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SUMMARY

In this paper, we describe and analyze several block matrix iterative algorithms for solving a saddle
point linear system arising from the discretization of a linear-quadratic elliptic control problem with
Neumann boundary conditions. To ensure that the problem is well posed, a regularization term with a
parameter α is included. The first algorithm reduces the saddle point system to a symmetric positive
definite Schur complement system for the control variable and employs CG acceleration, however,
double iteration is required (except in special cases). A preconditioner yielding a rate of convergence
independent of the mesh size h is described for Ω ⊂ R2 or R3, and a preconditioner independent
of h and α when Ω ⊂ R2. Next, two algorithms avoiding double iteration are described using an
augmented Lagrangian formulation. One of these algorithms solves the augmented saddle point system
employing MINRES acceleration, while the other solves a symmetric positive definite reformulation
of the augmented saddle point system employing CG acceleration. For both algorithms, a symmetric
positive definite preconditioner is described yielding a rate of convergence independent of h. In addition
to the above algorithms, two heuristic algorithms are described, one a projected CG algorithm, and the
other an indefinite block matrix preconditioner employing GMRES acceleration. Rigorous convergence
results, however, are not known for the heuristic algorithms. Copyright c© 2000 John Wiley & Sons,
Ltd.
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problem, regularization, preconditioners.

1. INTRODUCTION

In this paper, we study the convergence of several iterative methods for solving a linear-
quadratic elliptic optimal control problem with Neumann boundary conditions [18, 19, 22, 25,
27]. Such problems seek to determine a control function u(·) defined on the boundary ∂Ω of a
domain Ω, to minimize some performance functional J(y, u) of the form:

J(y, u) ≡ 1
2

(
‖y − ŷ‖2L2(Ω0)

+ α1 ‖u‖2L2(∂Ω) + α2 ‖u‖2H−1/2(∂Ω)

)
, (1)
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2 MATHEW, SARKIS, SCHAERER

where ŷ(.) is a given target function that we seek to match on Ω0 ⊂ Ω with the solution
y(·) ∈ Vf to the elliptic problem in (2) with Neumann data u(·). Here ‖u‖2

H−1/2(∂Ω)
denotes a

dual Sobolev norm that will be defined later, and Vf denotes the affine space:

Vf ≡
{

(y, u) : −∆y(x) + σ y(x) = f(x) in Ω and
∂y(x)
∂n

= u(x) on ∂Ω
}
, (2)

defined in terms of a forcing f(·) and parameter σ > 0. The parameters α1, α2 are chosen to
regularize the functional J(y, u) to yield a well posed problem. A typical choice is α1 > 0 and
small, with α2 = 0. However, we shall also consider α1 = 0 with α2 > 0, which yields a weaker
regularization term, and show that it has attractive computational properties.

The finite element discretization of an elliptic optimal control problem yields a saddle point
linear system with a coefficient matrix that is symmetric indefinite. There is extensive literature
on saddle point iterative methods, see [5], while specific preconditioners have been studied for
discretizations of optimal control problems [3, 4, 6, 7, 17, 18, 19, 25, 28]. Our discussion
focuses on the analysis of block matrix algorithms based on CG or MINRES acceleration
[1, 5, 14, 17, 20, 21, 24, 30, 31, 33]. The first algorithm we consider requires double iteration
and is based on the solution of a reduced Schur complement system for the control variable
u. We describe a preconditioner which yields a well conditioned system with respect to h,
but dependent on α, for Ω ⊂ R2 or R3, and a preconditioner which yields a well conditioned
system with respect to h and α when Ω ⊂ R2. The second family of algorithms we study
avoids double iteration, and employs an augmented Lagrangian reformulation of the original
saddle point system [16]. Motivated by [21, 30], we describe a symmetric positive definite
preconditioner for the augmented system, employing MINRES acceleration, and a similar
preconditioner, motivated by [9, 20, 33], for a symmetric positive definite reformulation of the
augmented system, employing CG acceleration. In both cases, the preconditioners yield a rate
of convergence independent of the mesh size h, but dependent on the regularization parameters.
We also describe a heuristic algorithm based on the projected gradient method (motivated by
[15]) and a nonsymmetric block matrix preconditioner based on GMRES acceleration.

This paper is organized as follows. In § 2, we formulate the linear-quadratic elliptic
control problem with Neumann boundary conditions. Its weak formulation and finite element
discretization are described, and the block matrix form of the resulting saddle point system
(with Lagrange multiplier p(·)). In § 3, we describe a reduced Schur complement system for the
control variable u (obtained by formal elimination of y and the Lagrange multiplier variable p).
The reduced system is symmetric positive definite, and we describe suitable preconditioners
for it, requiring double iteration. In § 4, we describe an augmented Lagrangian reformulation
of the original saddle point system [16] to regularize the system without altering its solution.
We describe a symmetric positive definite block diagonal preconditioner for the augmented
saddle point system, for use with MINRES acceleration, and a similar preconditioner for
a symmetric positive definite reformulation of the augmented saddle point system, for use
with CG acceleration. The rates of convergence are shown to be independent of h, but
dependent on the regularization parameters. In § 5, we outline alternative algorithms, one
based on the projected gradient method (motivated by [15]), and another based on block
matrix preconditioning of the original saddle point system (using GMRES acceleration).

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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BLOCK MATRIX PRECONDITIONERS FOR ELLIPTIC CONTROL 3

2. OPTIMAL CONTROL PROBLEM

Let Ω ⊂ Rd denote a polygonal domain with boundary ∂Ω. We consider the problem of
determining a control function u(·) denoting the Neumann data on ∂Ω, so that the solution
y(·) to the following Neumann problem with forcing term f(·):{

−∆y(x) + σ y(x) = f(x), in Ω
∂y(x)

∂n = u(x), on ∂Ω.
(3)

minimizes the following performance functional J(y, u):

J(y, u) ≡ 1
2

(∫
Ω0

(y(x)− ŷ(x))2 dx+ α1

∫
∂Ω

u2(x) dsx + α2 ‖u‖2H−1/2(∂Ω)

)
, (4)

where ŷ(·) is a given target, and α1, α2 ≥ 0 are regularization parameters. For simplicity, we
shall assume that σ > 0, and as a result our theoretical bounds will depend on σ. The term
‖u‖H−1/2(∂Ω) denotes a dual Sobolev norm:

‖u‖H−1/2(∂Ω) ≡ sup
v∈H1/2(∂Ω)

∫
∂Ω
u v dsx

‖v‖H1/2(∂Ω)

,

where H1/2(∂Ω) =
[
L2(∂Ω),H1(∂Ω)

]
1/2

is a fractional index Sobolev space defined using
Hilbert scales, see [23]. An integral expression for ‖v‖H1/2(∂Ω) can be found in [23].

To obtain a weak formulation of the minimization of (4) within the constraint set (3), we
employ the function space H1(Ω) for y(·) and H−1/2(∂Ω) for u(·). Given f(·) ∈ L2(Ω), define
the constraint set Vf ⊂ V ≡ H1(Ω)×H−1/2(∂Ω) as follows:

Vf ≡
{
(y, u) ∈ V : A(y, w) = (f, w)+ < u,w >, ∀w ∈ H1(Ω)

}
, (5)

where the forms are defined by:
A(u,w) ≡

∫
Ω

(∇u · ∇w + σ uw) dx, for u,w ∈ H1(Ω)
(f, w) ≡

∫
Ω
f(x)w(x) dx, for w ∈ H1(Ω)

< u,w > ≡
∫

∂Ω
u(x)w(x) dsx, for u ∈ H−1/2(∂Ω), w ∈ H1/2(∂Ω).

