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Abstract. In this paper we study the asymptotic behavior of
local solutions to the Yamabe equation near an isolated singularity,
when the metric is not necessarily conformally flat. We are able
to prove, when the dimension is less than or equal to 5, that any
solution is asymptotic to a rotationally symmetric Fowler solution.
We also prove refined asymptotics if deformed Fowler solutions are
allowed in the expansion.

1. Introduction

Let g be a smooth Riemannian metric on the unit ball Bn
1 (0) ⊂ Rn,

where n ≥ 3. In this paper we will consider positive solutions to the
Yamabe equation

(1.1) ∆gu−
n− 2

4(n− 1)
Rgu+

n(n− 2)

4
u

n+2
n−2 = 0

in the punctured ball Ω = Bn
1 (0) \ {0}. Here ∆g denotes the Laplace-

Beltrami operator of the metric g, and Rg denotes its scalar curvature.
Our primary interest will be to describe the asymptotic behavior of
such a solution near the isolated singularity.

The geometric motivation comes from the fact that a solution u

to the equation (1.1) gives rise to the metric g̃ = u
4

n−2 g of constant
scalar curvature Rg̃ = n(n − 1). Therefore the asymptotics of these
local solutions is related to the global problem known as the Singular
Yamabe Problem. Given a compact Riemannian manifold (Mn, g), with
Rg > 0, and a finite set Γ ⊂ M , it consists in studying the conformal
deformations of g which are complete in M \ Γ, and have constant
positive scalar curvature. The existence of these conformal metrics
was proved by R. Schoen when the manifold M is the standard sphere
Sn and the set Γ has at least two points (see [14]). In [12], Mazzeo
and Pacard developed a different construction for this problem. Other
related works are [11], [13], [15].

The issue of deriving asymptotics for local solutions to equation (1.1)
was considered, in the case of a flat background metric, by L. Caffarelli,
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B. Gidas and J. Spruck in [2](see also [3]). In this case, they prove that
the local models, when 0 is a nonremovable singularity, are given by
the radial solutions of

(1.2) ∆u0 +
n(n− 2)

4
u

n+2
n−2

0 = 0 in Rn \ {0}

which blow-up at 0, referred to as the Fowler solutions (or Delaunay-
type solutions). Here ∆ denotes the Euclidean Laplacian. More pre-
cisely, their result states that, given any solution u > 0 to

(1.3) ∆u+
n(n− 2)

4
u

n+2
n−2 = 0 in Bn

1 (0) \ {0},

either u can be smoothly extended to the origin or there is a Fowler
solution u0 such that

u(x) = (1 + o(1))u0(x) as x→ 0.

Their proof relies on a complicated version of the Alexandrov reflection
method, and it was later simplified by N. Korevaar, R. Mazzeo, F. Pac-
ard and R. Schoen in [7], where they also improve the o(1) remainder
term to a O(|x|α), for some α > 0. See also [1] for a related result on
the subcritical equation.

Another interesting problem consists in studying local singular solu-
tions to the prescribed scalar curvature equation

(1.4) ∆u+K(x)u
n+2
n−2 = 0,

where K is a positive C1 function defined on a neighborhood around 0.
The equation (1.4) can be seen as a perturbation of the equation (1.3),
and so one can ask under what conditions on K the Fowler solutions
still serve as asymptotic models. This question has been studied by C.
C. Chen and C. S. Lin (see [4], [5], [6], [9]), whose work has inspired
some of the techniques employed in our paper.

The main motivation of the present work was to determine whether
these asymptotic results could be extended to a more general setting,
namely, for an arbitrary background metric. The following theorem
gives an affirmative answer in low dimensions.

Theorem 1.1. Assume 3 ≤ n ≤ 5 and let u > 0 be a solution to the
equation (1.1) in Bn

1 (0) \ {0}. If u has a nonremovable singularity at
0, then there exists a Fowler solution u0 such that

u(x) = (1 +O(|x|α))u0(x)

as x→ 0, for some α > 0.
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There is a certain analogy between equations (1.1) and (1.4), in the
sense that the first one can also be considered as a perturbation of the
Euclidean equation (1.3). In this spirit, Theorem 1.1 is saying that, at
least in low dimensions, the asymptotic behavior of local solutions to
equation (1.1) is still described by the standard radial solutions of equa-
tion (1.2). It remains an interesting and open question to determine
whether this result is true in higher dimensions.

Once we have established the convergence to a radial Fowler solution,
we can use the arguments of Section 5 of [7] to improve the decay of the
remainder term by allowing deformed Fowler solutions. This family of
solutions is parametrized by a vector a ∈ Rn:

u0,a(x) =

∣∣∣∣ x|x| − a|x|
∣∣∣∣2−n

u0

(
|x|
∣∣∣∣ x|x| − a|x|

∣∣∣∣−1
)
.

The precise statement is:

Theorem 1.2. Suppose u > 0 is a solution to the equation (2.1) in
Bn

1 (0)\{0}. If 3 ≤ n ≤ 5, then there exists a deformed Fowler solution
u0,a such that

u(x) = (1 +O(|x|γ))u0,a(x)

as x→ 0, for some γ > 1.

Let us now briefly describe the strategy used in the paper. First we
need to establish the fundamental upper bound

(1.5) u(x) ≤ cdg(x, 0)
2−n

2 .

In order to prove that, we will apply the Moving Planes Method. The
difficulty relies on the fact that our equation (1.1) has no symmetries.
It turns out that, when 3 ≤ n ≤ 5, we can overcome that by construct-
ing appropriate auxiliary functions (see [8] for a similar technique in
dimensions 3 and 4). An important consequence of the bound (1.5) is
that solutions have to satisfy a uniform spherical Harnack inequality
around the singularity (see Corollary 4 in Section 2 below).

Then we study the Pohozaev integrals

P (r, u) =

∫
∂Br

(
n− 2

2
u
∂u

∂r
− 1

2
r|∇u|2 + r|∂u

∂r
|2 +

(n− 2)2

8
ru

2n
n−2 )dσr,

and use a Pohozaev-type identity to show the invariant

P (u) = lim
r→0

P (r, u)

is well-defined. The fundamental result here is the following removable
singularity theorem:
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Theorem 1.3. Assume 3 ≤ n ≤ 5 and let u > 0 be a solution to the
equation (1.1) in Bn

1 (0) \ {0}. Then P (u) ≤ 0. Moreover, P (u) = 0 if
and only if 0 is a removable singularity.

As a consequence of Theorem 1.3, we can apply elliptic theory to
establish the lower bound

(1.6) u(x) ≥ c1dg(x, 0)
2−n

2 ,

where c1 > 0. Using the bounds (1.5), (1.6), we can use a scaling
argument to prove that solutions are asymptotically symmetric. The
precise statement of the Theorem 1.1 will follow from somewhat del-
icate arguments, originally due to Leon Simon in a different context,
relying on the growth properties of Jacobi fields.

