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Abstract. Our main result says that the generic rank of the Baum-Bott Map
for foliations of degreee d, d ≥ 2, of the projective plane is d2 + d. This answers
a question of Gomez-Mont and Luengo and shows that are no other universal
relation between the Baum-Bott indexes of a foliation of P2 besides the Baum-
Bott formula. We also define the Camacho-Sad Field for foliations on surfaces
and prove its invariance under meromorphic maps. In an appendix we show that
the monodromy of the singular set of the universal foliation with very ample
cotangent bundle is the full symmetric group

1. Introduction and Statement of Results

1.1. The Baum-Bott Map. One of the most basic invariant for singularities of
holomorphic foliations of surfaces is the Baum-Bott index: if F is a germ of
holomorphic foliation of (C2, 0) induced by a holomorphic 1-form ω = A(x, y)dy −
B(x, y)dx with an isolated singularity at 0 then the Baum-Bott index of F at 0 is
defined as

BB(F , 0) =
1

(2πi)2

∫

Γ

η ∧ dη

where η is any (1, 0)-form (C∞ on a punctured neighborhood of 0 ∈ C2) satisfying
dω = η ∧ ω and Γ is the boundary of a small ball around 0 (see for instance [3]).
When the dual vector field X = A(x, y)∂x + B(x, y)∂y has invertible linear part, i.e.,
det(DX(0)) 6= 0, a simple computation shows that

BB(F , 0) =
tr2(DX(0))
det(DX(0))

.

Singularities with invertible linear part are usually called simple singularities.
Let S be a compact complex surface S. A singular foliation by curves F on S can

be defined by a global holomorphic section of TS ⊗ L, for a suitable line bundle L.
This line bundle L is the cotangent bundle of F and is usually denoted by T ∗F . We
will denote by Fol(L) the space of foliations on S with cotangent bundle L, i.e.,

Fol(L) = PH0(S, TS ⊗ L).

For any F ∈ Fol(L) with isolated singularities sing(F), the singular set of F ,
contains N(L) = c2(TS ⊗ L) singularities counted with multiplicities.

When there exists a foliation F0 ∈ Fol(L) with only simple singularities then
the set U ⊂ Fol(L), of foliations with only simple singularities is an open Zariski
set. In this case any foliation F ∈ Fol(L) has exactly N(L) = N singularities. If
sing(F0) = {p1, . . . , pN}, then there exist a neighborhood V ⊂ U and holomorphic
maps γ1, . . . , γN : V → S such that γj(F0) = pj and, for any F ∈ V , we have
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sing(F) = {γ1(F), . . . , γN (F)}. In this case, we can define a holomorphic map
BB : V → CN by

BB(F) = (BB(F , γ1(F)), . . . , BB(F , γN (F))).

We will call the map BB, the local Baum-Bott map. We observe that it is
possible to extend the domain of BB to U , if we symetrize the coordinates in CN .
More precisely, if we denote by CN/SN the quotient of CN by the equivalence relation
which identifies two points (z1, . . . , zN ) and (zσ(1), . . . , zσ(N)), where σ ∈ SN (the
symmetric group in N elements), then we define BB : U → CN/SN by

BB(F) = [BB(F , p1), . . . , BB(F , pN )],

where sing(F) = {p1, . . . , pN} and [λ1, . . . , λN ] denotes the class of (λ1, . . . , λN ) in
CN/SN . Of course, this map can be extended to a rational map

BB : Fol(L) 99K (P1)N/SN
∼= PN

which we will call the global Baum-Bott map.
The well-known Baum-Bott Index Theorem [2] (first proved by Chern [5] in the

case of foliations with only simple singularities) says that for a foliation F with
isolated singularities of compact surface S,

NF ·NF =
∑

p∈sing(F)

BB(F , p),

where NF is the normal bundle of F , i.e., NF = T ∗F ⊗ KS∗ with KS being the
canonical bundle of S. In particular the maximal rank of BB on Fol(L) is always less
than N(L) and the Baum-Bott map is never dominant: the closure of its image has
codimension at least one.

In this paper we are interested on the generic rank of the Baum-Bott map just
defined for foliations of the projective plane. Of course the generic rank of the local
and global Baum-Bott maps coincide. Recall that the degree of a foliation F of P2,
denoted by deg(F), is defined as the number d of tangencies of a generic line with F
and that F has N(d) := N(T ∗F ) = d2 +d+1 singularities counted with multiplicities.

For foliations of degree 0 of P2 we have just one singularity and its index is de-
termined by Baum-Bott’s Theorem. For foliations of degree 1 we have three sin-
gularities(counted with multiplicities) and every foliation admits an invariant line.
Camacho-Sad index Theorem imposes an extra condition on the Baum-Bott indexes
and thus the rank of the Baum-Bott map is one, see [6]. A natural problem, proposed
by Gomez-Mont and Luengo in loc. cit., is the following:

Question 1. When d ≥ 2, are there other hidden relations between the Baum-Bott
indexes of a degree d foliation of the projective plane? In other terms, what is the
generic rank of the Baum-Bott map for foliations of projective plane?

Our first result says that the only universal relation among the Baum-Bott indexes
is Baum-Bott’s formula.

Theorem 1. If d ≥ 2 then the maximal rank of the Baum-Bott map for degree d
foliations of P2 is N(d)− 1 = d2 + d.

An immediate consequence of Theorem 1 is the following:

Corollary 1. If d ≥ 2 then the dimension of the generic fiber of the map
BB : Fol(d) 99K PN is 3d + 2.



BAUM-BOTT 3

In fact one has just to remark that dimFol(d) = (d + 1)(d + 3) − 1. We do not
know if the generic fiber of the Baum-Bott map is irreducible or not.

1.2. The rank at Jouanolou’s Foliations. In general it does not seems to be an
easy problem to compute the rank of the Baum-Bott map at an specific foliation.
For Jd, the degree d Jouanolou foliation(cf. §3 for the definition), we are able to
determine the rank: this is the content of our next result.

Theorem 2. For any d ≥ 2, the rank of the local Baum-Bott map at Jd is

d2 + 7d− 6
2

.

In particular, if d = 2, 3 then rk(BB,Jd) = d2 + d and if d ≥ 4 then rk(BB,Jd) <
d2 + d.

Note that at these points the rank of the global Baum-Bott map is strictly less
then the rank of the local Baum-Bott map: since all the singularities of Jd have
the same Baum-Bott indexes then BB(Jd) ∈ (P1)N(d) is on the critical set of the
symmetrization

(P1)N(d) → PN(d).

1.3. The Camacho-Sad Field. Another local index often considered in the theory
of holomorphic foliations is the so called Camacho-Sad index of a foliation F with
respect to a separatrix C through a singular point p. Suppose that the germ of F
at p ∈ C is represented by a germ of holomorphic 1-form ω and that (f = 0) is a
reduced equation of the germ of C at p. Then there exist germs g, h ∈ Op and a
germ of holomorphic 1-form η at p such that gω = h · df + f · η and g, h|C 6≡ 0 (cf.
[4], [10] and [3]). The Camacho-Sad index of F at p with respect to C, is defined as

CS(F , C, p) = Resp

(
−η

h

)
=

1
2πi

∫

γ

−η

h
,

where γ is a union of small circles positively oriented around p, one for each local
irreducible branch of the germ of C at p.

If p is a reduced and simple singularity of F , i.e., we have two distinct non-zero
eigenvalues at p, say λ1 and λ2 6= 0, such that λ1/λ2 /∈ Q+, then it is known that
F has exactly two local separatrices, say Σj ,j = 1, 2, tangent to the eigenspace
associated to λj . In this case, we have

(1)
CS(F , Σ1, p) = λ2/λ1,
CS(F , Σ2, p) = λ1/λ2,
BB(F , p) = CS(F , Σ1, p) + CS(F , Σ2, p) + 2.

If p is reduced and non-simple singularity, i.e., p is a saddle-node singularity
then, in general, one has just one analytic local separatrix, which is tangent to the
eigenspace of the non-zero eigenvalue. The Camacho-Sad index with respect to this
separatrix is zero(cf. [3] or [4]). In the direction of the zero eigenvalue there is always
an unique formal separatrix(which sometimes is convergent). This follows from the
formal normal form of the saddle-node (cf. [11]): the foliation is formally equivalent
to the one induced by

ω = xk+1dy − y(1 + λ · xk)dx,

where k ∈ N and λ ∈ C. When there exists an analytic separatrix tangent to the
eigendirection of the eigenvalue zero, then its Camacho-Sad index is λ. Even if
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this separatrix is formal, it can be proved that the number λ is invariant by formal
diffeomorphisms (cf. [11]). Therefore, we can define its Camacho-Sad index as λ.

On the other hand, Seidenberg’s resolution theorem asserts that for any foliation
F on a surface S there exists finite composition of pontual blow-ups, say π : M → S,
such that the foliation F̃ := Π∗(F) (the strict transform) on M , has only reduced
singularities. The foliation F̃ is usually called a resolution of F .

Definition 1. Let F be a foliation on a compact surface S. We define its Camacho-
Sad field, denoted by K(F), as follows:

• Reduced case. All singularities of F are either reduced or saddle-nodes.
Let sing(F) = {p1, . . . , pk} and let Σi

j, i = 1, 2, be the two separatrices of F
through pj (formal or not), j = 1, . . . , k. Then we define

K(F) = Q(CS(F , Σ1
1, p1),CS(F , Σ2

1, p1), . . . , CS(F ,Σ2
k, pk))

• General case. We take any resolution F̃ of F and define K(F) = K(F̃).

We invite the reader to verify that the definition above does not depend on the
choosen resolution using the following facts:

(1) There exists a minimal resolution, that is a resolution with the minimal
number of blowing-ups.

(2) When we blow-up in a reduced and simple singularity with Camacho-Sad
indexes with respect to the separatrixes λ and λ−1 then two new simple
and reduced singularities appears and theirs Camacho-Sad indexes are λ−1,
1/(λ− 1), λ−1 − 1 and λ/(1− λ).

(3) When we blow-up at a saddle node with Camacho-Sad indexes 0 and λ then
two new singularities appears, one saddle-node with Camacho-Sad indexes 0
and λ− 1, and a simple singularity with both Camacho-Sad indexes equal to
−1.

The next corollary is in fact a reformulation of Theorem 1 in terms of the concept
just defined.

Corollary 2. If d ≥ 2 then there exists a dense subset G(d) ⊂ Fol(d) such that for
any F ∈ G(d) the transcendence degree of K(F) over Q is d2 + d.

Our main result concerning the Camacho-Sad field is the following

Theorem 3. Let M and S be two complex compact and connected surfaces, F be a
foliation on S and φ : M 99K S be a meromorphic map. Suppose that φ has generic
rank two. Then K(φ∗(F)) = K(F).

One of our motivations to introduce the Camacho-Sad Field was to prove the

Corollary 3. The generic foliation of degree d ≥ 2 is not the pull-back of a foliation
of smaller degree.

1.4. Monodromy. In an appendix we prove that the monodromy of the singular
set of a generic family of holomorphic foliations is the full symmetric group. An
immediate corollary is that the functions γ1, . . . , γN : V ⊂ Fol(d) → P2 used to
parametrize the singularities in the proof of Theorem 1 although algebraic is not
solvable by radicals when d ≥ 2, i.e., it cannot be expressed in terms of combinations
of radicals of rational functions in the Fol(d).
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2. The Generic Rank of Baum-Bott’s Map

2.1. Some words about the notation. Let Fol(d) be the space of foliations of
degree d on P2, d ≥ 0. A foliation of degree d on P2, can be expressed in an affine
coordinate system (x, y) ∈ C2 ⊂ P2, by a polynomial vector field on C2 of the form
X = P (x, y)∂x + Q(x, y)∂y, where

(2)
{

P (x, y) = p(x, y) + x · g(x, y)
Q(x, y) = q(x, y) + y · g(x, y)

with max(deg(p), deg(q)) ≤ d and g is a homogeneous polynomial of degree d.
We will denote by R(d) ⊂ Fol(d) the Zariski dense subset of foliations F of degree

d with all singularities simple. If F ∈ Fol(d) then NF = O(d + 2). Thus the
Baum-Bott Theorem mentioned on the introduction says that

∑

p∈singF
BB(F , p) = (d + 2)2,

for every F ∈ Fol(d) with isolated singularities. We recall that R(d) is open and dense
in Fol(d), cf. for instance [10]. Recall that for any F0 ∈ R(d), #(sing(F0)) = d2+d+1.

2.2. The Key Lemma. The proof of Theorem 1 will be by induction on d ≥ 2.
The result for d = 2 is due to A. Guillot (cf. [7]). Note that Theorem 2 contains, in
particular, a new proof of Guillot’s result. The induction step will be reduced to the
following lemma:

Lemma 2.1. Let F = (G, H) : D∗ × Dk−1 × D` → Ck × C` be a holomorphic map.
Denote the variables in D × Dk−1 × D` by (s, Z, T ) = (s, z1, . . . , zk−1, t1, . . . , t`).
Suppose that:

(a). H extends to a holomorphic function on D× Dk−1 × D` and

∂H

∂zj
(0, Z, T ) = 0, ∀j = 1, . . . , k − 1.

(b). G is of the form:

G(s, Z, T ) =
1
s
[A(Z, T ) + s ·R(s,X, T )],

where A = (A1, . . . , Ak) : Dk−1 × D` → Ck and R : Dk × D` → Ck are holo-
morphic.
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(c). There exists Z0 ∈ Dk−1 satisfying: det(M(Z0, 0)) 6= 0, where M(Z, T ) is the
k × k matrix




A(Z, T )
∂A
∂z1

(Z, T )
...

∂A
∂zk−1

(Z, T )


 :=




A1(Z, T ) A2(Z, T )
... Ak(Z, T )

∂A1
∂z1

(Z, T ) ∂A2
∂z1

(Z, T )
... ∂Ak

∂z1
(Z, T )

...
...

...
...

∂A1
∂zk−1

(Z, T ) ∂A2
∂zk−1

(Z, T )
... ∂Ak

∂zk−1
(Z, T )




(d). For Z0 ∈ Dk−1 we have that rk(HZ0 , 0) = `, where HZ0(T ) = H(0, Z0, T ).

