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Abstract. We consider a size-structured model for cell division and address the
question of determining the division (birth) rate from the measured stable size
distribution of the population. We formulate such question as an inverse problem
for an integro-differential equation posed on the half line. We develop firstly a regular
dependency theory for the solution in terms of the coefficients and, secondly, a novel
regularization technique for tackling this inverse problem which takes into account the
specific nature of the equation. Our results rely also on generalized relative entropy
estimates and related Poincaré inequalities.
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1. Introduction

For many unicellular organisms the mass of the cell, its DNA content, and the level

of certain protein concentrations are often considered as the most relevant parameters

for modeling the cell division and, consequently, the population dynamics. Thus, it

is natural and usual to consider the evolution of the cell density n as a function of

the time t and a size parameter x. See [1, 2, 3] for applications to biology and [4] for

other related cases. In many situations it is of paramount importance to determine

from observed data the division (birth) rate B as a function of the size parameter x.

However, one is faced with the problem that the cell distribution n(t, x) is not easily

measured or observed. Instead of that, the dynamics of n(t, x) leads to a stable steady

distribution N = N(x), which after a suitable re-normalization, can be observed. In

this work we face the problem of determining B = B(x) from noisy and scarce observed

data N = N(x).

Age-structured populations also constitute basic models for the division of certain

cells, [5, 6]. There has been substantial interest on the inverse problem for structured

population models. See for example [7, 8, 9, 10, 11] and references therein. These

models typically lead to difficult inverse problems that require a substantial amount of

regularization, especially if one is interested in making use of real data. In full generality,

size structured models have however a somewhat different mathematical structure (only

under the assumption the smallest daughter cell is larger than half the largest mother

cell, the models lead to similar theory). For this reason, our approach, differently from

that of other works we are aware of, makes use of the information given by the so-called

stable size distribution of the model and relies on a number of recent methods based on

generalized relative entropy estimates.
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As a starting point, we consider the following size-structured model:

∂
∂t

n(t, x) + ∂
∂x

[g(x)n(t, x)] + B(x)n(t, x) = 4B(2x)n(t, 2x), x ≥ 0, t ≥ 0,

n(t, x = 0) = 0, t > 0,

n(0, x) = n0(x) ≥ 0.

(1)

This expresses that the evolution of the cell density results from two effects: At the

one hand, the term ∂
∂x

[g(x)n(t, x)] which describes the growth of cells by nutrient uptake

with the rate g(x). At the other hand, the terms containing B(x) and B(2x), which

describe the division of cells of size 2x into two cells of size x. The resulting function-

differential equation has a mathematical interest per se. One way to understand such

interest is that the x-derivative leads to transport to right, whereas the functional term

leads to transport to the left. The overall effect is an equilibrium. Another way to

understand those effects, in mathematical terms, is to consider the evolution of two

macroscopic quantities, the total cell number N(t) =
∫∞

0
n(t, x)dx and the total biomass

M(t) =
∫∞

0
xn(t, x)dx. Integrating the equation (1) yields

d

dt
N(t) =

∫ ∞

0

B(x)n(t, x)dx, (2)

this indeed means that number of cells increase only by division, and

d

dt
M(t) =

∫ ∞

0

g(x)n(t, x)dx (3)

which indeed means that the biomass increases only by nutrient uptake.

For g ≡ 1, a case we consider here for simplicity, it was shown in [12, 13] that there

exists a unique eigenvalue λ0 and eigenfunction N = N(x) such that, after a suitable

time re-normalization, the solutions of (1) converge to a multiple of N thus given by

the solution of the eigenvalue problem

∂
∂x

N + (λ0 + B(x))N = 4B(2x)N(2x), x ≥ 0,

N(x = 0) = 0,

N(x) > 0 for x > 0,
∫∞

0
N(x)dx = 1.

(4)

Namely, we have under fairly general conditions on the coefficients

n(t, x)e−λ0t −−−−−→
t →∞ ρN(x),

in weighted Lp topologies that are related to entropy properties and that will be de-

scribed later on. Moreover, exponential rates have been proved to hold for fairly general

rates B. See [2, 12]. Such N is therefore the above mentioned stable size distribution;

it is the distribution observed in practice and available for measurements.

The precise question under consideration in this work is the following:
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Inverse Problem 1.1 How to recover in a stable way the birth rate B(·) from noisy

data N(·) and the rate λ0?

