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Figure 1. Learning a vector field decomposition: samples, learned field, divergence- and curl-free parts.

Abstract

We propose a novel approach for reconstructing vector
fields in arbitrary dimension from an unstructured, sparse
and, possibly, noisy sampling. Moreover, we are able to
guarantee certain invariant properties on the reconstructed
vector fields which are of great importance in applications
(e.g. divergence-free vector fields corresponding to incom-
pressible fluid flows), a difficult task which we know of
no other method that can accomplish it in the same gen-
eral setting we work on. Our framework builds upon recent
developments in the statistical learning theory of vector-
valued functions and results from the approximation theory
of matrix-valued radial basis functions. As a direct byprod-
uct of our framework, we present a very encouraging result
on learning a vector field decomposition almost “for free”.

Keywords: vector field reconstruction, statistical learning,
kernel methods, support vector regression, scattered data
approximation, radial basis functions, geometric modeling.

1. Introduction

Interpreted as velocities of fluid particles [1], optical flow
fields [5] or directions of strokes in a painting, vector fields

are ubiquitous objects in computer graphics, vision and en-
gineering. The classical theory of physics is built upon the
characterization of vector fields induced by the motion of
an object. This fact is the main responsible for the perva-
siveness of vector fields in graphics applications, where of-
ten they appear as measurements of real phenomena, data
from physical simulations or even painting sessions.

Many physical phenomena can be characterized by vec-
tor fields with certain differential invariants, where deriva-
tives of the component scalar fields are coupled by some re-
lation. Important examples are the null divergence condition
in incompressible fluid flows and the curl-free condition for
the magnetic field in the equations of classical electrody-
namics. Ensuring these physically-based constraints when
representing vector fields for scientific computing or vi-
sualization has been a hard goal in designing methods for
storing and manipulating them. These difficulties are even
more pronounced these days with the development of tech-
niques for measuring and simulating flow fields for aero-
dynamics and hydrodynamics research. They generate huge
amounts of unstructured and sparse points-vectors data, and
very noisy measurements [10]. This poses a hard task in de-
signing robust methods to reconstruct globally defined vec-
tor fields, which is made even more complicated when it is
required that the reconstructed vector field obeys the invari-
ants of the field from which the samples were drawn.



Previous and related works. Since our approach for vec-
tor field reconstruction was built upon recent developments
on statistical learning and function approximation, we will
provide some comments on works which took one these av-
enues and on those theoretical efforts which influenced us.

Kuroe et al. [9] present a learning method for 2D vec-
tor field approximation based on artificial neural networks
(ANN). They modified the classical backpropagation al-
gorithm for learning a vector-valued ANN minimizing the
squared loss and are able to represent the learned field as a
sum of divergence- and curl-free parts (result also achieved
by Mussa-Ivaldi [13], which used a related regularized least
squares approach). However, their method is hard to gener-
alize for arbitrary dimension or loss functions (drawbacks
shared by [13]) and is inherently prone to the already diffi-
cult task of designing suitable ANN architectures.

Colliez et al. [5] adopt the classical ε-SVR algorithm for
estimating optical flow fields in object tracking. They ob-
serve the robustness of support vector regression against
outliers and its generalization abilities. Nevertheless, they
apply the linear ε-SVR component-wise in the flow field
not guaranteeing preservation of differential invariants.

Castro et al. [4] employ the nonlinear (kernel-based) ex-
tension of the scalar ε-SVR using two different represen-
tations of the vector field: cartesian and polar/spherical.
The main drawbacks are that they cannot enforce invari-
ants easily, taking spatial derivatives of a field learned in po-
lar/spherical coordinates is cumbersome and their approach
is hard to generalize for arbitrary dimensions (besides the
trivial component-wise learning in cartesian coordinates).