Then there exists r > 0 such that rk(F, (s0, Z0, 0)) = k + ` for every s0 with 0 <
|s0| < r.

Proof. Let ∆(s,X, T ) be given by

∆(s,X, T ) = det




∂G
∂s

∂H
∂s

∂G
∂z1

∂H
∂z1

...
...

∂G
∂zk−1

∂H
∂zk−1

∂G
∂t1

∂H
∂t1

...
...

∂G
∂t`

∂H
∂t`




.

Using (b), we get the following relations:

∂G

∂s
(s, Z, T ) = − 1

s2
A(Z, T ) + C(s, Z, T ),

∂G

∂zj
(s, Z, T ) =

1
s

∂A

∂zj
(Z, T ) + Dj(s,X, T )

∂G

∂ti
(s,X, T ) =

1
s

∂A

∂ti
(Z, T ) + Ei(s, Z, T ),

where C = ∂R/∂s and Dj = ∂R/∂xj .
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These relations imply that

∆(s, Z, T ) = det




− 1
s2 A(Z, T ) + C(s, Z, T ) ∂H

∂s
1
s

∂A
∂z1

(Z, T ) + D1(s, Z, T ) ∂H
∂z1

(s, Z, T )
...

...
1
s

∂A
∂zk−1

(Z, T ) + Dk−1(s, X, T ) ∂H
∂zk−1

(s, Z, T )
1
s

∂A
∂t1

(Z, T ) + E1(s, Z, T ) ∂H
∂t1

(s, Z, T )
...

...
1
s

∂A
∂t`

(Z, T ) + E`(s, Z, T ) ∂H
∂t`

(s, Z, T )




=

=
1
sk

det




− 1
sA(Z, T ) + s · C(s, Z, T ) ∂H

∂s
∂A
∂z1

(Z, T ) + s ·D1(s, Z, T ) ∂H
∂z1

(s, Z, T )
...

...
∂A

∂zk−1
(Z, T ) + s ·Dk−1(s, X, T ) ∂H

∂zk−1
(s, Z, T )

∂A
∂t1

(Z, T ) + s · E1(s, Z, T ) ∂H
∂t1

(s, Z, T )
...

...
∂A
∂t`

(Z, T ) + s · E`(s, Z, T ) ∂H
∂t`

(s, Z, T )




=

=
1

sk+1
det




−A(Z, T ) + s2 · C(s, Z, T ) s · ∂H
∂s

∂A
∂z1

(Z, T ) + s ·D1(s, Z, T ) ∂H
∂z1

(s, Z, T )
...

...
∂A

∂zk−1
(Z, T ) + s ·Dk−1(s, X, T ) ∂H

∂zk−1
(s, Z, T )

∂A
∂t1

(Z, T ) + s · E1(s, Z, T ) ∂H
∂t1

(s, Z, T )
...

...
∂A
∂t`

(Z, T ) + s · E`(s, Z, T ) ∂H
∂t`

(s, Z, T )




.

Hence, using (a), we deduce that lims→0 sk+1 ·∆(s, Z, T ) is equal to

det




−A(Z, T ) 0
∂A
∂z1

(Z, T ) 0
...

...
∂A

∂zk−1
(Z, T ) 0

∂A
∂t1

(Z, T ) ∂H
∂t1

(0, Z, T )
...

...
∂A
∂t`

(Z, T ) ∂H
∂t`

(0, Z, T )




= − det(M(Z, T )) · det
(

∂Hi

∂tj
(0, Z, T )

)
.

In other words, if we set φ(s, Z, T ) = −sk+1·∆(s, Z, T ) then φ extends continuously
to s = 0 as

φ(0, Z, T ) = det(M(Z, T )) · det
(

∂Hi

∂tj
(0, Z, T )

)

1≤i,j≤`

.

It follows from (c) and (d) that φ(0, Z0, 0) 6= 0. Thus there exists r > 0 such that,
if 0 < |s| ≤ r then ∆(s, Z0, 0) 6= 0. ¤

Now we will work to construct a family of foliations with Baum-Bott map fitting
in the above setup.
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2.3. Construction of the family. Let us consider the following situation; let F0 ∈
R(d− 1) be a foliation of degree d− 1 ≥ 2, L be a line on P2 and E = (C2, (x, y)) be
an affine coordinate system in P2, such that:

(I). rk(BB,F0) = (d− 1)2 + d− 1 = d2 − d := `.
(II). sing(F0) ∩ L = ∅ and sing(F0) = {q0

1 , . . . , q0
`+1} ⊂ C2 ⊂ P2.

(III). F0 is defined on E by the polynomial vector field

X0 := P0(x, y)∂x + Q0(x, y)∂y,

where P0(x, y) = P 0(x, y) + x · g(x, y), Q0(x, y) = Q0(x, y) + y · g(x, y),
deg(P 0) = deg(Q0) = d − 1 and g(x, y) is a homogeneous polynomial of
degree d− 1. We will assume that g(x, 0) 6≡ 0, i.e., the line at infinite of this
affine coordinate system is not invariant for F0.

(IV). L = (y = 0). In particular the polynomials P (x) := P0(x, 0) and Q(x) :=
Q0(x, 0) are relatively primes, that is gcd(P (x), Q(x)) = 1.

(V). deg(P (x)) = d and deg(Q(x)) = d − 1. This condition is generic and it
implies that all tangencies of F0 with the line L are contained in C2 ∩ L,
because these tangencies are given by (y = P (x) = 0).

Let V be a neighborhood of F0 in R(d − 1) such that there exist holomorphic
maps q0

1 , . . . , q0
`+1 : V → C2 with q0

j (F0) = q0
j , j = 1, . . . , ` + 1, and sing(F) =

{q0
1(F), . . . , q0

`+1(F)}. We can take V sufficiently small in order to assure that that
q0
j (F) ∩ (y = 0) = ∅ for all j = 1, . . . , ` + 1 and all F ∈ V .

Since, by hypothesis, rk(BB,F0) = d2 − d = `, there exist polynomials vector
fields of the form (2), X1, . . . , X`, Xi = Pi∂x + Qi∂y, with the following additional
properties:

(VI). For any T = (t1, . . . , t`) ∈ D` then XT := X0 +
∑`

i=1 ti ·Xi ∈ V .

In this situation, we can define H1 : D` → C`, by

H1(T ) = (BB(XT , q0
1(XT )), . . . , BB(XT , q0

` (XT ))).

It follows from (I) that we can assume:
(VII). rk(H1, 0) = d2 − d = `.

Next, we will see how to obtain foliations F ∈ R(d) such that rk(BB,F) = d2 +d.
We will consider the vector field y ·X0 as a foliation, say F̃0, of degree d, with a line
of singularities.

Let p(x), q(x) ∈ C[x] be polynomials with the following properties:
(VIII). p(x) in monic of degree d + 1 and q(x) has degre ≤ d.

We will set Z(x, y) = p(x)∂x +(q(x)+ y ·xd)∂y. Note that this vector field defines
an element in Fol(d). Moreover, the space of such vector fields has dimension 2d.
Consider the family of foliations (F(s, Z, T ))s,Z,T of degree d on P2, which are defined
on E by the polynomial vector field

X(s, Z, T ) = y ·
(

X0 +
∑̀

i=1

ti ·Xi

)
+ s · Z

Note that the components of X(s, Z, T ) are
{

W1 := y (P0(x, y) +
∑

i ti · Pi(x, y)) + s · p(x)
W2 := y

(
Q0(x, y) +

∑
i ti ·Qi(x, y) + s · (q(x) + y · xd

)
.
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For s 6= 0 and Z, T fixed, the singularities of F(s, Z, T ) are contained in the affine
curve {F(Z,T )(x, y) = 0} ⊂ C2, where F(Z,T )(x, y) is equal to

p(x) ·
[
Q0(x, y) +

∑

i

ti ·Qi(x, y)

]
− (q(x) + y · xd) ·

[
P0(x, y) +

∑

i

ti · Pi(x, y)

]
.

Since P and Q are relatively prime we have the

Lemma 2.2. Given a polynomial f(x) ∈ C[x] of degree 2d there exist unique poly-
nomials p(x), q(x) ∈ C[x] such that

deg(p) = d + 1,deg(q) ≤ d− 2andf(x) = p(x)Q(x)− q(x)P (x).

Proof. In fact, since gcd(P (x), Q(x)) = 1, there exist a(x), b(x) ∈ C[x] such that

a(x) ·Q(x)− b(x) · P (x) = 1 =⇒ (f · a)(x) ·Q(x)− (f · b)(x) · P (x) = f(x).

Dividing f · b(x) by Q(x) we get f · b = g ·Q + q, where deg(q) ≤ d− 2. Thus

f = (f · a− g · P )Q− qP =: pQ− qP =⇒ p ·Q = f + q · P.

Since deg(q · P ) = deg(q) + deg(P ) ≤ 2d − 1, we have deg(f + q · P ) = 2d. This
implies that 2d = deg(p · Q) = deg(p) + d − 1, and so deg(p) = d + 1. If we have
another solution p1 ·Q− q1 · P = f , with deg(p1) = d + 1 and deg(q1) ≤ d− 2, then

(p− p1)Q = (q − q1)P =⇒ Q|q − q1and deg(Q) > deg(q − q1),

which implies that q = q1andp = p1. ¤

Similar arguments also prove the:

Lemma 2.3. Let Pk = {g ∈ C[x]| deg(g) ≤ k} and consider the linear map Φ: Pd+1×
Pd−2 → P2d given by Φ(p, q) = p ·Q− q · P . Then Φ is an isomorphism.

After setting f(Z,T )(x) = F(Z,T )(x, 0) we can take Z0 in such a way that
(IX). The polynomial f(Z0,0)(x) has simple roots and has degree 2d.

Let (p(x), q(x)) ∈ Pd+1 × Pd−2 be such that p(x) is monic and Z = p(x)∂x +
(q(x) + y · xd)∂y. Then, we can write, p(x) = xd+1 +

∑d
j=0 zj+1 · xj and q(x) =∑d−2

j=0 zd+2+j · xj . Consider the space of vector fields Z as above, parametrized by
(z1, . . . , z2d) ∈ C2d. In what follows, we will use this parametrization and the notation
Z = (z1, . . . , z2d).

2.4. Applying the Key Lemma I: First Properties. Next we will describe how
to apply lemma 2.1 to the family (s, Z, T ) 7→ X(s, Z, T ). The first step is the

Lemma 2.4. Let Z0 = p0(x)∂x + (q0(x) + y · xd)∂y be such that (IX) is satisfied
and let {x0

1, . . . , x
0
2d} be the roots of f(Z0,0)(x) = 0. Then there exist neighborhoods

D = D(0, r) of 0 ∈ C, U of Z0, D` of 0 ∈ C` and holomorphic functions

qi : D × U ×D` → C2, i = 1, . . . , d2 − d + 1 = ` + 1
pj : D × U ×D` → C2, j = 1, . . . , 2d ,

with the following properties:
(a). For any (Z, T ) ∈ U × D` the equation f(Z,T )(x) = 0 has 2d simple roots,

say x1(Z, T ), . . . , x2d(Z, T ), such that xi : U × D` → C is holomorphic and
xi(Z0, 0) = x0

i for all i = 1, . . . , 2d.
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(b). pj(0, Z, T ) = (xj(Z, T ), 0) for every j = 1, . . . , 2d and for every (Z, T ) ∈
U ×D`.

(c). qi(0, 0, T ) = q0
i (T ) for all T ∈ D` and all i = 1, . . . , ` + 1. In particular,

qi(0, 0, 0) = q0
i for all i = 1, . . . , ` + 1 and

sing(XT ) = {q1(0, 0, T ), . . . , q`+1(0, 0, T )},
for all T ∈ U .

(d). For (s, Z, T ) ∈ D × U × D`, s 6= 0, we have that sing(F(s, Z, T )) is equal to
{p1(s, Z, T ), . . . , p2d(s, Z, T ), q1(s, Z, T ), . . . , q`+1(s, Z, T )}.

(e). If Hi(s, Z, T ) denotes the Baum-Bott index of F(s, Z, T ) at the point
qi(s, Z, T ), i = 1, . . . , ` + 1, then

∂Hi

∂zr
(0, Z, T ) ≡ 0,∀1 ≤ i ≤ ` + 1and1 ≤ r ≤ 2d.

(f). For every (s, T ) ∈ D × D`, with s 6= 0, then pj(s, Z, T ) is a non-degenerate
singularity of F(s, Z, T ). Furthermore, if Gj(s, Z, T ) denotes the Baum-Bott
index of F(s, Z, T ) at the singularity pj(s, Z0, T ) then

(3) lim s ·Gj(s, Z, T ) =
Q2

T (xj(Z, T ), 0)
f ′(Z,T )(xj(Z, T ))

:= Aj(Z, T ).

Proof. The Lemma is a consequence of the implicit function theorem (IFT) applied
in several cases. In part (a) we apply the IFT to the function

(x,Z, T ) ∈ C× Pd+1 × Pd−2 × Cd 7→ f(Z,T )(x) ∈ C
at the points (xi0, Z0, 0), i = 1, . . . , 2d, where xi0, i = 1, . . . , 2d, are the roots of
f(Z0,0)(x) = 0. We leave the details for the reader.

For the existence of the functions q1, . . . , q`+1, defined in a neighborhood of
(0, Z0, 0) in C×Pd+1×Pd−2×C`+1, we apply the IFT at the points (x0

i , y
0
i , 0, Z0, 0)

where q0
i := (x0

i , y
0
i ) ∈ C2, 1 ≤ i ≤ ` + 1, are the singularities of F0, to the function

W (x, y, s, Z, T ) = (W1(x, y, s, Z, T ),W2(x, y, s, Z, T )) defined as(
y(P0(x, y) +

∑

i

tiPi(x, y)) + sp(x), y(Q0(x, y) +
∑

i

tiQi(x, y) + s(q(x) + yxd)

)
.

In order to prove that det(∂W/∂x, ∂W/∂y)(x0
i , y

0
i , 0, Z0, 0) 6= 0 just observe that

W (x, y, 0, Z0, 0) = (y · P0(x, y), y · Q0(x, y)), q0
i is a non-degenerate singularity of

F0 and that y0
i 6= 0 (see (II)). We leave the details for the reader. Note that we

can choose the neighborhood V := D × U × D` of (0, Z0, 0) in such a way that
qi(s, Z, T ) /∈ (y = 0) for all (s, Z, T ) ∈ V .

