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1ICIMAF, Cuba
2UFAL, Brazil
3IMPA, Brazil

Abstract

In this paper we present a nonlinear curve subdivision scheme, suitable for de-
signing curves on surfaces. The scheme is inspired in the concept of geodesic Bézier
curves introduced in [MCV07]. Starting with a geodesic control polygon with ver-
tices on a surface S, the scheme generates a sequence of geodesic polygons that
converges to a continuous curve on S. In the planar case, the limit curve is a conic
Bézier spline curve. Each section of the subdivision curve, corresponding to three
consecutive points of the control polygon, depends on a free parameter which can
can be used to obtain a local control of the shape of the curve. Furthermore, it has
the convex hull property. Results are extended to triangulated surfaces showing that
the scheme is suitable for designing curves on these surfaces.

1 Introduction

Designing free-form curves is a basic operation in Geometric Modeling. In the Euclidean
space it is a widely studied problem, nevertheless it becomes much harder if we wish
to design on a curved geometry, such as a triangulated surface. The problem has been
addressed on smooth manifolds as well as on triangulations, see for instance [HP04],
[CKS99], [BH04].
Subdivision methods are currently very popular as a design tool, since subdivision curves
can be easily computed in the Euclidean space. Nevertheless, their counterpart on curved
surfaces are more involved and expensive. A first step on this sense are linear subdivision
schemes on smooth and discrete manifolds [Kap99],[KYA05], [KS95], [MVC08]. Nonlin-
ear schemes, which arise as perturbations of linear schemes on smooth manifolds, are
the next step. They have been described by Wallner and Pottmann in [WP06]. Several
examples where nonlinear subdivision schemes are useful in Computer Graphics are also
presented in [WP06]. The convergence and smoothness analysis of these subdivision
schemes can be found in the work of Wallner and Dyn [WD05]. They generalize the
linear schemes to manifolds in two different ways. The first approach substitutes linear
average by geodesic average. This method is very good because it is completely intrinsic,
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although for some schemes it requires to compute many geodesics. The second method
performs each subdivision step in the ambient space, projecting the new points into the
manifold. This approach is more efficient, but depending on the complexity of the ge-
ometry it could conduce to wrong or unexpected results. Some variants of de Casteljau’s
Algorithm have been also used to define curves on Riemannian manifolds [RSJ05] and
Lie groups [CKS99].
In [MCV05] a new algorithm to compute a geodesic path over a triangulated surface is
proposed. This algorithm is used to define geodesic Bézier curves [MCV07]. They are a
natural extension of Bézier curves in the sense that linear interpolation is substituted by
geodesic interpolation. In [MVC08] a simple method to define subdivision schemes on
triangulations is proposed. Using both, shortest and straightest geodesics, a perturbation
of a planar binary subdivision is translated on the triangulation. This method allows to
extend to a triangulated surface any binary subdivision scheme, regardless whether it is
linear or not.
Inspired in these ideas we introduce in the present paper a natural extension of geodesic
Bézier curves [MCV07] for the rational quadratic case: geodesic conic Bézier curves.
They are defined as subdivision curves on a surface. More precisely, starting with a
set of points on a surface S, a control polygon composed by geodesic arcs joining two
consecutive points is defined. In each step of the subdivision a new geodesic polygon is
computed defining a subdivision scheme that converges to a continuous curve living on
S. Each section of the subdivision curve corresponding to three consecutive points of the
control polygon, depends on a free parameter which can be used to obtain a local control
of the shape of the curve. In the planar case the subdivision curve is a conic Bézier spline
curve. Furthermore, we show that the limit curve has the convex hull property. Results
are extended to triangulated surfaces showing that the scheme is suitable for designing
curves on these surfaces and may be useful for trimming and segmentation.
The rest of the paper is organized as follows. In section 2 we introduce the notation and
the classical planar subdivision scheme for conics. In section 3 we define the geodesic
conic subdivision scheme on smooth surfaces and prove its convergence to a continuous
curve. Section 4 is devoted to geodesic conic curves on triangulated surfaces. We include
in this section details of the interaction with the user and several examples. Finally, in
section 5 we give concluding remarks.

