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We consider in this paper the problem of finding regular holomorphic
foliations in neighborhoods of smooth, compact, holomorphic curves
embedded in complex surfaces. Our primary motivation stems from
a Linearization Theorem due to Grauert([3]): the curve possesses a
neighborhood isomorphic to a neighborhood of the zero section of its
normal bundle if the embedding is sufficiently negative. In ([1]) we
proved a special result using techniques from holomorphic foliations;
more precisely, let C ↪→ S be a negative embedding of the curve C into
the surface S such that the self-intersection number satisfies C · C <
2−2g, where g is the genus of C; therefore any transverse holomorphic
foliation to C is isomorphic to the linear fibration of the normal bundle
NC. The first step to prove Grauert’s Theorem is to guarantee the
existence of a foliation transverse to the curve; we need to assume the
stronger condition C · C < 4 − 4g. Once this is acomplished we just
proceed as in ([1]), finding a holomorphic foliation in a neighborhood
V of C which has C as a leaf; we use this foliation and the transverse
one as a kind of system of coordinates for V in order to construct the
desired isomorphism.

In fact we are able to prove a more general result, replacing transver-
sal foliation by generically transverse foliation: we fix a divisor D of C,
and show that that there exists a holomorphic foliation whose divisor
of tangencies with the curve is exactly D; as before we assume the neg-
ativety of the self-intersection number of the curve. Let us state our
main result:

Theorem. Let C ↪→ S be an embedding of the curve C into the surface
S such that C · C < 0 and let D =

∑l
k=1 nkpk, nk ∈ N, pk ∈ C be a

1Math. classification: 32E05, 32L20
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divisor in C. Assume

C · C < 4− 4g +
l∑

k=1

(nk − 1).

Then there exists a regular foliation F defined in a neighborhood of C
which is transversal to C except at the points p1, · · · , pl ∈ C, where
tangpk

(F , C) = nk for every k = 1, . . . , l.

As a consequence, if C · C < 0 and C · C < 4 − 4g, there exists
a foliation transverse to C; as we said above, ([1]) can be applied to
provide a proof of the Linearization Theorem.

Our method to prove this theorem consists in i) find a holomorphic
line field defined along the curve C with the prescribed set of tangencies
and the prescribed order of tangencies; for this purpose we have no
need to assume that the curve is negatively embedded; ii) extend the
line field to a neighborhood of the curve; here we must work under
the hypothesis C · C < 0 in order to assure the annihilation of some
cohomology groups.

We discuss also how to produce examples of embeddings such that
there are no foliations with a given divisor of tangencies when the nega-
tivity condition is violated. In particular, examples where linearization
is not possible are presented. All these examples depend of properties
of line fields defined along the curve.

1. Line Fields and Embeddings

Let us consider an embedding C ↪→ S of the compact, smooth,
holomorphic curve C into the surface S. In this Section we study
existence of line fields defined along C. Existence of a line field with
a given divisor of tangencies is always granted when the degree of the
divisor is sufficiently bigger then C ·C. On the other hand, uniqueness
(but perhaps not the existence) follows when this degree is not too big,
and we will see later how this leads to the construction of interesting
examples.

A holomorphic subbundle Y ↪→ TS|C is a holomorphic line field
along C. Equivalently we may say that a line field is a section of the
P1-bundle P(TS|C) over C. Y has a tangency with C at the point p ∈ C

when the morphism of line bundles Y → NC =
TS|C
TC

has a zero at p;

the order of the zero is the order of tangency between Y and C. We
write the set of tangencies as an effective divisor D =

∑l
k=1 nkDk of

C; the point pk is a point of tangency of order nk.
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In order to motivate the next Proposition, let us remark that when
Y is a line field along C whose divisor of tangencies with C is D then
Y ' O(−D) ⊗ NC as line bundles. In fact, the morphism Y → NC
seen as a section of H0(C, Y ∗ ⊗ NC) has D as its divisor of zeroes;
therefore Y ∗ ⊗ NC ' O(D). This allows us to confound a line field
along C having D as divisor of tangencies with an injective morphism
O(−D)⊗NC → TS|C.