Let us prove (e). Since W1(x, y, s, Z, T ) and W2(x, y, s, Z, T ) are the components
of X(s, Z, T ), we have to compute Hi(0, Z, T ) = BB(X(0, Z, T ), qi(0, Z, T )). Note
that W1(x, y, 0, Z, T ) = y ·PT (x, y) and W2(x, y, 0, Z, T ) = y ·QT (x, y). This implies
that qi(0, Z, T ) = qi(0, 0, T ) and , since qi(0, Z, T ) /∈ (y = 0) then

Hi(0, Z, T ) = BB(y(PT ∂x + QT ∂y), qi(0, 0, T )) = BB(PT ∂x + QT ∂y, qi(0, 0, T )).

This proves (e).
Let us prove the existence of the functions p1, . . . , p2d. As we have observed before,

if s 6= 0 then sing(F(s, Z, T )) ∩ C2 ⊂ (F(Z,T ) = 0). Let W = (W1,W2) be as above.
If we set PT = P0 +

∑
i ti · Pi and QT = Q0 +

∑
i ti ·Qi, then we can write

W = (W1, W2) = (y · PT + s · p(x), y ·QT + s · (q(x) + y · xd)).
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As the reader can check

(W = 0) = (W1 = F(Z,T ) = 0) = (W2 = F(Z,T ) = 0).

Therefore, we have to apply the IFT at the points (xi0, 0, 0, Z0, 0) to one of the
functions

(x, y, s, Z, T ) 7→ (Wj(x, y, s, Z, T ), F(Z,T )(x, y)) = Φj(x, y, s, Z, T ), j = 1orj = 2.

Note that
Φ1(x, y, 0, Z, T ) = (y · PT (x, y), F(Z,T )(x, y)).

Therefore det(∂Φ1/∂x, ∂Φ1/∂y)(x, 0, 0, Z0, 0) is equal to

det
(

0 P0(x, 0)
f ′(Z0,0)(x) ∗

)
= −P (x) · f ′(Z0,0)(x).

Similarly,

det(∂Φ2/∂x, ∂Φ2/∂y)(x, 0, 0, Z0, 0) = −Q(x) · f ′(Z0,0)(x).

It follows from (IV) that, either P (x0
i ) 6= 0, or Q(x0

i ) 6= 0. Since f(Z0,0) has simple
roots, we can apply the IFT to obtain the function pi.

Set pi(s, Z, T ) = (xi(s, Z, T ), yi(s, Z, T )).

Assertion 2.1. For every i ∈ {1, . . . , 2d} we have yi(s, Z, T ) = s · ui(s, Z, T ), where
ui is holomorphic and FZ,T (xi(0, Z, T ), 0) = f(Z,T )(xi(0, Z, T )) = 0. In particular,
xi(s, Z, T ) = xi(Z, T ) (in the notation of (a)). Moreover, if P0(x0

i , 0) = P (x0
i ) 6= 0

and we take the neighborhood V small then

(4) ui(0, Z, T ) = − p(xi(Z, T ))
PT (xi(Z, T ), 0)

.

Similarly, if Q0(xi0, 0) 6= 0 and we take V small then

(5) ui(0, Z, T ) = − q(xi(Z, T ))
QT (xi(Z, T ), 0)

.

In any case, we have that

(6)
{

ui(0, Z, T ) ·QT (xi(Z, T )) + q(xi(Z, T )) = 0
ui(0, Z, T ) · PT (xi(Z, T ), 0) + p(xi(Z, T )) = 0

for all (0, Z, T ) ∈ V .

Proof of the assertion. Let us suppose that P (x0
i ) 6= 0. If we take V small then

PT (xi(s, Z, T ), yi(s, Z, T )) 6= 0 for all (s, Z, T ) ∈ V . It follows that

yi · PT (xi, yi) + s · p(xi) ≡ 0 =⇒ yi(0, Z, T ) = 0

and
∂yi

∂s
(0, Z, T ) · PT (xi(Z, T ), 0) + p(xi(Z, T )) ≡ 0.

Since ui(0, Z, T ) = ∂yi

∂s (0, Z, T ), this implies (4). The proofs of (5) and (6) are left
for the reader. ¤

Let’s continue the proof of Lemma 2.4 by proving (f). We will prove first that
the singularities pi(s, Z, T ) are non-degenerate for s 6= 0. Denote by J the Jacobian
matrix

J =

(
∂W1
∂x

∂W1
∂y

∂W2
∂x

∂W2
∂y

)
.
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First we prove, for all i = 1, . . . , 2d, that det(J(pi(s, Z, T ), s, Z, T )) 6= 0 whenever
s 6= 0 and (s, Z − Z0, T ) have a small norm. Since W1 = y · PT + s · p and W2 =
y ·QT + s · (q +y ·xd), by a direct computation, we get that det(J(pi, s, Z, T ) is equal
to

W1x ·W2y −W1y ·W2x =

=
�
(yPT x + sp

′
)(QT + yQT x + sx

d
)− (PT + y · PT y)(yQT x + sq

′
+ dsyx

d−1
)
�
(pi(s, Z, T ))

= s
�
(uiPT x + p

′
)(QT + suiQT x + sx

d
)− (PT + suiPT y)(uiQT x + q

′
+ dsuix

d−1
)
�
(xi, yi).

Therefore if we define ∆(Z, T ) := lim 1
s det(J(pi(s, Z, T ), s, Z, T ), then

∆(Z, T ) = [(ui · PTx + p′) ·QT − PT · (ui ·QTx + q′)](pi(0, Z, T )).

On the other hand, (6) implies that ∆(Z, T ) is equal to

[(p′ ·QT − ui · PT ·QTx)− (PT · q′ − ui · PTx ·QT )](pi(0, Z, T ))
= [(p′ ·QT + p ·QTx)− (PT · q′ + PTx · q)](pi(0, Z, T ))

=
∂

∂x
[p ·QT − q · PT ](pi(0, Z, T ))

= f ′(Z,T )(xi(Z, T )).

If we take the neighborhood V of (0, Z0, 0) small then the polynomial f(Z,T ) has
simple roots, for every (0, Z, T ) ∈ V . Since xi(0, Z, T ) = xi(Z, T ) is a root of f(Z,T ),
we get that ∆(Z, T ) = f ′(Z,T )(xi(Z, T )) 6= 0. Hence, det(J(pi(s, Z, T ), s, Z, T ) 6= 0
for small |s| > 0. It remains to prove (3) in (f). Since

Gi(s, Z, T ) =
tr2(J(pi(s, Z, T ), s, Z, T ))
det(J(pi(s, Z, T ), s, Z, T ))

and

tr(J(pi(s, Z, T ), s, Z, T )) = [s · ui ·PTx + s · p′ + QT + s · ui ·QTy + s · xd](pi(s, Z, T ))

we get
lim tr2(J(pi(s, Z, T ), s, Z, T )) = Q2

T (xi(Z, T ))
and

lim
1
s
Gi(s, Z, T ) = lim

tr2(J(pi(s, Z, T ), s, Z, T ))
s · det(J(pi(s, Z, T ), s, Z, T ))

=

=
Q2

T (xi(Z, T ), 0)
f ′(Z,T )(xi(Z, T ))

.

This finishes the proof of the lemma. ¤

To apply Lemma 2.1 we set BB(s, Z, T ) equal to (G(s, Z, T ),H(s, Z, T )), i.e.,

BB(s, Z, T ) = (G1(s, Z, T ), . . . , G2d(s, Z, T ),H1(s, Z, T ), . . . ,Hd2−d(s, Z, T )).

We are going to prove that we can choose Z0 in such a way that, for |s| > 0 small,
rk(BB, (s, Z0, 0)) = d2 + d.

It follows from (VII) and from (e) of Lemma 2.4 that H satisfies the hypothesis
(a) and (d) of Lemma 2.1. We have seen also that

G(s, Z, T ) =
1
s

[A(Z, T ) + s ·R(s, Z, T )] ,

where R is holomorphic,

A(Z, T ) = lim s ·G(s, Z, T ) = (A1(Z, T ), . . . , A2d(Z, T ))
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and

Aj(Z, T ) =
Q2

T (xj(Z, T ), 0)
f ′(Z,T )(xj(Z, T ))

.

In order to finish the proof, it is sufficient to prove that there exists Z0 and j ∈
{1, . . . , 2d} such that det(Mj(Z0)) 6= 0, where

Mj(Z) =
[
AT (Z, 0),

∂AT

∂z1
(Z, 0), . . . ,

∂AT

∂zj−1
(Z, 0),

∂AT

∂zj+1
(Z, 0), . . . ,

∂AT

∂z2d
(Z, 0)

]
.

In the above expression, for C ∈ C2d, we are denoting by CT the transpose of C,
that is, we are considering the transpose of the matrix given in (c) of Lemma 2.1.

2.5. Applying the Key Lemma II: Fine Tuning. According to Lemma 2.3, the
map Φ: Pd+1 × Pd−2 → P2d defined by Φ(Z) = Φ(p, q) = p · Q − q · P := f is an
isomorphism. On the other hand, observe that

Aj(Z, 0) =
Q2

0(xj(Z), 0)
f ′Z(xj(Z))

=
Q2(xj(Z))
f ′Z(xj(Z))

,

where x1(Z) := x1(Z, 0), . . . , x2d(Z) := x2d(Z, 0) are the roots of fZ := f(Z,0).
The idea is to use Lemma 2.3 to parametrize the space P2d by the roots of fZ

instead of the coefficients (z1, . . . , z2d) of Z = (p, q). We have seen before that
deg(p ·Q− q ·P ) = deg(p ·Q) = 2d. Since we are free to choose one of the coefficients
of Q, we will suppose that it is monic of degree d−1. This implies that fZ = p·Q−q·P
is monic (see (VIII)). Therefore, we can write

fZ(x) = (x− x1(Z)) · · · (x− x2d(Z))

and the map ρ(Z) = (x1(Z), . . . , x2d(Z)) is a biholomorphism in a neighbor-
hood of Z0. Let ζ be the local inverse of ρ, defined in a neighborhood W of
(x1(Z0), . . . , x2d(Z0)). Set C = A ◦ ζ : W → C2d. If X = (x1, . . . , x2d) then

fζ(X)(x) := fX(x) = (x− x1) · · · (x− x2d).

Therefore, C(X) = (C1(X), . . . , C2d(X)), where

Cj(X) = Aj(ζ(X)) =
Q2(xj)
f ′X(xj)

.

Let N(X) be the 2d× 2d matrix defined by

N(X) = [CT (X),
∂CT

∂x2
(X), . . . ,

∂CT

∂x2d
(X)].

We assert that it is enough to prove that det(N(X)) 6≡ 0. In fact, since C(X) =
A ◦ ζ(X) we get

∂C

∂xj
=

2d∑

i=1

∂A

∂zi
◦ ζ

∂ζi

∂xj
=

2d∑

i=1

∂A

∂zi

∂ζi

∂xj
,
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where in the third expression we have omitted the composition with ζ. This implies
that

det(N) = det

[
A,

2d∑

i2=1

∂A

∂zi2

∂ζi2

∂x2
, . . . ,

2d∑

i2d=1

∂A

∂zi2d

∂ζi2d

∂x2d

]
=

=
∑

i2,...,i2d

∂ζi2

∂x2
· · · ∂ζi2d

∂x2d
det

[
A,

∂A

∂zi2

, · · · ,
∂A

∂zi2d

]

=
2d∑

j=1

Φj · det(Mj ◦ ζ),

where,

Φj = ±det
(

∂ζi

∂xk

)

1≤i≤2d,i 6=j,2≤k≤2d

.

In particular, if det(N(X)) 6≡ 0 then det(Mj(Z)) 6≡ 0, for some j ∈ {1, . . . , 2d}.
To conclude the proof of the Theorem it remains to show that det(N(X)) 6≡

0. Recall that Q(x) is a monic polynomial of degree d − 1 and C(X) =
(C1(X), . . . , C2d(X)), where

(7) Cj(X) = Cj(x1, . . . , x2d) =
Q2(xj)
f ′X(xj)

=
Q2(xj)

Πi 6=j(xj − xi)

because fX(x) = Π2d
i=1(x − xi). Fix x0 ∈ C which is not a root of Q(x) = 0 and a

neighborhood D := D(x0, r) such that Q(x) 6= 0 for all x ∈ D. We will work in the
open set U ⊂ C2d defined by

U = {(x1, . . . , x2d)|xi 6= xj ifi 6= j}.
If X ∈ U then Cj(X) 6= 0 and

det(N(X)) = C1(X) · · ·C2d(X) · det(K(X)),

where K is the matrix

K =




1 . . . 1
∂C1
∂x2

/C1 . . . ∂C2d

∂x2
/C2d

. . . . . . . . .
∂C1
∂x2d

/C1 . . . ∂C2d

∂x2d
/C2d




It follows from (7) that
∂Cj

∂xi

Cj
(X) =

{
1

xi−xj
,ifi 6= j.

2Q′(xj)
Q(xj)

+
∑

i 6=j
1

xi−xj
,ifi = j.

In particular, if we denote φj = 2Q′(xj)
Q(xj)

, j = 2, . . . , 2d, then, for any X ∈ U we have
the following expression for K(X)

2
6666666666664

1 1 . . . 1 1

1
x2−x1

φ2 +
X

i 6=2

1

xi − x2
. . . 1

x2−x2d−1
1

x2−x2d

. . . . . . . . . . . .

1
x2d−1−x1

1
x2d−1−x2

. . . φ2d−1 +
X

i6=2d−1

1

xi − x2d−1

1
x2d−1−x2d

1
x2d−x1

1
x2d−x2

. . . 1
x2d−x2d−1

φ2d +
X

i 6=2d

1

xi − x2d

3
7777777777775

.
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Now, define

∆1(x1, . . . , x2d−1) := lim
x2d→x1

(x1 − x2d) · det(K(X))

and inductively

∆j(x1, . . . , x2d−j) := lim
x2d−j+1→x1

(x1 − x2d−j+1) ·∆j+1(x1, . . . , x2d−j+1).