The plan for this work is the following: In Section 2 we present some preliminary

remarks on a toy model that describes and motivates our approach to the regularization

of the inverse problem under consideration. In Section 3 we collect a number of results

concerning the direct problem associated to the model. In particular, concerning the

dependence of the solutions to the model with respect to the coefficients. In Section 4

we address the inverse problem and its regularization. The regularization we propose is

novel and consists of introducing the regularization parameter α directly in the equation

as a coefficient of the perturbed differential equation. We establish a result concerning

the strong stability of such perturbed equation and another one demonstrating the

consistency of such perturbation when α goes to zero. In Section 5 we obtain a

convergence rate for this regularized inverse problem. Some of the proofs of the results

in Section 3 are rather technical and we post-pone them to the Appendix Appendix A.

2. Preliminaries: A Classical Example Revised

In this section we present a simplified problem which shares some similarity with (4),

and allows us to present our strategy for attacking the Inverse Problem 1.1. This prob-

lem is the regularization of a classical ill-posed inverse problem, namely recovering a

function from its antiderivative, from a slightly different perspective. We believe this

will make our approach and our estimates more clear by looking at a specific and simpler

well known example. We refer the reader to the books [14, 15] for further information

and the classical treatment of the subject.

Inverse problems are characterized by the fact that they are typically ill-posed.

Perhaps one of the best well-known examples is that of differentiation. Namely, find a

function u from its antiderivative v. We focus on the following:

Inverse Problem 2.1 Find u : I → R such that∫ x

0

λ(s)u(s)ds = v(x), x ∈ I (5)

where I ⊂ R is an interval (finite or infinite) of the line with 0 its left endpoint and

λ : I → R>0 is given weight function.

Equation (5) is formally equivalent to

λu =
∂

∂x
v. (6)

We consider the problem (5), and notice that the map that sends v 7−→ u is not

continuous, when we endow the space of the v’s with say the L2(I; dx) norm and the

space of the u’s with L2(I; λ(x)dx) norm, the choice of spaces being motivated by the

specific application we have in mind. In practice, this reflects itself on the fact that small

changes in the measurement of v may lead to huge changes in u. Still, one is forced
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to face such problem in a number of applications. We now describe some of the main

ingredients from inverse problem theory that are used to handle such difficulties as they

will be applied to the context of this article. They consist of the following ingredients:

(i) Assume some kind of “a priori” bound on the solution u to problem (5), or

equivalently on the acceptable data in a sufficiently strong norm.

(ii) Assume that the measured data vε satisfies ||v − vε|| ≤ ε in a suitable weak norm

|| · ||.
(iii) Approximate the problem (5) by one that is well-posed for the weak norm and

solve the stabilized problem instead of the unstable one choosing the regularization

parameter in an optimal way.

Let us illustrate the technique in the problem under consideration. For more information

we refer the reader to [14, 15]. Let us consider{
α ∂

∂x
(λuα) + λuα = ∂

∂x
v,

λuα(0) = 0
(7)

In what follows we shall assume that v(0) = 0 whenever v is defined in a neighborhood

of 0 due to some extra assumptions (such as ∂
∂x

v ∈ L2).

In order to implement the above program to the problem under consideration, we

shall establish the following two inequalities:

Lemma 2.2 If uα satisfies (7), then

||uα||L2(I,λ2dx) ≤
1

α
||v||L2(I,dx). (8)

If ∂2

∂x2 v ∈ L2(I, dx) and uα satisfies (7), then

||uα||L2(I,λ2dx) ≤ α|| ∂2

∂x2
v||L2(I,dx). (9)

As a direct consequence of Equation (9) we have that if uα is a solution of equation (7)

and u is a solution of (6), then the difference uα − u satisfies

||uα − u||L2(I,λ2dx) ≤ α|| ∂2

∂x2
v||L2(I,dx). (10)

We now join the above estimates with the “a priori” assumption that

|| ∂2

∂x2
v||L2(I,dx) ≤ E, (11)

and consider a problem with noisy data given by vε such that

||v − vε||L2(I,dx) ≤ ε. (12)

Thus, upon solving the regularized problem (7) with data vε we are left with a solution

uε
α of {

α ∂
∂x

(λuε
α) + λuε

α = ∂
∂x

vε,

λuε
α(0) = 0.

(13)
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We further assume that ∂
∂x

vε ∈ L2(I, dx). Now we consider the distance between uε
α

and u

||uε
α − u||L2(I,λ2dx) ≤ ||uα − u||L2(I,λ2dx) + ||uε

α − uα||L2(I,λ2dx)

≤ α|| ∂2

∂x2
v||L2(I,dx) +

1

α
||vε − v||L2(I,dx)

≤ αE +
ε

α
.

