SHARP BILINEAR ESTIMATES AND WELL-POSEDNESS FOR
THE 1-D SCHRODINGER-DEBYE SYSTEM

ADAN J. CORCHO AND CARLOS MATHEUS

Abstract. We establish local and global well-posedness for the initial value
problem associated to the (one-dimensional) Schrédinger-Debye (SD) system
for data in the Sobolev spaces with low regularity. To obtain local results we
prove two new sharp bilinear estimates for the coupling terms of this system
in the continuous and periodic cases. Concerning global results, the system
is shown to be globally well-posed in H® x H®,—1/8 < s < 0. This is quite
surprising in view of Bidegaray’s theorem: in H® x H® s > 5/2, there are one-
parameter families of solutions of the SD system converging to certain solutions
of the cubic NLS equation. In fact, since the cubic NLS is known to be ill-posed
below L2, the results of Bidegaray says that the existence of global solutions of
SD system in H® x H® for negative Sobolev index s is unexpected. The proof of
our global result uses the I-method introduced by Colliander, Keel, Staffilani,
Takaoka and Tao.

1. Introduction

This paper is devoted to the Initial Value Problem(IVP) for the Schrédinger-
Debye system, that is,

i@tu—l—%a%u:uv, teR, zeM
(1.1) o0 + v = €|lul?,
u(z,0) = up(x), v(x,0)=uvy(z),

where u = u(z,t) is a complex valued function, v = v(z,t) is a real valued function,
o >0, e==+1and M is the real line R (continuous case) or the torus T (periodic
case)

Recently, the well-posedness for the IVP (1.1) was studied in the classical Sobolev
spaces H¥(R™) x H*(R™) by several authors. We summarize them as follows: for
M =TR", Corcho and Linares [6] proved the following results:
local well-posedness in H*(R) x H°(R) for 0 < s < 1;
global well-posedness in H2 (R) x L*(R);
global well-posedness in H*(R) x H*(R) for k—1/2 < s <k and 1/2<k<1;
global well-posedness in L?(R™) x L*(R™), in dimensions n =1,2,3,
and for M = T" Arbieto and Matheus [1] showed the following ones:
local and global well-posedness in H*(T) x H*(T) for s > 0;

e local well-posedness in H*(T™) x H°(T") for s >0, n > 1;
global well-posedness in H*(T?) x H*(T?) for s> 1.

The proof of these theorems uses Picard fixed-point method in certain spaces.
To do so, Corcho, Linares [6] and Arbieto, Matheus [1] start by decoupling the SD
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system (1.1), i.e., they write:
(1.2)

u(t) = U(t)ug — i/o Ut—t) (et@v/vou(t/) + gu(t')/o e

' —t'"y
o

|u(t”)|2dt"> dt/,

where U(t) = e*A/2 is the Schrédinger linear semigroup. In the sequel, they prove
some multilinear estimates for the nonlinearities in order to Picard’s argument run
correctly, i.e., they show a bilinear estimate for the term

t !
/ Ut —t') - e~ = vou(t')dt’
0

and a trilinear estimate for the term

¢ 15 4 @' =t
/ Ut — ) Eu(t)) / e~ S e 2ar ) e
0 o 0

Analogously to [6], [1], we are interested in the local well-posedness of IVP
(1.1) for initial data with low regularity for M = T and M = R, specially local
and global well-posedness in the continuous case and initial data in H* x H* for
negative Sobolev indices (k, s)). Unfortunately, it is not reasonable to expect that
the approach discussed above can be pushed to work with negative Sobolev indices.
Indeed, similarly to the situation of Schrodinger (NLS) equation, we know that
such trilinear estimates holds only for non-negative indices.

Bearing the difficulty in mind, we propose in this paper a slightly different ap-
proach: instead of decoupling the SD system before studying its integral formulation
(which leads to trilinear estimates), we keep the SD system coupled so that we have
only to deal with bilinear estimates (for the coupling terms uv and |u|?). To under-
stand what is the advantage of our new proposal, we review the bilinear estimates
for the quadratic NLS obtained by Kenig, Ponce and Vega.

In [9] Kenig, Ponce and Vega considered the initial value problem

(1.3)

i0pu + 0%u = aNj(u,u), =z,teR, j=1,2,3
u(z,0) = up(x),

where Nij(u,u) = wii, No(u,u) = u4? and N3(u,u) = u?. They established the
following sharp bilinear estimates:

(B1) || N1 (u,w)]|xeo-1 S Hu||§{,,, for s> —1/4 and b> 1/2;
(Ba) [N (u,u)|xso-1 S |lull5.0, for s>—3/4 and b>1/2, with j =23,

where
[fllxcs0 = U (=) f | o m, 115

(1.4) 2s 21\2b| 7 2 e
= ([ ale®a i+ ey ifenka)
and U(t) := 9% is the corresponding Schrédinger generator (unitary group) asso-
ciated to the linear problem. Using the estimates (B1) and (Bz) and properties of
the X*? espaces together with the contraction mapping principle they proved local
well-posedness for (1.3) in H*(R) for s > —1/4 (j = 1) and for s > —3/4 (j = 2, 3).
Similar results were given in the periodic case, where || - || xa0 18 defined by

+oo R 1/2
(1.5) [fll g0 = (Z/ (1+ |n|)25(1+|7+n2)%f(n,T)FdT)

per
nez”
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and the corresponding bilinear estimates obtained are the followings:

(B3> HNl(u7 U)HXS(’,}’;l 5 Hu”?(;;ﬁ’ for s > 0 and b€ (1/2a 1)7
(B4) HNj(u,u)HX;équ < ||u||§(;br7 for s > —1/2 and b € (1/2,1), with j = 2,3.

As explained above, in our case the nonlinear interactions are uv and |u|?. These
terms are similar to N3 and Ny, respectively, but the characteristics of linear part
of each equation involved in the system (1.1) are antisymmetric. Therefore, our
task is to find new mixed bilinear estimates for the coupling terms uv and |u|?.

Before stating the results we will give some useful notations. Let 1 be a function
in C§° such that 0 < (t) <1,

1 if [t <1,
t) = -
v {o if [t > 2,

and ¢r(t) = ¥(%). We denote by A+ a number slightly larger, respectively smaller,
than A\ and by () the number () =14 |-|. The characteristic function on the set
A is denoted by x 4.

The next statements show the main local-in-time results achieved in this work.

Theorem 1.1. For any (ug,vo) € H¥(R) x H*(R) provided the conditions:
(1.6) k| —1/2<s<k+1/4 and k> -1/4.

there exist a positive time T = T(||ug|| i<, ||vo|| <) and a unique solution (u(t),v(t))
of the initial value problem (1.1), satisfying

L1 1
(i) (r(t)u,Yr(t)v) € XW2F x H2H(R, H3);
(i) (u,v) € C([0,T); H*(R) x H*(R)).
Moreover, the map (ug,vo) — (u(t),v(t)) is locally Lipschitz from H*(R) x H*(R)
into C([0,T]; H*(R) x H*(R)).
Theorem 1.2. For any (ug,vo) € H*(T) x H*(T) provided the conditions:
(1.7) 0<s<2k and |s—k|<1.

there exist a positive time T = T(||ug|| i, ||vo||rs) and a unique solution (u(t),v(t))
of the initial value problem (1.1), satisfying

() Wr(uvr(t)) € Xp2 " x HE* (R, Hy.,);

(i) (u,v) € C ([0, T); H*(T) x H*(T)).
Moreover, the map (ug,vo) — (u(t),v(t)) is locally Lipschitz from H*(T) x H*(T)
into C([0,T]; H*(T) x H*(T)).