Methods based on approximation strategies include the
work of Zhong et al. [20], which try to both interpo-
late the samples and enforce the divergence-free constraint.
However, this constraint enforcement only holds at the
grid points and no such guarantee can be given elsewhere.
Lage et al. [10] propose an efficient multilevel scheme for
2D vector field reconstruction based on the partition of unity
method in which local polynomial approximants are esti-
mated by a least squares fitting regularized using ridge re-
gression (Tikhonov regularization). Nevertheless, their al-
gorithm cannot easily enforce differential invariants for the
global approximant and becomes cumbersome to imple-
ment for higher dimensions.

Recently, Micchelli and Pontil [12] have generalized the
theory of scalar-valued statistical learning [8] to vector-
valued functions. Under their theoretical framework, many
classical statistical techniques (e.g. ridge regression) and
some state-of-the-art learning algorithms (e.g. support vec-
tor regression [3]) could be extended to learn vector-valued
functions in which correlations among the component func-
tions can be captured by designing a suitable matrix-valued
kernel function.

In the approximation community, Narcowich and Ward

[14] introduced a construction of matrix-valued radial ba-
sis functions which happen to satisfy the properties required
in [12] and induce everywhere divergence-free vector fields.
Later, Lowitzsch [11] proved that such matrix-valued RBFs
can be used to approximate arbitrarily well any sufficiently
smooth divergence-free vector fields and introduced a fam-
ily of compactly supported matrix-valued RBFs which also
obey the properties suitable for learning (results general-
ized by Fuselier [7] for a construction of curl-free matrix-
valued RBFs). These developments were used by Baudisch
et al. [1] for interpolating divergence-free fluid simulation
data for finite volume methods. However, their work was
designed for face-averaged “clean” data located at the faces
of computational cells from finite volume simulations.

Contributions. This work proposes a framework for vector
field reconstruction in arbitrary dimension from an unstruc-
tured, sparse and, possibly, noisy sampling. Moreover, our
approach allows us to guarantee that the reconstructed field
is either free of divergence or of curl, the two most ubiqui-
tous differential invariants of the vector fields encountered
in classical physics (even though no other method proposed
so far has been able to ensure them in such a hard setting).
Our method is built upon recent developments on the statis-
tical learning theory of vector-valued functions (reviewed
at Section 2) and on the approximation theory of matrix-
valued radial basis functions (whose constructions are pre-
sented at Section 3), none of which, to the best of our knowl-
edge, has been exploited for computer graphics or vision
applications so far. As proof of concept, we present some
experiments performed with synthetic, simulation and mea-
surement data sets at Section 4, where it is presented an en-
couraging result on learning a vector field without prior in-
variants and its decomposition into a sum of divergence-
and curl-free parts, with no additional cost. Section 5 con-
cludes this work providing directions for further research.

2. Statistical learning of vector fields

In this section, we provide a brief review of the founda-
tions of statistical learning [6, 16] and the recent results in
extending it to embrace vector-valued functions [12].

Our interest resides in learning a vector field
f : Rn → Rn from unstructured, sparse and, pos-
sibly, noisy samples

(
xi,yi

)N

i=1
drawn from an un-

known probability distribution P on the product space
Rn × Rn. It is desired that such a vector field, which is
taken from a fixed hypothesis space F , minimizes the ex-
pected error when evaluated on unseen data, i.e. given a
loss function L : Rn × Rn → R, f is chosen in or-
der to minimize the expected risk, R : F → R,

R[f ] := E [L(y, f(x))] =
∫

Rn×Rn

L(y, f(x))d P. (1)



Unfortunately, since P is unknown, we need to take ad-
vantage of its available samples

(
xi,yi

)N

i=1
to be able to

define a similar problem which is solvable and whose solu-
tion approximates a minimizer of (1). A natural approach is
to approximate the above integral (which defines the expec-
tation according to P) by an empirical mean. This approach
searches a minimizer of the empirical risk functional, Re,

Re[f ] :=
1
N

N∑
i=1

L(yi, f(xi)). (2)

