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Abstract — The second order elliptic problem with highly discontinuous coefficients
is considered. The problem is discretized by two methods: 1) a continuous finite el-
ement method (FEM) and 2) a composite discretization given by a continuous FEM
inside the substructures and a discontinuous Galerkin method (DG) across the bound-
aries of these substructures. The main goal of this paper is to design and analyze
parallel algorithms for the resulting discretizations. These algorithms are additive
Schwarz methods (ASMs) with special coarse spaces spanned by functions that are
almost piecewise constant with respect to the substructures for the first discretization
and by piecewise constant functions for the second discretization. It is established that
the condition number of the preconditioned systems does not depend on the jumps of
the coefficients across the substructure boundaries and outside of a thin layer along the
substructure boundaries. The algorithms are very well suited for parallel computations.
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1. Introduction

In this paper a second order elliptic problem with highly discontinuous coefficient %(x) in
a 2-D polygonal region Ω is considered. For the simplicity of the presentation we assume
Dirichlet homogeneous boundary conditions. The region Ω is partitioned into disjoint polyg-
onal substructures Ωi, Ω = ∪iΩi, i = 1, · · · , N, and denote by %i(x) the restriction of %(x)
to Ωi. Associated to this partition, let us denote by Ωh

i the layer around ∂Ωi with width hi

1This work was supported in part by the Polish Sciences Foundation under grant NN201006933
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and define αi = supx∈Ωh
i
%i(x) and αi = infx∈Ωh

i
%i(x). We say that the coefficient %i(x) has

moderate variations on Ωh
i if αi/αi = O(1). The coefficient % can be highly discontinuous in

Ωi\Ωh
i and across ∂Ωi.

We consider two discretization methods: a standard continuous finite element method
(FEM), see [3], and a composite discretization FEM with discontinuous Galerkin (DG), see
[1,10]. The latter means that in each Ωi the problem is discretized by a continuous FEM
inside Ωi and a DG method across ∂Ωi, see [4,5]. This discretization is determined by the
regularity of %(x) and the regularity of the solution.

The main goal of this paper is to design and analyze parallel algorithms for these two
considered discretizations. They are additive Schwarz methods (ASMs) with coarse space
functions which are piecewise constant on each Ωi\Ωh

i for the first discretization and piecewise
constant on each Ωi for the second one. The unknowns associated to these coarse spaces are
related to the average values on ∂Ωi. These algorithms are called additive average Schwarz
methods (AASMs) and they are generalizations of the algorithms considered in [2] for the
case of the continuous FEMs and for regular coefficients.

In this paper it is proved that the condition number of the preconditioned systems ob-
tained by AASMs for the first discretization is bounded by C maxi(

Hi

hi
)2 αi

αi
, where C inde-

pendents of the jumps of %, the size of the substructures Hi := diam(Ωi) and the parameters
hi of the triangulation in Ωi, i = 1, · · · , N . For the second discretization (the composite

discretization) it is proved that the condition number is bounded by C maxi maxj∈Ii
(

H2
i

hihij
)αi

αi

where Ii is the set of indices j such that |∂Ωi ∩ ∂Ωj| 6= 0 and hij := 2hihj/(hi + hj), as the
harmonic average of hi and hj. These estimates can be improved when αi and αi are of the
same order and αi 6 %i(x) on Ωi\Ωh

i . In this case we get the estimates with C maxi(Hi/hi)
for the first discretization and C maxi maxj∈Ii

(Hi/hij) for the second one.
The discussed algorithms can be straightforwardly extended to the 3-D case. In this

paper the 2-D case is considered only for the simplicity of the presentation.
Parallel algorithms for the considered discretizations in the case of piecewise constant

coefficients with respect to Ωi have been discussed in many papers, see [11] and references
therein. The case of coefficients with highly discontinuous coefficients inside Ωi and across
∂Ωi has been discussed only in few papers. For the first discretization, the standard Schwarz
method with overlap and FETI method were considered in [8] and [9], respectively. In [6] the
FETI-DP is discussed where the estimate of condition number of the preconditioned system
is better than in [9]. In the present paper we consider simpler coarse spaces and smaller local
problems than in those papers mentioned above and with better condition number estimates.
For the second discretization the parallel algorithms have not been discussed in literature to
our knowledge, i.e., in the case when the coefficients are highly discontinuous inside of Ωi

and across ∂Ωi. In the literature is discussed only the case when %(x) is piecewise constant
with respect Ωi, see for example [7], [5] and references therein.