In figures 1 and 2 below, resp., we decipe the regions on the (k, s)-plane where
our local well-posedness theorems in the continuous and periodic settings, resp.,
are valid.

Finally, we show that the system (1.1) is globally well-posed for a class of data
without finite energy, more precisely:

Theorem 1.3. For any (ug,vp) € H*(R)x H*(R), —1/8 < s < 0, the local solution
given in Theorem 1.1 can be extended to any time interval [0,T] (preserving the
properties (i) and (ii).)

The plan of this paper is as follows. In Section 2 are given preliminary estimates

needed to establish the new mixed bilinear estimates for coupling terms of system
(1.1) and the proof of these estimates will be given in Sections 3 and 4. Moreover,
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we observe that our local results, given in theorems 1.1 and 1.2, are consequences of
these bilinear estimates by using the standard contraction mapping principle and
the properties of X spaces. For instance, see the works [9], [2] and [7]. Finally,
in Section 5 we proof Theorem 1.3 using the I-method combined with the following
refined Strichartz type estimate for the Schrédinger equation:

(1.8) (D32 F) - gllzz, S I fllxonrs llgllxor2,

~

if [€1] > |€2[ for any [&] € supp(f), |€2] € supp(g)-
We finish with the following interesting remark: in the work [3] it was shown

that as the parameter o tends to zero, solutions the system (1.1) converge (in
H*(R) for s > 5/2) to those of the cubic nonlinear Schrédinger equation. Our
local results in Theorem 1.1 show that this fact is not true in Sobolev spaces with
low regularity since the cubic Schrodinger equation is not locally well-posed below
L? in the continuous case (in the sense that the associated flow is not uniformly
continuous).

T2

T3

T1

FIGURE 1. Well-posedness results for Schrodinger-Debye system
in the continuous case (M = R). The region W, limited by the
lines r: |[k|—s=1/2and ro:s—k=1/2,r3:s—2k=1/2, for
k > —1/4, contain the indices (k, s) where the local well-posedness
is achieved in Theorem 1.1. Global results, given in Theorem 1.3,
are obtained on the line £: s =k, for —1/8 < k <0.

2. Preliminary Estimates
Firstly, we recall some estimates contained in the work [7] of Ginibre, Tsutsumni
and Velo concerning the Zakharov system:
Lemma 2.1. Let —1/2 <V <0< b <V +1andT € [0,1]. Then, for F €
HY (R, H?) we have
(2.9) o1 (O)woll g w5y < Cllwollmre

(2.10) ‘ Pr(t) /Ot F(t',-)at

< OT " |\ F |l ot sy
HY (R, H)
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T2
3

T1

FIGURE 2. Well-posedness results for periodic Schrodinger-Debye
system (M = T). The region W, limited for the lines r; : s = 2k,
ro:s=k+1andr3:s=k—1, contain the indices (k, s) where
the local well-posedness is achieved in Theorem 1.2.

Proof. See Lemma 2.1 in [7]. O

Lemma 2.2. It holds
e [ 76,796, r)h(a, )l (€)'/
]R4

(o)4o1) % (02) %

where £ = & + &, T =T+ T, 0 (=T, 01 = T] — %ff, o9 = To + %53 and
d,dy,dy > 1/4, d+d; > 3/4, d—+dy > 3/4

2
déydmidédr S| fllzz, llgllzz, IRllzz,

Proof. See [7, p.422-424]. O

Next, we recall some elementary calculus inequalities:

Lemma 2.3. Let p,q > 0. Then for r = min{p, q} with p+ q¢ > 1+ r there exists
C > 0 such that

o dx C
212 | e

Furthermore, for p > 1 and q¢ > 1/2 there exists a C > 0 such that

i dx C
(213) Lw m < m, fOT « 7& 0,
e dx
2.14 <C.
(2.14) | e =

Proof. See the work [2]. O
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3. Bilinear Estimates for the Coupling Terms in the Continuous Case

The aim of this section is the study of the crucial sharp bilinear estimates for the
coupling terms in the continuous cases. In order to do so, this section is oranized
as follows: first, we present the proof of the relevant bilinear estimates assuming
certain restrictions on the Sobolev indices s and k of the initial data; after this,
we show a series of counter-examples showing that our restrictions on s and k are
necessary.

3.1. Proof of the bilinear estimates I: the continuous case.
Proposition 3.1. Let 1/4 < a < 1/2 and b > 1/2. The bilinear estimate
(3.15) [wollxx—a S Jullxxolvll
holds if k| —s <1/2.
Proof. We define

F(&7) = (m+ 3" (e, 7) and g(&,7) = ()"(€)"0(&, 7).

Then, for u € X¥* and v € HYHE, the L? duality and the definition (1.4) show
that (3.15) is equivalent to prove

(3.16) W o(e) SN fllz2llgllz2llell 2,
for all ¢ € L?(R?), where
<€>k§5(£77—)f(§_€1,7__7-1) (51,7_1)
317) Wi(p) = dé drided
17 Wiso)= | (T 38 (E — €M =+ B(E — €02} () (myp r T

To estimate W, we split R* into three regions A, A2 and As,
Al = {(faglaTaTl) € ]R47 |§1‘ < 1}a
AQ = {(57517777_1) € R4; |£1‘ > 1 and |fl _£| > %|£1|}1
A3 = {(faglaTaTl) € ]R47 |§1‘ > 1and |%€1 _§| > %|§1‘} :
Since
S={(E..mm) €RY |l > 1, |6 - & < L&1| and 162 — €] < L}
is empty, we have that R* = A; U Ay U A3z. Indeed if (§,&;,7,71) € S, then
slal =16 - G& -9 <& — &l + 156 — €&l < 1l
which is a contradiction.
Note that for any point in A3 we have the following algebraic inequality

(3.18) [T+ 28+ |n|+ T —m+1(E—&)? > 138 - ¢4 = al13& — €] = 34,
and consequently
(3.19) max {|7 + 3%, [n], |7 — 71 + 3(6 = €)%} > 5lal*
Now we separate A3 into three parts,
Azy = {(§,&,7,m) € As; |l [T — 11+ 3(€— &) < I+ 5€°|},
Aso ={(&6,mm) €Az [T — i+ 36— &), [T+ 38 < |nl},
Az = {(§,&,7,m) € As; |, [T+ 38 < |r— 1+ 36— &)°|},

so that one of the following |7 + $&2|, |mi| or |7 — 71 + (¢ — 51) | is larger than
2
24|£1|
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We can now define the sets Q; = A3 U A2 U Az, Q2 = Az and Q3 = A3z
and it is clear that R* = Q; U, U Q3. Then, we decompose the integral in W into
the followings

W(f?.ga(p) = Wl +W2 +W37

where

(F@(&,7)f(€— &7 —T1)g (51,71)
Wi= /T+2§2“<§1>< 1)P(E —E)R(T — T+ §(§ - &)

for j =1,2,3.

