 0), (P1, p), (P1, p + q), (P1, 2p), or (E, 0) for some el-
liptic curve (here p 6= q). For monodromy reasons, the cases (P1, p) and (P1, 2p)
are excluded. A base change of order 2 allows one to reduce the case (P1, p + q) to
(P1, 0). In the latter case, we have X = P1 × B. Since by assumption g(B) ≥ 1,
the map φ is a product: φ(x, y) = (f(x), ϕ(y)). In the case B is an elliptic curve,
since we assume X to be kählerian, it is a torus up to a finite cover. By Poincaré
irreducibility theorem, X is a product of two elliptic curves B × B′. When the
curves are not isogeneous, we fall into case (Fib1). Otherwise, we fall into either
case (Fib1) or (Fib2) of the theorem. This concludes the proof. �

4.4. Modular foliations. Let us briefly recall the geometric context in which mod-
ular foliations arise. We refer to [15] for a detailed description of the construction.
Let Γ be an irreducible lattice in PSL(2, R)× PSL(2, R). The quotient X = H2/Γ
is a quasi-projective variety which may be projective or not. In any case, it ad-
mits a projective compactification X̄ by adding finitely many cusps. When X is
not projective X̂ will stand for the minimal desingularization of the cusps of X̄.
To keep the notation uniform X̂ will be set equal to X when X itself is already
projective. We point out that X̂ is not necessarily smooth, since we are resolving
only the cusps, but has at worst cyclic quotient singularities.

The two natural projections H2 induce two foliations by holomorphic disks on
the bidisk. We denote by F and G their respective images in X, X̄ and X̂. In X̂,
T ∗F and T ∗G are nef and satisfy T ∗F ⊗ T ∗G = KX̂ ⊗ OX̂(D) with D supported
on the exceptional divisor of the projection π : X̂ → X̄. Although the cotangent
sheaves of F and G in X̄ are not locally free, we can still write T ∗F + T ∗G = KX̄

in NSQ(X̄) if we interpret T ∗F , T ∗G ∈ NSQ(X̄) as the direct images under π of
T ∗F , T ∗G ∈ NSQ(X̂). It is a fact that the two classes T ∗F and T ∗G are not
proportional, see for instance [15, §2.2.4].

Proposition 4.7. Suppose F is a modular foliation. Then any rational map φ
preserving F is invertible.

Proof. We give two independent arguments.
First argument. We may assume φ is a map on X̂ that preserves F in the
notation above. For sake of convenience, we shall also write φ for its induced map
on X̄. Since T ∗F is nef, we may apply Proposition 3.5. Here U coincides with
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µ−1(X), hence φ is an unramified holomorphic finite covering from X to itself.
Since X̄ is normal and X̄ \ X is a finite set, φ is holomorphic on X̄. Note that
the critical set of φ on X̄ remains empty. We conclude that in the space NSQ(X̄),
we have φ∗KX̄ = KX̄ and φ∗T ∗F = T ∗F , which implies φ∗T ∗G = T ∗G. Now
the two-dimensional vector space generated by T ∗F and T ∗G is φ∗-invariant and
contains a nef class ω of positive self-intersection. Since φ∗ is holomorphic, we get
e(φ)ω2 = (φ∗ω)2 = ω2, hence φ is an automorphism.
Second argument. By Proposition 3.5, φ is an unramified cover of X, hence
preserves S = sing(X), the set of singular points of X. We deduce that φ induces a
non-ramified finite covering from X \ φ−1(S) onto X \ S. It can thus be lifted to a
map φ̂ between the universal covering s of these spaces which are both isomorphic
to H2 minus a discrete set. By Hartog’s theorem, φ̂ extends as a map from H2

to itself without ramification points. In explicit coordinates (x, y) ∈ H2 where the
lifting of F is given by the projection onto the first factor we can thus write

φ̂(x, y) =
(

a1x + b1

c1x + d1
,
a2(x)y + b2(x)
c2(x)y + d2(x)

)
where a1, b1, c1, d1 are constants, a2, b2, c2, d2 are holomorphic functions in H, both
satisfying aidi − bici = 1. Because φ̂ descends to H2/Γ it must satisfy φ̂ Γ φ̂−1 ⊂ Γ.
We point out that Γ is a Zariski dense subgroup of G by Borel density theorem.
Taking Zariski closures in G we see that φ̂ G φ̂−1 ⊂ G. The specialization of this last
equation to certain elements of G allows one to conclude that the functions a2, b2, c2

and d2 are indeed constants. Thus φ̂ ∈ G and φ̂Γ φ̂−1 = Γ. Consequently φX is
a biholomorphism (indeed an isometry with respect to the products of Poincaré
metrics). �

4.5. Proof of Theorem A and Corollary B. Let us begin with Theorem A.
Pick F a foliation without rational first integral. By Seidenberg’s, Miyaoka’s and
McQuillan’s theorems, we may assume X is a model (with at most quotient singu-
larities) in which F has reduced singularities and T ∗F is nef. By Proposition 3.4,
(T ∗F)2 = 0 hence F can not be of general type. Thanks to the classification of
foliated surfaces, we are in one of the following three cases: either F is a mod-
ular foliation, or kod(F) = 0, or kod(F) = 1. The modular case is excluded by
Proposition 4.7.

When kod(F) = 0, we may apply Theorem 4.3. It is clear that Theorem A holds
in this case: the lift of F to C2 is a foliation induced by a constant vector field.
When kod(F) = 1, we apply Theorem 4.4. When F is a Riccati foliation, then if
we consider the map ϕ : C2 → C∗ × C∗ given by

(x, y) 7→
(

exp
(

x

n + 1

)
, exp

(
y − mx

(n + 1)(k − 1)

))
then

ϕ∗
(

dy

y
+

m

k − 1
dx

x
+ µxndx

)
= dy +

µex

n + 1
dx ,

which is induced by a vector field. On the other hand, ϕ−1◦φ◦ϕ = (x+µ, ky+lx+ν)
for some µ, ν and l and is thus Lattès-like. When F is a turbulent foliation, one
considers the map ϕ : C × E → C∗ × E given by ϕ(x, y) := (exp x

n+1 , y). Then
ϕ∗ω = dy + ex

n+1dx and ϕ−1 ◦ φ ◦ ϕ = (x + µ, eµy) with eµ = λn+1. This concludes
the proof of Theorem A.
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Proof of Corollary B. Let φ : X 99K X be a dominant rational map preserving a
foliation F . Suppose kod(F) = 0 and F has no rational first integral. Then there
exists a projective surface X̂, a dominant map f̂ : X̂ 99K X̂, a foliation F̂ , and a
cyclic group of automorphisms G ⊂ Aut (X̂) such that (φ̂, X̂, F̂) is in the list given
by Theorem 4.3, G preserves F̂ and commutes with φ̂ and (φ,X,F) is birationally
conjugated to the quotient situation on X̂/G. In cases κ0(2), κ0(3) and κ0(4),
the map φ̂ preserves a unique rational fibration. This fibration is automatically
G-invariant, hence φ preserves a rational pencil. In the case κ0(1), the lift M of φ̂
to C2 is diagonalizable. Since MG = GM and G is cyclic, M and G have two fixed
points in common on P(C2). The projective space P(C2) naturally parameterizes
the set of all linear foliations, hence φ preserves the two associated foliations. In
the case κ0(5), the same argument applies.

When kod(F) = 1 and F has no rational first integral, we apply Theorem 4.4.
The arguments are essentially the same. In the case κ1(1), the group G that may
appear are explicit, and the rational fibrations given by dx and y−1dy + m[(k −
1)x]−1dx are both G-invariant. In the case κ1(2) there is a unique invariant elliptic
fibration.

Finally when F is a fibration which is neither rational nor elliptic, we fall into
case (Fib1). �
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[12] J.P. Jouanolou, Équations de Pfaff algébriques. Lecture Notes in Mathematics, 708.
Springer, Berlin, 1979.

[13] M. McQuillan, Canonical Models of Foliations. Pure and Applied Mathematics Quarterly

4 (2008), no. 3, 887–1012.
[14] L.G. Mendès, Kodaira dimension of holomorphic singular foliations. Bol. Soc. Brasil. Mat.

(N.S.) 31 (2000), no. 2, 127–143.
[15] L. G. Mendès and J. V. Pereira, Hilbert Modular Foliations on the Projective Plane,

Commentarii Mathematici Helvetici 80 (2005) 243–291.
[16] J.V. Pereira and P.F. Sánchez, Transformation groups of holomorphic foliations. Comm.

Anal. Geom. 10 (2002), no. 5, 1115–1123.



FOLIATIONS INVARIANT BY RATIONAL MAPS 19

[17] J.V. Pereira, On the height of foliated surfaces with vanishing Kodaira dimension. Publ.
Mat. 49 (2005), no. 2, 363–373.

[18] W. Thurston, The Geometry and Topology of Three-Manifolds Chapter 13, Eletronic version

1.1 - March 2002, http://www.msri.org/publications/books/gt3m.
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