2 Basic theory: the subdivision scheme for conics

A rational Bézier curve of degree n is a parametric curve which is described by n + 1
control points, bi ∈ Rm, m = 2, 3 and n+ 1 weights ωi. For t ∈ [0, 1] the curve has the
form [Far02]

c(t) =
∑n

i=0 ωibiB
n
i (t)∑n

i=0 ωiBn
i (t)

where Bn
i (t), i = 0, 1, ..., n are the Bernstein Bézier basis functions of degree n.
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Conics are rational Bezier curves of degree n = 2. It has been shown [Patt86] that
without loss of generality we may assume that any nondegenerate conic is written in
standard representation, where ω0 = ω2 = 1. Since in what follows all Bezier conics are
in standard representation, we will not mention explicitly the whole set of homogeneous
weights ωi, i = 0, 1, 2 and we will denote the weight ω1 > 0 by ω > 0.
Rational Bezier curves may be evaluated by de Casteljau recursive algorithm [Far83]. In
the case of conics this algorithms is described as follows.

Algorithm 1 de Casteljau rational algorithm

Input: Control points bi and weighs ωi, i = 0, 1, 2, parameter value t ∈ [0, 1]
Output: c(t)

step 1. for i = 0, 1, 2 set b0i (t) = bi and ω0
i (t) = ωi

step 2. for j = 1, 2
for i = 0, . . . , 2− j

ωj
i (t) = (1− t)ωj−1

i (t) + tωj−1
i+1 (t)

bji (t) = (1− t)ωj−1
i (t)

ωj
i (t)

bj−1
i (t) + t

ωj−1
i+1 (t)

ωj
i (t)

bj−1
i+1 (t)

step 3. c(t) = b20(t)

The intermediate Bezier points bji (t) of the above recursive algorithm may be used to
subdivide the curve c at parameter value t ∈ (0, 1). More precisely, the left segment of c
corresponding to the parameter values in the interval [0, t] is a quadratic rational Bezier
curve c10(u), u ∈ [0, 1] with control polygon b0, b

1
0(t), b20(t) and weights 1, ω1

0(t), ω2
0(t).

Similarly, the right segment of c corresponding to the parameter values in (t, 1) is a
quadratic rational Bezier curve c11(u), u ∈ [0, 1] with control polygon b20(t), b11(t), b2, and
weights ω2

0(t), ω1
1(t), 1. Algorithm 2 describes the basic subdivision.

Algorithm 2 Basic classic conic subdivision

Input: Control points bi and weighs ωi, i = 0, 1, 2, parameter value t ∈ [0, 1]
Output: Control points and weights of the segments c10(u) and c11(u)

step 1. [b0, b10(t), b11(t), b20(t)] = deCasteljau(b0, b1, b2,ω0, ω1, ω2,t)
step 2. Control points: b0, b10(t), b20(t), weights: 1, ω1

0(t), ω2
0(t)

Control points: b20(t), b11(t), b2, weights: ω2
0(t), ω1

1(t), 1

This process may be repeated, subdividing each conic segment c10(u), c11(u) in a parameter
value u ∈ (0, 1), for instance u = 1

2 . If we use this subdivision, after j steps we obtain
2j control polygons (and the corresponding weights) that allow to represent a segment
of the (unique) conic curve c(t), t ∈ [0, 1] as a Bezier rational quadratic curve. When
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j → ∞, this sequence of control polygons tends to the conic curve. In this paper, we
will refer to this subdivision scheme, based on the dyadic parameters, as the classic
subdivision scheme. Recall that even if we start with the standard representation of c, if
we subdivide it in t = 1

