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Abstract

The purpose of this paper is to advance the knowledge of the dynamics arising from the creation
and subsequent bifurcation of Poincaré heteroclinic cycles. The problem is central to dynamics:
it has to be addressed if, for instance, one aims at describing the typical orbit behaviour of a
typical system, thus providing a global scenario for the ensemble of dynamical systems - see
the Introduction and [P1, P2]. Here, we shall consider smooth, i.e. C°°, one-parameter families
of dissipative, meaning non-conservative, surface diffeomorphisms. An hetereoclinic cycle may
appear when the parameter evolves and an orbit of tangency, say quadratic, is created between
stable and unstable manifolds (lines) of periodic orbits that belong to a basic hyperbolic set.
The key novelty is to allow this basic set, a horseshoe, to have Hausdorff dimension bigger than
one. In the present paper we do assume such a dimension to be beyond one, but in a limited
way, as explicitly indicated in the Introduction. [A mild non-degeneracy condition on the family
of maps is assumed: at the orbit of tangency the invariant lines, stable and unstable, cross each
other with positive relative speed]. We then prove that most diffeomorphisms, corresponding to
parameter values near the bifurcating one, are non-uniformly hyperbolic in a neighborhood of
the horseshoe and the orbit of tangency; such diffeomorphisms display no attractors nor repellors
in such a neighborhood. A first precise formulation of our main theorem is at the Introduction
and a more encompassing version at the end of the paper. These results were announced in
[PY3].

*Partially support by CNPq and FAPERJ, Brazil.
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1 Introduction

1.1 The Context

Since Poincaré referred to a property valid “pour la plupart des coefficients” of a polynomial
(analytic) dynamical system, the outstanding problem of describing at large the orbits of a “typical”

system became the source of much creative work in dynamics.

A stumbling block in a possible program to solve this question is the understanding of dynamics
arising from bifurcations of homoclinic or heteroclinic cycles. Such cycles were defined by Poincaré
himself: they involve stable and unstable manifolds of invariant sets (typically periodic orbits)
that successively intersect each other. In his classic book on Celestial Mechanics, he prophetically
stated: “Rien n’est plus propre a nous donner une idée de la complication de tous les probléemes de

Dynamique”.

In fact, the creation and unfolding of cycles, in particular homoclinic tangencies for surface diffeo-
morphisms and their unfolding, led Newhouse to show the non-denseness of hyperbolic dynamics,
thus contradicting Smale’s remarkable conjecture of the early 60’s. That is, there are systems that
cannot be approximated by one with a hyperbolic limit set. On the way, Newhouse showed that in
this context always appear surface diffeomorphisms displaying infinitely many simultaneous sinks

(periodic attractors) or sources (periodic repellors).

Abundance of other more intricate kind of attractors, the so called Hénon-like ones, was proved to
be also present in the unfolding of such cycles. This was another striking fact. It resulted from
the works of Benedicks-Carleson, Mora-Viana and Colli. Attractors here mean invariant sets that
attract future orbits of points of a positive Lebesgue measure set in the phase space (space of

events).



In view of all these intricacies inherent to homoclinic and heteroclinic bifurcations, a new global
conjecture has been proposed in [P1] (see also [P2]) concerning a typical dynamical system: In
particular, systems with finitely many attractors should be dense in the universe of dynamics, i.e.
C" flows, diffeomorphisms and maps, with > 1. Also, their basins of attraction should cover the

whole phase space, except for a Lebesgue zero measure set.
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Figure 1

An example of the creation of a heteroclinic cycle associated to a (hyperbolic) horseshoe is indicated
in Figure 1. Initially we have a classic Smale’s horseshoe map (diffeomorphism) on the two-sphere
S? with two saddle fixed points ps, p, with positive eigenvalues, a fixed point repellor outside the
figure and two fixed points attractors s; and so. The rectangle inside the figure is sent by the map
to the snake-shaped piece, while the bigger top half-disk is sent to the small one around s9 and the
lower bigger half disk is sent to the small one around s;. At the right hand side of the figure, we
show how to move a small neighborhood of a point in the stable line of p, so to create a tangency

with the unstable manifold of ps. This is done through a one-parameter family of diffeomorphisms;



until we create such a tangency the corresponding map remains hyperbolic, i.e. having a hyperbolic

limit set with no cycles among its basic sets.

Concerning Smale’s conjecture on the denseness of hyperbolicity, it is to be remarked that the
question is still open for rational maps of the Riemann sphere. On the other hand, it was known
to be true in the early 60’s for flows on orientable surfaces (Peixoto), preceeded by the case of
the two-disk (Andronov-Pontryagin). Much more recently, it was proved to be true for quadratic
maps of the interval (Graczyk-Swiatek and Lyubich) and then, more generally, unimodal maps

(Kozlovski) and, finally, multimodal maps (Kozlovski-Shen-Van Strien).

We point out that comprehensive accounts of the results mentioned above and many other related
ones are in [BDV], [P1] and [P2].