Now, we are free to choose α in such a way as to minimize the R.H.S. of the last

inequality. Using the elementary fact that α 7→ (αE+ε/α) has a minimum at α =
√

E/ε

and choosing such optimal α = α(ε) we get that

||uε
α − u||L2(I,λ2dx) ≤ 2ε1/2E1/2. (14)

Summing up, if we know an “a priori” bound on the data v and vε of the form

(11) and the data is measured with an accuracy ε then we get that the stabilized

computed solution is within O(ε1/2E1/2) of the actual solution u in the norm of the

space L2(I, λ2dx).

The reasoning developed above can be pushed in different directions and in the

next subsection we will show how it can be extended further.

We remark that Equation (7) is just one of the different possibilities of regularizing

the Problem (6). Another possibility would be to solve an equation of the form

−α
∂2

∂x2

uα

λ
+ λuα =

∂

∂x
v (15)

subject to appropriate boundary conditions. It is an easy exercise to verify

that Equation (15) formally corresponds to Tikhonov regularization of the Inverse

Problem 2.1. The form of Equation (15), although very attractive and general is not

well adapted to our hyperbolic problem and we do not consider it here.

3. Model Properties and Regular Dependency upon the Coefficients

In this section we shall address a preliminary issue, namely the smoothness of direct

map

B 7→ (λ0, N)

in suitable function spaces. Then, the Inverse Problem 1.1 makes sense in such spaces.

This requires some assumptions and preliminary mathematical material that we intro-

duce now.

Firstly, we need some assumptions. Here we make the choice of simplicity, keeping

in mind that more realistic hypotheses are possible that would lead to more technical

proofs, which we prefer to avoid. The measurable division rates B are assumed to satisfy

∃Bm, BM such that 0 < Bm ≤ B(x) ≤ BM , (16)
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Figure 1. Solution to the spectral problem (17) with two different birth rates. Left:
B = 1. Right: B = Min(2, 16 x2).

Secondly, because the adjoint equation is as important as the direct eigenvalue

problem, we consider both the cell division equation, to find (λ0, N) solution to

∂
∂x

N + (λ0 + B(x))N = 4B(2x)N(2x), x ≥ 0,

N(x = 0) = 0,

N(x) > 0 for x > 0,
∫∞

0
N(x)dx = 1.

(17)

and the adjoint equation
∂
∂x

ϕ− (λ0 + B(x))ϕ = −2B(x)ϕ(x
2
), x ≥ 0,

ϕ(x) > 0,
∫∞

0
ϕ(x)N(x)dx = 1.

(18)

The solution ϕ is used in several places because it gives natural bounds for the direct

problem. See the proof of Theorem 3.2 and the entropy dissipation in Appendix A.1.

The existence and uniqueness of solutions to these eigenproblems was proved in

[12], and it is known that N as well as its derivative vanish at x = 0 and x = ∞. We

also recall the following results that we will use later on.

Theorem 3.1 [12, 16, 2] Under the assumption (16), the solution N to (17) satisfies

the properties

Bm ≤ λ0 =

∫
B(x)N(x)dx ≤ BM , (19)

1

BM

≤
∫

xN(x)dx =
1

λ0

≤ 1

Bm

, (20)

0 ≤ N(x) ≤ 2BM , (21)
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eaxN ∈ L1 ∩ L∞(R+), ∀a < λ0 + Bm, ϕ(x) ≤ C(1 + x). (22)

Proof. We only prove the estimates on N and refer to [16] for the sub-linearity result

on ϕ and for more accurate results on the behavior of N at infinity, in particular, when

B has a limit B∞ at infinity, one can obtain exponential decay with a = λ0 + B∞.

The inequalities (19) and (20) are obtained by integrating Equation (17) against

respectively the weights dx and x dx.

For (21), we use (19), and from the Equation (17), we obtain

∂

∂x
N(x) ≤ 4B(2x)N(2x) =⇒ N(x) ≤ 4

∫ x

0

B(2y)N(2y)dy ≤ 2BM .

For (22), we multiply (17) by eax and integrate between 0 and∞. In fact, a standard

truncation argument is needed for complete justification. See [2] for details. We obtain∫∞
0

[λ0 + B(x)− a]eaxN(x)dx = 4
∫∞

0
B(2x)N(2x)eaxdx

≤ 2
∫∞

0
B(x)N(x)eax/2dx.

(23)

With the choice a = λ0, since the right hand side is bounded by

2

(∫ ∞

0

B(x)N(x)eaxdx

)1/2 (∫ ∞

0

B(x)N(x)dx

)1/2

= 2

(∫ ∞

0

B(x)N(x)eaxdx

)1/2

λ
1/2
0 ,

we obtain that∫ ∞

0

B(x)N(x)eλ0xdx ≤ 4λ0 ≤ 4BM . (24)

Then, we can iterate on a and choose any a < Bm + λ0 ≤ 2λ0 while keeping the right

hand side of (23) bounded. This proves the L1 statement of (22).