2 using the classic scheme, then c10(1
2) is not necessarily neither the

shoulder point of c10(u) nor the point c(1
4) (by the same reason c11(1

2) is not necessarily
neither the shoulder point of c11(u) nor the point c(3

4)).
A different scheme, converging to the same curve, may be obtained if we make an stan-
dardization of the conics in each step. In fact, since the weight ω2

0(t) in Algorithm 2 is
not necessarily equal to 1, to write the left and the right segment of the conic in the
standard form we have to introduce the following substitutions [Far89],

ω1
0(t)← ω1

0(t)√
ω2

0(t)
, ω1

1(t)← ω1
1(t)√
ω2

0(t)
, ω2

0(t)← 1 (1)

For a rational Bezier conic in standard representation the Farin points q0, q1 are charac-
terized by the fact that ω = ratio(bi, qi, bi+1), i = 0, 1. In terms of the control points
bi, i = 0, 1, 2, they can be expressed as

q0 =
b0 + ωb1

1 + ω
, q1 =

b2 + ωb1
1 + ω

(2)

From the step 2 of Algorithm 1 it is easy to check that q0 = b10(1
2) and q1 = b11(1

2).
Moreover, ω1

0 = ω1
1 = ω2

0 = 1+ω
2 and after the standardization (1) we obtain,

ω1
0 = ω1

1 =

√
1 + ω

2
(3)

Hence, if we subdivide a rational Bezier conic curve c in the standard representation at
the shoulder point s = c(1

2), then we obtain two arcs of the same conic that can be written
in the standard Bezier representation. The left arc c10(u), u ∈ [0, 1] corresponding to the

interval t ∈ [0, 1
2 ] has control points b0, q0, s and weights 1,

√
1+ω

2 , 1, while the right arc

c11(u), u ∈ [0, 1] corresponding to the interval t ∈ [12 , 1] has control points s, q1, b2, and

weights 1,
√

1+ω
2 , 1. Observe that the weighs of both segments are the same. Algorithm

3 describe this subdivision step.

Algorithm 3 Basic shoulder point subdivision

Input: Control points bi, i = 0, 1, 2 and the weighs 1, ω, 1
Output: Control points and weights of the segments c10(u) and c11(u), u ∈ [0, 1]

step 1. q0 = b0+ωb1
1+ω , q1 = b2+ωb1

1+ω , s = q0+q1

2 , ω1 =
√

1+ω
2

step 2. Control points: b0, q0, s, weights: 1, ω1, 1
Control points: s, q1, b2, weights: 1, ω1, 1
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This process may be repeated, subdividing c10(u) and c11(u) in its shoulder points by means
of the Algorithms 3. We call this scheme Basic shoulder point subdivision scheme. For
j →∞, the sequence of control polygons obtained tends to the conic curve.
Summarizing, if we apply Algorithm 2 with t = 1

2 and Algorithm 3 to the standard
Bezier representation of a conic, we obtain the same control polygons but with different
weights. Hence, if we repeat the process and subdivide in u = 1

2 with Algorithm 2 the
control polygons of the segments c10(u) and c11(u) previously obtained, then the results
are different from those obtained subdividing at the shoulder point with Algorithm 3,
the control polygon of the curves c10(u) and c11(u). In other words, the sequence of control
polygons generated by the classic subdivision scheme and the shoulder subdivision scheme
are different, as shown Figure 1. This observation is not significant in the planar case,
but it is important when we work with curves on a surface (see section 3).

Figure 1: Control polygon after two subdivision steps. Left: the polygon with red circles
corresponds to the shoulder point scheme, the polygon with black squares corresponds
to the classic scheme. Right: zoom of the rectangular region.