However, even this new problem has its shortcomings,
since the resulting minimization may admit infinitely many
solutions which interpolate the samples having poor gener-
alization performance, i.e. altought they minimize Re they
may be far from minimizing R. To cope with these short-
comings, the empirical risk functional is augmented with a
term which ensures uniqueness and regularity in the mini-
mization problem. The usual practice takes F as a normed
linear space of (nonlinear) vector fields and an increasing
function h : R → R to define the regularized risk, Rr,

Rr[f ] :=
1
N

N∑
i=1

L(yi, f(xi)) + h(‖f‖), (3)

which f is chosen to minimize. Notice that this approach
subsumes many well established statistical techniques
(e.g. ridge regression, where L(yi, f(xi)) = ‖yi − f(xi)‖2
and h(x) = λ

N x2).
To properly pose our learning problem, we still need

to define a hypothesis space F in which we seek a mini-
mizer of the regularized risk functional (after all, “learning
does not take place in a vacuum” [16]). The current prac-
tice (and theory) considers hypothesis spaces whose scalar-
valued functions are arbitrarily well approximated by sums

of the type
M∑

j=1

αjk(·, zj), in which k : Rn × Rn → R

has certain properties (symmetry and (strict) positive defi-
niteness) that allow to define an inner product in F [8].

Such spaces are important both in the theory and prac-
tice of scalar-valued (n = 1) learning because, under rather
practical assumptions, it can be shown that,

Theorem 1 (Representer Theorem [8]). If f ∈ F minimizes

Rr then, for some α ∈ RN , f =
N∑

i=1

αik(·,xi).

This means the minimization ofRr inF (usually infinite
dimensional) can be restricted to the finite dimensional sub-
space generated by the functions

(
k(·,xi)

)N

i=1
. Such a re-

markable result, with duality in nonlinear optimization [2],
has allowed to design many state-of-the-art algorithms for
learning scalar functions (e.g. support vector regression).

Recently, Micchelli and Pontil [12] generalized the ba-
sic theory developed in the scalar-valued case for learning

vector-valued functions. Their work naturally subsumes the
above construction of hypothesis spaces and shows that F
should be made of vector-valued functions approximated by

sums of the form
M∑

j=1

K(·, zj)αj , where each αj ∈ Rn is

an n-vector and the kernel K : Rn × Rn → Rn×n is
matrix-valued and has analogous properties to those in the
scalar-valued case, to which they reduce when n = 1.

In [12], it is proved a version of the representer theorem
for spaces of vector-valued functions induced by matrix-
valued kernels which generalizes the known scalar result,
in fact they prove this result in a much more general set-
ting, altought we state a specialized version for simplicity.

Theorem 2 (Representer Theorem [12]).
If f ∈ F minimizes Rr then, for some α1, . . . ,αN ∈ Rn,

f(x) =
N∑

i=1

K(x,xi)αi, ∀x ∈ Rn

This result allowed them to design generalized sup-
port vector regression algorithms suitable for vector-valued
learning. The SVR variants presented in [12] can be intro-
duced by taking h(x) = λx2 and

• L(y, ŷ) = 1
n

n∑
j=1

|yj − ŷj |ε, where | · |ε is the known

ε-insensitive loss function | · |ε := max(0, | · |−ε). This
loss results in the following dual problem

max


−1

2

NX
i=1

NX
j=1

(αi − α∗i
)T K(xi,xj)(αj − α∗j

)

+

NX
i=1

yiT
(αi − α∗i

) − ε

NX
i=1

eT (αi + α∗i
)

ff
(4)

where αi,α∗i ∈ Rn, 0 ≤ αi,α∗i ≤ 1
λnN e and

e ∈ Rn is the n-vector with elements equal to 1.
• L(y, ŷ) = max

j=1,...,n
|yj − ŷj |ε. This choice of loss

function results in the following dual problem

max


−1

2

NX
i=1

NX
j=1

(αi − α∗i
)T K(xi,xj)(αj − α∗j

)

+
NX

i=1

yiT
(αi − α∗i

) − ε
NX

i=1

eT (αi + α∗i
)

ff
(5)

where αi,α∗i ≥ 0 and eT αi, eT α∗i ≤ 1
λN .