Proposition 1. Let D be an effective divisor of C, and assume

C · C < 4− 4g +
l∑

k=1

(nk − 1)

There exists an injective bundle morphism Y : O(−D)⊗NC → TS|C
which has D as divisor of tangencies with C.

Proof. Let us use L := O(−D)⊗NC for simplicity. Firstly we construct
Y locally: given i) an open subset U ′ of S with coordinates (z1, z2) ∈
C× C such that U = U ′ ∩ C is {z2 = 0}; ii) a holomorphic function f
of U such D|U = {f = 0} and iii) trivialization coordinates (z1, t) for
L|U , we may define

Y (z1)(t) = (z1, t, f(z1)t).

We define then Yi : L|Ui
→ TS|Ui

with the desired property for an
open covering {Ui}i∈I of C; we assume that the support of each D|Ui

consists of a point at most and that there are no points of tangency in
the intersections Ui ∩ Uj when i 6= j. Let Ỹi denote the composition

L|Ui
→ TS|Ui

→ NC|Ui
. As Ỹi = aijỸj, where {aij} ∈ H1(C,O∗(C))

defines a line bundle J , {Ỹi} is a section of J ⊗ Hom(L, NC) ' J ⊗
L∗⊗NC having D as divisor of zeroes, so that J ⊗L∗⊗NC ' O(D).
Consequently J is the trivial line bundle and we may suppose aij = 1,

or Ỹi = Ỹj.
Now we have that

{Yij} := {Yi − Yj} ∈ H1(C, Hom(L, TC)) ' H1(C, L∗ ⊗ TC);

Let D̃ =
∑l

k=1 pk and s = {si} ∈ H0(C,O(D̃)) whose divisor of zeroes

is D̃. Therefore

(Yi − Yj)⊗ s−1 ∈ H1(C,O(−D̃)⊗ L∗ ⊗ TC)

and by Serre’s duality

H1(C,O(−D̃)⊗ L∗ ⊗ TC) ' H0(C, KC2 ⊗O(D̃)⊗O(−D)⊗NC)

(KC stands for the canonical bundle of C). By hypothesis the Chern
class of the line bundle KC2 ⊗O(D̃) ⊗O(−D) ⊗ NC is negative; we
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conclude that (Yi−Yj)⊗s−1 = Xi−Xj for Xi ∈ H0(Ui,O(−D̃)⊗L∗⊗
TC), and therefore Yi − Yj = (Xi −Xj)⊗ s = siXi − sjXj. We define
Y := Yi− siXi in each Ui. Clearly Y is injective outside the support of
D̃; at each pi, it is equal to Yi, so it is also injective. As for the order
of tangency at a point pi, it coincides with the order of tangency of Yi,
which is ni by construction. �

Consequently, there exists always a holomorphic line field along any
curve if we admit a number of tangencies sufficiently big. We see also
that there exists always a holomorphic line field with any number of
tangencies if C · C < 4− 4g.

In the next section we will analyse how to extend this holomorphic
line field to a neighborhood of the curve. For the moment, let us state
a general result concerning uniqueness.

Proposition 2. Let D be an effective divisor of C and assume

c(NC) > 2− 2g +
∑

ni

There exists at most one line field along C having D as divisor of
tangencies.

Proof. Let us consider two such line fiels Y1 and Y2 as bundle morphisms
from O(−D)⊗NC into TS|C . The induced morphisms Ỹi : O(−D)⊗
NC → NC seen as sections of O(D) ⊗ NC∗ ⊗ NC = O(D) have the
same divisor D of zeroes, so that Ỹ1 = cỸ2 for some c ∈ C∗. It follows
that Y1 − cY2 is a bundle morphism from O(−D) ⊗ NC to TC; the
hypothesis tells us that O(D) ⊗ NC∗ ⊗ TC is a negative line bundle
and so Y1 − cY2 = 0. �

2. Neighborhoods of Negatively Embedded Curves

Before proving the Theorem stated in the Introduction, we collect
some properties that are verified in the case of a negatively embedded
curve C ↪→ S ([2]).

• C has a fundamental system of strictly pseudoconvex neighbor-
hoods in S.