(6)

The constrained minimization problem then seeks (y∗, u∗) ∈ Vf satisfying:

J(y∗, u∗) = min J(y, u).
(y, u) ∈ Vf

(7)

Remark 1. The regularization terms α1
2

∫
∂Ω
u2(x) dsx + α2

2 ‖u‖
2
H−1/2(∂Ω)

must be chosen
to modify J(y, u) so that the minimization problem (7) is well posed. When f(·) = 0, the
constraint set V0 will be a closed subspace of H1(Ω) × H−1/2(∂Ω), yet the minimization of
J(y, u) within V0 will not be well posed for α1 = 0 and α2 = 0 (due to the L2(Ω0) term).
To ensure well posedness of (7), saddle point theory [8, 29] requires the functional J(., .) to
be coercive within V0. When α1 > 0 and α2 = 0, it can be shown that J(y, u) is coercive in
V0 (though ‖u‖2L2(∂Ω) is not defined for u ∈ H−1/2(∂Ω), it will be defined for finite element
approximations). When α1 = 0 and α2 > 0, elliptic regularity theory shows that J(y, u) is
coercive within V0. This regularization term has the advantage of involving a weaker norm.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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4 MATHEW, SARKIS, SCHAERER

To obtain a saddle point formulation of (7), introduce p(·) ∈ H1(Ω) as a Lagrange multiplier
function to enforce the constraints. Define the following Lagrangian functional L(·, ·, ·):

L(y, u, p) ≡ J(y, u) + (A(y, p) + (f, p)+ < u, p >) , (8)

for (y, u, p) ∈ H1(Ω) ×H−1/2(∂Ω) ×H1(Ω). Then, the constrained minimum (y∗, u∗) can be
obtained from the saddle point (y∗, u∗, p∗) ∈ H1(Ω)×H−1/2(∂Ω)×H1(Ω) of L(·, ·, ·):

sup
q
L(y∗, u∗, q) = L(y∗, u∗, p∗) = inf

(y,u)
L(y, u, p∗). (9)

Saddle point problem (9) will be well posed if an inf-sup condition holds (it will hold trivially
for this problem), and if J(., .) is coercive within the subspace V0, see [8, 29]. As mentioned
before, the coercivity of J(y, u) can be proved within the subspace V0 when α1 = 0 and α2 > 0,
or when α1 > 0 and α2 = 0, but not when α1 = 0 and α2 = 0. In a strict sense, the term
‖u‖L2(∂Ω) will not be defined for u ∈ H−1/2(∂Ω). However, this term will be well defined for
finite element functions.

Remark 2. If ŷ(·) is sufficiently smooth, the functional J(y, u) = 1
2‖y − ŷ‖2H1(Ω0)

can also
be employed. When Ω0 = Ω, the functional J(y, u) = 1

2‖y − ŷ‖2H1(Ω) can easily be shown to
be coercive within V0 without additional regularization terms, and the saddle point problem
will be well posed. Efficient computational algorithms considered in this paper can easily be
adapted to this case.

To obtain a finite element discretization of the constrained minimization problem, choose
a quasi-uniform triangulation τh(Ω) of Ω. Let Vh(Ω) ⊂ H1(Ω) denote a finite element space
[2, 10, 11] defined on τh(Ω), and let Vh(∂Ω) ⊂ L2(∂Ω) denote its restriction to ∂Ω. A finite
element discretization of (7) will seek (y∗h, u

∗
h) ∈ Vh(Ω)× Vh(∂Ω) such that:

J(y∗, u∗) = min J(yh, uh)
(yh, uh) ∈ Vh,f

(10)

where the discrete constraint space Vh,f ⊂ Vh ≡ Vh(Ω)× Vh(∂Ω) is defined by:

Vh,f = {(yh, uh) ∈ Vh : A(yh, wh) = (f, wh)+ < uh, wh >, ∀wh ∈ Vh(Ω)} . (11)

Let ph ∈ Vh(Ω) denote discrete Lagrange multiplier variables, and let {φ1(x), . . . , φn(x)}
and {ψ1(x), . . . , ψm(x)} denote standard nodal finite element basis for Vh(Ω) and Vh(∂Ω),
respectively. Then, expanding each unknown yh, uh and ph with respect to the basis for each
finite element space:

yh(x) =
n∑

i=1

yi φi(x), uh(x) =
m∑

j=1

ui ψi(x), ph(x) =
n∑

l=1

pl φl(x), (12)

yields the linear system:  M 0 AT

0 G BT

A B 0


 y

u
p

 =

 f1
f2
f3

 , (13)

where the block submatrices M and A, and the matrix Q to be used later, are defined by:
Mij ≡

∫
Ω0
φi(x)φj(x) dx, for 1 ≤ i , j ≤ n

Aij ≡
∫
Ω

(∇φi(x) · ∇φj(x) + σ φi(x)φj(x)) dx, for 1 ≤ i , j ≤ n

Qij ≡
∫

∂Ω
ψi(x)ψj(x) dsx, for 1 ≤ i , j ≤ m,

(14)

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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BLOCK MATRIX PRECONDITIONERS FOR ELLIPTIC CONTROL 5

and the discrete forcing are defined by (f1)i =
∫
Ω0
ŷ(x)φi(x) dx, for 1 ≤ i ≤ n with f2 = 0,

and (f3)i =
∫
Ω
f(x)φi(x) dx for 1 ≤ i ≤ n. The matrix M of dimension n corresponds to

a mass matrix on Ω0, and the matrix A to the Neumann stiffness matrix. The matrix Q of
dimension m corresponds to a lower dimensional mass matrix on ∂Ω. The matrix B will be
defined in terms of Q, based on the following ordering of nodal unknowns in y and p. Order
the nodes in the interior of Ω prior to the nodes on ∂Ω. Denote such block partitioned vectors
as y =

(
yT

I ,y
T
B

)T and p =
(
pT

I ,p
T
B

)T , and define B of dimension n×m as:

B =

[
0
Q

]
and BT =

[
0 QT

]
, (15)

and define matrix G of dimension m, representing the regularizing terms as:

G ≡ α1Q+ α2

(
BTA−1B

)
. (16)

It will be shown later, that uT
(
BTA−1B

)
u is spectrally equivalent to ‖uh‖2H−1/2(∂Ω)

, when
u is the nodal vector associated with a finite element function uh(·).

Remark 3. The discrete performance functional has the representation:

J(y,u) =
1
2

[
y
u

]T [
M 0
0 G

] [
y
u

]
−

[
y
u

]T [
f1
f2

]
, (17)

after omission of a constant term, while the discretized constraints have the form:

Ay +Bu = f3. (18)

The following properties can be easily verified for the matrices M and A. The matrix M will
be singular when Ω0 6= Ω. The matrix A will be symmetric and positive definite when σ > 0.
However, when σ = 0, matrix A will be singular with A1 = 0 for 1 = (1, . . . , 1)T . In this
case, we shall require 1T f3 = 0 for solvability of (13). Theory for saddle systems [29] requires
the quadratic form yTMy + uTGu to be positive definite for Ay + Bu = 0 and y 6= 0 and
u 6= 0. This will ensure solvability of (13) (provided 1T f3 = 0 when A1 = 0).