This paper is organized as follows. In Section 2 we apply the Moving
Planes Method to prove the upper bound (1.5). In Section 3 we define
the Pohozaev invariant of a solution, proving Theorem 1.3 and the
lower bound (1.6). In Section 4 we prove Theorem 1.1. In Section 5
we describe how to achieve the refined asymptotics of Theorem 1.2.

Acknowledgements. The author would like to thank the support
provided by FAPERJ, CNPq-Brazil and Stanford University during
the last stages of the present work. He is specially grateful to Richard
Schoen for his encouragement and support.

2. Upper bound near a singularity

Let g be a smooth Riemannian metric in geodesic normal coordinates
on the unit ball Bn

1 (0) ⊂ Rn, n ≥ 3. We are interested in studying
positive solutions to the Yamabe equation

(2.1) ∆gu−
n− 2

4(n− 1)
Rgu+

n(n− 2)

4
u

n+2
n−2 = 0

in the punctured ball Ω = Bn
1 (0) \ {0}. Here ∆g denotes the Laplace-

Beltrami operator of the metric g and Rg denotes its scalar curvature.
The linear operator Lg = ∆g − n−2

4(n−1)
Rg is called the conformal Lapla-

cian of the metric g. The equation (2.1) has geometrical meaning,

namely, the metric g̃ = u
4

n−2 g has constant scalar curvature equal to

n(n− 1). This is due to the formula Rg̃ = −4(n−1)
n−2

u−
n+2
n−2Lgu.

Since a punctured ball is conformally diffeomorphic to a half cylinder,
sometimes it will be convenient to use the cylindrical background. In
other words, consider the conformal diffemorphism

Φ : (R× Sn−1, dt2 + dθ2) → (Rn \ {0}, δ)
defined by Φ(t, θ) = e−tθ. Then Φ∗δ = e−2t(dt2 + dθ2).
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Define ĝ = e2tΦ∗g and v(t, θ) = e
2−n

2
tu(e−tθ) = |x|n−2

2 u(x), where
t = − log |x| and θ = x

|x| . Since the scalar curvature of the metric

Φ∗g̃ = (e
2−n

2
tu ◦ Φ)

4
n−2 ĝ is constant equal to n(n − 1), we obtain the

equation

(2.2) Lĝv +
n(n− 2)

4
v

n+2
n−2 = 0,

for t > 0. Observe that if u is defined for every |x| < r0, then v is
defined for every t > − log r0.

It will be useful to compute Rĝ. Using that ĝ = (e
n−2

2
t)

4
n−2 Φ∗g, we

get

Rĝ = −4(n− 1)

n− 2
(e

n−2
2

t)−
n+2
n−2LΦ∗g(e

n−2
2

t)

= −4(n− 1)

n− 2
(e−

n+2
2

t)(∆Φ∗g(e
n−2

2
t)− n− 2

4(n− 1)
RΦ∗ge

n−2
2

t)

= −4(n− 1)

n− 2
(e−

n+2
2

t)(∆g(|x|
2−n

2 ) ◦ Φ− n− 2

4(n− 1)
RΦ∗ge

n−2
2

t),

so

(2.3) Rĝ = (n− 2)(n− 1) + 2(n− 1)e−t∂r(
√
g)

√
g

◦ Φ + e−2tRg ◦ Φ.

The main result of this section is the following theorem, which es-
tablishes an upper bound near the isolated singularity.

Theorem 2.1. Assume that u is a positive smooth solution of (2.1) in
Ω = Bn

1 (0) \ {0}. If 3 ≤ n ≤ 5, then there exists a constant c > 0 such
that

(2.4) u(x) ≤ cdg(x, 0)
2−n

2

for 0 < dg(x, 0) < 1
2
.

Proof. Given x0 ∈ Ω, |x0| < 1
2

and 0 < s < 1
4

so that Bs(x0) ⊂ Ω,
define

f(x) = (s− dg(x, x0))
n−2

2 u(x)

for x ∈ Bs(x0). Here Bs(x0) denotes the metric ball with respect to
the backgrond metric g. It suffices to show that there exists a positive
constant C such that any such f satisfies f(x) ≤ C in Bs(x0). This is

because f(x0) = s
n−2

2 u(x0) and we can choose s = |x0|
2

.
The proof will be by contradiction so assume there is no such con-

stant C. Then we can find a sequence of points x0,i and positive num-
bers si so that, if x1,i denotes the maximum point of the corresponding
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fi, we have

fi(x1,i) →∞.

Since 2n−2fi(x) ≤ u(x) we conclude that u(x1,i) → ∞ as well. In
particular we also get that x1,i → 0 as i→∞.

Set εi = u(x1,i)
− 2

n−2 and define

ũi(y) = ε
n−2

2
i u(expx1,i

(εiy)),

so that ũi(0) = 1. If dg(x, x1,i) ≤ ri = 1
2
(si − dg(x1,i, x0,i)) then it

follows from fi(x) ≤ fi(x1,i) = (2riε
−1
i )

n−2
2 that u(x) ≤ 2

n−2
2 u(x1,i).

Therefore we get that ũi(y) ≤ 2
n−2

2 on the ball |y| < riε
−1
i →∞.

It is not difficult to check that

Lg̃i
ũi +

n(n− 2)

4
ũ

n+2
n−2

i = 0,

for every |y| < riε
−1
i , where (g̃i)kl(y) = gkl(εiy). Here gkl denote the

components of the metric g when written in normal coordiantes around
x1,i. Standard elliptic theory then implies that, after passing to a
subsequence, the ũi converge in the C2 norm on compact subsets of Rn

to a positive solution ũ0 to

∆ũ0 +
n(n− 2)

4
ũ

n+2
n−2

0 = 0,

which satisfies ũ0(0) = 1 and ũ0(y) ≤ 2
n−2

2 for every y ∈ Rn. Here
∆ denotes the Euclidean Laplacian. By a well-known theorem due to
Caffarelli, Gidas and Spruck [2] we can conclude that there exists η > 0
and y0 ∈ Rn such that

ũ0(y) =

(
2η

1 + η2|y − y0|2

)n−2
2

.

Because of the conditions on ũ0 we also get that 1
2
≤ η ≤ 1 and |y0| ≤ 1.

Since ũ0 has a nondegenerate maximum point at y0 there will be a
sequence yi → y0 such that yi is a nondegenerate maximum point of
ũi. We can assume |yi| ≤ 2 and therefore there will be a corresponding
local maximum point x2,i of u satisfying dg(x2,i, x1,i) ≤ 2εi. If we
redefine the functions ũi replacing x1,i by x2,i we get as before that a
subsequence ũi converges in the C2 norm on compact subsets of Rn to

ũ0(y) =

(
1

1 + 1
4
|y|2

)n−2
2

.
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Note that, by construction, we have that |x2,i| < 7
8

so we can consider

ũi as defined for |y| ≤ 1
16
ε−1

i , with a possible singularity at some point

on the sphere of radius |x2,i|ε−1
i →∞, where now εi = u(x2,i)

− 2
n−2 .

Now it is convenient to shift to the cylindrical background. Let us
introduce

vi(t, θ) = |y|
n−2

2 ũi(y),

where t = − log |y| and θ = y
|y| .