The present paper represents a contribution to the understanding of the dynamics arising from
bifurcating a cycle of a C*° surface diffeomorphism. The notion of “most” used here requires us
to consider one parameter families of diffeomorphisms g; strictly containing the initial bifurcating
one, say go at parameter value ¢ = 0. We assume that g¢; is hyperbolic for ¢ < 0 and |¢| small.
We suppose that the cycle is formed by a (hyperbolic) horseshoe K and an orbit of tangency o(q)
between stable and unstable manifolds of different periodic orbits of K. We assume the maximal
invariant set in a small neighborhood of K U o(q) to consist precisely of K Uo(g). A main novelty
is that we allow the Hausdorff dimension of K to be larger than one, but not to far from it. We
show that right after the bifurcation, i.e. for ¢ > 0 small, most diffeomorphisms still display no
attractors nor repellors in some neighborhood of K U o(q). This means that the parameter values
corresponding to diffeomorphisms displaying no attractors nor repellors should have total density

at ¢ = 0. The concept is again discussed in the next subsection.

Our results considerably extend those in [PT], [NP] obtained for the case when the Hausdorff

dimension HD(K) is smaller than one. They were announced in [PY3].

Of course, we expect the same to be true for all cases 0 < HD(K) < 2. For that, it seems to us that
our methods need to be considerably sharpened: we have to study deeper the dynamical recurrence
of points near tangencies of higher order (cubic, quartic ...) between stable and unstable curves.
We also hope that the ideas introduced in the present paper might be useful in broader contexts.
In the horizon lies the famous question whether for the standard family of area preserving maps,
one can find sets of positive Lebesgue probability in parameter space such that: the corresponding
maps display non-zero Lyapunov exponents in sets of positive Lebesgue probability in phase space.

Finally, we expect our results to be true in higher dimensions (see [MPV]).

We wish to thank W. de Melo e M. Viana for fruitful conversations.



1.2 The Setting and a First Formulation of the Main Result

Let f be a smooth, i.e. C*° diffeomorphism of a smooth surface M.

Recall that a basic set is a compact hyperbolic transitive locally maximal invariant set. A basic set

is a horseshoe if it is infinite and is neither an attractor nor a repellor.

We assume that there exists a basic set K for f, points ps, py € K, g € M — K such that the
following properties hold:

(H1) ps and p, are periodic points and belong to distinct periodic orbits;
(H2) W*(ps) and W*(p,) have a quadratic tangency at g;

(H3) there exists a neighbourhood U of K, a neighbourhood V' of the orbit O(q) of ¢, such that
K U O(q) is the maximal invariant set in U U V.

We would like to understand, when U, V are appropriately small and g is C*° close to f, the

maximal invariant set
(1.1) Ag=[)g "(UUV).
7
Observe that the smaller set
(1.2) Ky=()g "(U)
A

is a horseshoe which is the hyperbolic continuation of K.

Let U be an appropriately small neighbourhood of f in Diff**(M). We still denote by ps, p, the
continuation of these hyperbolic periodic points in ¢. The condition that W*(ps), W*(p,) have a
quadratic tangency near ¢ defines a codimension 1 hypersurface Uy through f in ¢. It divides U into
regions U, U_ such that, for g € U_, W*(p,) and W¥(p,) do not intersect near ¢ while, for g € Uy,
W#(ps) and W*(p,,) have two transverse intersection points near ¢ (for obvious dynamical reasons,
the intersection is actually infinite in this case; we are really considering here the intersection

derived from the continuation of large compact curves contained in W#(p,) and W*(p,,).
When g € U_, we clearly have

(1.3) Ay =K,

When g € Uy, we have

(1.4) Ay = K,UO(qq),

where g is the tangency point close to ¢ given by the definition of Uy.



The interesting case is therefore g € U..

It is actually not realistic to try to understand A, for all g € U,. One of the reasons is the so-called
Newhouse’s phenomenon [N]: there exists an open set ' C U, with Uy C N, such that, residually
in M, A4 has infinitely many periodic sinks or sources and so its full dynamical description appears

to be beyond reach. See also [BC|, [MV], [C] for similar results involving Hénon-like attractors.
Still, we can and shall consider most g € U, in the following sense.

We will say that a subset P C U, contains most g € U, if, for any smooth 1-parameter family
(9t)te(~to,to) Which is transverse to Up at t = 0 (with g, € Uy for £ > 0), we have

1
(1.5) %ir% i Leb (s € (0,t],9s € P) = 1.

Denote by W#(K) (resp. W"(K)) the stable set (resp. unstable set) of K for f. This is a partial
foliation with a C'* Cantor transverse structure; denote by d° (resp. d%) the transverse Hausdorff
dimension of W*(K) (resp. W*(K)). The Hausdorff dimension of K is equal to d° + d°. We then

have, in some contrast to Newhouse’s phenomenon:

Theorem. [PT], [NP] Assume that d2 + d5 < 1. Then, for most g € Uy, Ay is a horseshoe.