Both choices of loss functions (and their corresponding
duals) subsume the classical support vector regression algo-
rithm when n = 1, whose L(y, ŷ) = |y − ŷ|ε and dual

max


−1

2

NX
i=1

NX
j=1

(αi − α∗i )(αj − α∗j )k(xi,xj)

+

NX
i=1

yi(αi − α∗i ) − ε

NX
i=1

(αi + α∗i )

ff
(6)



where αi, α
∗
i ∈

[
0, 1

λN

]
. Notice that the first variant (4)

reduces to the independent SVR learning of each of the n
component scalar fields of f when the matrix-valued ker-
nel evaluates to a diagonal matrix (its dual turns separable).

After solving the dual problem, the primal solution f can
be recovered from the dual maximizers (αi,α∗i)N

i=1 by

f(x) =
N∑

i=1

K(x,xi)(αi −α∗i), (7)

giving an analytic expression for the learned vector-field.
Although the first SVR variant (4) can also be deduced

by grouping the dual problems derived for learning each
component scalar field separately and employing the so
called “kernel trick” [8] to couple the dual objectives with
general matrix-valued kernels (which was how we first de-
duced it before knowing the work of Micchelli and Pontil
[12]). We have chosen this approach in deducing the prob-
lem because it subsumes naturally a great family of impor-
tant algorithms whose vector-valued variants still remain
to be tested. We hope this brief discussion may encourage
other graphics researchers to experiment with this frame-
work for learning vector-valued functions in their own ap-
plications, because to the best of our knowledge this has not
been done in computer graphics so far.

After developing the basic theory and the algorithms to
be employed in learning vector fields with invariants, we
just need a construction of matrix-valued kernel functions
suitable for our purposes and which fit in our theory. This
task is accomplished in the next section borrowing results
from the approximation theory of radial basis functions.

3. Matrix-valued radial basis functions

In order to construct hypothesis spaces for learn-
ing divergence- and curl-free vector fields, it is sufficient
to design matrix-valued kernels with the properties re-
quired by our framework and whose columns define them-
selves divergence- or curl-free vector fields, since the
learned field (7) is a finite linear combination of them.

In a nutshell, the framework in [12] requires that,

(i) K(x,y) = K(y,x)T , for all x,y ∈ Rn;

(ii) For all N ∈ N, x1, . . . ,xN ,α1, . . . ,αN ∈ Rn such
that xi 6= xj for i 6= j and αk 6= 0 for some k, it holds

N∑
i=1

N∑
j=1

αiT K(xi,xj)αj > 0 (8)

Notice that these properties subsume the scalar case in [8].
To design matrix-valued kernels whose columns are

divergence- or curl-free vector fields, we adopt a construc-
tion studied in the theory of radial basis functions (RBFs)

[14, 11, 7]. A matrix-valued RBF, Φ : Rn → Rn×n,
can be constructed from a scalar RBF, φ(x) = ϕ(‖x‖),
by applying to φ a linear differential operator L, i.e.
Φ(x) := (Lφ)(x). The basic example of such an operator
is the Hessian H, defined by (Hφ)ij := ∂2φ

∂xi∂xj
. This sim-

ple example will be essential in designing matrix-valued
kernels for our approach to learn vector fields with those
specific differential invariants.

3.1. Kernels for divergence-free vector fields

In [14], it was introduced a construction of matrix-valued
RBFs in which the vector fields defined by the columns
are divergence-free. These matrix-valued RBFs can be con-
structed by applying the operator L = H− tr(H) · I to a
scalar-valued RBF φ (it can be verified that the resulting
matrix-valued function has divergence-free columns). Then,

Φdf (x) = (Hφ)(x)− tr
{
(Hφ)(x)

}
· I, (9)

and, as proved in [14], the (translation-invariant) matrix-
valued kernel given by Kdf (x,y) = Φdf (x − y) has the
properties (i) and (ii) above for a popular class of scalar

RBFs which includes the gaussian e−
‖x‖2

2σ2 and the inverse

multiquadrics
(√

‖x‖2 + c2
)−1

.