We begin by estimating W;. For this purpose, we integrate over & and 7 first
and then use the Cauchy-Schwarz and Holder inequalities and the Fubini’s theorem
to obtain

A& d dEdr,

(3.20)
2
2 (&* f€—&,7—1)g (51,71)
dé1d

Wi|* < |<T+é§2>a /R2 (£1)5(€ — €1)F ()b <T—T1—|— €—a)? >bX91 &dm . X

x HSOH%%,T

_ [ (&?rdgdr f€=&,7—71)g9(61,m1) 2
#5585 || et o e |
X |\<PH2L§T
(©* (&) > —&)
(T4 3£2)% /R2 (T)2 (1 — 1 + 3(€ — &)? >2bXQld£1dTl . X

< I £1IZ2llgll 72l 72

For Wy we put f(£,7) := f(—€, —7), integrate over £ and 7 first and follow the
same steps as above to get

o |[(&)2 (&) (€ &)~
Wal” < H (7120 /Rz <T+2£2>2a<7—7'1+ €—=&)%

55 X d&dT

(3.21) Lz

x I £IZ2llgllZ2llell 7.

Note that [| f][2. = || £]2.-
Now we use the charige of variables 7 = 7 — 1 and £ = & — & to transform the
region {23 into the set €3, that satisfies

Q3 C{(&1,&,m1,m) €RY LG < |Led — &16] < 3|m2 — 3€3| and &) > 1}

Then W3 can be estimated as follows

(3.22)
(&) 725 (&1 — &)

2 (§2) ~
|Ws|* < H (T2 — %§§>2b /]R2 P —— (51 &)? >2aX93d§1dT1
< IFlI72llgll7=llell3-

From estimates (3.20), (3.21) and (3.22) it suffices to show that the following
expressions are bounded:

)
L€2 T2
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= _ o (&) > -&)*

(323) W1(§17T1) = <7‘ T %£2>2a /R2 <7‘1>2b<7' R %(f _ 51)2>2b XQldfldTla
ey (67 (€4 — &)

(324) W2(€17T1) = <T1>2b /]RZ <7' T %§2>2a<7- P %(5 — é.1)2>2b Xdenga

and

(3.25) Ws(&,m) =

%a X§3d§1d7'1.

(&)~ / (&) (& — &)
(r2 = 5€83)% Jre (1)®(m1 — 72 + 5 (&1 — &)?)
Now using lemma 2.3-(2.12) and the inequalities: (£)2F < (&,)2I¥I(¢ — &)?* and

(€1—&)% < (&0)HFI(&)?F for k > 0, and (€—&1) 72k < (£1)2F1(€) % and (&) 72k <
(€1)2IF1(g) — €)% for k < 0, we have

506) T7 < - 1 +o0 <§1>2|k|725 .
(3.26) 1(&,7) < i€, 7) (7'4-%{2)2‘1/00 <T+%£2+%£%_§§1>2b>«21 &,
_ <§ >2\k|725 +o0 1
(320)  Walbn) < Aalh,m) = %W’/;(ﬁ—ﬁﬁf&%mﬂg
and
(3.28)
— - 1 +o0 <§1>2|k|—2s B
W3(&2,m2) < J3(&2,T2) = (L) /_Oo (m— 16 - 18 +£1£2>2aXQSd£1'

We begin estimating J; on O = A; U Ay U A ;1. In region Ay, using &) < 1,
a>0,b>1/2it easy to see that

(3.29) hl<C / i, < C.
[€11<1

In region A, by the change of variables n = 7+ %52 + %5% — &£ and the condition
€ — &1| > £]&1| we obtain

1 2|k|—2s

e L T - g
(3.30) 8 (£,)2Ik|=25
§<r+;evaf; AR

IN

c,

where we have used that @ >0, b > 1/2 and |k| —s < 1/2.
In region As 1, by (3.19) we have that

617 < 24(7 + 3€7)
and consequently using a > 0 we obtain
(T4 372 < Clea|
Then we use that |k|—s < 1/2 < 2a, for a > 1/4, combined with Lemma 2.3-(2.14)
to get

(3.31) | < C/ (£,)2IkI=2s o
| S A R R A
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Next we estimate Jy. First, we making the change

n=m— 3& + &6, dn = &1 d¢,
and we note that the relations in (3.18) and the restriction in region s yield
(3.32) () < (1) + €61 — 3671 < 4(m).

Moreover, by (3.19) we have
&1]* < 24(m)
and hence using that 2a +2b—1 > 0 we get

(333) |£1|4a+4b—2 S C<T1>2a+2b_1.

Now using the inequalities (3.32), (3.33) and that a < 1/2 we can estimate Jo as
follows:

(62> an
Ja(&1,m)| < S — e
Ta(en )l < = /<77>§4(ﬁ> SUCERUD

<£1>2|k\—25 Lo
C—(1 @
e
(3.34) -c (€,)2IkI—2s
= Y ()20 t2b-T]g |
<€1>2\k|72s
(E1)tata0=2 gy
<C,
where the last inequality follows directly from the conditions 2a +2b —1/2 > 1/2
(for a > 0) and [k] — s < 1/2.
Finally, in region €23 we note that

<C

1
|51\4b < C(mp — §§§>2b-

Hence, from conditions @ > 1/4, b>1/2 and |k| —s < 1/2 coupled with Lemma
2.3-(2.14), we have that

() <C T d:
3(&2, m2)| < /
(3.35) €114 (T — 38 &6
<C,
which complete the proof of desired estimate. O

Proposition 3.2. If max{0,s} < 2k + 1/2 and s < k + 1/2, then the bilinear
estimate

(3.36) 1, S Nl

holds if b>1/2 and ; < a <1/2.

|wl[xs

Proof. Analogously to the previous proposition, the estimate (3.36) is equivalent
to prove

(3.37) Zs.g(@) S 1 f 2 llgl2llell L2,
for all ¢ € L?(R?), where

_ <§>S¢(§7T)f(§_€la7—_Tl)g(_fh_'rl) o -
@3 200 = [ e e o T e T e
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We have the following dispersion relation

=& +&, T=T1+T,
(3.39) o1=11—3&, ora=m+ 18,
T—o1—0y=—38 486 =12 -6 =G -8).