Applying recursively the shoulder point subdivision, we obtain the following subdivision
scheme that generates in the limit a a piecewise conic curve.
Given a sequence of points on the plane

P 0 = {P 0
0 , P

0
1 , P

0
2 , ..., P

0
2n−1, P

0
2n}

and a local tension parameter ω0
2i > 0 associated to the subsequence P 0

2i, P
0
2i+1, P

0
2i+2,

i = 0, 2, ..., 2n − 2, the subdivision rule is based on the recurrences (2) and (3). More
precisely, for the P 0

i , P
0
i+1, P

0
i+2, with i even and w0

i > 0, it is given by ( see Figure 2),

Shoulder point conic subdivision

P j+1
2i = P j

i (4)

P j+1
2i+1 = (1− γj+1

2i ) P j
i + γj+1

2i P j
i+1 (5)

P j+1
2i+3 = γj+1

2i P j
i+1 + (1− γj+1

2i ) P j
i+2 (6)

P j+1
2i+2 =

1
2

(P j+1
2i+1 + P j+1

2i+3) (7)
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Figure 2: Control polygons of two consecutive steps

where the tension parameters of the step j + 1 are computed as follows,

ωj+1
2i = ωj+1

2i+2 =

√
1 + ωj

i

2
(8)

and

γj+1
2i = γj+1

2i+2 =
ωj+1

2i

1 + ωj+1
2i

(9)

Observe that P j+1
2i+1 and P j+1

2i+3 play the role of the Farin points for the subsequence
P j

i , P
j
i+1, P

j
i+2. Moreover, if the points of the subsequences P 0

2i−1, P
0
2i, P

0
2i+1, i = 1, ..., n−1

are collinear, then the subdivision curve is a G1-continuous conic Bezier spline.

3 The conic subdivision scheme on surfaces

In this section we introduce geodesic conic curves on surfaces as the limit of a subdivision
scheme, which can be considered as a natural generalization of the shoulder point conic
subdivision scheme (4)-(7). Observe that the shoulder point scheme it is also well defined
if the points of the initial polygon P 0 are in R3. Nevertheless, if they are on a surface
S and we apply directly the shoulder point subdivision, the new points P 1 are not
necessarily on S. A way of solving this problem is substituting straight lines in affine
space by geodesic lines on the surface.

3.1 Definition of the scheme

Assume that S is an smooth surface and Q0, Q1 two points in S. We denote by cg(Q0, Q1)
the shortest geodesic curve with initial point Q0 and final point Q1 and denote by
dg(Q0, Q1) the arc-length of cg(Q0, Q1).

Definition 1 Geodesic polygon.
The geodesic polygon with vertices Q0, Q1, ..., Qn on a surface S is the piecewise curve
composed by the geodesic shortest curves cg(Qi, Qi+1), i = 0, ..., n− 1.

6



Figure 3: Left: 3 points of on a sphere, the control polygon and the geodesic subdivision
conic curve after 10 steps using w0 = {0.75, 1, 2, 5}. Middle: The control polygon and
the conic geodesic spline composed by 3 segments computed by 10 geodesic subdivision
steps using w0

i = 1 for i = 1, 2, 3. Right: the conic geodesic spline on the sphere.

Let
P 0 = {P 0

0 , P
0
1 , P

0
2 , ..., P

0
2n−1, P

0
2n} (10)

be a sequence of points on a surface S and denote by ω0
i > 0 a local tension parameter

associated to the subsequence P 0
i , P

0
i+1, P

0
i+2, i = 0, 2, ..., 2n−2. Moreover for 0 ≤ t ≤ 1,

denote by
(1− t)Q0 ⊕ tQ1

the point R ∈ cg(Q0, Q1), such that

dg(Q0, R) = t dg(Q0, Q1)

The geodesic conic subdivision scheme on the surface S is defined as follows.