This paper is organized as follows. In Section 2 the differential problem and assumptions
on the triangulations and on the coefficients are introduced. In Section 3 the continuous finite
element discretization on matching triangulation is formulated, and in Section 4 an additive
average Schwarz method (AASM) for the resulting discrete problem is designed and analyzed.
The main result is Theorem 4.1, where we establish the estimate of the condition number of
the preconditioned system. In Section 5 the original problem is discretized on nonmatching
triangulation across ∂Ωi by continuous FEM in each Ωi and DG with interior penalty term
across ∂Ωi, and in Section 6 we design and analyze the AASM for the resulting discrete
problem. The main result is Theorem 6.1, where we estimate the condition number of the
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preconditioned system. In Section 7 we discuss the implementation of these preconditioned
systems.

2. Differential problems and assumptions

In this section the differential problem with discontinuous coefficient is formulated and we
describe some of the assumptions on the coefficients and triangulations.

2.1. Differential problem

Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω) (1)

where

a(u, v) := (%(·)∇u,∇v)L2(Ω), f(v) :=

∫
Ω

fvdx. (2)

We assume that % ∈ L∞(Ω) and %(x) > %0 > 0, f ∈ L2(Ω), and Ω is a 2-D polygonal region.
Under these assumptions the problem has a unique solution, see for example [3].

2.2. Assumptions

We suppose that Ω is decomposed into disjoint polygonals Ωi, Ω = ∪iΩi, i = 1, · · · , N .
Inside each Ωi we introduce a shape regular and quasi-uniform triangulation T h(Ωi) with
mesh parameter hi and Hi := diam(Ωi). For the first discretization we assume that the global
mesh is regular (no hanging nodes) while for the second discretization we allow nonmatching
meshes across substructure boundaries. Denote Ωh

i as the layer around ∂Ωi which is the

union of e
(i)
k triangles of T h(Ωi) which touch ∂Ωi, and we introduce

αi := sup
x∈Ω

h
i

%(x), αi := inf
x∈Ω

h
i

%(x). (3)

3. Discrete continuous problem

To define the first discretization, the continuous finite element method for problem (1), we
introduce the space of piecewise linear continuous functions as

Vh(Ω) := {v ∈ C0(Ω); v|ek
∈ P1(x)}

where ek are the triangles of T h(Ω) and P1(x) is the set of linear polynomials.
The discrete problem is defined as: Find u∗h ∈ Vh(Ω) such that

a(u∗h, v) = f(v), v ∈ Vh(Ω). (4)

4. Additive average Schwarz method for (4)

In this section we design and analyze an additive average Schwarz method for the discrete
problem (4). For that we use the general theory of additive Schwarz methods (ASMs)
described in [11].
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4.1. Decomposition of Vh(Ω)

Let us decompose
Vh(Ω) = V0(Ω) + V1(Ω) + · · ·+ VN(Ω) (5)

where for i = 1, · · · , N , we define Vi(Ω) = Vh(Ω) ∩ H1
0 (Ωi) on Ωi and extended by zero

outside of Ωi. The coarse space V0(Ω) is defined as the range of the following interpolation
operator IA. For u ∈ Vh(Ω), let IAu ∈ Vh(Ω) be defined such that on Ωi

IAu :=

{
u(x), x ∈ ∂Ωih

ūi, x ∈ Ωih
(6)

where

ūi :=
1

ni

∑
x∈∂Ωih

u(x). (7)

Here Ωih and ∂Ωih are the sets of nodal points of Ωi (interior) and ∂Ωi, respectively, and ni

is the number of nodal points of ∂Ωih.