It remains to use (17) again to deduce, thanks to the chain rule, that ∂
∂x

[eaxN(x)] ∈
L1(R+), and the result follows.

With these results and methods of proof, we can now state the main new result of

this section.

Theorem 3.2 Under the assumption (16), the map B 7→ (λ0, N), from L∞(R+) into

[Bm, BM ]× L1 ∩ L∞(R+) is

(i) Continuous in B under the weak-∗ topology of L∞(R+),

(ii) Locally Lipschitz continuous in B under the strong topology of L2(R+) into L2(R+),

namely (26) and (33) below hold, for m large enough,

(iii) Class C1 in the spaces of statement (ii).

In statement (i) the weak-∗ topology of L∞(R+) is natural from the assumption

(16). For estimates (ii) and (iii), we have chosen the L2 space which is used later on for

the inverse problem where it plays an essential role.
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Proof. First of all, we introduce some notations that we will use throughout the proof.

For two functions B, B̄ satisfying (16), we set

δB = B̄ −B, ∆ = ‖B̄ −B‖L2(R+). (25)

For the corresponding solutions we define the differences

δN = N̄ −N, δλ = λ̄0 − λ0.

(i) This first statement follows thanks to the strong uniform estimates on N in Theorem

3.1. Indeed, consider a sequence Bn that weak-∗ converges to B and the corresponding

solutions Nn to (17). Theorem 3.1 provides us with uniform bounds on Nn and thus

with uniform bounds on ∂Nn

∂x
. This means that the sequence Nn is relatively strongly

compact. Therefore, it converges to the unique N solution of Equation (17) for the limit

B.

(ii) Firstly, we estimate the difference between the eigenvalues. As a consequence of

(17) for N̄ (multiplied by ϕ) and (18) for ϕ (multiplied by N̄), we obtain

δλ

∫
N̄ ϕ =

∫
δBϕ(

x

2
)N̄ +

∫
δBϕN̄.

Therefore, according to the a priori estimates of Theorem 3.1 on ϕ and on N ,

|δλ| ≤ C(B, B̄)∆, (26)

with C(B, B̄) = ‖ ϕ
1+x

‖L∞(R+)‖(1 + x)N̄‖L2(R+)/
∫

N̄ ϕ.

Secondly, we estimate δN . Writing the difference of the solutions to the cell-division

equation, we have

∂

∂x
δN + (λ0 + B(x)) δN = 4B(2x)δN(2x) + δR(x), (27)

with

δR(x) = 4δB(2x) N̄(2x) + (δλ + δB(x))N̄(x). (28)

We have, since N has exponential decay at infinity using again Theorem 3.2, and for all

m ∈ N,

‖δR(1 + xm)‖L2(R+) ≤ C(B, B̄) ∆, (29)

for another constant C still controlled by Bm an dBM . Also, since ϕ has at most linear

growth at infinity, we know that∫ ∞

0

|δR(x)|ϕ(x)dx ≤ C(B, B̄) ∆. (30)

It is also useful to recall that the Equation (27) is spectral (N is the Krein-Rutman

eigenvector) and one readily checks the solvability and the uniqueness conditions∫
R+

ϕ δR = 0,

∫
R+

δN = 0. (31)

Our local lipschitz regularity result then follows from the two next lemmas

8



Lemma 3.3 (Entropy dissipation) Assume that Equation (16) holds and that N and

ϕ are the solutions of (17) and (18). Then, the solution δN to (27), with the conditions

(31), satisfies for all convex function H : R → R,∫ ∞

0

4ϕ(x)B(2x)N(2x)
[
H ′( δN(x)

N(x)
)( δN(2x)

N(2x)
− δN(x)

N(x)
)−H( δN(x)

N(x)
) + H( δN(2x)

N(2x)
)
]
dx

=

∫ ∞

0

H ′(
δN(x)

N(x)
) δR(x) ϕ(x) dx.

(32)

This lemma is a variant of the generalized relative entropy inequalities introduced

in [17, 13]. Its proof will be presented in the Appendix Appendix A. We point out,

however, the main difficulty that arises here: Since N and N̄ do not have necessarily

the same exponential decay at infinity, one cannot use the natural weighted quantities∫∞
0

ϕN | δR
N
|p which are not necessarily finite. Therefore, we are sometimes forced to

work in L1. This type of entropy inequality is related to Poincaré type inequalities

which would be a way to conclude the proof at this stage. This area is still a very active

field of research for so-called hypocoercive operators. See for example [18]. Here, it does

not seem to follow from standard methods and we prefer to prove directly the following

consequence of Lemma (3.3)

Lemma 3.4 (Spectral gap) There is a ν > 0 such that

ν‖δN‖L2(R+) ≤ ‖δR (1 + xm)‖L2(R+) ≤ C∆, (33)

where the parameter m (large enough) is chosen so that λ0 > BM

2m−1 .