Remark 4. The role of regularization and the role of the parameters αi can be heuristically
understood by considering the following least squares problem. Let H be a rectangular
or singular matrix of dimension m × n with singular value decomposition H = UΣV T .
Then, a minimum of the least squares functional F (x) = 1

2 ‖Hx − b‖2 will be given by
x∗ = H†b = V Σ†UT b. IfH has a non-trivial null space, there will be an affine space of minima.
Indeed, if N is a matrix of dimension n×k whose columns form a basis for the null space of H,
with Range(N) = Kernel(H), then a general minimum of F (x) will be x∗+Nβ for any vector
β ∈ Rk. If we employ partial regularization and define F̃ (x) = F (x) + α

2 ‖PNx‖2 where PN

denotes the Euclidean orthogonal projection onto the null space ofH, then the minimum of F̃ (·)
can be verified to be unique and occur at x∗ = H†b for any α > 0. If, however, a regularization
term of the form α

2 ‖x‖
2 is employed, and the minimum of F̂ (x) = F (x)+ α

2 ‖x‖
2 is sought, this

will yield the linear system (HTH + α I)x = HT b. Using, the singular value decomposition
of H, we may obtain the following representation of the unique solution to the regularized
problem x = V

(
ΣT Σ + α I

)−1 ΣTUT b. The ith diagonal entry of
(
ΣT Σ + α I

)−1 ΣT will be
σi/(σ2

i + α), so that if σi > 0, then σi/(σ2
i + α) → 1/σi as α → 0+, while if σi = 0, then

σi/(σ2
i + α) = 0. Thus, x → x∗ = H†b as α → 0+. In our applications, matrix H will

correspond to (BTA−TMA−1B), while x will correspond to u and F (.) to J(.).

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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6 MATHEW, SARKIS, SCHAERER

Remark 5. The choice of parameter α > 0 will typically be problem dependent. When
matrix H arises from the discretization of a well posed problem, the singular values of H will
be bounded away from 0. In this case, if α is chosen appropriately smaller than the smallest
nonzero singular value of H, the regularized solution will approach the pseudo-inverse solution.
However, when matrix H arises from the discretization of an ill posed problem, its singular
values will cluster around 0. In this case, care must be exercised in the choice of regularization
parameter α > 0, to balance the accuracy of the modes associated with the large singular
values, and to dampen the modes associated with the very small singular values.

Remark 6. In applications, alternate performance functionals may be employed, which
measure the difference between y(·) and ŷ(·) at different subregions of Ω. For instance, given
nodes z1, . . . , zr ∈ Ω, we may minimize the distance between y(·) and ŷ(·) at these points:

J(y, u) = 1
2

(∑r
l=1 |y(zl)− ŷ(zl)|2 + α1 ‖u‖2L2(∂Ω) + α2 ‖u‖2H−1/2(∂Ω)

)
.

This performance functional requires the measurement of y(x)− ŷ(x) at the r discrete nodes.
We must choose either α1 > 0 or α2 > 0 to regularize the problem. Another performance
functional, described below, requires the measurement of y(x)− ŷ(x) only on ∂Ω:

J(y, u) = 1
2

(∫
∂Ω
|y(x)− ŷ(x)|2 dsx + α1 ‖u‖2L2(∂Ω) + α2 ‖u‖2H−1/2(∂Ω)

)
. (19)

We shall obtain M = blockdiag(0, Q) and require α1 > 0 or α2 > 0 to regularize the problem.

3. PRECONDITIONED SCHUR COMPLEMENT ALGORITHMS

The first algorithm we consider for solving (13) is based on the solution of a reduced system
for the discrete control u. We shall assume that σ > 0 and that G > 0. Then, formally solving
the third block row in (13) will yield y = A−1 (f3 −Bu). Solving the first block row in (13)
will yield p = A−T

(
f1 −MA−1f3 +MA−1Bu

)
. Substituting these into the second block row

of (13) will yield the following reduced Schur complement system for u:(
G+BTA−TMA−1B

)
u = f2 −BTA−T f1 +BTA−TMA−1f3. (20)

The Schur complement matrix
(
G+BTA−TMA−1B

)
will be symmetric and positive definite

of dimension m, and system (20) can be solved using a PCG algorithm. Each matrix vector
product with G + BTA−TMA−1B will require the action of A−1 twice per iteration (this
can be computed iteratively, resulting in a double iteration). Once u has been determined by
solution of (20), we obtain y = A−1 (f3 −Bu) and p = A−T

(
f1 −MA−1f3 +MA−1Bu

)
. The

following result shows that if the parameters α1 > 0 or α2 > 0 are held fixed independent of h,
then matrix G will be spectrally equivalent to the Schur complement

(
G+BTA−TMA−1B

)
,

and can be used as a preconditioner. Unfortunately, in practice αi may be small (and possibly
dependent on h), and for such a case alternative preconditioners will be described later in
Remark 7 and Subsection 3.1.

Lemma 3.1. Suppose that α1 > 0 and α2 = 0 or α1 = 0 and α2 > 0. Then, there exists
γ, c̃ > 0 independent of h, α1, and α2 such that:(

uTGu
)
≤ uT

(
G+BTA−TMA−1B

)
u ≤ (1 + c)

(
uTGu

)
, ∀u ∈ Rm, (21)

where c = (γ/α1) c̃ when α2 = 0, and c = γ/α2 when α1 = 0.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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BLOCK MATRIX PRECONDITIONERS FOR ELLIPTIC CONTROL 7

Proof The lower bound follows trivially since
(
BTA−TMA−1B

)
≥ 0. To obtain the upper

bound, employ Poincare-Friedrichs’ inequality which yields γ > 0 independent of h such that
yTMy ≤ γ yTAy. Substituting this, yields:(

uTBTA−TMA−1Bu
)
≤ γ

(
uTBTA−TAA−1Bu

)
= γ

(
uTBTA−1Bu

)
.

When α1 = 0, matrix G = α2

(
BTA−1B

)
and the desired bound will hold trivially for

c = γ/α2. When α2 = 0, employ the block partition y =
(
yT

I ,y
T
B

)T to obtain:

BTA−1B =

[
0
Q

]T [
AII AIB

AT
IB ABB

]−1 [
0
Q

]
= QT

(
ABB −AT

IBA
−1
II AIB

)−1
Q.

The matrix S =
(
ABB −AT

IBA
−1
II AIB

)
denotes the discrete Dirichlet to Neumann map, and is

known to be symmetric and positive (when σ > 0), see [32]. Let uh, wh ∈ Vh(∂Ω) denote finite
element functions associated with u and w, respectively. Then, using properties of S yields:

uTBTA−1Bu = uTQTS−1Qu = ‖S−1/2Qu‖2

=
(

supv∈Rm
(S−1/2Qu,v)

‖v‖

)2

=
(

supv∈Rm
(Qu,S−1/2v)

‖v‖

)2

=
(
supw∈Rm

(Qu,w)
‖S1/2w‖

)2

≤ c̃
(
supwh∈Vh(∂Ω)

<uh,wh>
‖wh‖1/2,∂Ω

)2

≤ c̃
(
supw∈H1/2(∂Ω)

<uh,w>
‖w‖1/2,∂Ω

)2

= c̃
(
‖uh‖−1/2,∂Ω

)2

≤ c̃ (‖uh‖0,∂Ω)2

= c̃uTQu,

(22)

where c̃ denotes a parameter independent of h, which bounds the energy associated with S
in terms of the fractional Sobolev norm H1/2(∂Ω). This equivalence between ‖S1/2w‖ and
‖wh‖1/2,∂Ω is a standard result in domain decomposition literature [32]. We used (·, ·) to
denote the Euclidean inner product with norm ‖ · ‖, and < ·, · > to denote the duality pairing
between H1/2(∂Ω) and H−1/2(∂Ω) (pivoted using the L2(∂Ω) inner product), and uh(·) to
denote the finite element function associated with a nodal vector u. We also employed the
definition of dual norms of Sobolev spaces and the property that ‖u‖−1/2,∂Ω ≤ ‖u‖0,∂Ω when
u ∈ L2(∂Ω). This yields the upper bound c = (γ c̃/α1) when G = α1Q. Importantly, under
additional assumptions uTQTS−1Qu will be equivalent to ‖uh‖2H−1/2(∂Ω)

, see Remark 7.