We will prove that ∆2d−1(x1) = (2d)! 6= 0 and this fact will imply that
det(N(X)) 6≡ 0. As the reader can check, ∆1(x1, . . . , x2d−1) is equal to
������������

1 1 . . . 1 1
1

x2−x1
φ2 +

P2d−1
i=3

1
xi−x2

+ 2
x1−x2

. . . 1
x2−x2d−1

1
x2−x1

. . . . . . . . . . . .
1

x2d−1−x1
1

x2d−1−x2
. . . φ2d−1 +

P2d−2
i=2

1
xi−x2d−1

+ 2
x1−x2d−1

1
x2d−1−x1

−1 0 . . . 0 1

������������

,

where | · | denotes the determinant. If we sum the first column with the last in the
above determinant, we get
���������

2 1 . . . 1
2

x2−x1
φ2 +

P2d−1
i=3

1
xi−x2

+ 2
x1−x2

. . . 1
x2−x2d−1

. . . . . . . . . . . .
2

x2d−1−x1

1
x2d−1−x2

. . . φ2d−1 +
P2d−2

i=2
1

xi−x2d−1
+ 2

x1−x2d−1

���������
.

By a similar argument, we have that ∆2(x1, . . . , x2d−2) is equal to
������������

2 1 . . . 1 1
2

x2−x1
φ2 +

P2d−2
i=3

1
xi−x2

+ 3
x1−x2

. . . 1
x2−x2d−2

1
x2−x1

. . . . . . . . . . . .
2

x2d−2−x1
1

x2d−2−x2
. . . φ2d−2 +

P2d−3
i=2

1
xi−x2d−2

+ 3
x1−x2d−2

1
x2d−2−x1

−2 0 . . . 0 2

������������

,

or, more succinctly,

2 ·

���������

3 1 . . . 1
3

x2−x1
φ2 +

P2d−2
i=3

1
xi−x2

+ 3
x1−x2

. . . 1
x2−x2d−2

. . . . . . . . . . . .
3

x2d−2−x1

1
x2d−2−x2

. . . φ2d−2 +
P2d−3

i=2
1

xi−x2d−2
+ 3

x1−x2d−2

���������
.

Similarlly, ∆3(x1, . . . , x2d−3) is equal to

6 ·

���������

4 1 . . . 1
4

x2−x1
φ2 +

P2d−3
i=3

1
xi−x2

+ 4
x1−x2

. . . 1
x2−x2d−3

. . . . . . . . . . . .
4

x2d−3−x1

1
x2d−3−x2

. . . φ2d−3 +
P2d−4

i=2
1

xi−x2d−3
+ 4

x1−x2d−3

���������
.

Proceeding in this way we see that ∆j(x1, . . . , x2d−j) is given by

j! ·

���������

j + 1 1 . . . 1
j+1

x2−x1
φ2 +

P2d−j
i=3

1
xi−x2

+ j+1
x1−x2

. . . 1
x2−x2d−j

. . . . . . . . . . . .
j+1

x2d−j−x1

1
x2d−j−x2

. . . φ2d−j +
P2d−j−1

i=2
1

xi−x2d−j
+ j+1

x1−x2d−j

���������
.

In particular,

∆2d−2(x1, x2) = (2d− 2)! ·
∣∣∣∣
2d− 1 1
2d−1

x2−x1
φ2 + 2d−1

x1−x2

∣∣∣∣ .
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Hence,

∆2d−1(x1) = lim
x2→x1

(x1 − x2) ·∆2d−2(x1, x2) = (2d− 2)!
∣∣∣∣
2d− 1 1
1− 2d 2d− 1

∣∣∣∣ = (2d)!.

This finishes the proof of Theorem 1.

3. The Rank at Jouanolou’s Foliations

Jouanolou’s foliations are the first examples of foliations of P2 without invariant
algebraic curves, (cf. [9]). They can be defined as follows: for every integer d, d ≥ 2,
the degree d Jouanolou foliation, Jd, is induced in affine coordinates (x, y) ∈ C2 ⊂ P2)
by the vector field

Xd(x, y) = (1− x · yd)∂x + (xd − yd+1)∂y = ∂x + xd∂y − yd ·R,

where R = x∂x + y∂y is the radial vector field on C2.
Most of arguments proving that Jd has no invariant algebraic curves take advan-

tage of the highly symmetrical character of Jd: Aut(Jd), the automorphism group
of Jd, is a semi-direct product of a cyclic group of order 3 and a cyclic group of order
d2 + d + 1. If β is a primitive (d2 + d + 1)th root of the unity then generators of
Aut(Jd), in the affine coordinates (x, y) ∈ C2 ⊂ P2, are

A : (x, y) 7→ (β−dx, βy),
B : (x, y) 7→ (y−1, xy−1).

The singular set of Jd is equal to

sing(Jd) = {pj | pj = Aj−1(1, 1), 1 ≤ j ≤ d2 + d + 1},
i.e., it is the orbit of the point p1 = (1, 1) under the action on P2 of the subgroup
of Aut(Jd) generated by A. It follows that all the singularities of Jd are isomorphic
simple singularities with Baum-Bott index

(d + 2)2

d2 + d + 1
.

We will also take advantage of Aut(Jd) to determine the rank of the Baum-Bott
map at Jd. Instead of considering the Baum-Bott map as defined from Fol(d) to
Pd2+d+1 we will consider it defined from Vd = H0(P2, TP2(d−1)) to the same target.
Our problem translates to compute the rank at Xd.

It will be convenient to consider Vd as the C-vector space generated by the set

Pd = {xi · yj∂x, xk · y`∂y, xm · yn ·R | 0 ≤ i + j, k + ` ≤ d and m + n = d}.
Note that all the elements in Pd are eigenvectors of A∗ : Vd → Vd, where A∗(X) =

DA−1 ·X ◦A. Explicitly, we have

A∗(xi · yj∂x) = βj−d(i−1) · xi · yj∂x

A∗(xk · y`∂y) = β`−1−dk · xk · y`∂y

A∗(xm · yn ·R) = βn−dm · xm · yn ·R
The invariance of Jd under A is expressed in the formula

A∗(Xd) = βd ·Xd.
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Since β is a primitive (d2 + d+1)th root of unity, A∗ has at most d2 + d+1 maximal
eigenspaces. If we denote by Ej , 1 ≤ j ≤ d2+d+1, the maximal eigenspace associated
to the eigenvalue βj then

Vd =
d2+d+1⊕

j=1

Ej .

Now, let U be a neighborhood of Xd in Vd and γj : U → P2,j = 1 . . . d2 + d + 1,
be holomorphic maps such that γj(Xd) = pj and

sing(F(X)) = {γ1(X), . . . , γd2+d+1(X)},
for every X ∈ U . Compute the rank of the Baum-Bott map is equivalent to compute
the rank of B = (B1, . . . , Bd2+d+1) : U → Cd2+d+1 given by

Bj(X) = BB(X, γj(X)) =
tr2

det
(DX(γj(X))).

3.1. The rank of B at Xd. By definition the rank of B at Xd is the rank of the
liner map T := DB(Xd) : Vd → Cd2+d+1, the derivative of B at Xd. If we denote
by Tj := DBj(Xd), 1 ≤ j ≤ d2 + d + 1, then the next lemma describes some useful
relations between A∗ and Tj .

Lemma 3.1. For any Y ∈ Vd

(8) Tj(A∗(Y )) = βd · Tj+1(Y ),

where 1 ≤ j ≤ d2 + d + 1, and Td2+d+1 = T0. In particular,
(a). A∗(ker(T )) = ker(T ).
(b). If we set Kj := Ej ∩ ker(T ), j = 1, . . . , d2 + d + 1, then

ker(T ) =
d2+d+1⊕

j=1

Kj .

(c). Ej ∩ ker(T1) = Kj, for all j = 1, . . . , d2 + d + 1.
(d). Let k = #{j|T1|Ej 6≡ 0}. Then rk(T ) = rk(BB,Jd) = k.

Proof. Observe first that for any Y ∈ V , we have that the foliations induced by
A∗(Xd + Y ) and Xd + β−d ·A∗Y are equal, i.e.,

F(A∗(Xd + Y )) = F(Xd + β−d ·A∗(Y )).

Moreover, since A∗(X) = DA−1 ·X ◦A,

p ∈ sing(F(A∗(Xd + Y ))) ⇐⇒ A(p) ∈ sing(Xd + Y ).

If we set Pj(Y ) = A−1(γj(Xd + Y )) then Pj(0) = A−1(pj) = pj−1 and Pj(Y ) =
γj−1(Xd + β−d ·A∗(Y )). Thus

γj(Xd + Y ) = A(γj−1(Xd + β−d ·A∗(Y ))),

for all Y ∈ Vd sufficiently small where, by convention, we set γ0 = γd2+d+1. Now we
can easily verify that

Bj(Xd + Y ) = BB(Xd + Y, γj(Xd + Y ))
= BB(Xd + β−d ·A∗(Y ), γj−1(Xd + β−d ·A∗(Y ))
= Bj−1(Xd + β−d ·A∗(Y )).
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Hence,

Tj(Y ) = DBj(Xd) · Y = DBj−1(Xd) · (β−d ·A∗(Y )) = β−d · Tj−1(A∗(Y )).

This proves (8). Observe that (8) implies (a) and (b).
Relation (8) also implies that T1((A∗)k(Y )) = βkd·T1+k(Y ). Thus Y ∈ Ej∩ker(T1)

if, and only if,

A∗(Y ) = βj · Y and 0 = T1(βkj · Y ) = T1((A∗)k(Y )) = βkd · T1+k(Y ),

or, equivalently, Tn(Y ) = 0 for all n ∈ {1, . . . , d2 + d + 1} and A∗(Y ) = βj · Y . Thus
we can conclude that

Ej ∩ ker(T1) = Ej ∩K,

proving in this way (c).
Let us prove (d). Note that rk(B(Xd)) = dim(Im(T )). Let k = #{j|T1|Ej

6≡ 0}
and {j|T1|Ej

6≡ 0} = {j1, . . . , jk}, where j1 < . . . < jk. Choose Y1, . . . , Yk ∈ Vd such
that Yi ∈ Eji

and T1(Yi) 6= 0 for all i = 1, . . . , k. It follows from (8) that

Tj(Yi) = β−d · Tj−1(A∗(Yi)) = βji−d · Tj−1(Yi)

and by induction, that

Tj(Yi) = β(ji−d)(j−1) · T1(Yi) =⇒ T (Yi) = T1(Yi) · (1, β(ji−d), . . . , β(N−1)(ji−d)).

We want to prove that the vectors T (Y1), . . . , T (Yk) ∈ CN are linearly independent.
Since T1(Yi) 6= 0 for all i = 1, . . . , k, this is equivalent to prove that the vectors
(1, β(ji−d), β2(ji−d), . . . , β(N−1)(ji−d)) ∈ CN are linearly independent. Observe that

det

∣∣∣∣∣∣∣∣

1 β(j1−d) β2(j1−d) . . . β(k−1)(j1−d)

1 β(j2−d) β2(j2−d) . . . β(k−1)(j2−d)

.. .. .. . . . ..
1 β(jk−d) β2(jk−d) . . . β(k−1)(jk−d)

∣∣∣∣∣∣∣∣
= Πr<s(βjs−d − βjr−d) 6= 0,

because βjs−d 6= βjr−d for r < s. This finishes the proof of the lemma. ¤

3.2. Maximal Eigenspaces of A∗. Recall that Pd is a basis for Vd. We will denote
by Pd(Y ) the subset of Pd of the form

Pd(Y ) = {xi · yj · Y |xi · yj · Y ∈ Vd, 0 ≤ i + j ≤ d}.
In these notations we have that Pd is the disjoint union of Pd(∂x), Pd(∂y) and
Pd(x∂x + y∂y).

Lemma 3.2. Let i, j ≥ 0 be such that 0 ≤ i + j ≤ d and A∗(xi · yj) = xi · yj. Then
i = j = 0. In particular, given Y ∈ Vd then the eigenvalues of Y1, Y2 ∈ Pd(Y ) are
distinct for Y1 6= Y2.

Proof. Note that A∗(xi · yj) = βj−i·d · xi · yj . In particular A∗(xi · yj) = xi · yj if,
and only if,

j − i · d = 0 mod N ⇐⇒ (d + 1) · j + i = 0 mod N ⇐⇒ i = j = 0.

In the first equivalence we have used that −d(d + 1) = 1 mod N and in the second
that

0 ≤ (d + 1) · j + i = d · j + i + j ≤ d(j + 1) ≤ d(d + 1) = N − 1 < N.

We leave the proof of the second part for the reader. ¤

In the next result we describe the dimensions of the maximal eigenspaces of A∗.
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Lemma 3.3. For any j = 1, . . . , d2 + d + 1 we have

0 ≤ dim(Ej) ≤ 3.

Moreover,
(a). dim(Ed) = 3 and Ed ⊂ ker(T ).
(b). dim(Ej) = 3 if, and only if, j = d.
(c). #{j|Ej 6= {0}} = d2+7d−4

2 .

Proof. Note that Pd(∂x)∪Pd(∂y)∪Pd(R), (R = x∂x+y∂y), is a basis of Vd formed by
eigenvectors of A∗. From Lemma 3.2, it follows that the vectors in Pd(∂x) have dis-
tinct eigenvalues. Analogously, the vectors in Pd(∂y) (resp. in Pd(R)) have different
eingenvalues. This implies that 0 ≤ dim(Ej) ≤ 3.

If dim(Ej) = 3, then Ej must contain one vector in each part of the basis; Pd(∂x),
Pd(∂y) and Pd(R).

Note that Ed =< ∂x, xd · ∂y, yd · R >. Let us prove that Ed ⊂ ker(T ). Let
C(s,t)(x, y) = (s · x, t · y) and consider the family X(r, s, t) ∈ Vd given by

X(r, s, t) = r · C∗(s,t)(Xd) = r · s−1∂x + r · sd · t−1 · xd · ∂y + r · td · yd ·R.

Of course, for r, s, t 6= 0 we have

B(X(r, s, t)) = B(Xd).

This implies that the vectors ∂
∂x , xd ∂

∂y and yd · R belong to ker(T ). This proves
(a).