We divide R* in the following integration regions:

Region A: |o1| > max{|7|, |o2|}. We consider two subregions of A:

Subregion As: [&1] < 2lgal. If k < 0, we have (§)°(61) *(&) ™ < (€)% <
(€)1/2 (because |¢] < 3|&| and s = max{0, s} < 2k+1/2). Hence, we can estimate
1/2 5 G(—€ —
(340) 7 5 / <£2> Sp(guT)f(g%bTZ)g}() 51: Tl)
R4 (1)*{o2){01)
if k < 0. Thus, in the same way as the previous estimate of (3.20), it suffices to
bound the expression:

7o su 1 <£2>XA1
(3.41) Zyi= 5w /}Rz<

€171 ) {02)?

o If |&5| <1 we using Lemma 2.3-(2.14) to get

XA, d&dmdédr

7 o< XA,
R R e

A

+oo 1 J
\/;oo (=11 + 382 — &€& + 5€2)% ¢
1,

A

since 2a > 1/2.

o If |&5] > 1 we have that (£) < |&|. Next, changing variables 7 = 75 + 71
and 09 = T + %537 for fixed & and 71, we have that drdos = |£a|dTedés
and then we obtain

~ 1 1€2]x 4
71 < L déod
P PR / (r)2a ()20 %202

= sup

7 .
e (01)% Jra (7)2%(02)
1 o] lo
< sup W/ <T>_2ad7’/ (09) "2 dory
0 0

§1,71 <01

5 Sup<o_1>—2b<0_1>1—2a<0,1>1—2b
o1

55 drdos

_ Sup<01>2—2a—4b
o1

<17

since 0 < a and b > 1/2 implies 2 — 2a — 4b < 0.

Therefore, we showed (3.37) in the subregion A; whenever k£ < 0. On the other,
if k> 0, we have (§)*(&)7%(&)™F < (€)% < (€)Y/? (because [¢| < 3[&| and
s—k <1/2). So, we get

(OV20(6,7) f(&2,m2)g(—&1, —71)
) z5 GRCRGE

XA, dérdrdédT
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if K > 0. Thus, applying the lemma 2.2, we also obtain (3.37) if £k > 0.
This completes the analysis of Z in the subregion A;.

Subregion Aa: |£€1] > 2|&2|. Here, the dispersion relation (3.39) yields that
33 <168 - &Gl =27 — 01 — 02| < 6lo1| = & < 8oyl

Hence,

(3.43) <

If k <0, it follows (£)*(&1)*(&) ™% < (&)'/? (because max{0,s} < 2k + 1/2 and
€] < 3|£1]/2), so that

1/2 T 1, —T1
gay  zs [ S PEDRREOIT, L dnaar

if k£ < 0. Thus, similarly to (3.40), our task is to estimate

> L (&1)
(3.45) Zy := sup / XA, dEadTs
g1 (01)% Jra (7)24(02)? 777

Using (3.43), lemma 2.3-(2.12) and lemma 2.3-(2.14) we obtain

7o < sup (6)174 / XA dédr
R

b 2 (2 — 1 + L€ — £)2)2
(3.46) < 1—4b 1
< sup &) /_oo T VT
<1,

where in the last inequality we have used that since 1/4 < a and b > 1/4.
If £ > 0, we have (€)%(&1)7%(&) =% < (6)*=F < (&)V/2 since s — k < 1/2 and
(€] < 3]&1]/2. So, we get
(3.47)
Z </ ()20(€,7)f (&2, 2)g(~&1, —T1)
™ Jpa (r)*(o2)?(o1)®

by lemma 2.2. This completes the analysis of the Z in the subregion As.

XAy d&rdmidédr S || £l L2 llgll 2@l 22

Clearly A = A; U Az, so that the estimate (3.37) holds true in the region A.

Region B: |o3| > max{|T|, |o1|}. The computations for this region can be
obtained from the previous ones (in region A) since all the involved expressions are
symmetric under the exchange of the indices 1 and 2.

Region C: |7| > max{|o1|, |o2|}. Here, we analyze several cases for the
frequencies £ and &;.
We begin with the high frequencies for £, that is:

Subregion Ci: €| > 1. We separate this region into two smaller subregions.
Subregion C ;: ‘51 - % ’ < 1. Here we have that

1] < |6 — 5] + 3¢ = (&) S (©)
and

o = |36+ 3 — & < |& — 3] + 3¢ = (&) S (9).
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In particular, we get (£)%(&1)7%(&) 7% < (€)1/? (because max{0,s} < 2k + 1/2
and s — k < 1/2). This allows us to conclude that
(3.48)

V258, 7) f (&2, 72)G(—&1, —T1)
7%, ) {oa) Mo

by lemma 2.2, which is the desired estimate (3.37) in the subregion C1 1.

Subregion Ci : |€1 — %ﬂ > 1. Firstly, we note that if min{|&],|&2|} < 1, it
follows that max{(£1), (§2)} < (§) and the same analysis of the subregion C4,1 can
be repeated here. Thus, we can assume that |{;] > 1 and |&3] > 1. Note that

Xer, d6rdmdédr S | fllc2llgl 2 [l 2

16| = 161(& = &) = (&1 = 38) + 3€) (3€ — (&1 — 39))]

< J& — 3¢l + flel.
Also, from (3.39) and the conditions |¢| > 1 and [§; — $£| > 1, it follows that
(3.50) max{[€], |6 — 3]} < |66 — 36)| < 3(7).

If s <0, k < 0, we obtain (£)*(&1)7*(€2) ™" < (&) 7"(&) ™" S (¢ >1/4<€2>1/4 (Since
0 = max{0,s} < 2k+1/2); if s < 0, k > 0, we get (£)%(&)7F(&)™% < 1; in
the remaining cases (i.e., either s > 0, k <

(3.49)

or s > 0, k > 0), we have two
possibilities, namely [£1] ~ |€2] or |&1] = |€2]; when the first case occurs, it follows
that (£)5(&1) (&) 7F < (&)2F < ()12 < (€)1/4(&)M* and, in the second case,
we conclude that (7) > (€)2, which implies (€)%(&,) 7% (&) 7% < (£)s—2k < ()12 <
().

In resume, we always get that, in any case, either (£)5(&,)7%(&)~% < (r)1/* or
(€)5(€1) 7R (&) 7F < (&) 4(€5) /. When the first possibility occurs, using Cauchy-
Schwarz, we can reduce the estimate (3.37) to bound the expression:

_ /2
(3.51) Zi=suw <T;2a /R2 << >>2b<XC;22bd§2dT2

But, this can be done as follows:

_ 1/2—2a
Z < sup {r) / XC1.2 doidog
r2 (01

er I )2 (02)2
3.52 1/2—2a
( ) < sup (1) <T>274b
&, |§|
<1

since [{] > 1, b > 1/2 and a > 1/4. When the second possibility happens, we
decompose the frequencies ¢; and the modulations o; into dyadic blocks (£;) ~ N;
and (o;) ~ L; (here & :=¢§, 09 := 7 and j =0, 1,2). Hence, it suffices to estimate
(3.37) restricted to each dyadic block with the gain of extra terms N JQ_ and L(;_.
To simplify, we put Nyax := max{Ng, N1, No} and L.y := max{Lo, L1, L2}. So,
we have

ENYMEN 10 (E,7) f (&2, m2)G(—&1, —T1)
2% ] (M (@2 o) xeddndsdr
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Using (3.49) and (3.39), we get (£1)(&2) < (7) (by analyzing the cases [&1| ~ |&2]
and |&1| < |&2|, resp.). Since a > 1/4, it follows

@&, 7)f(&2,m2)g(—&1, —71)
75 /11@4 L (09)b (01 )? X, o d61dTidEdT

Applying Cauchy-Schwarz, it suffices to bound the expression:

1 XCi 2
supL +/R (1) (o) €adry

Recall that (3.49), (3.50) and (3.39) implies Nypax S Lo. Also, Lo = Lpax in the
region C. In particular,

1 NO— 10—
Sup —r /2 7< XC1.2 dfngg < sup —/2E_max /2 < XC12 55 do1do
R

& L 01)?(02) & €] 01)%{02)
NO— 10—
5 sup max-“max <T>274b
er I
< NO- L0

max-—max’

because b > 1/2 and |¢] > 1.