Remark 7. The first inequality in (22) will also be an equivalence [32]. The second inequality
in (22) will be an equivalence too by considering wh as the L2(∂Ω) projection of w on Vh(∂Ω)
and by using the stability of the L2(∂Ω) projection in the H1/2(∂Ω) norm [32]. Henceforth,
let � denote an equivalence independent of h and αi. Thus uTQTS−1Qu � ‖uh‖2H−1/2(∂Ω)

.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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8 MATHEW, SARKIS, SCHAERER

The upper bound in Lemma 3.1 deteriorates as max{α1, α2} → 0+. As a result, G may
not be a uniformly effective preconditioner for

(
G+BTA−TMA−1B

)
as αi → 0+. The

spectral properties of the Schur complement
(
G+BTA−TMA−1B

)
can differ significantly

from those of G and (BTA−TMA−1B), depending on the weights αi. For instance, when
λmin(G) ≥ λmax(BTA−TMA−1B) it can be verified that cond(G,G + BTA−TMA−1B) ≤ 2,
so that G will be an effective preconditioner. On the other hand, if M is non-singular and
λmax(G) ≤ λmin(BTA−TMA−1B) then cond(BTA−TMA−1B,G + BTA−TMA−1B) ≤ 2, so
that (BTA−TMA−1B) will be a more effective preconditioner. Some preconditioners which
are uniformly effective with respect to α1, α2 and h will be considered in Subsection 3.1.

Remark 8. When M = 0, computing the action of G + BTA−TMA−1B on a vector will
be trivial. In this case, the Schur complement system for u can be solved without double
iteration, retaining a convergence rate independent of h. If matrix M is of low rank l, then
matrix BTA−TMA−1B can be assembled explicitly (at the cost of l matrix products with A),
and the Sherman-Morrison-Woodbury formula can be employed to compute the solution to
the perturbed system G+BTA−TMA−1B. For instance, if BTA−TMA−1B = UUT , then:

(G+ UUT )−1 = G−1 +G−1U(I + UTG−1U)−1UTG−1,

where we use that (I +UTG−1U) is invertible since G is symmetric positive definite. Such an
approach will be efficient only if l is small, since we will need to solve l systems with coefficient
matrix A in a preprocessing step.

Remark 9. When matrixM is nonsingular and its inverseM−1 is available, double iteration
may also be avoided as follows. Suppose α1 > 0. Define µ = −A−TMA−1Bu. Then, the
following extended block matrix system is easily seen to be equivalent to (20):[

ATM−1A B

BT −G

] [
µ

u

]
=

[
0
g

]
, (23)

where the right hand side g = −f2 + BTA−T f1 − BTA−TMA−1f3 can be computed at an
initial overhead cost (requiring the action of A−1). The above symmetric indefinite system can
be transformed into a symmetric positive definite system, using a technique described in [9]
(without requiring the action of A−1) as follows. Suppose A0 is a matrix spectrally equivalent
to A (such as a domain decomposition preconditioner), and M0 = hd I a suitably scaled matrix
spectrally equivalent to M , and G0 = α1 h

d−1 I also a suitably scaled matrix equivalent to G,
such that AT

0 M
−1
0 A0 ≤ ATM−1A (in the sense of quadratic forms). Then, system (23) can be

transformed into the following symmetric and positive definite system, see [9, 20, 33]:[
KK−1

0 K −K
(
KK−1

0 − I
)
B

BT
(
K−1

0 K − I
)

G+BTK−1
0 B

] [
µ

u

]
=

[
0
g

]
, (24)

where K = ATM−1A and K0 = AT
0 M

−1
0 A0. This system can be solved by a PCG algorithm,

using a block preconditioner blockdiag(K0, T0), where K0 is as in the preceding, and T0 is
spectrally equivalent to G0 + BTK−1

0 B. In the special case when J(y, u) = 1
2A(y − ŷ, y − ŷ),

matrix A will replace M in (23) and we will obtain the simplification ATM−1A = A, K0 = A0,
and T0 = G0. We omit further details.
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3.1. A uniformly effective preconditioner for C ≡
(
G+BTA−TMA−1B

)
The task of finding an effective preconditioner for the Schur complement C is complicated by
the presence of the parameters α1 ≥ 0 and α2 ≥ 0. As noted before, when α1 or α2 is large
(or equivalently, when λmin(G) is sufficiently large), G will be an effective preconditioner for
C, while when both α1 and α2 are small (or equivalently, when λmax(G) is sufficiently small),
and when M is nonsingular, matrix (BTA−TMA−1B) will be an effective preconditioner for
C. For intermediate values of αi, however, neither limiting approximation may be effective.
In the special case when Ω ⊂ R2, we shall indicate a preconditioner uniformly effective with
respect to α1 > 0 or α2 > 0. The general case will be considered in a subsequent paper.

The preconditioners that we shall formulate for C will be based on spectrally equivalent
representations of G and (BTA−TMA−1B), for special choices of the matrix M . Lemma 3.2
below describes uniform spectral equivalences between G, (BA−1B), (BTA−TMA−1B) and
one or more of the matrices I, S−1, S−2 or S−3, where S =

(
ABB −AT

IBA
−1
II AIB

)
denotes

the discrete Dirichlet to Neumann map. Properties of S have been studied extensively in the
domain decomposition literature [32].

Lemma 3.2. Let Ω ⊂ Rd be a convex domain. Then, the following equivalences will hold:

Q � hd−1 I

(BTA−1B) � h2d−2 S−1

(BTA−TMA−1B) � h3d−3 S−2, when M = blockdiag(0, Q)
(BTA−TMA−1B) � h4d−4 S−3, when M � hdI,

(25)

with coefficients independent of h, α1 and α2, where S = (ABB −AT
IBA

−1
II AIB).

Proof The first equivalence is a Gram matrix property on ∂Ω, while the second equivalence
follows from BTA−1B = QS−1Q, proved in Lemma 3.1. To prove the third equivalence, use:

A−1 =

[
A−1

II +A−1
II AIBS

−1AIBAIBA
−1
II −A−1

II AIBS
−1

−S−1AT
IBA

−1
II S−1

]
.

Employing this and using the block matrix structure of B yields:

A−1Bu =

[
−A−1

II AIBS
−1Qu

S−1Qu

]
.

Substituting this into (BTA−TMA−1B) with M = blockdiag(0, Q) yields BTA−TMA−1B =
QS−1QS−1Q and the third equivalence follows. To prove the fourth equivalence, let uh denote
a finite element control function defined on ∂Ω with associated nodal vector u. Let vh denote
the Dirichlet data associated with the Neumann data uh, i.e. with associated nodal vector
v = S−1Qu. When M � hdI is the mass matrix on Ω, then uT (BTA−1MA−1B)u will be
equivalent to ‖Evh‖2L2(Ω), where Evh denotes the discrete harmonic extension of the Dirichlet
boundary data vh into Ω with associated nodal vector A−1Bu. When Ω is convex, H2(Ω)
elliptic regularity will hold for (3) and a result from [26] shows that ‖Evh‖2L2(Ω) is spectrally
equivalent to ‖vh‖2H−1/2(∂Ω)

. In matrix terms, the nodal vector associated with the discrete
Dirichlet data vh will be v = S−1Qu, given by the discrete Neumann to Dirichlet map. For
vh ∈ H−1/2(∂Ω), it will hold that ‖vh‖2H−1/2(∂Ω)

is spectrally equivalent to vTQTS−1Qv, in
turn equivalent to uTQTS−1QTS−1QS−1Qu and the fourth equivalence follows.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
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10 MATHEW, SARKIS, SCHAERER

As an immediate corollary, we obtain the following uniform equivalences.