We again refer to the Appendix for a proof.

This Lemma expresses the Lipschitz regularity stated in point (ii).

(iii) The third claim is now a general fact on the Fréchet derivatives of mapping with

quadratic nonlinearities. Whenever it is Lipschitz continuous on a subset, it is C1 by

usual algebraic manipulations. This concludes the proof of Theorem 3.2.

4. The Inverse Problem and its Regularization

The inverse problem consists in finding B from the knowledge of the population growth

rate and the cell density (λ0, N). If one could guarantee that the measurement N is

very smooth one could directly consider to solve the equation on B, equivalent to the

cell-division Equation (17) written with y = 2x,

4B(y)N(y) = B(
y

2
)N(

y

2
) + λ0N(

y

2
) + 2

∂

∂y
N(

y

2
), y > 0. (34)

This is a well-posed equation on B as long as N satisfies regularity properties such as
∂
∂y

N(y
2
) ∈ Lp for some p ≥ 1. But our interest lies on the fact that fluctuations on N

make it a mere Lp function because, given a set of measurements on N , one does not
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have a way of controlling the precision of the measurements on ∂
∂y

N . This motivates

working with a regularized problem
α ∂

∂y
(BαN) + 4Bα(y)N(y) = Bα(y

2
)N(y

2
) + λ0N(y

2
) + 2 ∂

∂y
N(y

2
), y > 0,

BαN(0) = 0,

(35)

where 0 < α < 1 is a small parameter adapted to the level of noise as explained in

Section 2 for the toy model. Notice that this is still a well-posed problem in appropriate

function spaces when written with a general source F (y)
α ∂

∂y
(BαN) + 4Bα(y)N(y) = Bα(y

2
)N(y

2
) + F (y), y > 0,

BαN(0) = 0,

(36)

Before we analyze the issue of estimating the inverse problem, let us explain why

this is indeed a well-posed problem and for simplicity we restrict ourselves to L2. In

particular, we did not impose boundary conditions because we expect that the point

x = 0 is characteristic since the cell density satisfies

N ∈ H2(R+), N(x) > 0 for x > 0, N(0) = 0
∂

∂x
N(0) = 0. (37)

Theorem 4.1 (Strong stability) Assume (37) and that F ∈ L2. Then, there is a

unique solution to (36) such that BN ∈ H1 with

α|BαN(y)|2 +

∫
|BαN |2 ≤ C

∫
|F |2, ∀y ≥ 0,

α2

∫
| ∂

∂y
BαN |2 ≤ C

∫
|F |2,

and ∫
| ∂

∂y
BαN |2 ≤ C

∫
| ∂

∂y
F |2 if F (0) = 0.

Proof. We drop the index α in order to simplify the notation. This model is a variant

of the cell division equation and the Cauchy-Lipschitz theory applies and gives the

existence for small y. The important point is to establish the a priori bounds. For the

first set of estimates, we multiply the Equation (36) by BN and integrate from 0 to y.

This yields

α
2
|BN(y)|2+ 4

∫ y

0
|BN |2(s)ds

=

∫ y

0

(BN)(z) (BN)(
z

2
)dz +

∫ y

0

(BN)(z) F (z)dz

≤ 1

2

∫ y

0

|BN |2 +
1

2

∫ y

0

|BN(
z

2
)|2dz +

1

2

∫ y

0

|BN |2 +
1

2

∫ y

0

|F (z)|2dz.
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Altogether, this gives the two bounds claimed in the first statement above.

The second estimate, on α
∫
| ∂
∂y

BN |2, is then a consequence of the first two using

Equation (36) once again.

For the third inequality, we differentiate the equation and write Q = ∂
∂y

BN . We

find

α
∂

∂y
Q + 4Q(y) =

1

2
Q(

y

2
) +

∂

∂y
F.

Therefore, multiplying by Q and integrating by parts gives

4

∫ ∞

0

Q2 ≤ α

2
Q2(0) +

1

2

∫ ∞

0

Q(y) Q(
y

2
)dy +

∫ ∞

0

Q(y)
∂

∂y
F (y)dy,

and thus

4

∫ ∞

0

Q2 ≤ α

2
Q2(0) +

1

4

∫ ∞

0

Q2 +
1

4

∫ ∞

0

Q2(
y

2
)dy +

1

2

∫ ∞

0

Q2 +
1

2

∫ ∞

0

| ∂

∂y
F |2.