We conclude with the small frequencies for £, that is:
Subregion Cs: |£| < 1. The hypothesis |7| > max{|o1]|, |o2|} is not crucial in
this case; hence we divide into two smaller subregions:

Subregion C31: |£1| < 2. Here, it is easy to see that (&) < 1, (§&2) S 1. In
particular, by Cauchy-Schwarz, our task is to estimate

~ 1 1
7 = su / désdTs.
U0 TV Jea (ryPafog)m 2

Then, using lemma 2.3-(2.12) and lemma 2.3-(2.14), we get

- 1
Z = sup

1
déod
£1,01 <(71>2b /R? <T>2a<o_2>2b 52 T2

1
S T
(3.33) N/Rz R N U E

A

+o00o 1 J
L. == T
1

A

since a > 1/4.
Subregion Cz32: |£1| > 2. Redoing the analysis of the bounds for the term
(€)5(&1) 7k (&) in the four cases s <0, k <0, ..., s >0, k>0, we see that

(€)™ e) ™ S e

Similarly to the previous estimates for subregion 'y 2, we decompose the frequencies
(&) ~ Nj, 5 = 0,1,2, into dyadic blocks so that our task is to bound (3.37)
restricted to each dyadic block with the gain of extra terms NjQ*. We have

12 [ @& 1) (€2, m7)g(—E1, —71)
Z <N /]R 4 A XC» adérdrydédr

Applying Cauchy-Schwarz, it suffices to prove that:

XCs3,2 0—
dd N
/Rz e = + L(e —gy)2)e 4T S Nima:

(3.54) N2 sup
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This can be accoplished as follows. Firstly, notice that
1 / XCa,2
sup : dédr
e (01)% Jra (1)20( — 11+ 5(€— €)%
< sup —— / ds
N o (01)% Jig<1 (—T 4 388 — E& + 1€2)%

Now, by changing variables
1 1
n=-mit g€ -G+ 58 dn= (- &)dg,

we get [n| < (o1) + [&1] + 5 < (01) + 2|[&1] and we obtain the following bound of
(3.55):

(3.55)

sup #/ dn
en,01 (012 Jini<(on+2ie, (L+m1)2e& = ¢
dn
< sup _an
(3.56) G (0?61 >1 &1l i< ony+2160 (L4 [n])?
S sup e (o)1 72+ &2
S e )
5 Lv
|€1 ]2

since 2b > 1 and a > 0. Putting this estimate into the expression (3.54), because
a > 1/4 and Ny ~ Npyax in the subregion Caz 2, we conclude

1 Xc
N}/? sup / 2.2 dédr
Yo (00 Jre (7)2(r — T+ 3 (€ - €)2)P
(3.57) < N1/2. 1
~ 1 N12a
<N

Collecting all the estimates above in all regions we have that the inequality (3.37)
holds provided the conditions in proposition 3.2 are valid. ([l

Remark 3.3. As pointed out in the introduction, once the bilinear estimates in
propositions 3.1 and 3.2 are established, it is a standard matter to conclude the
local well-posedness statement of theorem 1.1. We refer the reader to the works [9],
[2] and [7] for further details.

3.2. Counter-Examples I: the continuous case. We finish this section exhibit-
ing several counter-examples showing that the bilinear estimates proved above are
sharp, that is, the conditions imposed on the indices k£ and s in the propositions
3.1 and 3.2 are necessary.

Proposition 3.4. The estimate ||uv| xr,-1/2 S ||u||Xk,1/2||'U||Ht1/2H; holds only if
k| <s+1/2.
Proof. Take N € Z* a large integer and define
Ar={(Cn) eR% 0<(<1/N and |n+ 5¢% <1},
Bl—{( m)ER% N<C<N+ g and g <1},
={(¢,n) €R} N<C<N+ g and [+ 3¢ < 1},
B%{(c, n) ER* —N<(<-N++ and || <1}.
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Put fj(C, n) := xa, and g;(¢,n) := xB,. A straightforward computation gives that

1/2
1 /NF\? 3
Hflgluxk,—l/z ~ (N (N) > -~ ]\/-lc727

Hfl”Xk,l/Q ~ N71/2, and

HglllHtl/zH; ~N°"2
So, ||flgilHXk,—1/2 < ||f1HXk,l/2||gl||Ht1/2H5 implies that k < s + %

Analogously, another simple computation shows that

3
| f2g2ll xr.—1/2 ~ N™2,

k‘—l

| fall xk172 ~ N*72, and
1

”92”]-13/2]-[; ~ N2
ThllS, ||f292||Xk,_1/2 S ||f2||Xk'1/2H92HHt1/2H; 1mphes that 0 <s+ k+ %, i.e., —k <
s+ 1/2. This completes the proof of the proposition. ([
Proposition 3.5. The estimate ||u@|\H71/2HS S Nl xr1sz2 |wl] xw1s2 holds only if
s <k+1/2 and max{0, s} < 2k +1/2.
Proof. Take N € Z™ a large integer and define

Al ={(< n) €R% 0<C<1/N and [n+5¢7 < 1},

n) €R* N <( <N+ and [n+ 3¢% <1},
ER* N<(<N++ and |n+ 3% <1},
€ R?, —NS{g—N—l—% and \n+%§2|§1}7
Bg_{ ER} N<(<N++% and In+ 3% <1},

Put f;(g,n) := xa,; and g;(¢,n) := xs,. A simple calculation shows that

1/2
_ 1 /N*\? . 3
1195l ~ (N(N> ) e

||f1||Xk,1/2 ~ Z\[—1/27 and

||gl||Xk,1/2 ~ Nk_Q.

Hence, || f1g1ll;;-1/2 7, < 1fillxcras2 /g1l xe/2 implies that s < & + 3.
Similarly, another simple computation shows that

1/2
_ 1 /N*\? .3
122l 22 gy ~ (N (N) ) m

1/2
_ 1 /1) _3
150 o721 ~ (N (%) ) ~NE, and

I f2llxrarz ~ llg2llxrare ~ |lgsllxwasz ~ N*72
Thus,

1fog2ll =172y, S Ml follxcrnrzllgall s
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implies that s < 2k + % and
1f2951l gr=172 e S Ml follxwnr2llgsllcnr /2

implies that 0 < 2k + % Therefore, max{0, s} < 2k + % O

4. Bilinear Estimates for the Coupling Terms in the Periodic Case

Here, we show sharp bilinear estimates for the coupling terms in the periodic
setting.