Corollary 3.3. When Ω is a convex domain, the following equivalences will hold for C:

C � α1 h
d−1I + α2 h

2d−2S−1 + h3d−3S−2, when M = blockdiag(0, Q)
C � α1 h

d−1I + α2 h
2d−2S−1 + h4d−4S−3, when M � hdI.

(26)

Proof Follows immediately from Lemma 3.2.

An FFT based preconditioner for C. When Ω ⊂ R2, matrix S (hence, Q, S−1, etc) will
have an approximate spectral representation involving the discrete Fourier Transform U . The
Dirichlet to Neumann map S will be spectrally equivalent to an appropriately scaled square
root of the discretization of the Laplace-Beltrami operator LB = − d2

ds2
x

on ∂Ω, see [32]. On ∂Ω
and for quasi-uniform triangulation on ∂Ω, the discretization of the Laplace-Beltrami operator
with periodic boundary conditions will yield a matrix spectrally equivalent to the circulant
matrix H0 = h−1 circ(−1, 2,−1), since ∂Ω is a loop. Matrix H0 will be diagonalized by the
discrete Fourier transform U , yielding H0 = UΛH0U

T , where ΛH0 is a diagonal matrix whose
entries can be computed analytically [32]. If Q denotes the mass matrix on ∂Ω, then it will
be spectrally equivalent to the circulant matrix Q0 ≡ h

6 circ(1, 4, 1) and diagonalized by the
discrete Fourier transform, with Q0 = UΛQ0U

T . An analytical expression can be derived for
the eigenvalues ΛQ0 , where h

3 ≤ (ΛQ0)i ≤ h. Based on the above expressions, we may employ
the representations:

S0 � Q
1/2
0

(
Q
−1/2
0 H0Q

−1/2
0

)1/2

Q
1/2
0 ≡ UΛS0U

T = U
(
Λ1/4

Q0
Λ1/2

H0
Λ1/4

Q0

)
UT

Sr
0 � UΛr

S0
UT

Q � UΛQ0U
T � hUIUT .

The following approximate representations will hold for C � C0:

C0 � U
(
α1 ΛQ0 + α2 h

2Λ−1
S0

+ h3Λ−2
S0

)
UT , when M = blockdiag(0, Q)

C0 � U
(
α1 ΛQ0 + α2 h

2Λ−1
S0

+ h4Λ−3
S0

)
UT , when M � h2I.

(27)

The eigenvalues of C−1
0 can be found analytically, and the action of C−1

0 can be computed at
low cost using FFT’s. Such preconditioners, however, are not easily generalized to Ω ⊂ R3.

An algebraic preconditioner for S−1. We also describe an algebraic preconditioner S̃−1

for S−1, applicable when Ω ⊂ R2 or R3. It can precondition G = α2 (QTS−1Q). If
G ≤ (BTA−TMA−1B), we may apply it repeatedly to precondition C � h3d−3S−2 or
C � h4d−4S−4, depending on whether M = blockdiag(0, Q) or M � hdI. This preconditioner
for S−1 will be based on a subregion (Ω \D) ⊂ Ω surrounding ∂Ω. Let D ⊂ Ω be a subregion
with dist (∂D, ∂Ω) ≥ β > 0, independent of h. Let Ã denote the submatrix of A:

Ã =

[
ÃII AIB

AT
IB ABB

]
,

corresponding to a discretization of the elliptic equation on Ω \ D with Neumann boundary
conditions on ∂Ω and zero Dirichlet boundary conditions on ∂D. By construction, the matrix
S̃ =

(
ABB −AT

IBÃ
−1
II AIB

)
will be spectrally equivalent to S =

(
ABB −AT

IBA
−1
II AIB

)
, since
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the Schur complement energy of the discrete harmonic extension into Ω \D will be equivalent
to the Schur complement energy of the discrete harmonic extension into Ω, (as both will be
equivalent to the H1/2(∂Ω) norm square of its boundary data). Applying S̃ will require an
exact solver for ÃII (such as a band solver, if β > 0 is small).

4. PRECONDITIONED AUGMENTED LAGRANGIAN ALGORITHMS

The second category of algorithms we consider for solving system (13) will avoid double
iteration, and correspond to saddle point preconditioners for an augmented Lagrangian
reformulation [16] of the original system. Traditional saddle point algorithms, such as Uzawa
and block preconditioners [9, 13, 14, 20, 21, 30, 33], may not be directly applicable to
system (13) since matrix M can possibly be singular. Instead, in the augmented Lagrangian
system, the block submatrix blockdiag(M,G) is transformed into a symmetric positive definite
submatrix, so that traditional saddle point methods can be applied. We shall describe
preconditioners employing MINRES [14, 13, 21, 30] and CG acceleration [9, 20, 33].

Augmenting the Lagrangian [16], is a method suitable for regularizing a saddle point system
without altering its solution. Formally, the augmented Lagrangian method seeks the minimum
of an augmented energy functional Jaug(y,u):

Jaug(y,u) ≡ J(y,u) + ρ
2 ‖Ay +Bu− f3‖2A−1

0

= J(y,u) + ρ
2 (Ay +Bu− f3)

T
A−1

0 (Ay +Bu− f3)

subject to the same constraint Ay + Bu − f3 = 0. Here, matrix A0 will be assumed to be
a symmetric positive definite matrix of dimension n, spectrally equivalent to A, while ρ ≥ 0
is a parameter. By construction, the term ‖Ay + Bu − f3‖2A−1

0
will be zero in the constraint

set, so that the solution of the constrained minimization problem is unaltered. Defining an
augmented Lagrangian functional Laug(y,u,p):

Laug(y,u,p) = Jaug(y,u) + pT (Ay +Bu− f3) , (28)

and seeking its saddle point will yield the following modified saddle point system: M + ρATA−1
0 A ρATA−1

0 B AT

ρBTA−1
0 A G+ ρBTA−1

0 B BT

A B 0


 y

u
p

 =

 f1 + ρATA−1
0 f3

f2 + ρBTA−1
0 f3

f3

 . (29)

The above system can alternatively be obtained from (13) by multiplying the third block row
of (13) by ρATA−1

0 and adding it to the first block row, and multiplying the third block row
of (13) by ρBTA−1

0 and adding it to the second block row.
To simplify our discussion, we shall employ the notation:

K ≡

[
M + ρATA−1

0 A ρATA−1
0 B

ρBTA−1
0 A G+ ρBTA−1

0 B

]
, NT ≡

[
AT

BT

]
, w ≡

[
y
u

]
, (30)

so that the augmented saddle point system can be represented more compactly as:[
K NT

N 0

] [
w
p

]
=

[
f
g

]
, (31)
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12 MATHEW, SARKIS, SCHAERER

where f =
(
(f1 + ρATA−1

0 f3)T , (f2 + ρBTA−1
0 f3)T

)T
and g = f3. This coefficient matrix

is symmetric indefinite, and we shall consider two algorithms for solving it using a block
diagonal preconditioner of the form blockdiag(K0, T0), whereK0 and T0 are matrices spectrally
equivalent to K and T = NK−1NT , respectively.