4.2. Inexact solvers

For i = 1, · · · , N , let us introduce

bi(u, v) := ai(u, v), u, v ∈ Vi(Ω) (8)

and ai(·, ·) is the restriction of a(·, ·) to Ωi.
For i = 0 let us introduce

b0(u, v) :=
N∑

i=1

∑
x∈∂Ωih

αi(u(x)− ūi)(v(x)− v̄i), u, v ∈ V0(Ω). (9)

Note that (9) reduces to

b0(u, v) =
N∑

i=1

αi

∑
x∈∂Ωih

(u(x)− ūi)v(x). (10)

4.3. The operator equation

For i = 0, · · · , N, we define the operators T
(A)
i : Vh(Ω) → Vi(Ω) by

bi(T
(A)
i u, v) = a(u, v), v ∈ Vi(Ω). (11)

Of course each of these problems have a unique solution. Let us introduce

TA := T
(A)
0 + T

(A)
1 + · · ·+ T

(A)
N . (12)

We replace (4) by the operator equation

TAu∗h = gh (13)

where

gh =
N∑

i=0

gi, gi = T
(A)
i u∗h (14)

and u∗h is the solution of (4). Note that to compute gi we do not need to know u∗h, see (11).
We note also that the solution of (4) and (13) are the same. This follows from the first main
result of this paper:
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Theorem 4.1. For any u ∈ Vh(Ω) the following holds:

C1β
−1
1 a(u, u) 6 a(TAu, u) 6 C2a(u, u) (15)

where β1 = maxi(αi/αi)(Hi/hi)
2 and the positive constants C1 and C2 do not depend on ρi,

αi/αi, Hi, and hi, i = 1, · · · , N .

Remark 4.1. The estimate (15) can be improved when αi and αi are of the same order
and αi 6 %i(x) on Ωi\Ωh

i . In this case β1 = maxi(Hi/hi).

Remark 4.2. The layer Ωh
i can be replaced by Ωδ

i , the layer around ∂Ωi with width δi.

In this case β1 = maxi(
αi

αi

H2
i

hiδi
) where αi and αi here are defined on Ωδ

i , see [6].

Proof of Theorem 3.1 For that we need to check the three key assumptions of the general
theory of ASMs; see Theorem 2.7 of [11].

Assumption(i) We need to show that η(ε), the spectral radius of ε = {εij}i,j=1,··· ,N ,
defined by

a(ui, uj) 6 εija
1/2(ui, ui)a

1/2(uj, uj) ∀ui ∈ Vi and ∀uj ∈ Vj,

is bounded by a constant that does not depend on the jumps of %i(x), Hi and hi. In our case
Vi and Vj are orthogonal for i, j = 1, · · · , N and i 6= j, therefore, η(ε) = 1.

Assumption (ii) We need to show that for i = 0, · · · , N,

a(u, u) 6 ωibi(u, u), u ∈ Vi

with ωi 6 C where C is independent of the jumps of %i(x), Hi and hi.
For i = 1, · · · , N , it is obvious that ωi = 1. For i = 0 and u ∈ Vh(Ω) we have

a(IAu, IAu) =
N∑

i=1

ai(IAu, IAu)

and, see (6),

ai(IAu, IAu) ≡ (%i(·)∇IAu,∇IAu)L2(Ωi) =

= (%i(·)∇(IAu− ūi),∇(IAu− ūi))L2(Ωi) =

= (%i(·)∇(IAu− ūi),∇(IAu− ūi))L2(Ωh
i ) 6

6 C
∑

x∈∂Ωih

αi(ui(x)− ūi)
2

(16)

where αi is defined in (3). We have used the inverse inequality. Hence

a(IAu, IAu) 6 Cb0(u, u)

with ω0 6 C. Thus maxN
i=0 ωi 6 C.

Assumption(iii) We prove that for u ∈ Vh(Ω) there exist ui ∈ Vi, i = 0. · · · , N, such that

u =
∑N

i=0 ui and
N∑

i=0

bi(ui, ui) 6 Cβ1a(u, u). (17)
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Let u0 := IAu for u ∈ Vh(Ω) and ui := u− u0 on Ωi and ui = 0 outside of Ωi. Of course
ui ∈ Vi(Ω) for i = 0, · · · , N , and u =

∑N
i=0 ui. We have

N∑
i=1

bi(ui, ui) =
N∑

i=1

ai(u− u0, u− u0) 6

6 2
N∑

i=1

{ai(u, u) + ai(u0, u0)} = 2{a(u, u) + a(u0, u0)}.