Geodesic conic subdivision

P j+1
2i = P j

i (11)

P j+1
2i+1 = (1− γj+1

2i )P j
i ⊕ γ

j+1
2i P j

i+1 (12)

P j+1
2i+3 = γj+1

2i P j
i+1 ⊕ (1− γj+1

2i )P j
i+2 (13)

P j+1
2i+2 =

1
2
P j+1

2i+1 ⊕
1
2
P j+1

2i+3 (14)

where the parameters ωj+1
2i , γj+1

2i are computed using the recurrences (8) and (9) respec-
tively.
Given an affine invariant linear scheme M expressed in term of averages, the geodesic
analogue of M is defined in [WD05] as the subdivision scheme obtained replacing the
linear interpolation operator at(Q0, Q1) := (1− t)Q0 + tQ1 by the geodesic interpolation
operator gat(Q0, Q1) := (1 − t)Q0 ⊕ tQ1. It is clear from the previous definition that
the geodesic conic subdivision scheme (11)-(14) is the geodesic analogue of the shoulder
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point conic subdivision scheme (4)-(7).

Remark
The geodesic analogue of the classic conic scheme depends on the subdivision parameter
t. Since geodesics curves are strongly dependent on the geometry of the surface, the
limit curve generated by the geodesic analogue of the classic conic scheme is different for
each value of t. Defining the geodesic conic subdivision scheme as the geodesic analogue
of the shoulder point scheme has the advantage that we remove the dependence on the
parameter t. Moreover, if the curvature of the surface in the region containing the control
polygon P 0 does not vary very much, then the arc length of the geodesic curves that we
have to compute using the the geodesic analogue of the shoulder point conic subdivision
scheme is in general smaller than the arc length of the geodesic curves necessary for the
geodesic analogue of the classic conic scheme. This is an important issue to take into
account since the computational cost of computing geodesic curves increases with the
arc-length of the geodesic curves.

3.2 Convergence analysis

Without loss of generality we restrict the analysis of the convergence to a subpolygon
P 0

i , P
0
i+1, P

0
i+2, i = 0, 2, ..., 2n− 2, of the initial polygon (10). To prove the convergence

of the geodesic conic subdivision scheme we will use the strategy introduced in [WD05].
According to the results in [WD05], if T is a geodesic scheme analogue to an affine
invariant linear scheme M , to prove the convergence of T and the continuity of its limit
curve it is enough to show that M is a 0− admisible.

Definition 2 0-admisible scheme [WD05]
A linear subdivision scheme M is 0− admisible, if it is affinely invariant and fulfills the
following convergence condition with a factor µ0 < 1

d(M jP 0) ≤ (µ0)jd(P 0) (15)

where d(p) is defined for a vector p = (pi) as

d(p) = max
i
‖∆pi‖

with ∆pi = pi+1 − pi.

Since our geodesic conic subdivision scheme is the geodesic analogue of the shoulder
point subdivision scheme, which is linear and invariant by affine transformations, to
prove the convergence of the scheme (11)-(14) and the continuity of its limit curve, it
is sufficient to show that condition (15) holds for the scheme (4)-(7). In Lemma 1 we
show that Euclidean distance between two consecutive points in the polygon of the step
j + 1 is strongly related with the Euclidean distance between two consecutive points in
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the polygon of the previous step. This relation is used in Proposition 1 to prove that
the scheme (4)-(7) satisfies a condition like (15).
Denote by P j = {P j

2ji
, ..., P j

2j(i+2)
} the set of points on the surface S obtained apply-

ing j-times the shoulder point conic subdivision algorithm (4)-(7) to the subpolygon
P 0

i , P
0
i+1, P

0
i+2, with i even. Let ∆j

r = P j
r+1 − P

j
r , r = 2ji, ..., 2j(i + 2) − 1 be the differ-

ence of two consecutive points on P j and denote by dj
r = ‖∆j

r‖ the Euclidean distance
between P j

r and P j
r+1. Denote by dj the maximum distance between two consecutive

points in P j

dj = max
r∈Ij

i

dj
r

with
Ij
i = [2ji , 2j(i+ 2)− 1] (16)

Lemma 1 The Euclidean distance between two consecutive points of the polygons P j

and P j+1 generated by the shoulder point subdivision scheme (4)-(7) are related by

dj+1
2i = γj+1

2i dj
i (17)

dj+1
2i+1 = dj+1

2i+2 ≤
(1− γj+1

2i

2

)
(dj

i + dj
i+1) (18)

dj+1
2i+3 = γj+1

2i dj
i+1 (19)