• if G is a coherent sheaf defined in one of these neighborhoods,
say V , and IC is the ideal sheaf of C in V then

∃k > 0 such that H i(V, Ik
C · G) = 0, i = 1, 2.



5

Lemma 1. We have H2(V, IC · G) = 0. Moreover if

H0(C, KC ⊗NCν ⊗ G∗|C) = 0

for all ν ≥ 1 then H1(V, IC · G) = 0.

Proof. From H i(V, Iν
C/Iν+1

C · G) ' H i(C, (NC∗)ν ⊗ G|C) we get imme-
diately H2(V, Iν

C/Iν+1
C · G) = 0. As

H1(C, (NC∗)ν ⊗ G|C) ' H0(C, KC ⊗NCν ⊗ G∗|C)

(by Serre’s duality) we get H1(V, Iν
C/Iν+1

C · G) = 0 as well.
Let us consider the short exact sequence

0 → Iν+1
C · G → Iν

C · G → Iν
C/Iν+1

C · G → 0

which leads to

· · · → H i(V, Iν+1
C · G) → H i(V, Iν

C · G) → H i(V, Iν
C/Iν+1

C · G) → · · ·

Therefore the maps H i(V, Iν+1
C · G) → H i(V, Iν

C · G), i = 1, 2, are
always surjective. Consequently H i(V, Ik

C · G) = 0 for some k > 0
implies H i(V, IC · G) = 0, i = 1, 2. �

The next Lemma allows us to extend any line bundle over C to a
line bundle over V . Of course there are certain line bundles which are
extendible regardless of the negativity of the embedding C ↪→ V . For
example, KC = KV |C ⊗NC = KV |C ⊗ [C]|C , so that KC always has
an extension to V . Below in our Theorem we find this situation when
no tangencies are present.

Lemma 2. The restriction H1(V,O∗
V ) → H1(C,O∗

C) is surjective.

Proof. Let J be the subsheaf of O∗
V defined as

• Jq = (O∗
V )q if q /∈ C.

• Jq = {φ ∈ (O∗
V )q; φ|C ' 1} if q ∈ C.

We have then the short exact sequence

1 → J → O∗
V → O∗

V /J → 1;

we remark that O∗
V /J can be taken as O∗

C .
In order to have the surjectivity stated above, we need H2(V, J) = 0.

Since the exponencial map gives an isomorphism between IC and J , it
is enough to have H2(V, IC) = 0. �
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3. Constructing Foliations

We are able now to prove the Theorem stated in the Introduction.

Let Y : C → TS|C be the line field constructed in Corollary 1. Let
{Ui} be a covering of C and Ũi be an open set such that Ũi ∩ C = Ui.
In each Ũi we choose a 1-form ωi satisfying ker(ωi(p)) = Y (p) when
p ∈ Ui. We may take coordinates (xi, yi) ∈ Ũi as to have Ui = {yi = 0}
and ωi = dyi−xni

i dxi(remember that the possibility ni = 0 is allowed).
We remark that ωi|Ui∩Uj

= fij ωj|Ui∩Uj
whenever Ui ∩ Uj 6= ∅, fij ∈

Z1({Ui},O∗
C). We denote by L = {Fij} the line bundle over V whose

restriction to C is defined by the transition functions {fij} (Lemma 2);
we have

L|C = O(D)⊗KC∗,

where D =
∑l

i=1 nipi. The boundary δ{ωi} computed in Z1(S, Ω1
S⊗L)

belongs effectively to Z1(S, IC ·Ω1
S⊗L), where Ω1

S is the sheaf of germs
of holomorphic 1-forms of S.

We claim that H1(S, IC ·Ω1
S ⊗L) = 0. As discussed before, we need

that ∀ν ≥ 1

H0(C, KC ⊗NCν ⊗ (Ω1
S ⊗ L)∗|C) = 0

which depends on

H0(C, KC2 ⊗NCν ⊗O(−D)⊗ TC) = 0 ∀ν ≥ 1

and

H0(C, KC2 ⊗NCν ⊗O(−D)⊗NC) = 0 ∀ν ≥ 1;

these equalities follow from the hypothesis.