Let us prove (b). Suppose that dim(Er) = 3 for some r ∈ {1, . . . , d2 + d + 1}.
Then, we must have Er =< xi ·yj ·∂x, xk ·y` ·∂y, xm ·yn ·R >, where 0 ≤ i+j, k+` ≤ d
and m + n = d. This implies that

(9) −d(i− 1) + j = −d · k + `− 1 = −d ·m + n = r mod N.

Since −d(d + 1) = 1 mod N , this implies that

i− 1 + (d + 1)j = m + (d + 1)n = d · n + m + n = d(n + 1) mod N =⇒
=⇒ d · j + i + j − 1 = d(n + 1) mod N.

Let us suppose by contradiction that r 6= d. In the case i = j = 0 we have r = d,
and so we must have 1 ≤ i + j ≤ d. This implies that

0 ≤ d · j + i + j − 1 ≤ d · j + d− 1 = d(j + 1)− 1 ≤ d(d + 1)− 1 < N =⇒
d · j + i + j − 1 = d(n + 1),

because 0 < d(n + 1) ≤ d(d + 1) < N . Therefore, d divides i + j − 1. Since
0 ≤ i + j − 1 ≤ d − 1, we get i + j = 1 and j = n + 1 > 0. Hence, i = 0, j = n + 1
and r = n − d ·m = n + 1 + d mod N . It follows that d(m + 1) + 1 = 0 mod N ,
which implies that i = 0, j = 1, m = d, n = 0 and r = d + 1.

On the other hand this, together with (9), implies that

r = d + 1 = −d · k + `− 1 mod N =⇒ d(k + 1) + 2 = ` mod N.

We assert that this is impossible, if 0 ≤ k + ` ≤ d. In fact, if 0 ≤ k ≤ d− 1 then we
would get

0 < d(k + 1) + 2 ≤ d2 + 2 < N =⇒ ` = d(k + 1) + 2 =⇒ ` > d,

which is impossible. If k = d, then ` = 0 and we would get d(d+1)+ 2 = 0 mod N ,
which is a contradiction. Therefore, r = d, which proves (b).
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It remains to prove (c). Set M = #{j|Ej 6= {0}}. It is clear that M is the
number of different eigenvalues of A∗. Lemma 3.2 implies that all vectors in P (∂x)
have different eigenvalues. Since #(P (∂x)) = (d + 1)(d + 2)/2, we get this number
of eigenvalues, such that the correspondent eigenvectors are in P (∂x). Consider the
function φ : Pd(x · ∂x) → Pd(y · ∂y) defined by

φ(xi · yj · ∂x) = xi−1 · yj+1 · ∂y.

A straightforward computation shows that, if Y ∈ P (x·∂x) is such that A∗(Y ) = λ·Y
then A∗(φ(Y )) = λ · φ(Y ). This proves that the eingenvectors of A∗ in Pd(∂y)
which correspond to new eigenvalues (not found in the previous set) must be in
Pd(∂y) \ Pd(y · ∂y). Therefore, they are of the form xk · ∂y, where 0 ≤ k ≤ d. We
assert that there are d− 1 new eigenvalues in this set.

In fact, if xi·yj ·∂x and xk ·∂y have the same eigenvalue then −d(i−1)+j = −k·d−1
mod N . Thus

i− 1 + (d + 1)j = k − (d + 1) mod N,

which implies that
k = d(j + 1) + i + j mod N.

Of course, we have the known solution, k = d, i = j = 0, which corresponds to
vectors in Ed. Another solution is k = d − 1, i = 0 and j = d, as the reader can
check. On the other hand, if 0 ≤ j ≤ d− 1 then

0 < d(j + 1) + i + j ≤ d2 + d < N =⇒ d(j + 1) + i + j = k,

implying that
i = j = 0 and k = d.

Therefore, there are only two repeated eigenvalues and d − 1 new in this set. The
repeated eigenvalues correspond to Ed and E2d.

It remains to find how many new eigenvalues we can find in the set Pd(R). Suppose
first that we have a vector xm · yn ·R in Pd(R) with the same eigenvalue of a vector
xi · yj · ∂x ∈ Pd(∂x). This case, was already considered in the proof of (b). We have
found two possibilities: (i, j) = (0, 0), (m,n) = (0, d) (which corresponds to vectors
in Ed) and (i, j) = (0, 1), (m,n) = (d, 0) (which corresponds to Ed+1). Suppose now
that we have a vector xm · yn · R in Pd(R) and a vector xk · ∂y in Pd(∂y) with the
same eigenvalue. Then

−k ·d−1 = −d ·m+n mod N =⇒ k− (d+1) = m+n(d+1) = d(n+1) mod N

which implies that
k = d · n + 2d + 1 mod N.

We have the following two solutions of the above relation: k = d, (m, n) = (0, d)
(which corresponds to Ed) and k = 0, (m,n) = (1, d − 1). On the other hand, if
0 ≤ n ≤ d− 2 then

2d + 1 ≤ d · n + 2d + 1 ≤ d2 + 1 < N =⇒ k = d · n + 2d + 1 > d,

which contradicts 0 ≤ k ≤ d. Therefore, there are two repeated solutions, which
correspond to Ed and Ed2+d. This implies that there is a total of 3 eigenvalues in
Pd(R) which were already found in the previous sets. Since #(Pd(R)) = d + 1, we
find d − 2 new eigenvalues corresponding to eigenvectors in the set Pd(R). Hence,
the total number of eigenvalues of A∗ is

M =
(d + 1)(d + 2)

2
+ d− 1 + d− 2 =

d2 + 7d− 4
2

,
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which proves the lemma. ¤

In order to finish the proof of theorem 2, it is sufficient to verify the following fact:
For any j ∈ {0, . . . , N − 1} such that j 6= d and Ej 6= {0} then T1|Ej 6≡ 0. To do this
will need first to carry on a study of the local variation of the Baum-Bott index.

3.3. Local Variation of the Baum-Bott Index. We will consider the following
situation: let X be a polynomial vector field in Vd and p0 ∈ C2 be a non-degenerate
singularity of X. Denote by X1 the 1-jet of X at p0, that is X1 = DX(p0). Let U ⊂ Vd

be a neighborhood of X such that there exists a holomorphic map p : U → C2 with
p(X) = p0 and for any Y ∈ U then p(Y ) is a non-degenerate singularity of Y . Let
B : U → C be defined by B(Y ) = BB(Y, p(Y )). We will prove the following result:

Lemma 3.4. Suppose that the eigenvalues of X1 are in the Poincaré domain and
have no ressonances. Let Z ∈ Vd ∩ ker(DB(X)), that is dB(X) · Z = 0. Then there
exists λ ∈ C and a germ of holomorphic vector field Y at p0, such that

Zp0 = λ ·Xp0 + [Xp0 , Y ],

where in the above relation, Xp0 and Zp0 denote the germs of the respective vector
fields at p0. In particular, if Z(p0) = 0 then Y (p0) = 0 and

Z1 = λ ·X1 + [X1, Y1],

where Z1 = DZ(p0) and Y1 = DY (p0).

Proof. Let B : U → C be as before. Set B(X) = b0 and let S := B−1(b0). We
will prove first that DB(X) 6≡ 0. This will imply that we can suppose (by taking a
smaller U) that S is a smooth codimension one sub-variety of U .

To simplify the notations, we will suppose that p0 = 0 ∈ C2. In this case, we have
X = X1 + h.o.t., where in a suitable affine coordinate system,

X1 = λ1 · x∂x + λ2 · y∂y, λ1, λ2 /∈ R−andλ2/λ1, λ1/λ2 /∈ N(Poincaré condictions).

Consider the curve X(t) in Vd defined by

X(t) = X + t · x∂x.

Then X(0) = X, X(t)(0) ≡ 0 ∈ C2 and X(t)1 = X1 + t · x∂x, which implies that

B(X(t)) =
(λ1 + λ2 + t)2

(λ1 + t)λ2

and, consequently,

DB(X) · (x∂x) =
d

dt
B(X(t))|t=0 =

1− (λ2/λ1)2

λ2
6= 0,

because λ2/λ1 6= ±1. Therefore, we will suppose that S is smooth of codimension
one.

Now, let Z ∈ ker(DB(X)). Since S is smooth, there exists a real analytic curve
Y (t) ⊂ S, t ∈ (−ε, ε), such that Y (0) = X and d

dtY (t)|t=0 = Z. Therefore, we can
write

Y (t) = X + t · Z +
∞∑

n=2

tn · Yn, Yn ∈ Vd, ∀n ≥ 2.

Set p(t) := p(Y (t)), so that p(0) = p0 and p(t) is a non-degenerate singularity of
Y (t). Let λ1(t) and λ2(t) be eigenvalues of DY (t)(p(t)), where we can suppose that
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t 7→ λj(t) is real analytic and λj(0) = λj for j = 1, 2. Since B(Y (t)) = bo for all
t ∈ (−ε, ε), we get

bo ≡ (λ1(t) + λ2(t))2

λ1(t) · λ2(t)
≡ (λ1 + λ2)2

λ1 · λ2
=⇒ λ2(t)/λ1(t) ≡ λ2/λ1,∀t ∈ (−ε, ε),

as the reader can check, by using the condition λj(0) = λj , j = 1, 2. This implies
that,

λ2(t)/λ2 ≡ λ1(t)/λ1 := φ(t),

where φ is real analytic and φ(0) = 1. Now, we use the Poincaré conditions. It follows
from Poincaré’s linearization theorem that, there exist 0 < δ ≤ ε, a neighborhood V
of 0 ∈ C2 and a real analytic map Ψ: (−δ, δ)×V → C2, with the following properties:

(i). Ψ(t, 0) = p(t) for all t ∈ (−δ, δ).
(ii). For all t ∈ (−δ, δ), Ψt(x, y) := Ψ(t, x, y) is a biholomorphism from V to

V (t) := Ψt(V ) and Ψ0 = idV (the identity map).
(iii). For all t ∈ (−δ, δ) we have Ψ∗t (Y (t)) = φ(t) · Y (0) = φ(t) ·X.
Writing explicitly the last relation, we have

(10) DΨ−1
t · Y (t) ◦Ψt = φ(t) ·X =⇒ Y (t) ◦Ψt = φ(t) ·DΨt ·X.

Let Ψt(x, y) = (Ψ1
t (x, y), Ψ2

t (x, y)) and consider the vector field W = P1
∂
∂x + P2

∂
∂y ,

where

Pj(x, y) =
∂Ψj

∂t
(0, x, y), j = 1, 2.

Note that the components of W and ∂
∂tΨ|t=0 coincide. Taking the partial derivative

of both members of (10) with respect to t at t = 0, we get

Z + DX ·W = Z + DY (0) ·W =

= Y ′(0) ◦Ψ0 + DY (0) ◦Ψ0 · ∂Ψt

∂t
|t=0 =

= φ′(0) ·DΨ0 ·X + φ(0) ·D
(

∂

∂t
Ψ|t=0

)
·X =

= φ′(0) ·X + DW ·X.

If we set λ = φ′(0) then we get

Z = λ ·X + DW ·X −DX ·W = λ ·X + [W,X].

This proves the first part of the lemma. We leave the proof of the second part for
the reader. ¤

3.4. Conclusion of the proof of Theorem 2. Back to our original problem it
remains to show that: For any j ∈ {0, . . . , N −1} such that j 6= d and Ej 6= {0} then
T1|Ej 6≡ 0. This will be achivied in the next result.

Lemma 3.5. Let W ∈ Pd be such that W ∈ ker(T1). Then W ∈ Ed.

Proof. Let W be in Pd ∩ ker(T1). We have three possible cases.
1st case: W = xi · yj∂x, where 0 ≤ i + j ≤ d. Recall that ∂x ∈ ker(T1). We assert
that, if 1 ≤ i + j ≤ d then W /∈ ker(T1).

In fact, set Z = W − ∂x = (xi · yj − 1)∂x. Since T1(∂x) = 0, we have

T1(W ) = 0 ⇐⇒ T1(Z) = 0.
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Recall that T1 = DB1(Xd), B1(X) = BB(F(X), γ1(X)) and γ1(Xd) = (1, 1) = p1.
Since Z(1, 1) = 0, it follows from lemma 3.4 that it is enough to verify if Z1 =
DZ(1, 1) belongs or not to the image of the linear map Ψ: C× L1 → L1 defined by

Ψ(λ, Y1) = λ ·X1 + [X1, Y1],

where L1 is the set of 1-jets of germs of holomorphic vector fields Y at (1, 1) such
that Y (1, 1) = 0. Note that L1 is isomorphic to the set M2, of 2 × 2 matrices, via
the linear map Φ: L1 → M2 defined by

Y = P∂x + Q∂y
Φ7→ DY (1, 1) =

[∂P
∂x (1, 1) ∂P

∂y (1, 1)
∂Q
∂x (1, 1) ∂Q

∂x (1, 1)

]

The map Φ is an isomorphism of Lie algebras. We will call Φ(Y1) the matrix form of
Y1 and, to simplify, we will keep the notation Y1 instead of Φ(Y1). Note that,

X1 =
[−1 −d

d −(d + 1)

]
andZ1 =

[
i j
0 0

]
.

Let Y1 =
[
α β
γ δ

]
. Then, Ψ(λ, Y1) = λ ·X1 + [X1, Y1] and

[X1, Y1] = Y1X1 −X1Y1 =
[

d(β + γ) d(δ − α− β)
d(γ + δ − α) −d(β + γ)

]
:=

[
x y
z −x

]
,

as the reader can check. In particular, we get tr([X1, Y1]) = 0 and the following
relation between the entries of [X1, Y1]

(11) x = z − y.

Let us suppose that Z1 = Ψ(λ, Y1). Since tr([X1, Y1]) = 0, we get

i = tr(Z1) = λ · tr(X1) = −λ · (d + 2) =⇒ λ = − i

d + 2
.

This implies that the matrix Z1 + i
d+2X1 must satisfy (11). On the other hand, we

have,

Z1 +
i

d + 2
X1 =

[
(d+1)i
d+2

(d+2)j−d·i
d+2

d·i
d+2 − (d+1)i

d+2

]

Hence, Z ∈ ker(T1) if, and only if,

(d + 1)i
d + 2

=
d · i
d + 2

− (d + 2)j − d · i
d + 2

if, and only if,
(d− 1)i = (d + 2)j.