4.1. Proof of the bilinear estimates II: the periodic case.

Proposition 4.1. The bilinear estimate

(4.58) ool on— g S Mol ey =Nl g

x

holds if 0 < s <2k and |k — s| < 1.
Proof. Fix s > 0 and k < s+ 1. Taking a = b = ¢ = 1/2—, our task is to show the
bilinear estimate

[wollxk—a S llullxrolvll o m

Defining f(n,7) := (7 +n2)*(n)*u(n,7) and g(n,7) := (1)(n)*v(n, 1), it suffices
to prove that

(4.59) Z S |fllez  Nallez Nellzz

where

(4.60) W := Z/dr Z / (r+ n2>_a<n>kf(n1>71)9(71277'2)(,0(71,T).
nez n=ni-+ns T1+T2 <7-1 + n%>b<7_2>c<n1>k<n2>s

Dividing Z? x R? into three regions, namely Z? x R? = Rq U R; U Ry, integrating
first over ny, 71 in the region Ry, n,7 in the region R;, no, 72 in the region R, and
using Cauchy-Schwarz, we easily see that it remains only to uniformly bound the
following three expressions:

XRo
4.61 Wi = d
( ) 1 S;luf T+n2 QaZ/ 71 (11 + n2)26(75)2¢ (01 )2k (1) 25
XR1
4.62 Wy = d
(4.62) 2= sup <n1>2k (4 0] %Z/ TT+n2 (722 {ng)?
1 (n)**xr
4.63 W3 = -_ d 2
(4.63) 3 5;15’2 (n2)25 (13)2¢ zﬂ:/ T<T+n2>2a<7-1_|_n%>2b<nl>2k

For later use, we recall that the dispersive relation of this bilinear estimate is:
(4.64) T4+n?— (1 +n?) -1 =n—n?
In order to define the regions Ry, R1, R2, we introduce the subsets:
A= {(n,nl,T,ﬁ) e 7> xR?: In| < 1},
(4.65) B:={(n,ni,7,71) €Z* xR*: |n| > 1 and |n| ~ |n1|},
C:={(n,n1,7,71) €Z* x R? : [n| > 1,|n| = |nq| and |7 + n®| = Lyax }
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where L. = max{|T + n?|, |7y + n?|,|2|}. For later reference, we denote also
Niax := max{|n|, |n1|, |ne|}. Then, we put Ry := AU BUC and

Ry = {(n,nl,T,ﬁ) € Z? x R? : |n| > 1,|n| = |n1| and |1, +n?| = Lmax},

(4.66) ,
Ry = {(’I’L,?’Ll,T,Tl) €Z° xR?: |n|> 1,|n| = |n1| and || = Lmax}.

We begin with the analysis of (4.61). In the region A, since |n| < 1, we have

XA
S;l —|—n2 2a Z/dﬁ (11 + n2)2(75)2¢(ny )2k (ny)2

1
<sup T+ n2) 2aZ/d17.+n V26 (75)2¢ (11 ) 2F (12) 25

1
S SUp 2. (7 + n2)2b+2e—1-
ny

<1

)

because k,s > 0, a > 0 and 2b+ 2¢ > 3/2.
In the region B, we have |n| ~ |ni|. Thus,

sup 7<n>2k Z/dr XB
e (T +n2)2a -~ 1 (11 + n2)28(15)2¢(n1)2* (ng)2s

)
1 1
<sup ———5— dr
~ mf_) (r + n2)2a ;/ Vi + n2)2(15)20 ()2

1

<
~ Sl_ll_p Z <7— + n%>2b+20—1—
ny

<1

)

because k,s > 0, a > 0 and 2b+ 2¢ > 3/2.
In the region C, we know that |7+n?| = Lmax, |n\ \nl\ and |n| >> 1. Hence, the

dispersive relation (4.64) says that |7 +n?| = Lyax > [n? —n3| 2 N2,.. Therefore,

o (7 n2)Ze Z/dTl (11 +n3)®(r X>C< 1) (n2)?s

< < max>2k 2s 1
Sup —————5+5— dT
SO 2y n/ i+ ) B ()

(Nmax) 1

<

~ S?BP {(Nmax)?a ; (T+n >2b+2€ 1=
S

since k,s >0, k <s+1,a=1/2— and 2b+ 2¢ > 3/2.
Putting together the estimates above, we conclude the desired boundedness
of (4.61):
WAl <1

Next we estimate the contribution of (4.62). In the region R;, we know that
In| > 1, |n| = |n1] and |71 + n?| = Liyax. So, the dispersive relation (4.64) implies
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that | +n?| 2 N, Thus,

max

XR1
Wy =
TR <n1>2k L+ ) %Z/ T+n2 2a< )2 (ng) 2
Nypae) 262540 1
S SupZ/ 7-_|_n2 2a<7-2>20 ~ S_Il_llpz <7-1 _|_n2>2a+26—1—
n

S

since k,s >0, k <s+1and b=1/2—, 2a + 2c > 3/2.

Finally, we bound (4.63) by noting that, in the region Rs, it holds |n| > 1,
[n| = |ni| and |72| = Lmax. In particular, the dispersive relation (4.64) forces
|T2| 2 N2 ... This allows to obtain

S S i
Ws = sup (ng)?s(ma)2e zn:/dT<T+n2>2“<7’1 +nf)? (n1)?*

nz,T2

<N >2k72574c 1
< d max <
= sup Z/ T<7_ + ,n2>2a<7—1 + n%>2b ~ :271_)2 Xn: <7_2 4 ng(nz . 2n)>2a+2b_1_

since k,s >0, k < s+ 1 and 2a + 2b > 3/2.
This completes the proof of the proposition. O

Proposition 4.2. The bilinear estimate

(4.67) (] Y e e

l
2 Ha: Xk

t
holds if 0 < s <2k and |k —s| < 1.
Proof. Similarly to the previous proposition, the relevant dispersive relation is
(4.68) T — (11 4+n?) — (12 —n3) =n3 —n?

and it suffices to bound the following contributions:

XSo

4.69 Z1:=s

( ) 1 (r +n V20 (7, 7n2>2c<n1>2k<n2>2k
X51

4.70 Jo = d

( ) 2 :’PEI <n1>2k 71+ n2)2b Z/ T 7)2a —n%) <(ng)2F
X52

4.71 La =

(4.71) 3 :’2‘1?2 <n2>2k s — n2)2 Z/ )2 (7 +n 2Y2b (1, )2k

where Sp U S U Sy = Z2 x R2. To define the regions S;, j = 0,1,2, we introduce
the sets

E:={(n,n1,7,m) €Z* xR* : |n| S 1},
(4.72) F:={(n,n1,7,7) €Z°> xR*: |n| > 1 and |n1| ~ |na|},
G:={(n,n1,7,71) € Z* x R? : [n| > 1,|nq| » |no| and |71 + n}| = Lmax } ,
We put S; := FUF UG and

(4.73)
So == {(n,n1,7,7) € Z*> x R* : |n| > 1, |n1| = |ns| and |7| = Liax }

Sy == {(n,n1,7,7) € Z* x R? : |n| > 1, |n1| = |na| and |72 — n3| = Liax} -
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We can estimate Z; as follows. In the region Sy, since |ni| » |nz|, we have either
[ni| > |ng| or |ng| > |n1|. By symmetry reasons, we can suppose that, without
loss of generality, [na| > |n1|. In this case, |7| > n3 and |n| ~ |n2|. So,

XSo
Z —
SuP 7)2a Z/ (1 + n2)2 (15 — n2)2¢(n1) 2R (ng) 2k

mwzk / Xs
<Su - dT 0
(4.74) SR Ty Y+ 320y — ng)e

ni
Ssup Y !