It follows that there exists a 0-cocycle {ηi} ∈ H0(Ũi, IC ·Ω1
S⊗L) = 0

such that

ωi − Fij ωj = ηi − Fij ηj

and the foliation we look for is defined by the 1-form

{ωi − fij ηi} ∈ H0(V, Ω1
S ⊗ L).

�

Corollary 1. Let C ↪→ S be an embedding of the curve C into the
surface S such that C ·C < 0. Then there exists a regular holomorphic
foliation defined in a neighborhood of C.
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4. Examples

Example 1. A plane smooth projective curve C different from the
projective line does not have a transverse holomorphic line field (this is
a particular case of a theorem of Van de Ven ([4])). In fact, suppose Y
is a transverse holomorphic line field defined along C. We consider a
holomorphic automorphism A of the plane close to the Identity which
fixes some point p ∈ C and such that (A∗Y )(p) 6= Y (p); the line
field YA = A∗Y is of course transverse to A(C). Given q ∈ A(C), we
denote as lq the projective line tangent to YA(q) at q. We may therefore
induce along C a new holomorphic line field Z 6= Y in the following
way: given q ∈ A(C) take q′ = lq ∩ A(C) (the intersection is taken in
a small neighborhoood of C); then Z(q′) is the tangent line to lq at
the point q′. Since Z(p) = YA(p) 6= Y (p) and Z is transverse to C, we
get a contradiction with the Proposition 2 (notice that c(NC) = d2 is
greater than 3d− d2 = 2− 2g when d = degree(C) > 1).

A different, ”foliated” argument goes as follows: we take some Rie-
mannian metric in P2; for a small η the discs centered at the points
of C, of radius η and contained in the projective lines {lp}p∈C form a
holomorphic fibration. We pick up a non-constant meromorphic func-
tion in C and extend it to a neighborhood of C as a constant along
each fiber. This is a meromorphic function that can be extend to all of
P2 since the complement of C is a Stein surface. We observe that the
extension is constant along each projective line lp. The only possibility
is that these projective lines form a pencil issued from some point of
the plane.

Example 2. The Proposition 2 is useful to get examples of non-
existence of certain regular foliations when the self-intersection of C
is not sufficiently negative. In order to see this, let us consider a pair
C ↪→ S obtained by the following procedure:

(1) we blow up the origin 0 of the polydisc ∆ ⊂ C2, introducing an
exceptional divisor; we choose the point in this divisor which
belongs to the strict transform of {y = 0} and blow up again.
We keep doing this in order to get a chain of projective lines
E1, ..., Em−1 of self-intersection −2 and a last projetive line Em

of self-intersection −1; there is a holomorphic projection π from
the resulting surface ∆̃ to ∆, which collapses E1 ∪ · · · ∪ Em to
0, and which is an isomorphism from the complement of this
divisor to ∆ \ {(0, 0)}. Denote by q ∈ Em the point which
belongs to the strict transform of {y = 0} and take the u-
coordinate along Em as to have π(x, u) = (x, uxm). We take
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also a polydisc V = {x, u); |x| < 1, |u| < ε}, for a small ε,
around (x, u) = (0, 0) = q ∈ Em.

(2) let us consider a linear bundle over a compact, holomorphic,
smooth curve C̃ whose self-intersection satisfies C̃ · C̃ > 2− 2g;
we select some point in C̃ and introduce coordinates (x̃, ũ) in a
neighborhood W of this point as to have {x̃ = const} contained
in the linear fiber through (x̃, 0) ∈ C̃ for every x̃.

(3) finally we glue W to V by means of a holomorphic diffeomor-
phism Φ : W → V in order to get a holomorphic surface S̃
containing E1 ∪ · · · ∪ Em ∪ C̃ as a divisor whose components
have the self-intersection numbers described above; Φ must send
(x̃, ũ) = (0, 0) to (x, u) = (0, 0) = q, the x̃-axis into the x-axis
and the ũ-axis transversely to the u-axis. We remark that C̃
has a unique field L̃ of transversal lines because C̃ · C̃ > 2− 2g;
by construction the line L̃q is different from TqEm.