This function is defined for t > − log( 1
16
ε−1

i ), with a singularity at

some point (t′i, θ
′
i), t

′
i = − log(|x2,i|ε−1

i ). We can also define v0(t) =

|y|n−2
2 u0(y), and it is not difficult to check that

v0(t) = (et +
1

4
e−t)

2−n
2 .

Since ũi → ũ0 in the C2
loc topology, we know that given any R > 0

the inequalities

|vi(t, θ)− v0(t)| ≤ R−1e
2−n

2
t,

|∂tvi(t, θ)− v′0(t)| ≤ R−1e
2−n

2
t,

|∂2
t vi(t, θ)− v′′0(t)| ≤ R−1e

2−n
2

t,

|∂θk
vi(t, θ)| ≤ R−1e−

n
2

t,

|∂2
θkθl

vi(t, θ)| ≤ R−1e−
n
2

t,

are satisfied for t ≥ − logR and sufficiently large i.
In particular ∂tvi(− log 3, θ) > 0 for all θ ∈ Sn−1.
Let δ > 0 be a small number, independent of i, to be chosen later.
We will apply the Alexandrov technique to vi on the region

Γi = [− log(δε−1
i ),∞)× Sn−1,

reflecting across the spheres {λ} × Sn−1.
It is not difficult to check, from the definition, that

vi(− log(δε−1
i ), θ) ≥ c(δ) > 0

for every θ ∈ Sn−1.
In what follows we will occasionally drop the subscript i to simplify

the notation.
Define

vλ(t, θ) = v(2λ− t, θ).
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If

bλ =
n(n− 2)

4

v n+2
n−2 − v

n+2
n−2

λ

v − vλ

 ,

and
Qλ = (Lĝλ

− Lĝ)(vλ),

we obtain
Lĝ(v − vλ) + bλ(v − vλ) = Qλ

on Γλ\{(t′i, θ′i)}, where Γλ = [− log(δε−1), λ]×Sn−1. Here ĝλ denotes the
pull-back of the metric ĝ by the reflection across the sphere {λ}×Sn−1.
It is important to note also that bλ ≥ 0.

We now wish to construct an auxiliary family of functions hλ = hλ(t),
defined on Γλ, satisfying the following properties:

hλ(λ) = 0;(2.5)

hλ ≥ 0;(2.6)

Lĝhλ ≥ Qλ;(2.7)

hλ ≤ v − vλ if λ is sufficiently large.(2.8)

When such a family exists, we define

wλ = v − vλ − hλ.

Therefore

Lĝwλ + bλwλ = Qλ − Lĝhλ − bλhλ ≤ 0,

so we can apply the Maximum Principle where wλ ≥ 0.
Note also that wλ(λ, θ) = 0 for every θ ∈ Sn−1.
Claim 1.(Moving Planes Method) If there exists hλ satisfying the

properties (2.5)-(2.8) for every λ ≥ − log 3, then there exist λ0 >
− log 3, and θ0 ∈ Sn−1 such that

wλ0(− log(δε−1), θ0) = 0.

In order to prove Claim 1, define

λ0 = inf{λ1 : wλ(t, θ) ≥ 0 in Γλ,∀λ ≥ λ1}.
Note that condition (2.8) guarantees this set is nonempty.

Since ∂tvi(− log 3, θ) > 0 for all θ ∈ Sn−1, we know that λ0 > − log 3.
Suppose the claim is false. Since, by continuity, wλ0 ≥ 0 in Γλ0 ,

we would have that wλ0(− log(δε−1
i ), θ) > 0 for every θ ∈ Sn−1. By

the Maximum Principle, we also know that wλ0(t, θ) > 0 for every
− log(δε−1

i ) < t < λ0 and θ ∈ Sn−1. It is important to note that since

Lĝwλ0 ≤ −bλ0wλ0 ≤ 0,
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the function wλ0 has a positive lower bound near the singularity (t′i, θ
′
i).

Hence, from the definition of λ0, we know that there exist sequences
λj ↑ λ0, tj → t∗, θj → θ∗ such that (tj, θj) is an interior minimum point
of wλj

with wλj
(tj, θj) < 0. Taking the limit we get wλ0(t

∗, θ∗) = 0 and
∇wλ0(t

∗, θ∗) = 0. Therefore t∗ = λ0, but this is a contradiction to the
Hopf’s lemma. This proves Claim 1.

Now we need to estimate Qλ.
Claim 2. There exists a constant c1 > 0, not depending on δ, such

that |Qλ(t, θ)| ≤ qλ(t) = c1ε
2e

n−6
2

te(2−n)λ.
First, from equation (2.3),

Rĝ(t, θ) = (n− 2)(n− 1) + 2(n− 1)e−t∂r(
√
g̃)√
g̃

(e−tθ)

+e−2tRg̃(e
−tθ)

= (n− 2)(n− 1) + 2(n− 1)εe−t∂r(
√
g)

√
g

(εe−tθ)

+ε2e−2tRg(εe
−tθ).

Using Rĝλ
(t, θ) = Rĝ(2λ−t, θ), vλ(t, θ) = O(e

2−n
2

(2λ−t)), and
∂r(

√
g)

√
g

=

O(r), we have

|Rĝλ
−Rĝ|vλ(t, θ) ≤ Cε2e−2te

2−n
2

(2λ−t)

= Cε2e
n−6

2
te(2−n)λ.

Now one needs to observe that ĝ = dt2 + dθ2 + O(ε2e−2t), since
ĝ = e2tΦ∗g̃ and g̃ij = δij + O(ε2|y|2) in normal coordinates. It follows
that

|(∆ĝλ
−∆ĝ)(vλ)|(t, θ) ≤ Cε2e

n−6
2

te(2−n)λ,

proving Claim 2.
Now we will turn to the construction of hλ.
Claim 3. Suppose 3 ≤ n ≤ 5, and let γ > 0 be a small number.

Then there exists a family hλ = hλ(t) satisfying the properties (2.5)-
(2.8) and such that

(2.9) hλ(− log(δε−1)) ≤ c3 max{ε
n−2

2 , ε
6−n

2
−γ},

for some c3 = c3(δ) > 0.
Given a small γ > 0, let L be the linear operator:

L(f) := f ′′ + γf ′ − ((
n− 2

2
)2 + γ)f.

Let γ1 = 8−n
2
γ > 0 and a(n) = 1

2(4−n)−γ1
.
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Now define

(2.10) hλ(t) = a(n)c1ε
2e(2−n)λe

n−6
2

t(1− e(4−n−γ2)(t−λ)),

where γ2 > 0 is chosen so that the function e(
2−n

2
−γ2)t is in the kernel

of L.
Note that γ1, γ2 are also small.
It is clear that hλ(λ) = 0, and

L(hλ) = qλ.

It is also possible to check that

hλ ≥ 0 and h′λ ≤ 0 in (−∞, λ],

from definition (2.10).
Now

Lĝhλ = h′′λ +O(ε2e−2t)h′λ − ((
n− 2

2
)2 +O(ε2e−2t))hλ,

since ĝ = dt2 + dθ2 +O(ε2e−2t).
If δ2 ≤ γ, then

Lĝhλ ≥ L(hλ) = qλ ≥ |Qλ|
for t ≥ − log(δε−1).