Proof
The inequalities (17) and (19) hold immediately from the subdivision rules (5) and (6) re-
spectively. Applying the triangle inequality to the triangle with vertices P j+1

2i+1, P
j
i+1, P

j+1
2i+3

(see Figure 2) and recalling that P j+1
2i+2 is the midpoint of the segment P j+1

2i+1, P
j+1
2i+3 we

obtain,

2dj+1
2i+1 = 2‖∆j+1

2i+1‖ ≤ ‖P j+1
2i+1 − P

j
i+1‖+ ‖P j

i+1 − P
j+1
2i+3‖

= (‖∆j
i‖ − ‖∆

j+1
2i ‖) + (‖∆j

i+1‖ − ‖∆
j+1
2i+3‖)

= (dj
i − d

j+1
2i ) + (dj

i+1 − d
j+1
2i+3)

= (dj
i − γ

j+1
2i dj

i ) + (dj
i+1 − γ

j+1
2i dj

i+1)

= (1− γj+1
2i )(dj

i + dj
i+1)

�

Proposition 1 Applying j-times the subdivision rules (4)-(7) of the shoulder point conic
subdivision scheme to the initial polygon P 0

i , P
0
i+1, P

0
i+2, with local tension parameters

ω0
i > 0, it holds that there exists µ0 ∈ (0, 1) such that

dj+1 ≤ (µ0)jd0 (20)
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Proof
Let us denote max{γj+1

2i , 1 − γj+1
2i } by αj+1

2i . Since ω0
i > 0, we have 0 < γj+1

2i < 1 and
this implies 0 < αj+1

2i < 1 for j ≥ 0.
Using the recurrence (8) and the expression (9) for γj+1

2i it not difficult to check that, if
ω0

i ≥ 1, then holds

1 ≤ ωj+1
2i = ωj+1

2i+2 ≤ ωj
i

0 < γj+1
2i = γj+1

2i+2 ≤ γj
i < 1

γj+1
2i = αj+1

2i < 1 (21)

and if 0 < ω0
i ≤ 1, then holds

ωj
i ≤ ωj+1

2i = ωj+1
2i+2 ≤ 1

0 < 1− γj+1
2i = 1− γj+1

2i+2 ≤ 1− γj
i < 1

1− γj+1
2i = αj+1

2i < 1 (22)

Thus, for ω0
i ≥ 0, from (21)-(22), we get

0 < αj+1
2i ≤ α

j
i < 1 (23)

For any j ≥ 0, using the relations (17),(18), (19) and (23) with Ij
i given by (16), we

obtain,

dj+1 = max
r∈Ij+1

i

{dj+1
r } ≤ αj+1

2j+1i
max
r∈Ij

i

{dj
r}

≤ αj+1
2j+1i

αj
2ji

max
r∈Ij−1

i

{dj−1
r }

...

≤ αj+1
2j+1i

αj
2ji

...α1
2i max{d0

i , d
0
i+1}

≤ (α1
2i)

j+1 max{d0
i , d

0
i+1}

= (α1
2i)

jd0 (24)

Thus condition (20) holds with µ0 = α1
2i < 1. �

Theorem 1 The geodesic conic subdivision scheme (11)-(14) applied to the initial poly-
gon P 0 = {P 0

i , i = 0, ..., 2n} with vertices on a surface S and local tension parameters
ω0

i > 0 converges to a continuous limit curve for sufficiently small d(P 0).

Proof
The geodesic conic subdivision scheme is the geodesic analogue of the shoulder point
conic subdivision scheme. Moreover, the invariance by affine transformations and the
inequality (24) means that shoulder point scheme is 0 − admisible ( and therefore it
converges to a continuous curve [Dyn92]). Hence, the geodesic conic subdivision scheme
also converges to a continuous curve for polygons P 0 such that d(P 0) sufficiently small,
see Theorem 7 in [WD05].