For our results, we implemented the kernel derived from
the gaussian radial basis function φ(x) = exp

{
−‖x‖2

2σ2

}
,

Kdf (x,y) =
1

σ2
e
− ‖x−y‖2

2σ2

"“x− y

σ

” “x− y

σ

”T

+

„
(n − 1) − ‖x− y‖2

σ2

«
· I

#

3.2. Kernels for curl-free vector fields

Fuselier [7] introduced a construction of matrix-valued
RBFs whose columns are curl-free vector fields (gradients
of some scalar function) and proved results which ensure
properties (i) and (ii) above for the (translation-invariant)
matrix-valued kernel given by Kcf (x,y) = Φcf (x − y),
where L = −H, Φcf (x) = −(Hφ)(x) and φ belongs to the
same class as in the divergence-free construction above.

In this case, the matrix-valued curl-free kernel induced
by the gaussian function, used for our experiments, is

Kcf (x,y) =
1

σ2
e
− ‖x−y‖2

2σ2

»
I−

“x− y

σ

” “x− y

σ

”T
–



3.3. A class of compactly-supported kernels

The results on globally supported divergence-free
matrix-valued RBFs proved in [14] were generalized in
[11] to an important (and widely adopted) class of com-
pactly supported RBFs, the Wendland’s functions [19].
In possession of such results, we are able to design com-
pactly supported matrix-valued kernels with which we
can learn vector fields with invariants (since, in [7],
it was proved that the above construction of curl-free
matrix-valued RBFs also induces kernels with proper-
ties (i) and (ii) for Wendland’s functions).

These results have important practical consequences, be-
cause, using compactly supported kernels, the dual opti-
mization problems may have a very sparse quadratic term
and the evaluation of the sum (7) may become extremely
cheaper when N is large. Although we didn’t perform any
experiments with those kernels in this work, we believe they
provide an interesting avenue for further investigation.

4. Results

As proof of concept, we implemented the dual opti-
mization problem (4) and the divergence-free and curl-
free matrix-valued kernels induced by the gaussian RBF.
We chose that extension of ε-SVR because it specializes to
traditional component-wise kernel-based ε-SVR when the

matrix-valued kernel is diagonal, in our case, e−
‖x−y‖2

2σ2 · I.
We designed a few representative experiments in which

we reconstruct vector fields from a variety of sources: syn-
thetic, simulation and measurement datasets. These inputs
were preprocessed to fit in [−1, 1] × [−1, 1], in which case
the learning parameters were hand-tuned and chosen as
ε = 10−3, λ = 1

nN and σ = 0.3. The synthetic datasets
were constructed by taking a scalar function (a mixture of
four gaussians with coefficients alternating in sign) and tak-
ing its gradient ∇ as the reference curl-free vector field,
its grad perp ∇⊥ as the reference divergence-free field and
their sum as the reference (general) vector field (Figure 2).

Implementation note. Our results and visualizations were
implemented with Mathworks’ MATLABTM quadprog
routine encoutered in the Optimization Toobox and the Mat-
lab Vector Field Visualization toolkit [18]. The simplicity of
the construction of matrix-valued RBFs presented at Sec-
tion 3 allowed an implementation in which the input dimen-
sion was abstracted and the learning code works for arbi-
trary dimensions. In fact, the only module of our code which
is dimension-dependent is the visualization code. This fact
highlights the elegance of the framework we propose.

In the following, we provide relative error percentuals
for test sets about 16 times larger then the training datasets.