The estimate (2.9) follows from the definition (2.10), since

hλ(− log(δε−1)) = a(n)c1(δ
6−n

2 e(2−n)λε
n−2

2

−δ
n−2

2
+γ2e(−2+γ2)λε

6−n
2
−γ2).(2.11)

It remains to prove the condition (2.8): wλ ≥ 0 in Γλ for sufficiently
large λ.

The computation (2.11) and the fact that h′λ ≤ 0 imply

(2.12) max
Γλ

hλ → 0

as λ→∞, where δ and ε are fixed.
Suppose δ, ε, and t0 are fixed, and assume t0 is large. The function

v has a positive lower bound on Γt0 = [− log(δε−1
i ), t0]× Sn−1, and we

know that
vλ(t) ≤ Ce

2−n
2

(2λ−t).

Therefore it follows, from the fact (2.12), that wλ ≥ 0 in Γt0 for suffi-
ciently large λ.

Hence we now have to show that wλ ≥ 0 for t ∈ [t0, λ].
Let us estimate h′λ.
First

h′λ =
n− 6

2
da(n)e

n−6
2

t(1− 2

n− 6
(
2− n

2
− γ2)e

(4−n−γ2)(t−λ)),
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where d = c1ε
2e(2−n)λ. Hence

|h′λ(t)| ≤ C(δ, ε, t0)(e
(2−n)λ + e(−2+γ2)λ)

for t ∈ [t0, λ].
If 3 ≤ n ≤ 5 and t ∈ [t0, λ] , then we get

|h′λ(t)| = e
2−n

2
λo(λ)

as λ→∞, for fixed δ, ε, t0.
Now

∂wλ

∂t
(t, θ) =

∂v

∂t
(t, θ) +

∂v

∂t
(2λ− t, θ)− h′λ(t),

so that, when t ∈ [t0, λ],

∂wλ

∂t
(t, θ) ≤ −Ce

2−n
2

λ − h′λ(t) ≤ −C
2
e

2−n
2

λ < 0.

Since wλ(λ, θ) = 0 for every θ ∈ Sn−1, we see that wλ ≥ 0 if t ∈ [t0, λ],
when λ is sufficiently large. This finishes the proof of the claim.

We will now derive a contradiction, if 3 ≤ n ≤ 5.
From Claim 3 (existence of hλ), and Claim 1 (Moving Planes Method),

we know

wλ0(− log(δε−1), θ0) = 0

for some λ0 > − log 3 and θ0 ∈ Sn−1.
Then

0 < c(δ) ≤ v(− log(δε−1), θ0) = (vλ0 + hλ0)(− log(δε−1), θ0),

and so

(2.13) 0 < c(δ) ≤ c̃(δ)ε
n−2

2 + hλ0(− log(δε−1)).

But, from inequality (2.9),

hλ0(− log(δε−1)) ≤ cε
1
2

when n = 3,

hλ0(− log(δε−1)) ≤ cε1−γ2

when n = 4, and

hλ0(− log(δε−1)) ≤ cε
1
2
−γ2

when n = 5.
We get a contradiction from inequality (2.13), after ε → 0. This

completes the proof of the theorem.
�

As a consequence of the upper bound we get the following estimates.
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Corollary 2.2. Suppose u is a positive smooth solution of (2.1) in
Ω = Bn

1 (0) \ {0}, 3 ≤ n ≤ 5. Then there exists a constant c1 > 0 such
that

(2.14) max
|x|=r

u ≤ c1 min
|x|=r

u

for every 0 < r < 1
4
. Moreover, |∇u| ≤ c1|x|−1u and |∇2u| ≤ c1r

−2u.

The inequality (2.14) is usually referred to as the spherical Harnack
inequality.

Proof. Define ur(y) = r
n−2

2 u(ry), for every 0 < r < 1
4
, and |y| < r−1.

The Theorem 2.1 then implies that ur(y) ≤ c|y| 2−n
2 for |y| < 1

2
r−1. In

particular, if 1
2
≤ |y| ≤ 3

2
, we have that ur(y) ≤ 2

n−2
2 c.

Moreover Lgrur + n(n−2)
4

u
n+2
n−2
r = 0, where (gr)ij(y) = gij(ry). The

Harnack inequality for linear elliptic equations and standard elliptic
theory imply there exists c1 > 0, not depending on r, such that

max
|x|=1

ur ≤ c1 min
|x|=1

ur,

and |∇ur|+ |∇2ur| ≤ c1ur on the sphere of radius 1.
This finishes the proof of the corollary.

�

3. Pohozaev invariants and removable singularities

In this section we will define the Pohozaev invariant of a solution
and prove a removable singularity theorem. As a consequence we will
derive a fundamental lower bound near the isolated singularity.

Given a positive solution u to the equation (2.1) in Bn
1 (0) \ {0}, the

Pohozaev identity (see [10]) says that

(3.1) P (r, u)− P (s, u) = −
∫

Br\Bs

(
n− 2

2
u+ x · ∇u)(Lg −∆)(u)dx

for 0 < s ≤ r < 1, where

P (r, u) =

∫
∂Br

(
n− 2

2
u
∂u

∂r
− 1

2
r|∇u|2

+ r|∂u
∂r
|2 +

(n− 2)2

8
ru

2n
n−2 )dσr.(3.2)

In the case of the Euclidean metric, the identity is saying that P (r, u)
does not depend on r, and therefore is an invariant of the solution u.
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In order to define this invariant in a more general setting, we need
the upper bounds given by Theorem 2.1 and Corollary 2.2. In fact,
since gij = δij +O(|x|2), we will have

(3.3) |(n− 2

2
u+ x · ∇u)(Lg −∆)(u)| ≤ c|x|2−n,

and the Pohozaev identity tells us the limit

P (u) = lim
r→0

P (r, u)

exists. The number P (u) is called the Pohozaev invariant of the solu-
tion u.

We can now state our removable singularity theorem.

Theorem 3.1. Assume 3 ≤ n ≤ 5 and let u > 0 be a solution to the
equation (2.1) in Bn

1 (0) \ {0}. Then P (u) ≤ 0. Moreover, P (u) = 0 if
and only if 0 is a removable singularity.

Proof. Let us suppose P (u) ≥ 0. The result will follow once we prove
that, in this case, 0 is a removable singularity, and therefore P (u) = 0.

Claim 1. lim infx→0 u(x)|x|
n−2

2 = 0.
Suppose not. Then there exist positive constants c1, c2 such that

c1|x|
2−n

2 ≤ u(x) ≤ c2|x|
2−n

2 ,

where the second inequality above follows from Theorem 2.1.
Choose any sequence rj → 0, and define

uj(x) = r
n−2

2
j u(rjx).