Altogether this gives
11

4

∫ ∞

0

Q2 ≤ α

2
Q2(0) +

∫ ∞

0

| ∂

∂y
F |2.

It remains to notice that from the Equation (36) on BN and the condition N(0) = 0

we have also αQ(0) = α ∂
∂y

BN(0) = F (0) and the result is proved.

The first question we want to answer is how much this regularization on B differs

from its exact value

Theorem 4.2 (Consistency) Assume (37), then the solutions to (34) and (35) satisfy∫
|Bα −B|2N ≤ Cα2

∫ [
| ∂

∂y
N |2 + | ∂2

∂y2
N |2

]
.

Proof. We write δB = Bα −B and we have

α
∂

∂y
(δB N) + 4δB(y) N(y) = δB(

y

2
) N(

y

2
)− α

∂

∂y
(BN).

This is again an equation of the form (36) with source term

F = −α
∂

∂y
(BN)

and thus we can apply the first estimate of Theorem 4.1 and obtain∫
|δB N |2 ≤ Cα2

∫ ∣∣∣∣ ∂

∂y
(BN)

∣∣∣∣2 .

Next we apply the second estimate of Theorem 4.1 to (34) with F = λ0N + ∂
∂y

N and

obtain ∫ ∣∣∣∣ ∂

∂y
(BN)

∣∣∣∣2 ≤ C

∫
[| ∂

∂y
N |2 + | ∂2

∂y2
N |2].

Altogether these two estimates give the announced inequality.
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5. Recovering Estimates for the Regularized Inverse Problem

Consider now a smooth solution (λ0, N) to Equation (18) corresponding to division rate

B, that we want to recover from a noisy measurement Nε with∫
|N −Nε|2 ≤ ε2, N− ≤ Nε ≤ N+, (38)

where N± are two smooth functions that can serve as a filter for unrealistic data. We

assume their behavior contains possible properties of the true solution and serves to

assert the boundary condition is well defined with N+(0) = N+(∞) = 0. Notice N− = 0

is a possibility. The regularized method is aimed at furnishing an approximation Bε,α

of the exact coefficient B through Equation (35) with Nε in place of N ,
α ∂

∂y
(Bε,αNε) + 4Bε,α(y)Nε(y) = Bε,α(y

2
)Nε(

y
2
) + λ0N(y

2
) + 2 ∂

∂y
Nε(

y
2
), y > 0,

(Bε,αNε)(0) = 0.

(39)

We prove the following error estimate on the coefficient recovered by the above

regularization procedure

Theorem 5.1 (Convergence rate) Assume (37) and (38), then the solutions B to

(34) and Bε,α to (39), satisfy the error estimate,

‖Bε,α −B‖L2(N2
ε dx) ≤ Cα‖N‖H2 +

C + ‖B‖L∞

α
‖Nε −N‖L2 .

This theorem relies on a first estimate which expresses weak stability and improves

Theorem 4.1 using the special structure in the RHS of Equation (39). Namely, we have

Proposition 5.2 (Weak stability) Assume (37) and (38), given two solutions Bα to

(35) and (39) satisfy ∫
|Bε,αNε −BαN |2 ≤ C

α2
‖Nε −N‖2

L2 .

Proof. We set Q = Bε,αNε,α −BN , R = Nε −N which satisfies

α
∂

∂y
Q + 4Q(y) = Q(

y

2
) + λ0R + 2

∂

∂y
R(

y

2
).

Then, we obtain after multiplication by Q and integration

α

2
[Q2(y)−Q2(0)] + 4

∫ y

0

|Q(z)|2dz =

∫ y

0

Q(z) Q(
z

2
) dz +

λ0

∫ y

0

QR− 2

∫ y

0

R(
z

2
)

∂

∂y
Q + 2R(

y

2
)Q(y)− 2QR(0).

12



Using again the equation on Q (and the Cauchy-Schwarz inequality) we find

α
2
[Q2(y)−Q2(0)] + 2

∫ y

0
|Q(z)|2dz ≤ C

∫ y

0
|R|2 + 2Q(y)R(y

2
)− 2QR(0)

− 2
α

∫ y

0
R( z

2
)[Q( z

2
) + λ0R(z)+

∂
∂y

R( z
2
)− 4Q(z)]dy.

Therefore

α

2
|Q(y)− 2

α
R(

y

2
)|2 +

∫ y

0

|Q(z)|2dz ≤ α

2
|Q(0)− 2

α
R(0)|2 +

C

α2

∫ y

0

|R|2.

Notice that even though R is not defined point-wise, Q(y) − 2
α
R(y

2
) is well defined (as

a H1 function) and it vanishes due to (38).