The last relation implies that d + 2|i, which implies that i = 0 and j = 0, which
contradicts the assumption i + j ≥ 1.
2nd case: W = xk · y`∂y, where 0 ≤ k + ` ≤ d. Recall that xd∂y ∈ ker(T1). We
assert that, if 0 ≤ k ≤ d− 1 and 0 ≤ k + ` ≤ d then W /∈ ker(T1).

The idea is the same as in the 1st case. Let Z = W − xd∂y = (xk · y` − xd)∂y.
Since xd∂y ∈ ker(T1), then W ∈ ker(T1) ⇐⇒ Z ∈ ker(T1). In this case, we have
Z(1, 1) = 0 and

Z1 =
[

0 0
k − d `

]
=⇒ λ = − `

d + 2
=⇒ Z1 − λX1 =

[
− `

d+2 − d·`
d+2

d·`+(k−d)(d+2)
d+2

`
d+2

]
.
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Hence, Z ∈ ker(T1) if, and only if,

− `

d + 2
=

d · ` + (k − d)(d + 2)
d + 2

+
d · `
d + 2

⇐⇒ (d− k)(d + 2) = (2d + 1)`.

As the reader can check, if 0 ≤ k + ` ≤ d then the last relation is possible only for
k = d and ` = 0, which proves the assertion.
3rd case: W = xmynR, where m + n = d. Recall that yd · R ∈ ker(T1). We assert
that, if 0 ≤ n ≤ d− 1 then W /∈ ker(T1).

In this case, if Z = W − yd ·R = (xm · yn − yd) ·R then Z(1, 1) = 0 and

Z1 =
[
m n− d
m n− d

]
=⇒ tr(Z1) = 0 and λ = 0 =⇒ m = m− (n− d) =⇒

=⇒ n = d and m = 0.

This finishes the proof of the lemma and of Theorem 2. ¤

4. The Camacho-Sad Field

4.1. Preliminaries. Let M and S be two complex compact surfaces, φ : M 99K S be
a meromorphic map and F be a foliation on S. We want to prove that K(φ∗(F)) =
K(F). We will use the notation G := φ∗(F). As it was sketched in the introduction,
the theorem is true when φ consists of a sequence of blowing-ups. This fact allow us
to reduce the problem to the case where F and G are reduced and φ is holomorphic.
Thus, from now on, we will suppose that the foliations F and G = φ∗(F) are reduced
and that φ : M → S is holomorphic. Before going on, let us fix some notations.

LetH be a reduced foliation on a compact surface V . Given p ∈ V we will associate
a field, K(H, p), as follows: let X be a holomorphic vector field which represents H
in a neighborhood of p. When p ∈ sing(H), we will denote by λ1, λ2 the eigenvalues
of DX(p). We have three possibilities:

(I). p ∈ sing(F), λ1, λ2 6= 0 and λ2/λ1 /∈ Q+. In this case, H has two local
separatrixes Σ1 and Σ2 through p and CS(H, Σ1, p) = λ2/λ1, CS(H, Σ2, p) =
λ1/λ2. In this case, we set: K(H, p) = Q(λ2/λ1) = Q(λ1/λ2).

(II). λ1 = 0 and λ2 6= 0. We will suppose λ2 = 1. In this case, H has one
local analytic separatrix Σ2 through p, tangent to the eigenspace of λ2 = 1
and CS(H,Σ2, p) = 0. The separatrix Σ1, tangent to the eigenspace of
λ1 = 0 is formal, in general, but X is formally equivalent to the vector field
Y := xk+1∂x + y(1 + λxk)∂y. We have CS(H, Σ1, p) = λ (by definition) and
we set K(H, p) = Q(λ).

(III). p /∈ sing(F). In this case, we set K(F , p) = Q.
In general, if ∅ 6= A ⊂ V , and A ∩ sing(H) = {p1, . . . , pk}, we set

K(H, A) = Q(K(H, p1), . . . ,K(H, pk)).

When A ∩ sing(H) = ∅ we set K(H, A) = Q.
With the above notation, we have

(IV). K(H) = K(H, V ).
(V). If A,B ⊂ V then K(H, A ∪B) = Q(K(H, A),K(H, B)).
The next result implies Theorem 3.

Lemma 4.1. For any p ∈ S we have

K(φ∗(F), φ−1(p)) = K(F , p).
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We first note that φ−1(p) 6= ∅, because the generic rank of φ is two, which implies
that φ is surjective. Moreover, φ−1(p) is an analytic subset whose connected com-
ponents have dimension zero (points) or one (curves). In fact, we will prove that for
any connected component C of φ−1(p) we have

K(φ∗(F), C) = K(F , p).

Clearly this fact implies the lemma. Before going on, we will state some remarks and
preliminary results.

Remark 4.1. Let Z be vector field representing F in a sufficiently small neighbor-
hood U of a point p ∈ S. Locally, and up to an analytic change of coordinates, we
have three possibilities:
1st. p is not a singularity of F . In this case, K(F , p) = Q. We can suppose that
Z = ∂y. In particular, F has a local holomorphic first integral (y) and has just one
local separatrix through p: the curve y = 0.
2nd. p is a reduced and simple singularity of F and the eigenvalues of DZ(p) are
λ1, λ2 6= 0. In this case, λ2/λ1 /∈ Q+ and K(F , p) = Q(λ2/λ1). The foliation F has
two local separatrices through p, which are smooth and transversal at p. We can
suppose that they are (x = 0) and (y = 0) and that

(12) Z = λ1 · x∂x + λ2 · y(1 + R(x, y))∂y .

where R(0, 0) = 0.
3rd. p is a saddle-node of F and we can suppose that the eigenvalues of DZ(p)
are 0 and 1. In this case, Z is formally equivalent at p to the vector field Ẑ =
xk+1∂x + ŷ(1+λ ·xk)∂ŷ, where k ≥ 1, and K(F , p) = Q(λ). Here, we will use Dulac’s
normal form (cf. [11]). For every m ≥ k + 1 there exists a holomorphic coordinate
system (U, (x, y)) such that x(p) = y(p) = 0 and F is defined by

(13) Z = xk+1∂x + [y(1 + λ · xk) + R(x, y)]∂y .

where the m jet of R is zero at 0 ∈ C2. When F has two local analytic separatrices
through p, we can suppose that y divides R. When it has just one analytic separatrix,
then it has also a formal one, given by ŷ = 0, where ŷ is a divergent series of the
form (cf. [11]):

(14) ŷ = y −
∞∑

j=r+1

ajx
j .

We will break down the proof of Lemma 4.1 in three cases.

Proof of Lemma 4.1, 1st Case: p is not a singularity of F . Here F admits a holo-
morphic first integral in a neighborhood of p. If g ∈ Op is such holomorphic first
integral then φ∗g is an holomorphic first integral for G = φ∗F in a neighborhood of
φ−1(p). Thus K(G, φ−1(p)) = Q. ¤

¿From now on, we will suppose that p ∈ sing(F). In the next results, we will
consider the following situation: let q ∈ φ−1(p)∩ sing(G). Suppose that G has a local
analytic separatrix Σ̃ through q such that φ(Σ̃) 6= {p}. In this case, φ(Σ̃) := Σ is a
local analytic separatrix of F through p.

Lemma 4.2. In the above situation, we have
(a). CS(G, Σ̃, q) ∈ Q(CS(F , Σ, p)).
(b). If K(F , p) = Q(CS(F , Σ, p)) then K(F , p) = Q(CS(G, Σ̃, q)).
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Proof. Let (f = 0) be a reduced equation Σ and write

(15) g · ω = h · df + f · µ,

where g, h|Σ 6= 0. From the definition, we have

CS(F ,Σ, p) =
1

2πi

∫

γ

−µ

h
,

where γ is a small circle in Σ around p, positively oriented. Note that φ∗(ω) = k̃ · θq,
where k̃ ∈ Oq and θq represents the germ of G at q. Let f̃ = 0 be a reduced equation
of Σ̃. Since φ(Σ̃) = Σ = (f = 0), we get

φ∗(f) = f ◦ φ = g̃ · f̃m,

where m ≥ 1 and g̃|Σ̃ 6= 0. It follows from (15) that

φ∗(g) · k̃ · θq = φ∗(h) · d(g̃ · f̃m) + g̃ · f̃m · φ∗(µ) =⇒

=⇒ φ∗(g) · k̃
m · φ∗(h) · g̃ · f̃m

· θq =
df̃

f̃
+

1
m

[
dg̃

g̃
+ φ∗(

µ

h
)] =⇒

=⇒ CS(G, Σ̃, q) = − 1
2πi

∫

γ̃

1
m

[
dg̃

g̃
+ φ∗(

µ

h
)
]

,

where γ̃ is a small circle in Σ̃ around q. Note that φ(γ̃) = γn, where n ≥ 1. Observe
also that

∫
γ̃

dg̃
g̃ = ` ∈ Z. Hence,

CS(G, Σ̃, q) = − `

m
+

1
m

1
2πi

∫

γn

−µ

h
=

1
m

(−` + n · CS(F ,Σ, p)) ∈ Q(CS(F , Σ, p)).

Since n 6= 0, we get also that

Q(CS(G, Σ̃, q)) = Q(CS(F ,Σ, p)),

which implies (b). ¤

Remark 4.2. The above result is true in the general case, that is, even if the map
φ is meromorphic and the separatrices Σ̃ and Σ are singular.

Remark 4.3. If the connected component C of φ−1(p) is a curve, then all irreducible
components of C are invariant for the foliation G. Moreover, all the singular points
of C are nodes.

Proof of Lemma 4.1, 2nd Case: p is a singularity with two analytic separatrices.
We will prove that every connected component C of φ−1(p) is such that

K(G, C) = K(F , p).

First of all, observe for one of the two separatrices, say Σ, we have

K(F , p) = Q(CS(F , Σ, p)).

Let W be a neighborhood of C. Note that φ−1(Σ) ∩ W is a germ of analytic set
around φ−1(p), different from φ−1(p). Each component of φ−1(Σ)\φ−1(p) is a curve
biholomorphic to D∗, whose closure contains an unique point in φ−1(p). Let Σ̃ be a
closure of some of these components and set Σ̃ ∩ φ−1(p) = {q}. It follows from (b)
of lemma 4.2 that

K(G, q) = K(F , p).
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This implies that
K(G, C) ⊂ K(G, q) = K(F , p).

It remains to prove that, for any q ∈ sing(G) ∩ C, then K(G, q) ⊂ K(F , p). If C has
dimension zero, that is C = q, the above argument shows that K(G, C) = K(F , p).

¿From now on, we will suppose that C is a curve. The next result implies the
second case of lemma 4.1.

¤

Lemma 4.3. Let q ∈ C ∩ sing(G) and Σ̃1 be a separatrix of G through q. Then Σ̃1

is analytic and
CS(G, Σ̃1, q) ∈ K(F , p).

Proof. Suppose first that q is a smooth point of C and that Σ̃1 6⊂ C. If Σ̃1 is a formal
separatrix of G which is non convergent then F would have a formal non-convergent
separatrix at p contrary to our assumptions. This Σ̃1 is analytic. Thus lemma 4.2
implies that

CS(G, Σ̃1, q) = CS(G, φ(Σ̃1), p) ∈ K(F , p)

and we are done in this case.
Let us suppose now that Σ̃1 ⊂ C. In this case, Σ̃1 is analytic and smooth, but

φ(Σ̃1) = {p} and we cannot use directly lemma 4.2. The result will follow from the
lemma below. ¤

Lemma 4.4. In the above situation, there is a bimeromorphism ψ : Ŝ → S (a se-
quence of blowing-ups) such that, if we set φ̂ := ψ−1 ◦ φ : M 99K Ŝ, F̂ = ψ∗(F) and
D = ψ−1(p) then:

(a). There exists p̂ ∈ D ∩ sing(F̂) and a separatrix Σ1 ⊂ D of F̂ through p̂ such
that φ̂(Σ̃1) = Σ1.

(b). CS(G, Σ̃1, q) ∈ K(F̂ , p̂) ⊂ K(F , p).

Proof. Let Σ̃2 be the other separatrix of G through q and (V, (u, v)) be a local coor-
dinate system around q such that u(q) = v(q) = 0, sing(G)∩ V = {q}, Σ̃1 = (u = 0),
Σ̃2 = (v = 0), V = {(u, v)||u|, |v| < ε} and φ(V ) ⊂ U . As before, we have
Xq(u, v) = um · f(u, v) and Yq(u, v) = un · g(u, v), where m,n ≥ 1, f, g ∈ Oq

and f(0, v), g(0, v) 6≡ 0. For |c| < ε, let γc be the germ at p of the curve u 7→ φ(u, c).
Note that, maybe γ0 is a point (if φ(Σ̃2) = {p}), however if we take a smaller ε > 0,
then we can suppose that γc is a curve, for all 0 < |c| < ε. Moreover, there is a
sequence of blowing-ups ψ : Ŝ → S such that, if D = ψ−1(p) and ε is small enough
then:

(i). ψ : Ŝ \D → S \ {p} is a bimeromorphism.
(ii). There is a divisor D1 ⊂ D such that, for all 0 < |c| < ε, the strict transform

γ̂c of γc meets D1 in a unique point, say p(c).
(iii). If c1 6= c2 and 0 6= c1, c2 then p(c1) 6= p(c2). In particular, the map c ∈

{z|0 < |z| < ε} ' D∗ 7→ p(c) ∈ D1 is a holomorphic embedding.
The sequence of blowing-ups ψ, is a simultaneous resolution of the germs γc,

0 < |c| < ε. We leave the details for the reader. In this case, it follows from Picard’s
theorem that there exist limc→0 p(c) = p̂ ∈ D1. Moreover, if F̂ = ψ∗(F) then the
germ Σ1 of D1 at p̂, is a separatrix of F̂ through p̂ and ψ−1 ◦ φ(Σ̃1) = Σ1. This
proves (a).
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Let us prove (b). Note first that

CS(F̂ , Σ1, p̂) ∈ K(F , p) =⇒ Q(CS(F̂ , Σ1, p̂)) ⊂ K(F , p),

because ψ is a sequence of blowing-ups (see the introduction). On the other hand,
lemma 4.2 implies that

CS(G, Σ̃1, q) ∈ Q(CS(F̂ ,Σ1, p̂)).