Then c1|x|
2−n

2 ≤ uj(x) ≤ c2|x|
2−n

2 and

Lgj
uj +

n(n− 2)

4
u

n+2
n−2

j = 0

in Br−1
j

(0)\{0}, where (gj)kl(x) = gkl(rjx). Elliptic theory then implies

that there exists a subsequence, also denoted by uj, which converges,
in compact subsets of Rn \ {0}, to a solution u0 of

∆u0 +
n(n− 2)

4
u

n+2
n−2

0 = 0.

Since u0(x) ≥ c1|x|
2−n

2 , u0 is singular at the origin and then a result
in [2] implies that u0 has to be one of the rotationally symmetric Fowler
solutions (see Section 2 in [7] for more details). In particular, P (u0) <
0. This is a contradiction, because

P (u0) = P (u0, 1) = lim
j→∞

P (uj, 1) = lim
j→∞

P (u, rj) = P (u) ≥ 0.
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Claim 2. limx→0 u(x)|x|
n−2

2 = 0.
In what follows we will denote by c any positive constant, and sub-

scripts will sometimes mean differentiation.
Let us denote the average of the function u over ∂Br by

u(r) = −
∫

∂Br

u,

and define w(t) = u(r)r
n−2

2 , where t = − ln r. Notice that Theorem 2.1
and Corollary 2.2 imply w(t) ≤ c.

Then

ur = −
∫

∂Br

∂u

∂r
,

and since

wt = −urr
n
2 − n− 2

2
w,

we also get that |wt| ≤ c.
Choosing a fixed s < r, we see that

urr = (−
∫

∂Br

∂u

∂r
)r = (1− n)r−1−

∫
∂Br

∂u

∂r
+ σ−1

n−1r
1−n(

∫
Br\Bs

∆u)r

= (1− n)r−1−
∫

∂Br

∂u

∂r
+ σ−1

n−1r
1−n(

∫
Br\Bs

(∆− Lg)(u)−K

∫
Br\Bs

u
n+2
n−2 )r

= (1− n)r−1ur +−
∫

∂Br

(∆−∆g)(u) + c(n)−
∫

∂Br

Rgu−K−
∫

∂Br

u
n+2
n−2 .

By the spherical Harnack inequality (see Corollary 2.2),

C−1u
n+2
n−2 ≤ K−

∫
∂Br

u
n+2
n−2 ≤ Cu

n+2
n−2 ,

and

|−
∫

∂Br

(∆−∆g)(u) + c(n)−
∫

∂Br

Rgu| ≤ cu.

From

wtt = −(urr
n
2 )r

dr

dt
− n− 2

2
wt,

we have

wtt − (
n− 2

2
)2w = (−

∫
∂Br

(∆−∆g)(u) + c(n)−
∫

∂Br

Rgu

−K−
∫

∂Br

u
n+2
n−2 )r

n+2
2 ,
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and then

(3.4) −c1w
n+2
n−2 − ce−2tw ≤ wtt − (

n− 2

2
)2w ≤ −c2w

n+2
n−2 + ce−2tw.

The first inequality in (3.4) implies that there exists ε0 > 0 such that
wtt(t) > 0 whenever w(t) ≤ ε0, and t is sufficiently large.

Let us suppose, by contradiction, that lim supx→0 u(x)|x|
n−2

2 > 0.

Since lim infx→0 u(x)|x|
n−2

2 = 0, we can choose ε0 > 0 sufficiently small
so that we are able to construct sequences ti ≤ ti ≤ t∗i with limi→∞ ti =
+∞, such that w(ti) = w(t∗i ) = ε0, wt(ti) = 0, and limi→∞w(ti) = 0.

Let us now introduce a function H satisfying

Ht(t) = e−2tw(t)wt(t).

Since w is monotone in each of the intervals [ti, ti], [ti, t
∗
i ], it is also

invertible. Therefore, depending on which of the intervals we choose to
consider, we can define

g(w) = (
n− 2

2
)2w2 − cw

2n
n−2 − cF (w),

where F (w) = H(t).
Then, from the inequalities (3.4), it is not difficult to check that, for

ti ≤ t ≤ t∗i ,

(w2
t − g(w))t ≥ 0.

Hence, in that interval, w2
t − g(w) ≥ −g(w(ti)), and so

t− ti =

∫ w(t)

w(ti)

dt

dw
≤
∫ w(t)

w(ti)

dw√
g(w)− g(w(ti))

.

Introducing the variable η = w(t)
w(ti)

, we get

(3.5) t− ti ≤
∫ w(t)

w(ti)

1

dη√
g(η)− g(1)

=

∫ w(t)
w(ti)

1

√
η2 − 1

g(η)− g(1)

dη√
η2 − 1

where

g(η) = (
n− 2

2
)2η2 − cw(ti)

4
n−2η

2n
n−2 − c

F (w(ti)η)

w(ti)2
.

In order to estimate the last integral note that

(
η2 − 1

g(η)− g(1)
)

1
2 ≤ 2

n− 2
+ c

w(ti)
4

n−2 (η
2n

n−2 − 1)

η2 − 1

+ c|F (w(ti)η)− F (w(ti))

w(ti)2(η2 − 1)
|.
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First, since 1 ≤ η ≤ w(t)
w(ti)

≤ ε0

w(ti)
, we have that

w(ti)
4

n−2 (η
2n

n−2 − 1)

η2 − 1
≤ cw(ti)

4
n−2η

4
n−2 ≤ cε

4
n−2

0 ,

and we observe that

w
4

n−2 (ti)

∫ w(t)
w(ti)

1

η
4

n−2√
η2 − 1

dη ≤ c.

Then, since Fw = Ht
dt
dw

= e−2tw, one can check that

|F (w(ti)η)− F (w(ti))

w(ti)2(η2 − 1)
| ≤ ce−2ti .

Finally, since ∫ w(t)
w(ti)

1

dη√
η2 − 1

≤ c+ ln
w(t)

w(ti)
,

we obtain∫ w(t)
w(ti)

1

dη√
g(η)− g(1)

≤ (
2

n− 2
+ ce−2ti) ln

w(t)

w(ti)
+ c.

Now, from inequality (3.5), we get

(3.6) t− ti ≤ (
2

n− 2
+ ce−2ti) ln

w(t)

w(ti)
+ c.

In order to estimate t−ti from below, we first observe that the second
inequality in (3.4) implies that

wtt ≤ ((
n− 2

2
)2 + ce−2ti)w.

Then the function w2
t − ((n−2

2
)2 + ce−2ti)w2 is decreasing in (ti, t

∗
i ),

and therefore

w2
t − ((

n− 2

2
)2 + ce−2ti)w2 ≤ −((

n− 2

2
)2 + ce−2ti)w2(ti).

Hence
dt

dw
≥ ((

n− 2

2
)2 + ce−2ti)−

1
2 (w2 − w2(ti))

− 1
2 ,

and then

t− ti =

∫ w(t)

w(ti)

dt

dw
≥ (

2

n− 2
− ce−2ti)

∫ w(t)

w(ti)

dw√
w2 − w2(ti)

.
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Together with inequality (3.6), we get, for ti ≤ t ≤ t∗i , that

(3.7) (
2

n− 2
− ce−2ti) ln

w(t)

w(ti)
≤ t− ti ≤ (

2

n− 2
+ ce−2ti) ln

w(t)

w(ti)
+ c.