Our first augmented Lagrangian method will solve (31) using the MINRES algorithm with
blockdiag(K0, T0) as a preconditioner. Our second method will transform (31) into a symmetric
positive definite system [9], and solve it using the CG algorithm. Analysis of system (31)
with preconditioner blockdiag(K0, T0) shows that effective MINRES or CG algorithms can be
formulated, providedK0 and T0 are spectrally equivalent toK and T = NK−1NT respectively,
[9, 13, 14, 20, 21, 30, 33]. We now consider blockdiag(ATA−1

0 A,G) as a preconditioner for K.

Lemma 4.1. Let G be positive definite, and suppose the following hold.

1. Let yTMy ≤ γ1

(
yTATA−1

0 Ay
)

for some γ1 > 0 independent of h.
2. Let vT

(
BTA−1

0 B
)
v ≤ γ2

(
vTGv

)
for some γ2 > 0 independent of h.

3. Let β∗ ≡
(2+γ2)−

√
γ2
2+4γ2

2 and β∗∗ ≡
(2+γ1+γ2)+

√
(γ1−γ2)2+4γ2

2 .

Then, for
(
yT ,uT

)T 6= 0, the following bounds will hold:

β∗ ≤

[
y
u

]T [
M +ATA−1

0 A ATA−1
0 B

BTA−1
0 A G+BTA−1

0 B

] [
y
u

]
[

y
u

]T [
ATA−1

0 A 0
0 G

] [
y
u

] ≤ β∗∗. (32)

Proof Expand the quadratic form associated with the block matrix:

[
y
u

]T [
M +ATA−1

0 A ATA−1
0 B

BTA−1
0 A G+BTA−1

0 B

] [
y
u

]
=

(
yTMy + yTATA−1

0 Ay + uTGu + uTBTA−1
0 Bu

)
+ 2yTATA−1

0 Bu,

(33)

and employ Schwarz’s inequality, using the identity 2ab ≤ θ a2 + b2

θ for 0 < θ <∞:

2
∣∣yTATA−1

0 Bu
∣∣ ≤ θyTATA−1

0 Ay +
1
θ
uTBTA−1

0 Bu. (34)

To obtain an upper bound, substitute (34) into (33) and choose θ:(
yTMy + yTATA−1

0 Ay + uTGu + uTBTA−1
0 Bu

)
+ 2yTATA−1

0 Bu

≤ (1 + γ1 + θ)yTATA−1
0 Ay + (1 + γ2 + γ2

θ )uTGu ≤ β∗∗
(
yTATA−1

0 Ay + uTGu
)
.
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by equating β∗∗ ≡ (1+γ1 +θ) = (1+γ2 + γ2
θ ). To obtain a lower bound, expand (33) as follows:(

yTMy + yTATA−1
0 Ay + uTGu + uTBTA−1

0 Bu
)

+ 2yTATA−1
0 Bu

≥
(
yTATA−1

0 Ay + uTGu + uTBTA−1
0 Bu

)
− 2

∣∣yTATA−1
0 Bu

∣∣
≥

(
yTATA−1

0 Ay + uTGu + uTBTA−1
0 Bu

)
−(1− θ̃)

(
yTATA−1

0 Ay
)
− 1

1−θ̃
uTBTA−1

0 Bu

≥ θ̃
(
yTATA−1

0 Ay
)

+ uTGu− θ̃
1−θ̃

uTBTA−1
0 Bu

≥ θ̃
(
yTATA−1

0 Ay
)

+ 1−(1+γ2)θ̃

1−θ̃
uTGu

≥ β∗
(
yTATA−1

0 Ay + uTGu
)
,

where we require 0 < θ̃ < 1 and such that β∗ ≡ θ̃ = 1−(1+γ2)θ̃

1−θ̃
.

Remark 10. The upper bound β∗∗ in (32) can be replaced by max{2 + γ1, 2γ2 + 1}. This
simpler upper bound can be derived by substituting (34) into (33) and choosing θ = 1.
Similarly, the lower bound β∗ in (32) can be replaced by min{ 1

2+2γ2
, 1+γ2

2γ2+1}. This can be
derived by choosing θ̃ = 1/(2 + 2γ2). Replacing β∗∗ by max{2 + γ1, 2γ2 + 1} will lead to
a more tractable expression for the optimal parameter ρopt which minimizes the condition
number in (32), when a scaling parameter ρ > 0 is introduced in the augmented Lagrangian
formulation and A−1

0 is replaced by ρA−1
0 in Lemma 4.1. If γ1, γ2 are as defined earlier

(corresponding to the choice ρ = 1), then the following bounds will hold when
(
yT ,uT

)T 6= 0:

β∗(ρ) ≤

[
y
u

]T [
M + ρATA−1

0 A ρATA−1
0 B

ρBTA−1
0 A G+ ρBTA−1

0 B

] [
y
u

]
[

y
u

]T [
ρATA−1

0 A 0
0 G

] [
y
u

] ≤ max{2 +
γ1

ρ
, 2γ2 ρ+ 1},

(35)

where β∗(ρ) = (2+γ2 ρ)−
√

γ2
2ρ2+4γ2 ρ

2 . Denote the condition number in (35) by κ(ρ):

κ(ρ) ≡
max{2 + γ1

ρ , 2γ2 ρ+ 1}
β∗(ρ)

.

The scaling parameter ρ = ρopt can be chosen to minimize the above condition number. It can
be verified easily that (2 + γ1/ρ) /β∗(ρ) intersects (2γ2 ρ+ 1) /β∗(ρ) when ρ = ρ∗:

ρ∗ =
1 +

√
1 + 8 γ1 γ2

4 γ2
.

Furthermore, it can be verified that (2γ2 ρ+ 1) /β∗(ρ) is monotonically increasing for ρ ≥ ρ∗.
Consequently, the optimal choice ρopt of parameter ρ will occur for ρ ∈ (0, ρ∗]:

κ(ρopt) = min
0<ρ≤ρ∗

κ(ρ).

An explicit expression can be derived for ρopt (using Maple or Mathematica), however, we
shall omit the resulting expression, since it is lengthy.
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Remark 11. The limiting case ρ = 0 yields the original saddle point system (13). If M is
nonsingular, then choosing a preconditioner K0 for K = blockdiag(M,G) will be simple. If
Ω0 = Ω, we may choose K0 = blockdiag(M0, G0), where M0 and G0 are spectrally equivalent
to M and G, respectively.

Remark 12. In applications to control system (29), matrix A0 can be chosen as a
preconditioner spectrally equivalent to A. Then, A−1

0 will be spectrally equivalent to A−1, and
ATA−1

0 A will be spectrally equivalent to A. An application of Poincare-Freidrichs inequality
will yield the bound assumed in Lemma 4.1 with γ1 independent of h. Furthermore, when A0 is
spectrally equivalent to A, it will also hold that BA−1

0 BT is spectrally equivalent to QTS−1Q,
and the arguments employed in Lemma 3.1 will yield the bound assumed in Lemma 4.1 with
γ2 independent of h.

We shall consider two approaches which employ a preconditioner K0 for K to precondition
the augmented Lagrangian saddle point system. The first approach, described in Section 4.1,
solves the augmented saddle point system using the MINRES algorithm with a block diagonal
preconditioner. The second approach, described in Section 4.2, reformulates the augmented
saddle point system as a symmetric positive definite system and solves it using a CG algorithm.