We are now ready to prove our main result, Theorem 5.1. We write

‖Bε,α −B‖2
L2(N2

ε dx) ≤ 2
∫
|Bε,αNε −BN |2 + 2

∫
|BNε −BN |2

≤ 4
∫
|Bε,αNε −BαN |2 + 4

∫
|BαN −BN |2 + 2

∫
|BNε −BN |2.

The first term is controlled thanks to Proposition 5.2 and gives the second error term

in the estimate of Theorem 5.1. The second term is controlled because of Theorem 4.2

and gives the first error term. The third term gives the last contribution once ‖B‖L∞

has been factored out and the Theorem 5.1 is proved.

6. Conclusions and Suggestions for Further Research

We have proposed a non-standard regularization method for the inverse problem associ-

ated with the cell-division equations. It is based on a first order operator that leads us

to solving a new equation whose structure is very close to the equation itself (but for a

different unknown). This allowed us to develop a consistency and convergence analysis

that can be used in practice because the outcome are standard inequalities taking into

account the noise in the measured data.

Our theoretical approach has been focused on the equal mitosis, when the mother

cells divide into two equal daughter cells. A first extension of the method would be to

deal with more general division equations as
∂
∂t

n(t, x) + ∂
∂x

[g(x)n(t, x)] + B(x)n(t, x) = 2
∫∞

0
B(y)β(x

y
)n(t, y)dy

y
, x ≥ 0, t ≥ 0,

n(t, x = 0) = 0, t > 0.

The function β represents now the repartition of daughter cell sizes and a natural inverse

problem would be to recover the division rate B from measurements of the cell density

N once β is known. In principle, our method can be extended but technical estimates

13



have to be reformulated in this new context.

The numerical validation of the procedure proposed here is straightforward because

it relies on a regularized equation that has a standard form and numerical methods are

available. As far as validation on real data is concerned, let us point out that present

experimental devices allow us to measure not only the size repartitions in a cellular

culture, but also the molecular content of certain representative proteins. Mathematical

models describing the division process based on molecular contents are being developed.

To our knowledge, identification of coefficients in this context is still largely open.
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Appendix A. Appendix

This appendix is devoted to the proof of two technical lemmas that were used in the

Section 3 to obtain Lipschitz regularity of the solution to the eigenproblem for the cell

division equation.

Appendix A.1. Generalized Relative Entropy. Proof of Lemma 3.3.

Using (27) and (17), we have

∂

∂x

δN(x)

N(x)
= 4B(2x)

N(2x)

N(x)
[
δN(2x)

N(2x)
− δN(x)

N(x)
] +

δR(x)

N(x)
, (A.1)

and thus, for H(·) a convex function,

∂

∂x
H(

δN(x)

N(x)
) = 4B(2x)

N(2x)

N(x)
H ′(

δN(x)

N(x)
)[

δN(2x)

N(2x)
− δN(x)

N(x)
] + H ′(

δN(x)

N(x)
)

δR(x)

N(x)
.

On the other hand, combining Equations (17) and (18), we have

∂

∂x
(N(x)ϕ(x)) = 4ϕ(x)B(2x)N(2x)− 2N(x)B(x)ϕ(

x

2
).

Therefore,

∂
∂x

[N(x)ϕ(x)H( δN(x)
N(x)

)] = 4B(2x)N(2x)ϕ(x)H ′( δN(x)
N(x)

)[ δN(2x)
N(2x)

− δN(x)
N(x)

]

+[4ϕ(x)B(2x)N(2x)− 2N(x)B(x)ϕ(x
2
)]H( δN(x)

N(x)
)

+H ′( δN(x)
N(x)

) δR(x) ϕ(x).
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After integration in x we arrive at

0 =

∫ ∞

0

4ϕ(x)B(2x)N(2x)H ′(
δN(x)

N(x)
)[

δN(2x)

N(2x)
− δN(x)

N(x)
]dx

+

∫ ∞

0

4ϕ(x)B(2x)N(2x)[H(
δN(x)

N(x)
)−H(

δN(2x)

N(2x)
)]dx

+

∫ ∞

0

H ′(
δN(x)

N(x)
) δR(x) ϕ(x) dx.

Once the terms are reorganized, this is exactly the statement of Lemma 3.3.

Appendix A.2. A Poincaré-Type Inequality. Proof of Lemma 3.4.

We argue by contradiction and assume that for a sequence B̄k → B, the corresponding

νk vanishes. Then, there is a family of δRk, δNk that satisfy

νk‖δNk‖L2(R+) ≥ ‖δRk (1 + xm)‖L2(R+). (A.2)

After re-normalizing (by multiplication), we can always assume that

‖δNk‖L2(R+) = 1, ‖δRk(1 + xm)‖L2(R+) −−−−−→k →∞ 0.