Similarly one can prove that, for ti ≤ t ≤ ti,

(3.8) (
2

n− 2
− ce−2ti) ln

w(t)

w(ti)
≤ ti− t ≤ (

2

n− 2
+ ce−2ti) ln

w(t)

w(ti)
+ c.

Claim 3. Along |x| = ri,

u(x) = u(ri)(1 + o(1))

|∇u(x)| = −u′(ri)(1 + o(1)).(3.9)

Let ri = e−ti and define vi(y) = r
n−2

2
i u(riy). Since vi(1) = w(ti) → 0

we get from the Harnack inequality that vi converges to 0 uniformly in
compact subsets of Rn \ {0}. Hence, if we define hi(y) = vi(p)

−1vi(y),
we will have

Lgi
hi +

n(n− 2)

4
vi(p)

4
n−2h

n+2
n−2

i = 0,

where p = (1, 0, . . . , 0) and (gi)kl = gkl(riy). By elliptic estimates we
know there exists a subsequence hj which converges in the C2

loc topol-
ogy to a nonnegative harmonic function h defined in Rn \ {0}. Then

h(y) = a|y|2−n + b, and a = b = 1
2

since h(p) = 1 and ∂r(h(r)r
n−2

2 ) = 0
at r = 1. This completes the proof of the claim.

Then we have

P (ri, u) = σn−1(
1

2
wt(ti)

2 − 1

2
(
n− 2

2
)2w2(ti)

+
(n− 2)2

8
w

2n
n−2 (ti))(1 + o(1)).

Hence
P (u) = lim

i→∞
P (ri, u) = 0,

and moreover

(3.10) w2(ti) ≤ c|P (ri, u)| ≤ c(I1 + I2),

where

I1 =

∫
Bri\Br∗

i

|A(u)|dx,

and

I2 =

∫
Br∗

i

|A(u)|dx.

Here A(u) = (n−2
2
u+ x · ∇u)((Lg −∆)(u)).



18 FERNANDO CODA MARQUES

Recall that |A(u)| ≤ c|x|2−n, and therefore

I2 ≤ c(r∗i )
2 = ce−2t∗i .

From the first inequality in (3.7), we obtain

w(t) ≤ w(ti)exp((
n− 2

2
+ ce−2ti)(t− ti)),

which implies

(3.11) u(x) ≤ cw(ti)exp(−(
n− 2

2
+ ce−2ti)ti)r

2−n−ce−2ti .

Recall that u ≤ Cr
2−n

2 , |∇u| ≤ Cr−1u, and |∇2u| ≤ Cr−2u, so

|A(u)| ≤ Cr
2−n

2 u.

Using the estimate (3.11) we obtain

I1 ≤ cw(ti)e
2−n

2
ti

∫
Bri\Br∗

i

|x|3−
n
2
−n−ce−2tidx,

and so
I1 ≤ cw(ti)e

−2ti .

Therefore, from inequalities (3.10), we get

w2(ti) ≤ cw(ti)e
−2ti + ce−2t∗i .

Passing to subsequences, if necessary, we can suppose either

(3.12) w2(ti) ≤ cw(ti)e
−2ti ,

or

(3.13) w2(ti) ≤ ce−2t∗i .

Define Li = − 2
n−2

logw(ti) and choose δ > 0 small. Then, from the
first inequality in (3.8), we get

(3.14) ti − ti ≥ (1− δ)Li − c,

and adding to that the first inequality in (3.7), we get

(3.15) t∗i − ti ≥ (2− 2δ)Li − c.

If inequality (3.12) holds, then w(ti) ≤ ce−2ti and so Li ≥ 4
n−2

ti − c.
From inequality (3.14), we get

ti − ti ≥ (1− δ)
4

n− 2
ti − c,

and then

ti ≤ (
n− 6

n− 2
+

4δ

n− 2
)ti + c.
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If 3 ≤ n ≤ 5, this is a contradiction since, in this case, n−6
n−2

+ 4
n−2

δ < 0,

and we know that t∗i ≥ ti ≥ ti →∞ as i→∞.
If inequality (3.13) holds, then Li ≥ 2

n−2
t∗i + c. From inequality

(3.15), we get

ti ≤ t∗i − (2− 2δ)Li + c,

and so

ti ≤ (
n− 6

n− 2
+ 2δ)t∗i + c.

If 3 ≤ n ≤ 5, this is again a contradiction for the same reasons as
before.

The claim is proved.
Claim 4. 0 is a removable singularity.
Now we have that limt→∞w(t) = 0.
There exists T1 so that w′(t) < 0 for t ≥ T1, since we also have

wtt > 0.
Given any positive number δ > 0, and by choosing T1 sufficiently

large, we get, from the first inequality in (3.4), that

wtt − (
n− 2

2
− δ)2w ≥ 0

for t ≥ T1.
This implies

(w2
t − (

n− 2

2
− δ)2w2)t ≤ 0,

and since limt→∞wt(t) = 0, we obtain

w2
t − (

n− 2

2
− δ)2w2 ≥ 0.

By integrating we get, for t ≥ T1, that

w(t) ≤ w(T1)exp(−(
n− 2

2
− δ)(t− T1)).

Equivalently, there exists r0(δ) > 0 so that, if |x| < r0, we have

u(x) ≤ c(δ)|x|−δ.

The above estimate implies, since δ > 0 is arbitrarily small, that
u ∈ Lp

loc(B1(0)) for arbitrarily large p. Elliptic theory then tells us
that the function u has to be smooth around the origin. That finishes
the proof.

�

As a consequence of the removable singularity theorem, we can now
establish a fundamental lower bound.
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Corollary 3.2. Assume 3 ≤ n ≤ 5 and let u > 0 be a solution to the
equation (2.1) in Bn

1 (0) \ {0}. If 0 is a nonremovable singularity, then
there exists c > 0 such that

u(x) ≥ cdg(x, 0)
2−n

2 ,

for 0 < dg(x, 0) < 1
2
.

Proof. Suppose the corollary is false.
Then lim inft→∞w(t) = 0, where w(t) = r

n−2
2 u(r) and t = − log r,

as in the proof of Theorem 3.1. We also have lim supt→∞w(t) > 0,
otherwise the Claim 4 in Theorem 3.1 would imply 0 is a removable
singularity. Therefore there exists a sequence ti →∞ such that w′(ti) =
0 and limi→∞w(ti) = 0. If ri = e−ti , it is not difficult to check that
Claim 3 in Theorem 3.1 will hold and again we will have

P (ri, u) = σn−1(
1

2
w′(ti)

2 − 1

2
(
n− 2

2
)2w2(ti)

+
(n− 2)2

8
w

2n
n−2 (ti))(1 + o(1)).

But in this case P (u) = limP (ri, u) = 0, which is a contradiction. This
finishes the proof. �

4. Convergence to a radial solution

In this section we will prove that a local singular solution to the
Yamabe equation is asymptotic to a radial Fowler solution, near the
nonremovable isolated singularity.