g s T mE = 322 (g — )P (o)

S

since k,s >0, s < k+ 1 and 2b + 2¢ > 3/2.
Now we will bound the expression Z5. In the region E, it holds |n| < 1. Hence,

XE
d
:1“5’1 <n1>2k T+ n2)2 Z/ T TV2alr —n§> <lrg) 2t

4.75 !
( ) < sup Z /dT % (ry — n2)% < sup z (11 + nZ)2e+2e—1-

ni,T1 In ‘<1 2 n1,71 ‘n|<l

~

S1
In the region F', we get |n1| ~ |nz| so that

XF
d
flufl <n1>2k (11 +n )2b Z/ T )20 (1, _ng>2c<n2>2k

29 4k

< g N Vol A
(4.76) N (m + n2)® Z/ @1y — n3)2e

~nm n (11 + (n — nl) )2at2e—l=

because 0 < s < 2k and 2a+2c¢ > 3/2. In the region G, the dispersive relation (4.68)
combined with the assumptions |n| > 1, [ny| < |na| and |71 + n?| = Lyax implies
that |71 +n?| > N2... Without loss of generality, we can suppose that |n;| < |nz].
Then,

*xe
d
sup <n1>2k (r1 + n2)2b Z/ Ty Q,ng>2c<n2>2k

1,71
4.77 29 2k—4b
( ) < sup /dT 2 3
mni1,T1 a 7_2 - n2> ¢

since 0 < k,s and s < k+1, 2a+2¢ > 3/2. Collecting these estimates, we conclude

(4.78) 12, < 1.
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Finally, the expression (4.71) can be controlled if we notice that |n| > 1, |nq| = |ng|
and |79 — n3| = Lyax implies |72 — n3| > N2,.. In particular,

max-*

Zs = sup ! Z/dT (n)*"xs,
" nagre (n2) (e —m3)2e £ ()27 + n7)2(n1)%*

Nopax 25—2k—4c
< sup Z/d7—< )

(4.79) ™ nam o (T)2e(m1 +nf)2
1
< «
N TR
<1

whenever k,s >0, s < k+ 1 and 2a + 2b > 3/2.
This finishes the proof of the proposition. O

Remark 4.3. Again, once the bilinear estimates in propositions 4.1 and 4.2 are
proved, one can show the theorem 1.2 by standard arguments (e.g., see the works

[9], 2] and [7]).

4.2. Counter-Examples II: the periodic case. The next results prove that the
bilinear estimates derived in propositions 4.1 and 4.2 are sharp.

Proposition 4.4. ||uv|| < Hu||X,c% ||vHHt%H; implies s > 0 and k < s+ 1.

Xk=*%+

Proof. Firstly, we fix N > 1 a large integer and define

|1 ifn=N
9 =90 otherwise

and

an{ 1 ifn=-2N

0 otherwise

Let f and g be given by f(n,T) = anX[-1,1)(T +n2) and §(n,7) = bruX(-1,1)(7)-
Taking into account the dispersive relation 7 + n? — (71 +n?) — o = n? — n?, we
can easily compute that

1fgllxcnsras = N¥, [|fllxeae = N and gl 172, = N°

Hence, the bound ||fg||X,Cw,%+ < Hf”X’“'%HgHH%Hs implies N¥ < N*t5 conse-
quently, s > 0. Y
Secondly, define

d — 1 ifn=N
"7 1 0 otherwise

{ 1 ifn=0
Cp = 0

otherwise

and

Let p and g be p(n,7) = cpox1(7 + n?) and §(n,7) = d,x1(7). Again, it is not
hard to see that
Nk
lPgll 12+ = <=

1Pl xea2 =1
”qHHtl/ZH; ~ N°®

k

< N*, e, k <

N
N1
s+ 1. ’ [l

Hence, the bound gl vy % 1l oy llal - implis
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Proposition 4.5. ||u11TQHH,%+HS < ||u1HX,€% HUQHX,C’% implies s < 2k and s <
k+1.

t x

Proof. For a fixed large integer N > 1, define

o — 1 ifn=N
"1 0 otherwise

, _ {1 ifn=-N-1
™71 0 otherwise

|1 ifn=0
=91 0 otherwise
d — 1 ifn=N
"7 1 0 otherwise

Putting fi(n,7) = anx1(r +n?), fa(n,7) = boxa(7 + n?) and gi(n,7) = cuxa (7 +
nz)’ ga(n,7) = dnxa (7 + n2)7 a simple calculation (based on the dispersive relation
7 — (11 +n7) — (72 + n3) = n3 — nf) gives that

”flE”Hfl/“Hi ~N° and ||9197||H;1/2+H; ~ NSTHF

||f1HXk,1/2 ~ N* and Hgl||Xk,1/2 ~ 1,

| foll xcr.1/2 = NF ~ lg2 |l xx.1/2-

Therefore, the bound ||u172\|H;%+HS < ||u1||X,cY%||u2||X,c

and N*~1+ < N* e, s <2k and s < k+ 1. 0

| says that N* < N2

5. GLOBAL WELL-POSEDNESS BELOW L? x L?

This section is devoted to the proof of the global well-posedness result stated in
theorem 1.3 via the I-method of Colliander, Keel, Staffilani, Takaoka and Tao.

5.1. The I-operator. Let m(£) be a smooth non-negative symbol on R which
equals 1 for |¢] < 1 and equals |£|~! for |¢| > 2. For any N > 1 and a € R, denote
by I3 the Fourier multiplier

Ri©-m (%) fe.

We recall the following abstract interpolation lemma:

Lemma 5.1 (Lemma 12.1 of [4]). Let ag > 0 and n > 1. Suppose Z,X1,...,X,
are translation-invariant Banach spaces and T is a translation invariant n-linear
operator such that

n
12T (ur, - un)llz S T I,
j=1
for all uy,...,u, and 0 < a < ag. Then,

n
T (s, un)llz S T IS,
j=1
foralluy,...,uy, 0 < a<ayand N > 1. Here, the implied constant is independent
of N.

After these preliminaries, we are ready to show a variant of the local well-
posedness theorem 1.1.
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5.2. Local well-posedness revisited. In the sequel, we take N > 1 a large

integer and we denote by I the operator I := I° for a given s € R.

Proposition 5.2. For all (ug,vo) € H*(R)xH*(R) and s > —1/4, the Schridinger-
Debye system (1.1) has a unique local-in-time solution (u(t),v(t) defined on the time
interval [0, 0] for some § <1 satisfying

(5.80) 8 ~ (| ol 2 + |[TwollL2) "~

Furthermore, ||Tu|| xo.1/2+ + [[T0] xo.1/24 S [ Tugl|zz + || Tvol|z2-

Proof. Applying the I-operator to the Schrodinger-Debye system (1.1), we get
0 Tu + 202Tu = I(uv),

(5.81) o0 v + Tv = el (Jul?),
u(z,0) =up(x), v(x,0)=uv(x).