(18)

To obtain β1 in (17) we only need to estimate a(u0, u0). We have

ai(u0, u0) 6 C
∑

x∈∂Ωih

αi(u(x)− ūi)
2 6

6 C
αi

hi

‖ u− ūi ‖2
L2(∂Ωi)

6 C
H2

i

hi

αi|u|2H1(∂Ωi)

(19)

where we have used (16) and a Friedrich’s inequality. Note that

αi|u|2H1(∂Ωi)
6

αi

αihi

(%i(·)∇u,∇u)L2(Ωh
i ). (20)

Using this in (19) we obtain

N∑
i=1

ai(u0, u0) 6
N∑

i=1

C
αi

αi

H2
i

h2
i

ai(u, u) 6 Cβ1a(u, u). (21)

Using this in (18) we obtain (17). The proof of Theorem 4.1 is complete.

5. Discrete discontinuous Galerkin problem

In this section the original problem (1) is discretized by a composite discretization. We
decompose Ω into disjoint polygonals Ωi, i = 1, · · · , N , so Ω = ∪iΩi as in Section 4 and we
define Hi = diam(Ωi). The problem (1) is discretized by a continuous FEM in each Ωi and
by a DG across ∂Ωi.

Let us introduce a triangulation T h(Ωi) in each Ωi with triangular elements e
(i)
k and a

mesh parameter hi. We assume that this triangulation is shape-regular on Ωi. The resulting
triangulation is nonmatching across ∂Ωi. Let Xi(Ωi) be the finite element space of piecewise
linear continuous functions on Ωi. We do not assume that functions of Xi(Ωi) vanish on
∂Ωi ∩ ∂Ω. Let us introduce

Xh(Ω) := X1(Ω1)× · · · ×XN(Ω). (22)

Functions v of Xh(Ω) are represented as v = {vi}N
i=1 with vi ∈ Xi(Ωi). Note that Xh(Ω) *

H1(Ω) but Xh(Ω) ⊂ L2(Ω).
The coefficients %(x) on the introduced triangulation can be discontinuous. We assume

that %(x) on each element e
(i)
k ⊂ Ωi is a constant %

(i)
k , which can be defined, for example, by

|e(i)
k |−1

∫
e
(i)
k

%(x)ds. It means that this is done in the formulation of the original problem.



Additive average Schwarz methods for discretization of elliptic problems with highly discontinuous coefficients 7

Let Ωh
i , as in Section 2, denote a layer with width hi around ∂Ωi which is the union of

e
(i)
k triangles which touch ∂Ωi. We will use also αi and αi defined in (3). Note that this time

%(x) is piecewise constant on triangles of Ωh
i .

A discrete problem for (1) is obtained by a composite discretization, i.e., a regular con-
tinuous FEM in each Ωi and a DG across of ∂Ωi, see [1,10,4,5]. The discretization is defined
as follows: Find u∗h ∈ Xh(Ω) such that

âh(u
∗
h, vh) = f(vh), vh ∈ Xh(Ω) (23)

where

âh(u, v) :=
N∑

i=1

âi(u, v), f(v) :=
N∑

i=1

∫
Ωi

fvidx. (24)

Each bilinear form âi is given as the sum of three bilinear forms:

âi(u, v) := ai(u, v) + si(u, v) + pi(u, v) (25)

where

ai(u, v) :=

∫
Ωi

%i(x)∇ui∇vidx, (26)

si(u, v) :=
∑

Eij⊂∂Ωi

1

lij

∫
Eij

%ij(x)(
∂ui

∂ni

(vj − vi) +
∂vi

∂ni

(uj − ui))ds (27)

and

pi(u, v) :=
∑

Eij⊂∂Ωi

δ

lijhij

∫
Eij

%ij(x)(uj − ui)(vj − vi)ds. (28)

Here, the bilinear form pi is called the penalty term with a positive penalty parameter δ. In
the above equations, we set lij = 2 when Eij := ∂Ωi ∩ ∂Ωj is a common edge (or part of
an edge) of ∂Ωi and ∂Ωj. On Eij we define %ij(x) = 2%i(x)%j(x)/(%i(x) + %j(x)), i.e., as the
harmonic average of %i(x) and %j(x) on Eij. Similarly, we define hij = 2hihj/(hi + hj). In
order to simplify notation we include the index j = ∂ when Ei∂ := ∂Ωi∩∂Ω is an edge of ∂Ω
and set li∂ = 1, v∂ = 0 for all v ∈ Xh(Ω), %i∂(x) = %i(x) and hiδ = hi. The outward normal
derivative on ∂Ωi is denoted by ∂/∂ni. Note that when %ij(x) is given by the harmonic
average then min{%i, %j} 6 %ij 6 2 min{%i, %j}.