Recall that the positive solutions u0 to the equation

∆u0 +
n(n− 2)

4
u

n+2
n−2

0 = 0

in Rn \ {0}, with a nonremovable singularity at the origin, are called
Fowler solutions (see [7]). These functions are rotationally symmetric
by a theorem of Caffarelli, Gidas and Spruck (see [2]).

In what follows we state and prove the main theorem of the section.

Theorem 4.1. Suppose u > 0 is a solution to the equation (2.1) in
Bn

1 (0) \ {0}. If there exist c1, c2 > 0 such that

c1|x|
2−n

2 ≤ u ≤ c2|x|
2−n

2 ,

then there exists a Fowler solution u0 such that

u(x) = (1 +O(|x|α))u0(x)

as x→ 0, for some α > 0.
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Proof. Since u has a nonremovable singularity at the origin, we know,
from Theorem 3.1, that P (u) < 0.

In what follows we will work in the cylindrical setting, so v(t, θ) =

|x|n−2
2 u(x), where t = − log |x| and θ = x

|x| . Hence

c1 ≤ v(t, θ) ≤ c2,

for t > − log 2.
Given any sequence τi → ∞, consider vi(t, θ) = v(t + τi, θ). Since

ĝ → dt2 + dθ2 as t → ∞, standard elliptic estimates imply that there
exists a subsequence vj which converges, in the C2

loc topology, to a
positive solution to

∂2
t v0 + ∆θv0 −

(n− 2)2

4
v0 +

n(n− 2)

4
v

n+2
n−2

0 = 0,

defined on the whole cylinder. Since any such limit v0 is a Fowler
solution, which does not depend on θ, we necessarily have that any
angular derivative ∂θv converges uniformly to zero as t→∞.

In fact, as t→∞, we get

v(t, θ) = v(t)(1 + o(1))

|∇v(t, θ)| = −v′(t)(1 + o(1)).(4.1)

In order to see this suppose the first equality above is not true. Then
there exist ε > 0 and sequences τi →∞, θi → θ ∈ Sn−1 such that

|v(τi, θi)

v(τi)
− 1| ≥ ε

for every i ≥ 1. This is a contradiction because, after passing to a
subsequence, vi converges to a rotationally symmetric Fowler solution
v0. The second equality follows from similar arguments.

In the cylindrical setting the Pohozaev integral P (v, t) = P (u, e−t)
becomes

P (v, t) =

∫
t×Sn−1

(
1

2
(∂tv)

2 − 1

2
|∇θv|2 −

(n− 2)2

8
v2 +

(n− 2)2

8
v

2n
n−2 )dσ1.

Hence

P (v0) = P (v0, 0) = lim
j→∞

P (vj, 0) = lim
j→∞

P (v, τj) = P (v).

Therefore the Pohozaev invariant of the limit function does not depend
on the sequence τj, and hence any such sequence gives rise, in the limit,
to a function v0,T (t) = v0(t+ T ), for some T .
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Given any Fowler solution v0, the nontrivial solutions to the lin-
earized equation

Lcilϕ+
n(n+ 2)

4
v

4
n−2ϕ = 0

on the cylinder R × Sn−1 are called Jacobi fields. Here Lcil = ∂2
t +

∆Sn−1 − (n−2)2

4
is the cylindrical conformal Laplacian.

In what follows we will need some basic results about these Jacobi
fields which can be found in [7].

Let T0 be the period of v0, and Aτ = supt≥0 |∂θvτ |, where vτ (t, θ) =
v(t+ τ, θ).

Claim 1. For every c > 0, there exists a positive integer N such
that, for any τ > 0, either

(1) Aτ ≤ ce−2τ or
(2) Aτ is attained at some point in IN ×Sn−1, where IN = [0, NT0].

Suppose the Claim is false. Then there exist sequences τj, sj → ∞,
θj ∈ Sn−1 such that |∂θvτj

|(sj, θj) = Aτj
, and A−1

τj
e−2τj ≤ c−1 as j →∞.

Then we can translate back further by sj and define ṽj(t, θ) = vτj
(t +

sj, θ). If ϕj = A−1
τj
∂θṽj, then one can check that

Lcilϕj +
n(n+ 2)

4
ṽ

4
n−2

j ϕj = A−1
τj
e−2(τj+sj)O(e−2t).

Now we can use elliptic theory to extract a subsequence ϕj which
converges in compact subsets to a nontrivial and bounded Jacobi field
ϕ. Since ϕ has no zero eigencomponent relative to ∆θ, we get a contra-
diction because no such Jacobi field can exist. This proves the claim.

Now we will turn to another way of obtaining Jacobi fields. Suppose
we have, then, vj(t) → v0(t+ T ) as j →∞, and define

wj(t, θ) = vj(t, θ)− v0(t+ T ).

Set ηj = maxIN
|wj|, ηj = ηj + e−(2−δ)τj and ϕj = ηj

−1wj, where δ > 0
is a small number.

Then

Lĝj
ϕj +

n(n− 2)

4

vp
j − vp

0,T

vj − v0,T

ϕj = η−1
j Ej,

where Ej = (Lcil − Lĝj
)v0,T , and ĝj is the translated ĝ. Note that

Ej = e−2τjO(e−2t) as t→∞.
In this case it is not difficult to check that, passing to a subsequence,

ϕj converges to a solution ϕ of the equation

Lcilϕ+
n(n+ 2)

4
v

4
n−2

0,T ϕ = 0
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on the whole cylinder. We claim that this Jacobi field is bounded for
t ≥ 0. In order to see this we write

ϕ = a+ψ+
0 + a−ψ−0 + ϕ̃,

where ψ+
0 and ψ−0 are linearly independent Jacobi fields corresponding

to the θ-independent eigencomponent, and ϕ̃ denotes the projection
onto the orthogonal complement. We are following the notation in [7],
according to which ψ+

0 (t) = v′0,T (t) and ψ−0 comes from the variation
of the Pohozaev invariant (or the necksize) of the solution v0,T . It
follows that ψ+

0 is bounded, and ψ−0 is linearly growing. First we show
that ϕ̃ is bounded by proving that ∂θϕ̃ = ∂θϕ is bounded for t ≥ 0.
The function ∂θϕ is the limit of η−1

j ∂θvj, and we can suppose ∂θϕ is
nontrivial, otherwise the result is imediate. In this case we know, from
the previous claim, that Aj is attained in IN × Sn−1 for large j, so

sup
t≥0

(η−1
j |∂θvj|) = sup

t∈IN

(η−1
j |∂θvj|) ≤ C.

Therefore ϕ̃ is bounded for t ≥ 0, hence exponentially decaying.
Now we will show that a− = 0. We have

vj = v0,T + ηj(a
+ψ+

0 + a−ψ−0 + ϕ̃) + o(ηj).

But, from the Pohozaev identity (3.1) and inequality (3.3), we have

P (vj, 0) = P (v, τj) = P (v) +O(e−2τj) = P (v0,T ) +O(e−2τj).