To solve this problem, we denote by ®;([u,Iv) and ®o(lu,Iv) the integral maps
associated to this system, so that our task is to find a fixed point of (®1,®2).
To accoplish this objetive, note that, by standard arguments, the interpolation
lemma 5.1 combined with the bilinear estimates in the propositions 3.1 and 3.2
give the estimates

@1 (Tu, 10) ]| xo.1/20 < CllTuollzz + O | Tul xour24 1 T0] /2t 1

@2 (Tu, T0) | /2t 1o < CllTvollzz + OOV | Tull o2

where Tu, Iv € X%1/2% are defined in the interval [0, J].
Taking R = 2C(|[Tuol|z2 + [[{vo||z2), we conclude that (@1, ®2) has an unique
fixed point (Iu, Iv) on the ball of radius R. Moreover,

& ~ (| Tuollzz + [Hvollz2) ™"~

This completes the proof of the proposition. O

Once a local well-posedness result for the modified system (5.81) was obtained,
we will study the behavior of the L2-conservation law under the I-operator.

5.3. Modified energy. We consider the modified energy E(Iu) = |[Iul|7.. Note
that, since (Iu, Iv) verify the system (5.81), we have

/8Ju-[ﬂ+/[u~8[ﬂ

1 1 1 1
=—2/8§Iu-lﬂ—|—E/I(uv)[ﬂ—k;/[u@i[ﬂ—z/luI(W)
1 _ 1 _ 1 _
== [ O Ju- 0 Ju+ — [ (I(ww) — Tulv) Iu+ = | Tulvlu
i i i

fl/amluﬁ’mfﬂf l/[u([(uv)ffulv)fl/IuIﬂIv
i

d
S EUu)(?)

2 2

= 2%/ (I(uv) — ITulv) Iu.

Now we are going to see that this formula leads naturally to an almost conser-
vation law.
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5.4. Almost conservation of the modified energy. For later use, we need the
following refined Strichartz estimate:

Lemma 5.3. We have

(D32 1) - gllzz, S I fllxonr2+llgllxo.r2e,

x

~

if |&1] > |&| for any |&1] € supp(f),|&2| € supp(g). Moreover, this estimate is
true if f and/or g is replaced by its complex conjugate in the left-hand side of the
inequality.

Proof. See lemma 7.1 of [5] or lemma 4.2 of [8]. O
Lemma 5.4. For s > —1/4, it holds
IBT)(®) = B(Iu)(0)] S N2 644 Tl 0] 101 0

Proof. Since we already know that

0 é
E(Iu)((S)—E(Iu)(O):/O %E(IU)(t)dt:2%/o /(I(uv)ffulv)fﬂ,

it suffices to show that

/0 ' / (I(uwv) — Tulv) 7

By Parseval, our task is to prove that

° m (& + &) — m(&1)m(&a)
I =
/0 ‘/5\1"!‘52_53_0 m

(&)m(&2)
We decompose the frequencies ;, j = 1,2, 3 into dyadic blocks [{;| ~ N;. Before

(5.82) < NV Tul s a | ol g

a(gh t)i}\(€2a t)ﬁ(é-g, t)

SN ull o2 [0l e 1w xo.s2
(€4 £65) (€1 )m(E2)

starting the proof of this inequality, we note that the multiplier M :=

m(&1)m(&2)
satisfies

o if |&1]| < |&2,]&1| < N, then

(§1+&2) —m(&2)
m(&2)

< | Vm(&2)6

< m
i <[

similarly, if |&2] < &), |€2] < N, then M < Na/Nj.
if [&1] < [&2[, [61] 2 N, then

1/4—
Mg =5 (%)
m(&1) N
because s > —1/4.

similarly, if |&| < [€1], |€2] = N, then |M| < (No/N)V4-.
finally, if |§1] ~ [§2| 2 IV, then

1 N\ Y
< - @< || =
MR eTmE) (N) |

Therefore, we can bound I as follows:
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e When [&] < |&2], |€1] < N, we have |£5] ~ |&2| > |&1|. Thus, from the
lemma 5.3,

N1 1
N N N1/2

1D;/ 2w - ull 2, o]l 2,
S NTVERSYENG L ull xo sz 0]l e s ]l 002+

o if |&] < [&1],|&2] < N, we also have |&1| ~ |€3]; in this case, by duality and
the bilinear estimate of proposition 3.2,

Ny

S L PPV o
< % 5V D g1 0 g2/ 0
61/4_N 1wl x—1/a4+0/2+4 [ W x =174+, 1/2+||“||H1/2+L2
S 51/4_%%HUHXUJ/2+ ||7«UHX0J/2+HU||H§/”L§

<N~ 1/2+51/4~ Nr?laX”u”Xo 1/2+||’UHH1/2+L2||"U”X° /24

e when |&] < |&], N < [&1], we know that [€3] ~ |&2]| > [&1], so that

N\
I<( ) 1DY 2w -l e o]

No 1/2

<N~ 1/2+51/2N81ax||u|‘xo 1/2+||’UHH1/2+L2 ”wHXO /24

o if |&| < [|&1], N S |€2], we have [£1] ~ [&3]; thus,

Ny \ VA
I< ( . ) 0l 272 g ol g2+
N2 1/4— o
S(5) Syl e

Ny \ VA
< gl (N) Null x 17441724 |w|| x —1/a11/2+ ””HH}/”H
2

N4
— 2
5 (51/4 (N) W”U/H)(O,lﬂJr||’U‘)||)(0’1/2+||U||]-[tl/2+[,?c

<N~ 1/2+51/4~ Nronax”uHXO 1/2+||U||H1/2+L2||w”X° /24

e finally, when [£;] ~ |&2] 2 N, we have two possibilities: either |&] < |&5],
so that

NPT
rs(x) o,

<N 1/2+51/2N0ax\|u||xo 1/24 ||11HH1/2+L2 [[wl] x0.1/2+
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or [£1] ~ |€s] implying

Ny
EHuwllel/Z*Li”U”Htl/z*Li
< N2
~ Ny
< (51/47

I's

SVl g e a0l 172
N
1

_Ny 1
S st/ EWHullxmmIIwao,vaIIH;ng

[ellx -1zt llwll x—1ras sz [[0]] garos
x

< N7Y2EEAND Jull oo [ollgaras s Nl cosos.
Hence, in any case, we proved that
1SNV Nl oo ol gy s g, 10l oo
Summing up over the dyadic blocks, we complete the proof of the lemma. (I

5.5. Global existence. Recall that |[Tuol/zz S N™*[luollms, [[{vollzz < N~*[lvollme
and ||[Tul|xo0 < N7%||ul|xo.. Applying the local result of proposition 5.2, we get
the existence of solutions on a time interval [0, 4], where § ~ N4~. Also, they
verify

||Iu||X0,1/2+ + HIUHXO,1/2+ < N5,

~

By the lemma 5.4, we obtain
|E(Iu)(0) — E(Tu)(0)| S N™Y2H§t/4= N=3s,

Hence, one can iterate the local result to cover the time interval [0,77] if these
estimates hold after T/§ steps. In other words, the existence of a solution on the
time interval [0, T] is guaranteed whenever

N—1/2+51/4—N—35Z < N—QS.
é
So, it suffices that
1
—§+S—38—48< —2s,
i.e.,, s > —1/8. This completes the proof of theorem 1.3.
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