4.1. Learning divergence-free vector fields

The following experiments use the matrix-valued kernel
from subsection 3.1 for divergence-free vector fields and the
gaussian diagonal kernel for the component-wise ε-SVR.
Synthetic data. Our first experiment involves learning the
synthetic divergence-free field described before from a sam-
pling taken sparsely and uniformly distributed in [−1, 1]2.
The training set consists of 100 points-vectors pairs de-
picted in Figure 3 along with our everywhere divergence-
free reconstruction, a plot of the divergence of a field
learned by traditional ε-SVR applied component-wise and
that latter vector field.

Comparing these results with the reference div-free field
in Figure 2, we observe that the essential features of the
flow are very well retained and the main differences oc-
cur on very low sampled areas on the corners of that im-
age (in which the magnitude of these fields is small). Quan-
titatively, both methods obtained small relative errors, but
our method ensures the divergence-free invariant of the
learned vector field besides achieving more than a fifth
(0.92 percent) of the relative error obtained by component-
wise learning using a scalar ε-SVR (5.18 percent).
Fluid simulation data. The second experiment consists of
data drawn from a computer simulation of a confined in-
compressible fluid (whose dynamics is characterized by a
divergence-free constraint on the velocity field). The task
is to approximate the velocity profile from a few unstruc-
tured samples respecting the incompressibility invariant of
the underlying physics.

Although the original dataset has more than four thou-
sand points-vectors pairs, we took only 100 training sam-
ples uniformly on the available data illustrated in Figure 4.
Our method reconstructed a divergence-free field which re-
tained the features observable in the training samples with
a relative error of 25.8 percent. The component-wise learn-
ing using scalar ε-SVR obtained a just slightly smaller rela-
tive error (23.0 percent) with the price of large oscillations
in the divergence field of its attained reconstruction.
Measurement data. Our last result in learning a
divergence-free field is the hardest one. This dataset con-
sists of almost sixteen thousand points-vectors pairs mea-
sured from a real air flow at low speeds in a regime which is
essentially incompressible. These measurements were per-
formed using the method of particle image velocime-
try (PIV) [17], which generates large and noisy datasets
highly contaminated by outliers, posing a hard estima-
tion task even without the added requirement of guaran-
teeing the mass conservation law characterized by the null
divergence condition.

Figure 5 depicts the 100 training samples uniformly dis-
tributed on the available data and the reconstruction re-
sults. Our method captured the percetible trends in the flow



field samples as well as the localized vortices tipical of
slightly turbulent air motion, differently of that reconstruc-
tion obtained by component-wise ε-SVR learning, which in-
troduced many sources and sinks at low sampled regions
neighboring what should be localized vortices. This resulted
in large variations on the divergence of that field learned by
classical kernel-based support vector regression.

The relative error attained by both methods was rather
large. Our divergence-free reconstruction had a 69.34 per-
cent relative error while the component-wise ε-SVR method
obtained 83.23. We believe this large error may be due
to both a small percentage of samples used for training
(less than 0.7 percent of the total data was used for train-
ing) and very noisy measurements contaminated by out-
liers. Even with these quantitative results, we believe that
the divergence-free reconstruction retained very well both
the bulk flow and the small scale motion percetible in the
training dataset.

4.2. Learning a curl-free vector field

Figure 6 depicts the results we obtained on learning a
curl-free vector field from 100 sparse samples located at
random sites uniformly distributed on [−1, 1]2 whose val-
ues were taken from the synthetic curl-free field depicted
in Figure 2. In Figure 6, the result obtained by training the
classical ε-SVR on each component independently is also
illustrated along a plot of its curl field (which is identically
zero in the reference vector field). The relative errors of both
methods are small, but the relative error achieved by our
method (0.69 percent) is almost a tenth of that obtained by
component-wise learning (5.19 percent), besides the guar-
antee we provide in obeying the curl-free constraint.