We also define the positive local bilinear form di with weights %i(x) and δ%ij(x)/(lijhij)
as

di(u, v) = ai(u, v) + pi(u, v) (29)

and introduce the global bilinear form dh(·, ·) on Xh(Ω) defined by

dh(u, v) =
N∑

i=1

di(u, v). (30)

For u = {ui}N
i=1 ∈ Xh(Ω) the associated broken norm is then defined by

‖ uh ‖2
h:= dh(u, u) =

N∑
i=1

{‖ %
1/2
i ∇ui ‖2

L2(Ωi)
+

∑
Eij⊂∂Ωi

δ

lijhij

∫
Eij

%ij(x)(ui − uj)
2ds}. (31)

The discrete problem (23) has a unique solution for sufficiently large penalty parameter
δ. This follows from the following lemma:
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Lemma 5.1. There exists δ0 > 0 such that for δ > δ0 and for all u ∈ Xh(Ω), it holds

γ0di(u, u) 6 âi(u, u) 6 γ1di(u, u) (32)

and
γ0dh(u, u) 6 âh(u, u) 6 γ1dh(u, u) (33)

where γ0 and γ1 are positive constants independent of the %i, hi and Hi.

Proof It is a slight modification of the proof given in [4,5], therefore, it is omitted here.

We will assume below that δ > δ0; i.e., that (32) and (33) are valid. A priori error
estimates for the discussed method are optimal for regular coefficients and when hi and hj

are of the same order, see for example [1], [10]. For piecewise constant coefficients ρi and/or
when the mesh sizes hi and hj are not of the same order, the error estimates depend on the
ratio hi/hj. There is also the question of regularity of the solution of (1). Assuming the
regularity of solution we have the following result:

Lemma 5.2. Let u∗ and u∗h be the solutions of (1) and (23). For u∗ ∈ H1
0 (Ω) and

u∗|Ωi
∈ H1+r(Ωi)), i = 1, · · · , N , we have

‖ u∗ − u∗h ‖2
h6 C

N∑
i=1

(h1+r
i +

h2+r
j

hi

)|u∗|2H1+r(Ωi)

with r ∈ (1/2, 1] and C which is independent of hi, Hi and u∗.

For the proof see [1,10] and [4,5].

6. Additive average Schwarz method for (23)

In this section we design and analyze an additive average Schwarz method for the discrete
problem (23). For that we use the general theory of additive Schwarz methods (ASMs)
descroibed in [11].

6.1. Decomposition of Xh(Ω)

Let us decompose
Xh(Ω) = V (0)(Ω) + V (1)(Ω) + · · ·+ V N(Ω) (34)

where for i = 1, · · · , N

V (i)(Ω) := {v = {vk}N
k=1 ∈ Xh(Ω) : vk = 0 for k 6= i}. (35)

This means that V (i)(Ω) is the zero extension of Xi(Ωi) to Ωj for j 6= i. The coarse space
V (0) is defined as

V (0)(Ω) = span{φ(i)}N
i=1 (36)

where φ(i) = {φ(i)
k }N

k=1 ∈ Xh(Ω) with φ
(i)
k = 1 for k = i and φ

(i)
k = 0 for k 6= i. This is a space

of piecewise constant functions with respect to Ωi, i = 1, · · · , N . Note that the introduced
spaces V (i)(Ω) satisfy (34).
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6.2. Inexact solver

For u(i) = {u(i)
k }N

k=1 and v(i) = {v(i)
k }N

k=1 belonging to V (i)(Ω), i = 1, · · ·N , we set

bi(u
(i), v(i)) = di(u

(i), v(i)) (37)

where in this case, see (29),

di(u
(i), v(i)) = (%i(·)∇u

(i)
i ,∇v

(i)
i )L2(Ωi) +

∑
Eij⊂∂Ωi

δ

lij

1

hij

(%ij(·)u(i)
i , v

(i)
i )L2(Eij). (38)

For the coarse space V (0) and u(0) = {u(0)
i }N

i=1 and v(0) = {v(0)
i }N

i=1 belonging to V (0)(Ω) we
set

b0(u
(0), v(0)) = dh(u

(0), v(0)). (39)

Note that in this case

b0(u
(0), v(0)) =

N∑
i=1

∑
Eij⊂∂Ωi

δ

lij

1

hij

(%ij(·)(u(0)
j − u

(0)
i ), (u

(0)
j − u

(0)
i ))L2(Eij) (40)

since u(0) and v(0) are piecewise constant functions with respect to Ωi, i = 1, · · · , N .