Since limj→∞(η−1
j e−2τj) = 0, we would have a contradiction in case

a− 6= 0. Thus ϕ is bounded for t ≥ 0.
We will now show that there exists some T so that the difference

between v and v0,T goes to zero as t→∞. Define vτ (t, θ) = v(t+ τ, θ)
and wτ (t, θ) = vτ (t, θ) − v0(t). Let B > 0 be a fixed constant and
IN be the interval as before. Set also η(τ) = maxIN

|wτ | and η(τ) =
η(τ) + e−(2−δ)τ .

Claim 2. If τ is sufficiently large and η(τ) is sufficiently small, then
there exists s with |s| ≤ Bη(τ) so that η(τ +NT0 + s) ≤ 1

2
η(τ).

Suppose the claim is false. Then there exist sequences τj → ∞ and
ηj = η(τj) → 0 such that for every s satisfying |s| ≤ Bηj we have

η(τj + NT0 + s) > 1
2
ηj. Define ϕj = η−1

j wτj
, and, as before, we can

prove ϕj converges, up to a subsequence, in the C∞
loc topology, to a

Jacobi field ϕ, bounded for t ≥ 0.
As before, we can write ϕ = a+ψ+

0 + ϕ̃, where ϕ̃ is exponentially
decaying and a+ is uniformly bounded, independently on τj, because
|ϕ| ≤ 1 on IN . Set sj = −ηja

+, whose absolute value is less than Bηj

if we choose B large enough.
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Therefore

wτj+sj
(t, θ) = v(t+ τj − ηja

+, θ)− v0(t)

= vτj
(t− ηja

+, θ)− v0(t− ηja
+) + v0(t− ηja

+)− v0(t)

= ηjϕj(t− ηja
+, θ)− ηja

+ψ+
0 + o(ηj)

= wτj
(t, θ)− ηja

+ψ+
0 + o(ηj),

for t ∈ [0, 2NT0].
As a consequence,

wτj+sj
= ηjϕ̃+ o(ηj)

for t ∈ [0, 2NT0].
Then

max
IN

|wτj+sj+NT0| = max
[NT0,2NT0]

|wτj+sj
| = ηj max

[NT0,2NT0]
|ϕ̃|+ o(ηj).

Since ϕ̃ is exponentially decaying at a fixed rate, we can choose N large
enough so that the last equalities imply

max
IN

|wτj+sj+NT0| ≤
1

4
ηj.

But also, if N is large enough,

e−(2−δ)(τj+NT0+sj) ≤ e−(2−δ)NT0ηj ≤
1

4
ηj.

Thus η(τj +NT0 + sj) ≤ 1
2
η(τj), which is a contradiction, finishing the

claim.
Now we are ready to prove, by means of an iterative argument, that

there exists σ such that wσ → 0 as t → ∞. First there exists τ0
satisfying the hypotheses of Claim 2 and such that Bη(τ0) ≤ 1

2
NT0.

Let s0 be chosen as above. Define

σj = τ0 +

j−1∑
i=0

si, τj = τj−1 + sj−1 +NT0.

Then η(τj) ≤ 2−jη(τ0), and |sj| ≤ 2−j−1NT0. Hence there exists the
limit σ = limσj, σ ≤ τ0+NT0, and we claim σ is the correct translation
parameter.

In fact,

wσ(t, θ) = v(t+ σ, θ)− v0(t)

= v(t+ σ, θ)− v(t+ σj, θ) + v(t+ σj, θ)− v0(t)

= wτj
([t], θ) +O(2−j),
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where t = jNT0 + [t], [t] ∈ IN . Since η(τj) ≤ η(τj) ≤ 2−jη(0), we will
have |wσ(t, θ)| = O(2−j) and then

|wσ(t, θ)| ≤ C1e
− log 2

NT0
t
.

This finishes the proof of the Theorem. �

Since we have already established the required bounds in low dimen-
sions, we get:

Corollary 4.2. Suppose u > 0 is a solution to the equation (2.1) in
Bn

1 (0) \ {0}. If 3 ≤ n ≤ 5, then there exists a Fowler solution u0 such
that

u(x) = (1 +O(|x|α))u0(x)

as x→ 0, for some α > 0.

5. Refined asymptotics

In this section we will improve the order of the remainder terms in
Theorem 4.1 and Corollary 4.2 by allowing deformed Fowler solutions in
the asymptotics. The arguments are essentially the same as in Section
5 of [7], so we will skip part of the details.

We will now work with an n-parameter family of deformations of
the radial Fowler solutions (see [7] for more details). These arise by
pulling back the Fowler solutions (when seen as conformal factors on
the sphere minus the two poles) through a composition of three confor-
mal diffeomorphisms of the sphere: first reflecting across the equator,
then applying a parabolic translation fixing the north pole, and finally
reflecting back across the equator. We can parametrize this family by
a vector a ∈ Rn in the cylindrical setting:

v0,a(t, θ) = |θ − ae−t|
2−n

2 v0(t+ log |θ − ae−t|).
Since the Yamabe equation is conformally invariant, these deforma-

tions are still solutions to

∂2
t v0,a + ∆θv0,a −

(n− 2)2

4
v0,a +

n(n− 2)

4
v

n+2
n−2

0,a = 0

on a punctured cylinder.
Let us now state our refined asymptotics result.
Recall u0,a(x) = |x| 2−n

2 v0,a(− log |x|, x
|x|).

Theorem 5.1. Suppose u > 0 is a solution to the equation (2.1) in
Bn

1 (0)\{0}. If 3 ≤ n ≤ 5, then there exists a deformed Fowler solution
u0,a such that

u(x) = (1 +O(|x|γ))u0,a(x)

as x→ 0, for some γ > 1.
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Remark. The following arguments only assume the conclusion of
Theorem 4.1. Therefore the result is still true in higher dimensions if
c1|x|

2−n
2 ≤ u(x) ≤ c2|x|

2−n
2 .

Proof. Using Theorem 4.1, we will write v = v0 + w, where v0 is a
Fowler solution and w is exponentially decaying.

From the cylindrical Yamabe equation (2.2), we obtain

Lcilw +
n(n+ 2)

4
v

4
n−2

0 w = (Lcil − Lĝ)(v0 + w)− n(n− 2)

4
v

n+2
n−2

0 Q(
w

v0

),

where Lcil = ∂2
t + ∆θ − (n−2)2

4
is the cylindrical conformal Laplacian,

and Q(z) = (1 + z)
n+2
n−2 − 1− n+2

n−2
z.

Since ĝ = gcil + O(e−2t), by repeatedly applying Corollary 1 in [7],
we improve the order of decay of w at each step until we reach

(5.1) v(t, θ) = v0(t) + (a · x)ψ+
1 (t) +O(e−γt),

for some a ∈ Rn, where γ > 1. Here ψ+
1 (t) = e−t(−v′0(t) + n−2

2
v0(t)).

But one can also check that

(5.2) v0,a(t, θ) = v0(t) + (a · x)ψ+
1 (t) +O(e−2t).

The Theorem 5.1 follows from combining expansions (5.1) and (5.2)
together. �

Fernando C. Marques, Instituto de Matemática Pura e Aplicada
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