�
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4 The subdivision scheme on triangulated surfaces

Geodesic Bezier polynomial curves on triangulated surfaces were introduced in [MCV07]
by means of a subdivision algorithm which is the geodesic analogue of the classical de
Casteljau algorithm. More precisely, for a value of t ∈ [0, 1] previously selected and a
control polygon P 0 = {P 0

0 , P
0
1 , ..., P

0
n} with vertices in a triangulated surfaces S, the

geodesic Bezier curve of degree n is defined in [MCV07] as the limit curve of the classic
Bezier subdivision applied to P 0, substituting linear interpolation by geodesic inter-
polation. Since geodesic curves depend on the geometry of the surface, changing the
subdivision parameter t may lead to a different curve. In [MCV07] authors select a mid-
point subdivision scheme, i.e in the step j the Bezier control polygons for the intervals
[ i
2j ,

i+1
2j ], i = 0, ..., 2j − 1 are computed.

In this section we use a similar approach to compute geodesic conic curves on triangulated
surfaces, extending the method proposed in the previous section for a smooth surface
to a triangulated surface. As we previously saw, unlike the geodesic Bezier polynomial
curves, the geodesic conic curves don’t depend on the parameter t, since the subdivision
algorithm (11)-(14) is the geodesic analogue of the shoulder point subdivision scheme
(4)-(7).

4.1 Discrete geodesic curves

The key for the implementation of the geodesic conic subdivision algorithm when S is
a triangulated surface is to compute geodesic curves on S. Due to the increasing devel-
opment of discrete surface models different definitions of geodesic curves on polyhedral
surfaces have been introduced. Such curves are called discrete geodesics and we are
particulary interested in shortest geodesic curves passing through two prescribed points.
The problem of computing shortest geodesic curves on meshes have been extensively
treated, see for instance [KS98] and reference therein. We implemented the geodesic
conic subdivision scheme (11)-(14) using the method proposed in [MCV05] to compute
shortest geodesic curves passing through two prescribed points. This method is an
iterative algorithm that performs the geodesic computation in two steps. The first step
uses the Fast Marching Method to compute an initial approximation to the shortest
geodesic. The initial approximation is a polygonal curve with nodes on the edges or
vertices of the triangulation. In the second step, the position of the node with the
largest error is corrected and the error at neighboring nodes is updated. The process is
repeated until a small error is obtained. The error at a node is computed taking into
account the discrete geodesic curvature, see [MCV08]. The position of a node on the
initial approximation is corrected by unfolding a subset of faces adjacent to it.

4.2 Convex hull property

The following definitions were introduced in [MCV07].
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Definition 3 Convex set in a triangulated surface.
Let M be a connected subset of a triangulated surface S. We say that M is convex if its
boundary ∂M can be parametrized by a closed curve α(t), such that the discrete geodesic
curvature of α(t) does not change of sign and the interior of M is always situated in the
same side of α(t).

Definition 4 Convex hull.
The convex hull M of M ⊂ S is the intersection of all convex sets of S containing M .

Moreover, in [MCV07] it is shown that the intersection of two convex sets is a collection
of convex sets. Using the previous definitions and results it is easy to see that the i-
th section of the curve generated by the geodesic conic subdivision scheme (11)-(14) is
contained in the convex hull of the corresponding section P 0

i , P
0
i+1, P

0
i+2, i even, of the

initial geodesic control polygon P 0. More precisely, it is contained in the convex hull
of the geodesic polygon with vertices P 1

2i, P
1
2i+1, P

1
2i+2, P

1
2i+3, P

1
2i+4. Consequently, each

section of the subdivision curve corresponding to an edge of the initial geodesic control
polygon has the convex hull property.
Furthermore, the convex hull of the geodesic polygon with vertices P j

r , P
j
r+1, P

j
r+2 for

r = 2ji, 2ji+ 2, ..., 2j(i+ 2)− 2 obtained applying j-times the subdivision scheme (11)-
(14) to the control point P 0

i , P
0
i+1, P

0
i+2, contains the convex hull of the geodesic polygons

with vertices P j+1
2r , P j+1

2r+1, P
j+1
2r+2 and P j+1

2r+2, P
j+1
2r+3, P

j+1
2r+4 for r = 2ji, 2ji+2, ..., 2j(i+2)−2,

obtained applying (j + 1)-times the same subdivision rule to the points P 0
i , P

0
i+1, P

0
i+2.