6.3. The operator equation

For i = 0, · · · , N , let us define the operators T
(DG)
i : Xh(Ω) → V (i)(Ω) by

bi(T
(DG)u, v) = âh(u, v), v ∈ V (i)(Ω). (41)

Of course each of these problems have a unique solution. Let us define

TDG = T
(DG)
0 + T

(DG)
1 + · · ·+ T

(DG)
N . (42)

We replace (23) by the following operator equation:

TDGu∗h = gh (43)

where

gh =
N∑

i=0

gi, gi = T
(DG)
i u∗h (44)

and u∗h is the solution of (23). Note that to compute gi we do not need to know u∗h, see
(41). The solutions (23) and (43) are the same. This follows from the following theorem,
the second main result of this paper.

Theorem 6.1. For any u ∈ Xh(Ω) the following holds:

C3β
−1
2 âh(u, u) 6 âh(TDGu, u) 6 C4âh(u, u) (45)

where β2 = maxi maxj∈Ii
(αi/αi)(

H2
i

hihij
) and the positive constants C3 and C4 do not depend

on ρi, αi/αi, Hi, and hi, i = 1, · · · , N .
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Proof We need to check three key assumptions of the general theory of ASMs, see Theorem
2.7 of [11].

Assumption(i) We check it in the same way as Assumption(i) in the proof of Theorem
4.1. Thus η(ε) = 1.

Assumption(ii) We need to prove that for i = 0, 1, · · · , N

âh(u, u) 6 ωibi(u, u), u ∈ V (i)(Ω) (46)

with ωi 6 C, where C is independent of the jumps of %i(x), %ij(x), Hi and hi. Using Lemma
5.1 it is enough to prove (46) for dh(·, ), see (30). For i = 1, · · · , N and u(i) ∈ V (i)(Ω) we
have:

dh(u
(i), u(i)) = (%i(·)∇u

(i)
i ,∇v

(i)
i )L2(Ωi)+

+
∑

Eij⊂∂Ωi

δ

lij

1

hij

(%ij(·)u(i)
i , u

(i)
i )L2(Eij) = bi(u

(i), u(i)).
(47)

For the coarse space V (0)(Ω) and u(0) ∈ V (0)(Ω)

dh(u
(0), u(0)) =

∑
Eij⊂∂Ωi

δ

lij

1

hij

(%ij(·)(u(0)
i − u

(0)
j ), (u

(0)
i − u

(0)
j ))L2(Eij) = b0(u

(0), u(0)).

Thus ωi 6 C for i = 0, · · · , N in view of Lemma 5.1.
Assumption(iii) We need to show that for u ∈ Xh(Ω) there exist u(i) ∈ V (i)(Ω), i =

0, · · · , N , such that u =
∑N

i=0 u(i) and

N∑
i=0

bi(u
(i), u(i)) 6 Cβ2âh(u, u). (48)

Using Lemma 5.1, it is enough to prove (48) for dh(·, ·).
For u = {ui}N

i=1 ∈ Xh(Ω) let

u(0) = {ūi}N
i=1, ūi :=

1

|∂Ωi|

∫
∂Ωi

ui(x)ds (49)

and set

u = u(0) + (u− u(0)) = u(0) +
N∑

i=1

u(i)

where u(i) := {u(i)
k }N

k=1 with u
(i)
k := ui − ūi for k = i and u

(i)
k = 0 for k 6= i. Of course

u(i) ∈ V (i)(Ω) and u =
∑N

i=0 u(i).
We now check (48) for dh(., .). For i = 0, see (40), we have

b0(u
(0), u(0)) =

N∑
i=1

∑
Eij⊂∂Ωi

δ

lij

1

hij

(%ij(·)(ūj − ūi), ūj − ūi)L2(Eij). (50)