This finishes the proof. ¤
To finish the prove of Lemma 4.1 it remains to treat just one case:

Proof of Lemma 4.1, 3rd Case: p is singular with just one analytic separatrix. In
this case, F has a normal form like in (13) of remark 4.1: for every r ≥ k + 1 there
exists a local coordinate system (U, (x, y)) where F is represented by

(16) ω = xk+1dy − [y(1 + λ · xk) + R(x, y)]dx,

where k ≥ 1 and jr
0(R) = 0. Let C be a connected component of φ−1(p) and consider

a sufficiently small neighborhood W of C. We will denote by Σ1 the non-convergent
separatrix and by Σ2 the convergent one. In the coordinate system (U, (x, y)) we
have Σ2 = (x = 0) and Σ1 is given by the divergent series

y =
∞∑

j=r+1

ajx
j .

As before, the proof consists in proving that
(I): For any q ∈ C ∩ sing(G) we have K(G, q) ⊂ K(F , p), and;

(II): There exists q0 ∈ C ∩ sing(G) such that K(G, q0) = K(F , p).
Proof of (I). Let us consider first the case where the two separatrices through
q are analytic. Let Σ̃ be one of these separatrices. It is sufficient to prove that
CS(G, Σ̃, q) ∈ K(F , p).

In fact, if φ(Σ̃) 6= {p} then φ(Σ̃) is a curve and φ(Σ̃) ⊂ Σ2. Since CS(F , Σ2, p) = 0,
we get from lemma 4.2 that CS(G, Σ̃, q) ∈ Q, as asserted. On the other hand, if
φ(Σ̃) = {p} then the assertion follows from (b) of lemma 4.4.

Let us suppose now that there is a non-convergent separatrix, say Σ̃1, and a con-
vergent one, say Σ̃2, through q. We assert that there is a coordinate system (V, (u, v))
around q such that u(q) = v(q) = 0, φ(V ) ⊂ W and φ|V (u, v) = (X(u, v), Y (u, v)),
where

(i). X(u, v) = um, m ≥ 1.
(ii). Y (u, v) = un · v, where n = 0 if C = {q} and n ≥ 1 if C is a curve.
In fact, we can write φ|W = (X, Y ), where X, Y : W → C and X(q) = Y (q) = 0

(φ(W ) ⊂ U as in 4.3). Let Xq and Yq be the germs of X and Y at q. Since
Σ2 = (X = 0) is invariant for F , the irreducible components of (Xq = 0) are local
analytic separatrices of G through q. This implies that (Xq = 0) = Σ̃2. Choose a local
coordinate system (u, v) such that Σ̃2 = (u = 0). In this case, we get Xq = um · g,
where m ≥ 1 and g ∈ O∗q . If we consider the local change of variables u1 = u · g1/m,
then Xq = um

1 , and so we can suppose Xq = um. In this coordinate system we must
have Yq = un · Y1, where Y1 ∈ Oq. If C is a curve then Σ̃2 ⊂ C (by remark 4.3)
and n ≥ 1. If C = {q} then n = 0 and Y (0, v) 6≡ 0. We assert that Yv(0, 0) 6= 0.
Note that this implies that, after a holomorphic change of variables, we can suppose
Y1(u, v) = v.
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In fact, to say that the formal separatrix ŷ := y −∑
j ajx

j is invariant for F is
equivalent to

(17) dŷ ∧ ω = f̂ · ŷ · dx ∧ dy,

where f̂ ∈ Ôp and Ôp denotes the ring of formal power series at p. Consider the
formal power series

(18) un · Ŷ1 := Ŷ (u, v) := φ∗(ŷ) = un


Y1(u, v)−

∑

j≥r+1

aju
mj−n


 ,

where Ŷ1 ∈ Ôq if we take r big enough. Let Ŷ1 = gn1
1 · · · , gns

s be the decomposition
of Ŷ1 into irreducible factors of Ôq. Write φ∗(ω) = h · θq, where θq represents the
germ of G at q. It follows from (17) that

h


n · g1 · · · gsdu + u


∑

j

nj · g1 · · · gj−1 · gj+1 · · · gs · dgj





 ∧ θq =

= ∆ · f̃ ◦ φ · u · g1 · · · gsdu ∧ dv,

where ∆ = Xu · Yv −Xv · Yu = um+n−1 · Y1v. We assert that h divides ∆ in the Oq.
In fact, as the reader can check, we have φ∗(ω) = um+n−1(Adv −Bdu), where

A = ukm+1 · Y1v

B = m · Y1(1 + (λ− n
m · ukm) + ukm+1 · T (u, v)

and T ∈ Oq. This implies that h = um+n−1 · h1, where any factor of h1 is also a
factor Y1v, because u does not divides B. Therefore, h divides ∆.

It follows that
n · g1 · · · gsdu + u


∑

j

njg1 · · · gj−1 · gj+1 · · · gsdgj





∧ θq = f̂ · u · g1 · · · gsdu∧ dv,

where f̂ ∈ Ôq. Hence, all factors g1, . . . , gs and (u = 0) are invariant for G. Since G
has only two separatrices through q, we get that s = 1 and g1 is the formal separatrix
of G through q. Since G is reduced, we get g1v(0) 6= 0 and Ŷ1 = gs, where g = g1 and
s = n1. It follows from (18) that

Y1v = Ŷ1v = sgs−1gv

Therefore, Y1v(0) = 0 if, and only if, s > 1. Suppose by contradiction that s > 1.
Since gv(0) 6= 0, by the formal Weierstrass’ theorem we can write g = f · (v − h(u)),
where f ∈ Ôq, f(0) 6= 0 and h(u) is a power series. Therefore, if we set k = s·fs−1 ·gv,
then we have k ∈ Ôq, k(0) 6= 0 and Y1v = k ·(v−h(u))s−1. This implies that the germ
of analytic set (Y1v = 0) (which is not empty), is also given by (v−h(u) = 0), and so,
h(u) is convergent. But this is a contradiction, because φ(v − h(u) = 0) = (ŷ = 0),
which is divergent. Hence s = 1 and Y1v(0) 6= 0.

Let us finish the proof of (I). Since X(u, v) = um and Y (u, v) = un · v, we get
from (16) that φ∗(ω) = um+n−1 · θq, where, given ` > mk + 1 then

θq = ukm+1dv −m[v
(
1 + (λ− n

m
) · ukm

)
+ R̃(u, v)]du
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and R̃(u, v) = u−n ·R(um, un · v) ∈ u` · Oq, if r is big enough. This implies that the
formal normal form of G at q is given by

ukm+1dv−m
[
v
(
1 +

(
λ− n

m

)
ukm

)]
du =⇒ K(G, q) = Q(mλ−n) = Q(λ) = K(F , p).

Proof of (II). We will suppose that C is a curve. The case where C is a point will
be left for the reader. It follows from the proof of (I) that it is sufficient to find a
point q ∈ C∩sing(G) with a non-convergent separatrix. Let W be a sufficiently small
neighborhood of C. Consider the curve C1 := φ−1(y = 0) ∩W . Since φ(C1) = (y =
0) 6= {p}, it follows that C1 \ C 6= ∅. Moreover, if δ is a component of C1 \ C then δ
is biholomorphic to D∗ and δ ∩C is a point, say q. We will denote by δq the germ of
δ at q. We assert that G has a non-convergent separatrix through q.

We will see at the end that q is smooth point of C. Let us suppose this fact for
a moment. Since φ(C) = {p}, there exists a coordinate system (V, (u, v)) such that
V ⊂ W , u(q) = v(q) = 0 and C ∩ V = (u = 0). In this case, the germ of φ at q can
be written as

φq(u, v) = (Xq(u, v), Yq(u, v)) = (umX1(u, v), unY1(u, v)),

where X1, Y1 ∈ Oq and X1(0, v), Y1(0, v) 6≡ 0. Note that Y1(0, 0) = 0 and δq ⊂
(Y1 = 0). On the other hand, since (x = 0) is an analytic separatrix of F through p,
X1(0, 0) 6= 0, because otherwise q would be a node of C. This implies that, after a
holomorphic change of variables, we can suppose that X(u, v) = um. It follows that
the formal series

Ŷ1 =
1
un


Y −

∑

j≥r+1

ajX
j


 = Y1 −

∑

j

aju
jm−n

defines a formal separatrix of G through q (see the proof of (I)).
It remains to prove that q is a smooth point of C. Suppose by contradiction that q

is a node of C. The idea is to prove that in this case G has more than two separatrixes
through q, which is not possible for a reduced foliation. Let (V, (u, v)) be a coordinate
system such that C ∩ V = (u · v = 0). In this case, we can write Xq(u, v) = um · v` ·
X1(u, v) and Yq(u, v) = un ·vs ·Y1(u, v), where X1(0, v), Y1(0, v), X1(u, 0), Y1(u, 0) 6≡ 0
and m,n, `, s ∈ N. As before, we must have X1(0, 0) 6= 0, because (x = 0) is an
analytic separatrix through p. Hence, after a holomorphic change of variables, we
can suppose that X(u, v) = um · v`. If r À 1, then we get the formal power series

Ŷ1 =
1

un · vs


Y −

∑

j≥r+1

aju
jm · vj`


 = Y1 −

∑

j≥r+1

aju
jm−n · vj`−s ∈ Ôq.

Note that Ŷ1(0, 0) = 0. This implies that all irreducible components of Ŷ1 in the ring
Ôq are invariant for G (see the proof of (I)). Since u and v do not divide Ŷ1 in Ôq,
G has more than two separatrices through q: (u = 0), (v = 0) and the irreducible
components of Ŷ1. This finishes the proof of the thrid case of Lemma 4.1 and of
Theorem 3. ¤

4.2. Proof of Corolary 2. If BB : Fol(d) 99K Pd2+d+1 is the global Baumm-Bott
then by Theorem 1 it follows that the closure of its image is an hypersurface H.
Clearly this hypersurface is defined over Q. This is sufficient to assure that there
exists a dense set U ⊂ H, such that the field generated by the quotients of the
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coordinates of p = [p0 : . . . : pd2+d+2] has transcendence degree d2 + d = dim H for
every p ∈ U .

Since the Camacho-Sad index and the Baum-Bott index of a simple singularity are
algebraically dependent, if we take G(d) = BB−1(U)∩R(d) then, for every F ∈ G(d),
the transcendence degree of K(F) = d2 + d. Moreover since U is dense in the image
of BB we have that G(d) is also dense. ¤
4.3. A Basic property of the CS-Field and the Proof of Corolary 3. We will
derive corollary 3 from corollary 2 and the basic property of the Camacho-Sad Field
is describe in the next proposition. Here we will use the terminology and notation of
[3, Chapter 1].

Proposition 4.1. Let F be foliation of compact surface S with isolated singularities
and cotangent bundle isomorphic to L. The transcendence degree of K(F) over Q is
at most c2(TS ⊗ L)− 1.

Proof. If all the singularities are simple, i.e., they all have Milnor number one, then
the result is and immediate consequence of Baum-Bott’s Formula.

Suppose now that there is a singularity p of F with Milnor number µ(p) ≥ 2. We
have three possibilities:

(1). p is a saddle-node;
(2). p is a singularity without linear part;
(3). p is a nilpotent singularity.
In case (1) we have already seen that the transcendence degree of K(F , p) is at

most 1.
In case (2) we can apply Van den Essen formula(cf. [3, page 13]) to see that after

blowing up the sum of the Milnor numbers over the singularities on the exceptional
divisor is strictly less then µ(p).

In case (3) the argument is more involved. After blowing-up a nilpotent singularity
only one singularity q appears at the exceptional divisor. We have two possibilities
(3.1). q is a singularity without linear part: after blowing up q it appears 2 or 3

singularities at the exceptional divisor. The important fact is that the sum
of its Milnor numbers is equal to µ(p). Thus here without further ado we
have that the transcendence degree of K(F , p) is at most µ(p);

(3.2). q is (again) a nilpotent singularity: blowing up q we obtain a singularity
without linear part and after blowin-up again we obtain 3 singularities with
non-nilpotent linear part. It follows from Camacho-Sad index Theorem that
in this case K(F , p) = Q.

An induction argument shows that the transcendence degree of K(F) is at most
the sum of Milnor numbers of singularities of F which is equal to c2(TS ⊗ L).

To conclude we will analyse two cases independently. In the first one saddle-nodes
do not appear in F̃ the resolution of F . So at the end all the singularities of F̃
are simple and from (1) and Baum-Bott’s formula we have that the transcendence
degree of K(F) is at most c2(TS⊗L)−1. In the second case at least one saddle-node
appears at the resolution. Since they have Milnor number at least 2 and contributes
to the transcendence degree with at most 1 the result also follows in this case. ¤

Proof of Corollary 3. Corollary 3 follows immediately combining Theorem 3 and
Corollary 2 with the proposition above. ¤
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5. An example

As already noted in the introduction the dimension of the generic fiber is given
by dimFol(d)− (d2 + d) = 3d + 2. It would be interesting to classify the exceptional
fibers of the Baum-Bott map, i.e., fibers with dimension at least 3d + 3.

Example 5.1. Let F0 be a foliation on P2 with a meromorphic first integral of the
type F/Ld+1, where F and L are homogeneous, F of degree d + 1 and L of degree
one. In an affine coordinate system C2 where L is the line at infinity, the foliation
is defined by dF = 0 and so, it is of degree d. If F is generic then F0 has d2 simple
singularities on C2, all of them with Baum-Bott index zero, and d + 1 singularities
at the line L, all of them with Baum-Bott index (d + 2)2/(d + 1). In fact, we will
see in the next result that the fiber of BB containing F0 has dimension greater than
3d + 2.

Proposition 5.1. Let F be a degree d foliation of P2 with at least d2 simple singu-
larities with Baum-Bott index zero. Then F is a pencil generated by C and (d+1)L,
where C has degree d + 1 and L is a line. In particular the fiber of the Baum-Bott
map containing F has dimension

(
d + 3

2

)
+ 2.