Therefore, the geodesic discrete curvature of the section of the subdivision curve with
end points P 0

i , P
0
i+2 doesn’t change its sign. The last observation means that any point

on the conic subdivision curve where the geodesic curvature changes of sign has to be a
vertex of even index of the initial polygon.

4.3 User interaction and results

The geodesic conic subdivision scheme is very useful to design curves on a surface. In
this section we describe how to perform the interaction with the user in an intuitive and
friendly way. To obtain an smooth conic spline curve the points P 0

2i−1, P
0
2i, P

0
2i+1, i =

0, 1, ..., n− 1 of the initial control polygon have to lie on the same geodesic curve. Since
this kind of “collinearity” is not natural for the user, we introduce a simple preprocessing
step. Denote by Q0, Q1, ..., Qn the points selected by the user on the surface S. Then,
we construct the geodesic control polygon P 0 as follows,

P 0
0 = Q0

P 0
2i−1 = Qi, i = 1, ...n− 1
P 0

2i = (1− βi)Qi ⊕ βiQi+1, i = 1, ...n− 2
P 0

2n−2 = Qn

where 0 < βi < 1. In other words, the vertices P 0
2i are on the geodesic curve passing

through P 0
2i−1 and P 0

2i+1 for i = 1, ..., n−1. Initially we set βi = 0.5 for i = 1, ..., n−2 and
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Figure 4: Left: Initial control polygon on a triangulated surface, middle: the control
polygon and the geodesic conic subdivision curve after 3 steps, right: the subdivision
spline curve composed by 3 segments with all weights equal to 1. method (11)-(14)

also w0
2i = 1 for each segment with control polygon P 0

2i, P
0
2i+1, P

0
2i+2, i = 0, 1, ..., n − 2.

We apply the geodesic conic subdivision rules (11)-(14) and stop at some prescribed
level of subdivision or when control polygons can be considered as geodesic segments.
In terms of the algorithm proposed in [MCV08] the last condition means that all the
control vertices have an error smaller than a prescribed tolerance.
Figure 4 and Figure 5 show the performance of the geodesic conic subdivision scheme
on a triangulated surface and the advantages of using this kind of curves:

• local control: changing the position of any vertex of the control polygon only
affects at most two segments of the geodesic conic spline. This local control can
not be obtained with geodesic Bezier polynomial curves.

• geometric handles: the weight w0
i > 0 is a geometric handle that allows to control

the geometry of the section of the spline with control polygon P 0
i , P

0
i+1, P

0
i+2. A

value of w0
i close to 0 generates a conic subdivision segment close to the curve

cg(P 0
i , P

0
i+2). On the other hand, a large value of w0

i > 0 produces a subdivision
segment close to the geodesic polygon with vertices P 0

i , P
0
i+1, P

0
i+2.

5 Conclusions

A new subdivision scheme for designing curves on surfaces has been proposed. The
limit curve of this scheme is a continuous curve that can be considered as a natural
generalization of conic Bezier curves. The scheme depends on free parameters that are
very useful to control the shape of the subdivision curve, which also enjoys the convex
hull property. These geometric handles make the curves generated for the proposed
scheme a suitable tool for designing, editing and trimming on surfaces. We are currently
working in the proof of the G1 continuity of the subdivision curve.
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Figure 5: Initial polygon on a triangulated surface and the geodesic conic subdivision
curves obtained with three values of the weight, w0

0 = 0.5, 1, 4.
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