We blow down E1 ∪ · · · ∪ Em to p = (0, 0) ∈ ∆ and get a surface S
with an embedded curve C such that C · C > m + 2− 2g and p ∈ C.

We claim that there exists no regular foliation F in S transverse to
C \ {p} with order of tangency 0 ≤ n ≤ m − 1 at p . Otherwise after

blowing up a times as explained before starting at p, we would get
a foliation F̃ transverse to C̃ and having Em as a leaf. Each leaf F̃s

through s ∈ C̃ has L̃s as tangent line at s ∈ C̃; but this property is
not verified at the point q ∈ C̃ ∩ Em.

We remark that the particular case m = 1 gives examples of embed-
dings C ↪→ S such that C · C > 3 − 2g without transversal foliations
to C; in particular, there is no holomorphic tubular neighborhood.

5. Plane curves and line fields

We develop here Example 1 in order to understand the role of tangen-
cies. Let us consider in P2 a smooth algebraic curve C of degree d and
a holomorphic line field X along C. We have then a holomorphic map
φX : C −→ P̌2 of some degree l ∈ N defined as φX(p) = X(p) ∈ P̌2; its
image is an algebraic curve X̌ ⊂ P̌2.

For instance, let us suppose that X is induced by a pencil of lines
issued from some point b ∈ P2. Then X̌ is a line in P̌2 and φX has
degree d or d − 1 according to b ∈ C or b /∈ C (in this last case, X(b)
is the tangent line to C at b ∈ C). We have then tang(X, C) = d2 − d
or tang(X, C) = d2 − d− 1.
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Proposition 3. tang(X, C) = l.deg(X̌) + d 2 − 2d.

Proof. We consider P(TP2|C), which is a P1-bundle over C with the
section P(TC). The vector bundle TP2|C may be described by the
following transition maps:

xα = ξαβ(zβ)xβ + ηαβ(zβ)yβ, yα = cαβ(zβ)yβ

where (xβ, yβ) are coordinates for TP2|C at the point of C of coordinate
zβ, zα = gαβ(zβ), ξαβ(zβ) = g′αβ(zα) and {cαβ} defines the normal

bundle to C in P2.
In order to get the transition functions of P(TP2|C), we put uβ =

xβ/yβ and tβ = yβ/xβ; then

uα =
ξαβ(zβ)

cαβ(zβ)
uβ +

ηαβ(zβ)

cαβ(zβ)

and

tα =
cαβ(zβ)tβ

ξαβ(zβ) + ηαβ(zβ)tβ
Let us consider the line field X as a section of P(TP2|C); we choose

also a generic pencil of lines P . In the u-coodinates, we have

Xα =
ξαβ(zβ)

cαβ(zβ)
Xβ +

ηαβ(zβ)

cαβ(zβ)

and

Pα =
ξαβ(zβ)

cαβ(zβ)
Pβ +

ηαβ(zβ)

cαβ(zβ)

The intersection number of both sections X and P with P(TC)
will be denoted by Poles(X) and Poles(P ); of course tang(X, C) =
Poles(X) and Poles(P ) = d2 − d.

¿From the formulae above we see that {Xα − Pα} is a section of

the linear bundle given by the cocycle {ξαβ(zβ)

cαβ(zβ)
}, which is TC ⊗NC∗.

Consequently:

Zeroes(X − P )− Poles(X − P ) = −2d2 + 3d

Therefore Poles(X) = Zeroes(X − P )− Poles(P ) + 2d2 + 3d. Now
since Poles(P ) = d2−d and Zeroes(X−P ) = l.deg(X̌), we get finally

tang(X, C) = l.deg(X̌) + d2 − 2d.

�
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Corollary 2. tang(X, C) ≥ (d− 1)2

This Corollary gives another explanation why a a smooth, plane alge-
braic curve C of degree greater than one has no transversal holomorphic
line field; consequently a neighborhood of C can not be linearized.

We see also that if we blow up at d2 − 2d different points of C, the
resulting curve Ĉ has not a linearizable neighborhood as well. In fact,
a tranversal holomorphic line field to Ĉ corresponds to a holomorphic
line field along C with at most d2 − 2d points of ordinary tangency,
which is not possible.
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