Proof. We will start by proving that F has an invariant line. Consider an affine
coordinate system (x, y) ∈ C2 ⊂ P2, such that all singularities of F are contained in
C2. In particular, the line at infinity is not invariant for F . Recall that F is induced
by a vector field X of the form,

X = (a + xg)∂x + (b + yg)∂y,

where a, b are polynomials with deg(a), deg(b) ≤ d and g is a non-identically zero
degree d homogeneous polynomial.

Let I be the ideal generated by a + xg and div(X), where

div(X) =
∂

∂x
(a + xg) +

∂

∂y
(b + yg) =

∂a

∂x
+

∂b

∂y
+ (d + 2)g

Note that, for any singularity p of F with Baum-Bott index zero, we have div(X)(p) =
0. By Bezout’s Theorem we have that V (I) = {p ∈ P2|f(p) = 0∀f ∈ I} has degree
deg(div(X)) deg(a + xg) = d(d + 1), i.e., V (I) has d2 + d points(counted with mul-
tiplicity): d of these points are at infinity they correspond to the intersection of the
curve {g = 0}(which is a union of lines) with the line at infinity; the other d2 cor-
respond to the singularities of X in C2 with vanishing trace, i.e., with Baum-Bott
index zero. In particular, the closure of the curves a + x.g = 0 and div(X) = 0
intersect transversely in P2.

Since b + y · g vanishes on all points of V (I) it must belong to I. Keeping in mind
that deg(b+ y · g) = deg(a+x · g) = deg(div(X))+1 we can apply Noether’s Lemma
to see that there exists `1, `2 ∈ C[x, y] such that deg(`1) = deg(`2) = 1 and

X(`1) = `2 · div(X)

Note that the left-hand side of the equation above vanishes at all singularities of X.
This implies that all the singularities of F with Baum-Bott index distinct from zero
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have to be in `2. Comparing the homogeneous terms of degree d + 1 of the equation
one obtains that

g

(
∂`1
∂x

x +
∂`1
∂y

y

)
= (d + 2)g

(
∂`2
∂x

x +
∂`2
∂y

y

)
.

Thus `1 − (d + 2)`2 ∈ C, and consequently

X(`2) =
1

d + 2
· div(X) · `2,

proving that `2 is invariant.
Let us choose an affine coordinate system where the line at infinity is invariant

and
X = a∂x + b∂y,

with deg(a) = deg(b) = d. We claim that div(X) ≡ 0. Let I be the ideal generated
by div(X) and a. If div(X) 6≡ 0, then div(X) has degree ≤ d − 1 and V (I) in this
case has degree ≤ d(d− 1). Since V (I) has to vanish at d2 points we get div(X) ≡ 0.

The condition div(X) = 0 is equivalent to the closedness of the polynomial 1-form
ω = bdx− ady. So ω = dF for some polynomial F of degree d + 1, i.e., F is a pencil
generated by F and Ld+1, where F has degree d + 1 and L is the line at infinity.

We conclude that the fiber of the Baum-Bott map that contains F can be para-
metrized as

(F, L) ∈ Pd+1 × P1 7→ F(F/Ld+1),
where Pj denotes the set of homogeneous polynomials on C3 of degree j and F(G)
the foliation with first integral G. Note that F(F/Ld+1) is defined in homogeneous
coordinates by the 1-form

ω(F,L) = L · dF − (d + 1) · F · dL.

On the other hand, the reader can check that ω(F, L) = ω(F1, L1) if, and only if,
(F1, L1) = λ·(F,L), where λ ∈ C∗. This implies that the dimension of the fiber of the
Baum-Bott map that contains F has dimension dim(P(Pd+1×P1)) =

(
d+3
2

)
+ 2. ¤

6. Some Remarks and Problems

6.1. The image of the Baum-Bott Map. If F and L are generic, then the singu-
larities of F(F/Ld+1) are all simple. Moreover, there are two kinds of singularities:
the d2 singularities with Baum-Bott index zero and the d + 1 in the line L, all of
them with Baum-Bott index (d + 2)2/(d + 1). In particular, we see that BB(R(d))
is not the whole hyperplane given by the Baum-Bott theorem. In fact, any point of
the form (0, . . . , 0, λ1, . . . , λd+1), where

∑
j λj = (d + 2)2 and λ1 6= (d + 2)2/(d + 1)

is not in BB(R(d)).
It would be interesting to describe BB(R(d)), or more specifically, give a criterion

to decide if a point [b1, . . . , bN ] belongs or not to BB(R(d)).

6.2. Affine versions of Theorem 1. Let L ⊂ P2 be a line and FolL(d) be the
space of foliations of degree d which leave L invariant. If F ∈ FolL(d) has only
simple singularities, it is known (cf. [3]) that L contains (d+1) singularities and that

∑

p∈sing(F)∩L

CS(F , L, p) = C · C = 1.

This implies in particular, that the maximal rank of BB|FolL(d) is less than d2 + d.
When d ≥ 2, is the maximal rank of BB|FolL(d) equal to d2 +d−1? If C is an smooth
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curve, what can be said about the generic rank of BB|FolC(d) for d À 0? We believe
that our strategy of proof should work on these situations.

6.3. The Fibers of the Baum-Bott Map. Recall that the dimension of the generic
fiber of the global Baum-Bott for degree d foliations of P2 is 3d + 2. How many
irreducible components it has and which is its degree as an algebraic subset of Fol(d)?

6.4. Other Surfaces. For an arbitrary compact complex surface S and an arbi-
trary non-negative integer k we have that the number of singularities(counted with
multiplicities) of a foliation in Fol(S,L) with isolated singularities is given by

c2(TS ⊗ L⊗k) = k2 · c1(L)2 + k · c1(L) · c1(S) + c2(S) .

On the other hand if L is an ample line-bundle and k À 0 then, combining
Hirzebruch-Riemann-Roch Theorem with Serre’s Vanishing Theorem(see [1]), we
have that dimFol(S,L⊗k) = h0(TS ⊗ L⊗k)− 1 is equal to

1
2

(
c2
1(TS ⊗ L⊗k)− 2c2(TS ⊗ L⊗k)

)
+

1
2
c1(TS ⊗ L⊗k) · c1(S) + 2χ(S)− 1 .

Straight-forward manipulations shows that the dimension Fol(S,L⊗k)

k2c1(L)2 + 2kc1(L) · c1(S) + c2
1(S)− c2(S) + 2χ(S)− c2(S)− 1 .

Thus we have that dimFol(S,L⊗k)− c2(TS ⊗ L⊗k) is equal to

kc1(L) · c1(S) + (c2
1(S)− c2(S) + 2χ(S)− 1) .

If c1(L) · c1(S) < 0(this happens,for example, when S is of general type) then

dimFol(S,L⊗k)− c2(TS ⊗ L⊗k) < 0,

for k À 0, i.e., we have more singularities then foliations. In particular we have other
relations between the Baum-Bott indexes besides the Baum-Bott’s formula. It would
be really interesting to understand the nature of these relations. For instance one
could ask how they change when S and L are deformed. Another natural problem is
to know if the Baum-Bott map in this situation is generically finite or not.

6.5. Endomorphisms and Foliations on Pn. In [8] Baum-Bott-like formulas are
worked out for endomorphisms of projective spaces. There, by a dimension counting,
it is shown the existence of extra unknown relations among such multipliers. An
analogous phenomena happens also with one-dimensional foliations of Pn, n ≥ 3.
Can these extra relations be produced by some index formula? We refer to [8] for a
more complete discussion.
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[6] X. Gómez-Mont and I. Luegno, The Bott polynomial of a holomorphic foliation by curves.

Medina 95.
[7] A. Guillot, Champs quadratiques uniformisables. Thèse ÉNS-Lyon, 2001.
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Appendix: On the monodromy of the singular set

Let M be a projective manifold of dimension m, ΘM be the tangent sheaf of M and
L be a line-bundle over M . The space of foliations by curves on M with cotangent
bundle isomorphic to L, denoted by Fol(M,L) = Fol(L), can be identified with the
projectivization of the global sections of the bundle ΘM ⊗ L, i.e.,

Fol(L) = PH0(M, ΘM ⊗ L) .

Over the product of Fol(L) with M we consider the natural foliation F(L) char-
acterized by the property that the restriction of F(L) to the fiber over F under the
natural projection π : Fol(L)×M → Fol(L) coincides with F , i.e.,

F(L)|π−1(F) = F .

We will denote by S(L) the singular set of F(L).
Suppose that all the irreducible components of S(L) are of the same dimension

and that π = π|S(L) : S(L) → Fol(L) is generically finite. If we denote by ∆(L) the
discriminant of the π then for every foliation F ∈ F(L) \ ∆(L) we can lift closed
paths contained in F(L) \∆(L) to S(L) inducing a representation

Φ(F) : π1(F(L) \∆(L),F) → Perm(sing(F)) .

Of course if we choose another foliation F ′ ∈ F(L) \∆(L) as a base point for the
lifting of paths we obtain Φ(F ′) which is conjugated to Φ(F). Therefore we will say
the the monodromy of the singular set of F(L) is a subgroup of the symmetric group
on k elements, where k is the cardinality of sing(F), given by the image of Φ(F) up
to conjugacy.

The aim of the appendix is to prove the

Theorem 4. Let L be an ample line-bundle over a projective manifold M of di-
mension m. For k À 0 the monodromy of the singular set of Fol(L⊗k) is the full
symmetric group in cm(ΘM ⊗ L) elements.

We remark that the strategy of the proof is very similar to the ones presented in
[1] and [2]. The carefull reader will note that over Pn the result is valid for foliations
of degree at least 2.

Proof of Theorem 4. Let S ⊂ M × Fol(L⊗k) be the singular set, i.e.,

S = {(p,F)|p ∈ sing(F)}.
The set S can also be described as the projectivization of the kernel of the map

of vector bundles

M ×H0(M, ΘM ⊗ L⊗k) → TM ⊗ L⊗k

(p,X) 7→ X(p) .

Since k À 0 and L is ample it follows from Serre’s vanishing theorem that ΘM ⊗L⊗k

is generated by global sections. In particular the above map has constant rank and
its kernel is a sub-bundle of M ×H0(M, ΘM ⊗L⊗k) of codimension equal to dim M .
It follows that S ⊂ M × Fol(L⊗k) is a smooth irreducible subvariety and that the
projection π : S → Fol(L⊗k) is surjective and generically finite. The irreducibility of
S implies that the monodromy of π is 1-transitive.
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First Step: The monodromy group is 2-transitive. Let p be an arbitrary point
in M and let Fol(L⊗k)p ⊂ Fol(L⊗k) be the set of foliations having p as a singularity.
If

Sp = {(q,F) ∈ M \ {p} × Fol(L⊗k)p | q ∈ sing(F)}.
then as before Sp is the projectivization of the kernel of Φ,

Φ : U × V → TU ⊗ L⊗k

(z, X) 7→ X(z)

where U = M \ {p}, V = H0(M, ΘM,p ⊗ L⊗k) and ΘM,p is the subsheaf of ΘM

generated by vector fields vanishing at p. Clearly ΘM,p is a coherent sheaf and hence
we can apply again Serre’s vanishing theorem to assure that Sp is a smooth irreducible
subvariety of M \ {p} × Fol(L⊗k)p and that πp : Sp → Fol(L⊗k)p is surjective and
generically finite. As before the monodromy of πp is thus transitive.

Let G be the monodromy group of π and (p1, q1) and (p2, q2) be two pairs of the
points in M × M . Then, from the 1-transivity of G, there exists α ∈ G such that
α(p1) = p2. From the discussion above on the monodromy of πp it follows that there
exists β ∈ G such that β(p2) = p2 and β(q1) = q2.

We have just proved that G, the monodromy group of π, is 2-transitive.

Sencond Step: The monodromy group contains a transposition. First con-
sider the local situation. Let X and Y be germs of holomorphic vector fields on a
neighborhood of 0 ∈ C2. Suppose that 0 is a singularity of multiplicity 2 of X and
that Y (0) 6= 0. Consider the equation

(X + tY )(s(t)) = 0

with boundary value s(0) = 0 where s ∈ C[[t]] is a formal power series. Deriving
with respect to t we obtain that

DX(s(0)) · s′(0) + Y (0) = 0 .

When Y (0) is not contained in the image of DX(0) then the above equation has no
solutions and in particular the local monodromy is generated by the transposition.
As an example of this situation one can take X = x ∂

∂x + y2 ∂
∂y + . . . and Y = ∂

∂y ,
where

sing(X + tY ) = (0,±√−t).
Back to the global situation suppose first that there exists F ∈ Fol(L⊗k) with

one singularity with the 2-jet equal to the 2-jet of X and all other singularities
with multiplicity one. Since ΘM ⊗ L⊗k is generated by global sections there exists
Y ∈ H0(M, ΘM ⊗ L⊗k) such that Y (p) is not in the image of DX(p). The local
discussion above shows that G, the monodromy group of π, contains a transposition.

Let p be a point of M and mp its ideal sheaf. If we consider the inclusion of
ΘM ⊗m3

p into ΘM then we will define J2
pΘM as the cokernel of this inclusion. More

succinctly the sequence

0 → ΘM ⊗m3
p → ΘM → J2

pΘM → 0

is exact. It is clear from the definition that J2
pΘM is supported on p and its sections

are 2-jets of vector fields at p. Again from Serre’s vanishing Theorem H1(M, ΘM ⊗
m3

p ⊗ L⊗k) = 0 and consequently the map

H0(M, ΘM ⊗ L⊗k) → H0(M,J2
pΘM )
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is surjective. Thus there are foliations in Fol(L⊗k) with arbitrary 2-jet. One can
use the arguments applied in §6.5 to assure that there exists F ∈ Fol(L⊗k) with
one singularity with the 2-jet equal to the 2-jet of X and all other singularities with
multiplicity one.
Conclusion. To conclude the argument is well-known. Let (p1, q1) and (p2, q2) be
pairs of singularities in sing(F). Suppose that G contains the transposition τ =
(p1 q1). Since G is 2-transitive there exists α ∈ G such that α(p1) = p2 and α(q1) =
q2. Since ατα−1 = (p2 q2) we conclude that G contains all the transpositions in the
full symmetric group. This is sufficient to prove Theorem 4. ¤
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