4.1. Minimum Residual Acceleration

Consider now the solution of system (31) for ρ > 0, with K, N , w, p defined by (30). Since
system (31) is symmetric but indefinite, the CG algorithm cannot be employed to solve it.
Instead, our first method employs the MINRES algorithm [30, 31] for symmetric indefinite
systems.

Typically, the rate of convergence of the MINRES algorithm to solve a saddle point
system depends on the intervals [−d,−c] and [a, b] containing the negative and positive
eigenvalues of the preconditioned system [5, 13, 20, 21, 30, 33]. Theoretical convergence
bounds for the MINRES algorithm are generally weaker than than for the CG algorithm,
however, its rate of convergence will be independent of a parameter provided the intervals
containing the eigenvalues are fixed and bounded away from zero, independent of the
same parameter. In particular, if a symmetric positive definite preconditioner of the form
blockdiag(K0, T0) is employed to precondition (31), and K0 and T0 are spectrally equivalent
to K and T = NK−1NT , respectively, independent of a parameter, then the rate of
convergence of the preconditioned MINRES algorithm will also be independent of that
parameters [12, 13, 20, 21, 24, 30, 33]. The next result considers K0 = blockdiag(ρA0, G0)
as a preconditioner for K and a matrix A∗ spectrally equivalent to T0 = ρ−1A+BG−1BT

Lemma 4.2. Suppose the following conditions hold.

1. Let A0 be spectrally equivalent to A, independent of h.
2. Let G0 be spectrally equivalent to G, independent of h.
3. Let A∗ be spectrally equivalent to ρ−1A+BG−1BT , independent of h.

Then, the rate of convergence of the MINRES algorithm to solve (31) using the preconditioner
L0 = blockdiag(ρA0, G0, A∗) will be independent of h (but not α1, α2) for ρ > 0.
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Proof When A0 is spectrally equivalent to A, an application of Lemma 4.1 will yield γ1

and γ2 to be independent of h, and blockdiag(ρATA−1
0 A,G) to be spectrally equivalent

to K, independent of h. Matrix ATA−1
0 A will be spectrally equivalent to A and to A0,

thus, replacing ATA−1
0 A by A0 and G by G0 will yield that K0 = blockdiag(ρA0, G0) to

be spectrally equivalent to K, independent of h. Spectral equivalence between K and K0

immediately yields spectral equivalence between T = NK−1NT and NK−1
0 NT . Substituting

K0 = blockdiag(ρA0, G0) into NK−1
0 NT yields ρ−1ATA−1

0 A+BTG−1
0 B, which is spectrally

equivalent to ρ−1A + BTG−1B. Analysis of saddle point algorithms show that the rate of
convergence of iterative algorithms to solve a system of the form (31) using a preconditioner
blockdiag(K0, T0), will be independent of a parameter, provided K0 and T0 are spectrally
equivalent to K and T = NK−1NT , independent of that parameter. Thus, it will be sufficient
to require A∗ to be spectrally equivalent to ρ−1A+BTG−1B.

Remark 13. Each application L−1
0 of L0 = blockdiag(ρA0, G0, A∗) will require the action

of A−1
0 once, G−1

0 once and A−1
∗ once. Each multiplication by K can be computed using:

K

[
y
u

]
=

[
My
Gu

]
+

[
AT

BT

]
A−1

0

(
AT y +B u

)
. (36)

This will require the action of A−1
0 once.

Remark 14. Matrix A∗ should be spectrally equivalent to ρ−1A + BTG−1B. When
G = α1Q, this requires matrix A∗ to be spectrally equivalent to:

A∗ � ρ−1

[
AII AIB

AT
IB

ρ
α1
Q+ABB

]
.

This will correspond to a discretization of a scaled Laplacian with Robin boundary conditions
on ∂Ω. In this case, any suitable Robin preconditioner A∗ (using domain decomposition, for
instance) can be employed. When G = α2Q

TS−1Q, matrix A∗ will be required to satisfy:

A∗ � ρ−1

[
AII AIB

AT
IB ABB

]
+ α−1

2

[
0 0
0 S

]
= ρ−1

[
AII AIB

AT
IB

ρ
α2
S + ABB

]
,

where S =
(
ABB −AT

IBA
−1
II AIB

)
. Since AT = A > 0, it will hold that ST = S > 0. The

following algebraic property can also be shown to hold (in the sense of quadratic forms):[
0 0
0 0

]
≤

[
0 0
0 S

]
≤

[
AII AIB

AT
IB ABB

]
.

As a result, it will hold that:

ρ−1

[
AII AIB

AT
IB ABB

]
≤ ρ−1

[
AII AIB

AT
IB ABB + ρ

α2
S

]
≤ (ρ−1+α−1

2 )

[
AII AIB

AT
IB ABB

]
.

Thus, it is sufficient that A∗ be spectrally equivalent to the Neumann matrix A.
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4.2. Conjugate Gradient Acceleration

The CG method cannot be applied directly to solve system (31), since it is symmetric indefinite.
However, it is shown in [9] that a general saddle point system of the form (31) can be
transformed into an equivalent symmetric positive definite system. This resulting system may
be solved by the CG method. We shall describe the transformation below. Let K0 denote a
symmetric positive definite preconditioner for K satisfying:

ε1K ≤ K0 ≤ ε2K, for 0 < ε1 ≤ ε2 < 1 ,

independent of h. Then, a symmetric positive definite system equivalent to (31) is:[
KTK−1

0 K −K (KTK−1
0 − I)NT

N(K−1
0 K − I) NK−1

0 NT

] [
w
p

]
=

[
(KTK−1

0 − I)f
NK−1

0 f − g

]
. (37)

The coefficient matrix L in (37) can be shown to be spectrally equivalent to L0 below:

L =

[
KTK−1

0 K −K (KTK−1
0 − I)NT

N(K−1
0 K − I) NK−1

0 NT

]
and L0 =

[
K0 0
0 T0

]
, (38)

where T0 is any matrix spectrally equivalent to T = NK−1NT , see [9, 20, 33]. We may
thus obtain the solution to (31) by solving (37) employing the CG method, with L0 as a
preconditioner. The resulting rate of convergence will be independent of h.

As before, Lemma 4.1 suggests how to construct a symmetric positive definite preconditioner
K0 forK, satisfyingK0 ≤ ε2K. Suppose A0 is spectrally equivalent to A, additionally satisfying
A0 ≤ A. Then, A0 and ATA−1

0 A will also be spectrally equivalent, with A0 ≤ A ≤ ATA−1
0 A.

If G0 is spectrally equivalent to G, satisfying G0 ≤ G, then Lemma 4.1 will yield:

K0 ≡ ε2 θ∗(ρ)

[
ρA0 0
0 G0

]
≤ ε2K = ε2

[
M + ρATA−1

0 A ρATA−1
0 B

ρBTA−1
0 A G+ ρBTA−1

0 B

]
.

(39)
Thus, once spectrally equivalent matrices A0 ≤ A and G0 ≤ G have been chosen, and
parameter θ∗(ρ) has been estimated, the preconditioner K0 defined by (39) can be employed
to transform indefinite system (31) into the symmetric positive definite system (37). The CG
method can be employed to solve system (37) with spectrally equivalent preconditioner L0

defined by (38).
Remark 15. In practical implementations of the conjugate gradient method to solve (37),

the matrix-vector product with L can be computed as follows, when w =
(
yT ,uT

)T :

L

[
w
p

]
=

[
(KTK−1

0 − I)
(
Kw +NT p

)
N [K−1

0 (Kw +NT p)−w]

]
.