Note that

(%ij(·)(ūj − ūi), ūj − ūi)L2(Eij) 6 C{‖ %
1/2
ij (·)(ūj − uj) ‖2

L2(Eji)
+

+ ‖ %
1/2
ij (·)(ūi − ui) ‖2

L2(Eij)
+ ‖ %

1/2
ij (·)(ui − uj) ‖2

L2(Eij)

(51)
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where Eij = Eji, Eij ⊂ ∂Ωi, Eji ⊂ ∂Ωj. By a Friedrich’s inequality we have

1

hij

‖ %
1/2
ij (·)(ūi − ui) ‖2

L2(Eij)
6 C

αi

hij

‖ ui − ūi ‖2
L2(∂Ωi)

6

6 C
αiH

2
i

hij

|ui|2H1(∂Ωi)
6 C

αi

αi

H2
i

hihij

‖ %
1/2
i ∇ui ‖2

L2(Ωh
i )6

6 C
αi

αi

(
H2

i

hihij

)(%i(·)∇ui,∇ui)L2(Ωi)

(52)

since %ij(x) 6 2%i(x) 6 2αi on ∂Ωi. In the same way we show that

1

hij

‖ %
1/2
ij (·)(ūj − uj) ‖2

L2(Eij)
6 C

αj

αj

(
H2

j

hjhji

)(%j(·)∇uj,∇uj))L2(Ωj). (53)

Substituting (52), (53) into (51) and the resulting inequality into (50), we obtain

b0(u
(0), u(0)) 6 Cβ2dh(u, u) 6 Cβ2âh(u, u). (54)

We have by (38) that

N∑
i=1

bi(u
(i), u(i)) =

N∑
i=1

(%i(·)∇ui,∇ui)
2
L2(Ωi)

+

+
N∑

i=1

∑
Eij⊂∂Ωi

δ

lij

1

hij

(%ij(·)(ui − ūi), (ui − ūi)L2(Eij).

(55)

Using (52) and Lemma 5.1 we obtain

N∑
i=1

bi(u
(i), u(i)) 6 Cβ2dh(u, u) 6 Cβ2âh(u, u). (56)

Adding the estimates (54) and (56) we get (48). The proof of Theorem 6.1 is complete.

Remark 6.1. The estimate (45) can be improved when αi and αi are of the same order
and αi 6 %i(x) on Ωi\Ωh

i . In this case β2 = maxi maxj∈Ii
(Hi/hij).

Remark 6.2. The layer Ωh
i can be replaced by Ωδ

i , the layer around ∂Ωi with width δi.

In this case β2 = maxi maxj∈Ii
(αi

αi

H2
i

hijδi
) where αi and αi here are defined on Ωδ

i , see (3).

7. Implementation

To find the solution of (4), for the first discretization, and (23), for the second discretization,
we need to solve the equations (13) and (43), respectively. The operators TA and TDG are
symmetric positive definite and relatively well conditioned, see Theorem 4.1 and Theorem
6.1. To solve these equations a conjugate gradient method is used. We next discuss an
implementation of the method for the equation (43) (for (13) is similar). For the simplicity
of the presentation we discuss only the Richardson method.
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The problem (43) is solved by the method

un+1 = un − τ(TDGun − gh) = un − τTDG(un − u∗h)

where the relaxation parameter τ can be chosen using the estimates in Theorem 6.1.
To compute

rn := TDG(un − u∗h) =
n∑

i=0

T
(DG)
i (un − u∗h)

we need to find rn
i := T

(DG)
i (un − u∗h) by solving the following equations, see (41),

bi(T
(DG)
i rn

i , v) = âh(r
n
i , v) = âh(u

n, v)− f(v), v ∈ V (i)(Ω)

for i = 0, · · · , N . Note that these problems are independent to each other, therefore, they can
be solved in parallel. The problems for i = 1, · · · , N are local and defined on Ωi and reduce
to discrete problems with continuous FEM and piecewise linear functions. The problem
for i = 0 has a local and a global component, where the local problem involves a diagonal
preconditioning while the global problem has the number of unknowns equals to the number
of subregions Ωi and it reduces to a system with a mass matrix.

The above implementation shows that the proposed algorithm is very well suited for
parallel computations.
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