4.3. Learning a vector field decomposition

Using the fact that non-negative linear combinations of
matrix-valued kernels which obey properties (i) and (ii)
from Section 3 also have those properties, we can design
a family of kernels for general vector fields, not just those
with differential invariants. One such family just takes a
convex combination of the two matrix-valued kernels con-
structed in Section 3 and is parameterized by a γ ∈ [0, 1],

Kγ(x,y) = (1− γ)Kdf (x,y) + γKcf (x,y). (10)

We have made some simple experiments with Kγ(
for γ = 1

2

)
in which a training set with 128 sam-

ples was drawn from the reference vector field in Fig-
ure 2 located at random places distributed uniformly
at [−1, 1]2. The coefficients were them used to recon-
struct two fields using as kernels (1− γ)Kdf and γKcf , the
results of this experiment are depicted in Figure 1, the rela-

tive reconstruction error achieved was less than 1.8 percent
even for a field without prior invariants.

As can be observed by comparing figures 1 and 2, the
features of the flows (reference and its parts) were correctly
learned without complicating the optimization problem or
iterating, it was just required to use the kernel Kγ when
building the quadratic term in the dual problem (4) and sep-
arating this kernel’s components when evaluating (7).

Since this kind of vector field decomposition has
many applications in fluid simulation and analysis of vec-
tor fields for scientific computing and visualization,
learning divergence-/curl-free decompositions of vec-
tor fields from sparse unstructured noisy samples provides
a very promising avenue for further research.

5. Conclusions and future works

In this work, we introduce a novel framework to design
methods for reconstructing vector fields with differential in-
variants commonly required in applications. Our approach
builds upon recent developments in the statistical learning
theory of vector-valued functions and in the approxima-
tion theory of matrix-valued radial basis functions to allow
vector field reconstruction in arbitrary dimension from un-
structured, sparse and noisy samplings in an elegant and
theoretically sound way guaranteeing common constraints
imposed by the underlying physics.

The theoretical frameworks we use subsume many tradi-
tional statistical techniques (e.g. ridge regression) and some
of those considered state-of-the-art (e.g. kernel-based sup-
port vector regression) by a separation of measures for ap-
proximation quality (loss function) and approximant com-
plexity (induced by the regularization term). As proof of
concept, we implemented a generalization of the kernel-
based ε-SVR algorithm of which the component-wise learn-
ing of the vector field is a natural special case. We also pre-
sented an encouraging result for reconstructing vector fields
without prior invariants in a manner which, with practically
no added cost, it is possible to decompose the learned vec-
tor field in a sum of divergence- and curl-free parts, still re-
taining the elegance of the method in arbitrary dimensions.

Future works. Currently, we are working on a modifica-
tion of the sequential minimal optimization (SMO) [15]
designed for efficiently training scalar support vector ma-
chines to our problem (in which the dual variables are
vector-valued and the kernels are matrix-valued). Another
aspect of training we are interested in regards parameter
choice (model selection) by cross-validation methods, since
it is a hard (and annoying) task to hand-tune each of them
for each different dataset (e.g. ε, λ and σ).

This work is one the first in computer graphics (if not the
very first) to exploit those recent results in learning vector-
valued functions and/or representing divergence-/curl-free



vector fields using suitably designed matrix-valued radial
basis functions. We believe that these developments have
many potential applications both in graphics and vision.
To mention a few, animation of incompressible fluid flows
(and compression of the resulting datasets), design of vec-
tor fields for animation or rendering purposes, flow analy-
sis in scientific visualization, estimation of mass conserv-
ing deformation fields in 2D or 3D medical images and re-
lated optical flow computations.
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Figure 2. Reference synthetic data. Top: two
visualizations of the reference vector field;
Bottom: its divergence- and curl-free parts.



Figure 3. Divergence-free synthetic data.
Top: samples and our div-free solution; Bot-
tom: div of scalar SVR and associated field.

Figure 4. Fluid simulation data. Top: sam-
ples and our div-free solution; Bottom: div
of scalar SVR and associated vector field.

Figure 5. Measurement PIV data. Top: sam-
ples and our div-free solution; Bottom: div
of scalar SVR and associated vector field.

Figure 6. Curl-free synthetic data. Top: sam-
ples and our curl-free solution; Bottom: curl
of scalar SVR and associated vector field.