Each matrix-vector product with K can be computed as in (36), requiring the action of A−1
0

once. Each matrix-vector multiplication with L will require two matrix-vector multiplications
with K and one matrix-vector multiplications with K−1

0 (which together require the action of
A−1

0 three times). Also note that the action of inverse L−1
0 of a block diagonal preconditioner

requires the action of A−1
0 and A−1

∗ . Thus, each iteration of this preconditioned conjugate
gradient algorithm will require the action of A−1

0 four times and that of A−1
∗ once, per iteration.

For alternative efficient implementations, see [12].
The following bounds can be proved for the resulting CG algorithm.
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Lemma 4.3. Suppose the following conditions hold.

1. Let A0 be spectrally equivalent to A satisfying A0 ≤ A.
2. Let G0 ≤ G be spectrally equivalent to G.
3. Let A∗ be spectrally equivalent to 1

ε2 θ∗(ρ)

(
ρ−1A+BG−1BT

)
.

Then, for the choice K0 = ε2 θ∗(ρ) blockdiag(ρA0, G0), the matrix:

L0 = blockdiag(K0, A∗) =

[
K0 0
0 A∗

]
,

will be spectrally equivalent to L in (37), independent of h.

Proof By construction, matrix K0 will satisfy K0 ≤ ε2K and be spectrally equivalent to
K. As a result, by [9, 20, 33], the coefficient matrix L in (37) will be symmetric positive
definite, and spectrally equivalent to L0 = blockdiag(K0, NK

−1
0 NT ). For the special choice

K0 = ε2 θ∗(ρ) blockdiag(ρA0, G0) ≤ ε2K, we obtain:

(NK−1
0 NT ) =

1
ε2 θ∗(ρ)

(
ρ−1AA−1

0 AT + BG−1
0 BT

)
,

where AA−1
0 AT is spectrally equivalent to A0, and BG−1

0 BT has block structure:

BG−1
0 BT =

[
0
Q

]
G−1

0

[
0
Q

]T

=

[
0 0
0 QG−1

0 QT

]
.

Thus, ρ−1AA−1
0 AT +BG−1

0 BT will be spectrally equivalent to:

ρ−1A+BG−1BT = ρ−1

[
AII AIB

AT
IB ABB + ρQG−1

0 QT

]
.

The desired result follows when A∗ is spectrally equivalent to 1
ε2θ∗(ρ)

(
ρ−1A+BG−1BT

)
.

5. ALTERNATIVE APPROACHES

In this section, we shall describe two alternative heuristic approaches to solving (13) when
matrix M is singular. One approach describes a projected gradient method, as in [15], without
the use of the augmented Lagrangian formulation or the reduced Schur complement system
for u. In another approach, a nonsymmetric block matrix preconditioner is proposed for (13)
and accelerated by GMRES.

5.1. Projected gradient method

Suppose that M is a matrix of rank (n − k), where dim (Kernel(M)) = k. Let H denote a
matrix of dimension n× k, whose columns form a basis for the null space of M :

Range(H) = Kernel(M) ⊂ Rn.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:1–6
Prepared using nlaauth.cls



18 MATHEW, SARKIS, SCHAERER

When M is singular, the first block row of (13) will be solvable only when:

HT
(
f1 −AT p

)
= 0 =⇒ y = M† (

f1 −AT p
)

+H α,

where α ∈ Rk. Here, M† denotes the Moore-Penrose pseudoinverse of M . Formally solving the
second block row for u, yields:

u = G−1
(
f2 −BT p

)
.

Formally substituting the preceding two expressions for y and u into the third block row yields
the following reduced system for p, together with HT

(
f1 −AT p

)
= 0, the requirement for

consistency of the first block row:{
AH α− (AM†AT +BG−1BT )p = f3 −AM†f1 −BG−1f2

HTAT p = HT f1.

Define the following Euclidean orthogonal projection P0 = AH
(
HTATAH

)−1
HTAT onto

Range(AH) (where Range(AH) has dimension k). Applying (I−P0) to the preceding system,
and noting that (I − P0)AHα = 0 yields:

(I − P0)
(
AM†AT +BG−1BT

)
p = −(I − P0)

(
f3 −AM†f1 −BG−1f2

)
,

together with the constraint HTAT p = HT f1. We may decompose:

p = p∗ + p̃, where HTAT p∗ = HT f1,

so that HTAT p̃ = 0. The term p∗ can be sought as p∗ = AH γ∗ for some γ∗ ∈ Rk. This will
yield p∗ = AH

(
HTATAH

)−1
HT f1, and the following system for p̃:

(I − P0)
(
AM†AT +BG−1BT

)
p̃ = g̃,

where g̃ ≡ (I − P0)
(
AM†f1 +BG−1f2 − f3 −

(
AM†AT +BG−1BT

)
p∗

)
. Since HTAT p̃ = 0,

it will formally hold that (I − P0)p̃ = p̃, so that we may solve the system for p̃ using a
conjugate gradient algorithm. A preconditioner T may be employed, such that the action of
its inverse is given by:

T−1 ≡ (I − P0)
(
A0M

†AT
0 +BG−1BT

)−1
(I − P0).

The term
(
AM†AT +BG−1BT

)−1 may be replaced by A−T
0 MA−1

0 .

5.2. Block preconditioner

Another approach to solve (13) is to precondition this system by a nonsymmetric block matrix
preconditioner L0, as described below, and to use GMRES acceleration [31]:

L0 =

 M 0 AT

0 G BT

A 0 0

 .
It is easily verified that block matrix L0 is easily inverted. A heuristic analysis of the eigenvalues
of L−1

0 L (where L denotes the original symmetric, indefinite saddle point coefficient matrix),
can be obtained by analyzing: M 0 AT

0 G BT

A B 0


 y

u
p

 = λ

 M 0 AT

0 G BT

A 0 0


 y

u
p

 (40)
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The eigenvalues may be estimated as follows. From (40) we obtain:
(1− λ)My + (1− λ)AT p = 0
(1− λ)Gu + (1− λ)BT p = 0

(1− λ)Ay +Bu = 0
(41)

If λ = 1, then Bu = 0, with y and p arbitrary, yielding u = 0. The eigenspace will have
dimension 2n. If λ 6= 1, then:

(1− λ)Gu =
(
BTA−TMA−1B

)
u (42)

If Range(A−1B) ∩ Kernel(M) = {0}, we will obtain c1 h
r ≤ (1 − λ) ≤ c2 < 1 for some

c1, c2 > 0 independent of h. This will yield m eigenvectors. Thus, all eigenvalues λ will lie in
an interval [1− c2, 1] away from the origin.

6. CONCLUDING REMARKS

In this paper we have mainly described two approaches for iteratively solving the saddle point
system (13). Both approaches avoid the use of GMRES acceleration and can be applied for
two alternate choices of regularization terms. The first method is based on the CG solution
of a Schur complement system, and requires double iteration, while the method, based on the
augmented Lagrangian formulation, avoids double iteration. In both cases, the preconditioners
described yield rates of convergence independent of h, however, the rate of convergence may
depend on the magnitude of the regularization parameters α1 > 0 and α2 > 0 (except for the
FFT based preconditioner applicable when Ω ⊂ R2).

Throughout the paper, we have assumed that σ > 0, so that matrix A is symmetric positive
definite. However, if σ = 0 in an application, then matrix A will be singular with 1 = (1, . . . , 1)T

spanning the null space of A. In this case, all the preceding algorithms must be appropriately
modified, by replacing A−1 by A†. The action of A† on a vector can be computed numerically
by filtering out the components of this vector in the direction of 1 using a projection (I −P0)
where P0 denotes the Euclidean orthogonal projection onto 1.
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