Then, our proof consists in several steps: First, we prove compactness and then pass to

the limit, next we use the generalized relative entropy to identify the limiting solution

and finally, prove a contradiction.

Compactness. Notice that the Equation (27) automatically implies that (recall ϕ > 0

is smooth and sublinear at infinity), that δNk is bounded in H1(R+). This provides us

with local compactness. It remains to obtain a control at infinity; we also notice that

1

2

∂

∂x
(δNk)

2 + (λ0 + B(x)) (δNk)
2 = 4B(2x)δNk(2x) δNk(x) + δRk(x) δNk(x),

which, after integration in x with the weight xm gives for all a > 0

−m
2

∫
R+ xm−1(δNk)

2 +
∫

R+ xm(λ0 + B(x)) (δNk)
2 ≤ 4

∫
R+ xmB(2x)[aδNk(2x)2 + 1

a
δNk(x)2]

+
√∫

R+ xm(δNk)2
∫

R+ xm(δRk)2.

Therefore, we also obtain∫
R+ xm(λ0 + B(x)) (δNk)

2 ≤ m
2

∫
R+ xm−1(δNk)

2 + a 2−m+1
∫

R+ xmB(x)δNk(x)2

+BM

a

∫
R+ xmδNk(x)2 +

√∫
R+ xm(δNk)2

∫
R+ xm(δRk)2.
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With a = 2m−1, we conclude that

λ0

∫
R+ xm(δNk)

2 ≤ m
2

∫
R+ xm−1(δNk)

2 + BM

a

∫
R+ xm(δNk)

2 +
√∫

R+ xm(δNk)2
∫

R+ xm(δRk)2

≤ C
∫

R+(δNk)
2 + (λ0

2
+ BM

a
)
∫

R+ xm(δNk)
2 +

√∫
R+ xm(δNk)2

∫
R+ xm(δRk)2.

It remains to choose m large enough so that λ0 > 2BM

a
and we conclude on a uniform

control ∫
R+

xm(δNk)
2 ≤ C

[
1 +

∫
R+

xm(δRk)
2

]
, (A.3)

that concludes the global compactness in L2(R+) of the sequence δNk.

Limit. Therefore, due to the above facts and using Lemma 3.3, we may pass to the

strong limit and obtain

δNk → n ∈ H1(R+) xmn ∈ L2(R+), ∀m > 0,

∂

∂x
n + (λ0 + B(x)) n = 4B(2x)n(2x),

∫
R+

δn = 0.

Notice that, thanks to the moment estimate, we also have for all m > 0,

(1 + xm)n ∈ L1(R+), and

∫
R+

|n|ϕ < ∞.

This allows us to give a meaning to the vanishing integral. This follows from the

Cauchy-Schwarz inequality∫
R+

(1 + xm)|n| ≤
(∫

R+

(1 + xm)2(1 + |x2|)|n|2(x)dx

∫
R+

dx

1 + x2

)1/2

.

Application of the GRE. We can now choose the family of convex functions H(u) =

(u − ξ)+ in the Generalized Relative Entropy of Lemma 3.3, with ξ > 0 a parameter.

We find, because we now deal with δR = 0, after reorganizing the terms in (32), that∫ ∞

0

4ϕ(x)B(2x)N(2x)(
n(2x)

N(2x)
− n(x)

N(x)
)

(
(sgn+(

n(x)

N(x)
− ξ)− sgn+(

n(2x)

N(2x)
− ξ)dx = 0.

)
In fact, one needs to justify it by a preliminary truncation of the integral at x = 0 and

x ≈ ∞, we leave to the reader the corresponding analysis. Again, let us point out that

in L1 this is possible because the corresponding x-derivative term

[ϕ(x)N(x)(
n(x)

N(x)
− ξ)+]
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is integrable (but for the square entropy we arrive at [ϕ(x)N(x)( n(x)
N(x)

)2] which is not

integrable!).

Conclusion. From the previous step, we conclude that, for all x > 0, ξ > 0, we have

sgn+(
n(x)

N(x)
− ξ) = sgn+(

n(2x)

N(2x)
− ξ),

which implies n(x)
N(x)

= n(2x)
N(2x)

and thus, tells us that the limit satisfies

∂

∂x

n(x)

N(x)
= 0.

From n(x)
N(x)

= n(2x)
N(2x)

, we conclude that n = CN and the vanishing total integral of n

implies that n = 0. This gives the sought contradiction and concludes the proof of

Lemma 3.4.
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[12] Benôıt Perthame and Lenya Ryzhik. Exponential decay for the fragmentation or cell-division
equation. J. Differential Equations, 210(1):155–177, 2005.
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