On the other hand, by [PY1], the same conclusion does not hold when d? + d > 1. The paper
[MY] gives substantially more geometric information in this case, specially concerning tangencies
between stable and unstable manifolds (lines) in the hyperbolic continuation K, of K. These results
have been extended to higher dimensions, as announced in [MPV] and complete proofs to appear

in the near future.

In the present work, we investigate the maximal invariant set Ay, for most g € Uy, provided that
the dimensions d?, d° satisfy (see figure 2)

(H4) (d + d%)? + (max(d?,d%))? < d? + d° 4+ max d?, d°

s u Sy u”

Our results can essentially be summarized as:

Main Theorem. Assume that (H1), (H2), (H3), (H4) hold. Then, for most g € Uy, Ay is a

non-uniformly hyperbolic horseshoe.

The meaning of a non-uniformly hyperbolic horseshoe in the present context will be explained
somewhat in the next section and more completely in the rest of the paper. We can, however,
comment that, for most g € Uy, A4 will be a saddle-like object in the sense that both the stable set
W?(Ag4) and the unstable set W*(A,) have Lebesgue measure zero and, so, it carries no attractors

nor repellors. It will be (non-uniformly) hyperbolic in the sense that we will construct geometric



invariant measures, a la Sinai-Ruelle-Bowen [Si, Ru, BR], on A; C W*(Ag) and Ay C W*(A,) with
non-zero Lyapunov exponents. Such properties of the invariant set A, are made especially precise
in Section 10 and 11, the last ones in the paper. They yield some rephrasing of the main result in

these terms, which is presented at the end of Section 11.
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Remark. In the case when d2 + d° < 1, mentioned above and studied in [PT], [NP], it is not
necessary to assume that ps, p, belong to distinct periodic orbits. It is probably not necessary in
our case either, at least as far as the qualitative statements are concerned. But, this assumption

seems to make the technicalities significantly easier in what is already a very long construction.

1.3 A Summary of the Next Sections of the Paper

Sections 2—4 consist mainly of preparatory work.

In Section 2, we introduce a Markov partition by smooth disjoint rectangles (R,),cq for the horse-
shoe K. The dynamics in the neighbourhood U of K is given by the transition maps from one
rectangle to another, which enjoy a nice hyperbolic behaviour. To understand the dynamics in the
larger set U U V', we need to control the dynamics along a finite part of the orbit of ¢, stretching
from the moment this orbit goes out of R := UR, until it comes back to R. The region of exit of

R and the region of entry into R are two parabolic tongues L, and Ls, and the transition map

G=g¢g" : L, — L,



is a folding map which share many features with the Henon quadratic polynomial diffeomorphisms

of the plane.

Section 3 is essentially a summary of our previous work [PY2]|, (which was written having the
present paper in mind). The important concept of affine-like map is introduced. The basic idea,
which goes back to the early stages of the hyperbolic theory, is to describe maps that present
hyperbolic features in an implicit way exhibiting preference for coordinates with a macroscopic
range. Concretely, if a two-dimensional diffeomorphism contracts the vertical coordinate y and
expands the horizontal coordinate x, we use yp and x; as independent variables associated with a

point (zg,yo) and its image (x1,y1), writing xg and y; as functions of yy and z7.

Cone conditions are easy to formulate in this setting. A nice feature of this implicit representation
of the dynamics is that it is time-symmetric: the map and its inverse satisfy symmetric formulas.
Another even more important feature is that this formalism is well-adapted to the right concept of
distortion (for 2-dimensional maps), yielding appropriate control on the partial derivatives of order

two.

Composition of two affine-like maps which satisfy the same cone condition is also affine-like, and
the distortion is only slightly bigger than the distortion of the two maps. Besides this “simple”
composition, we study “parabolic” compositions of the form Fj o G o Fy, where Fy, I} are affine-like
and G is the folding map of Section 2. When the relative positions of the parabolic strip G(Qo)
(where Q) is the image of Fy) and P; (the domain of F) are appropriate, the domain of F} o Go Fy
has two connected components and the restrictions F'* of Fy oGoFy to each component is affine-like.
A control of the distortion of F* and F~ is also obtained.

In Section 4, the general structure of parameter space is introduced. The parameter coordinate is
normalized by the relative speed at the quadratic tangency of the tips of the stable and unstable
manifolds. Then, with gy very small, the starting interval I := [gq, 2¢¢] for the parameter selection
process is introduced. A small parameter 7 (with 7 < 1 but still €] < 1) determines a sequence
of scales (ex)r>0 in parameter space through the formula e, = 5,1;”. At level k, we have disjoint
parameter intervals of length e (starting from level 0 with Ij). Each parameter interval of level
k that has been selected is divided into [, 7] disjoint candidates of length €41. These candidates
will pass a test to decide whether they are selected at level k + 1.

The test takes two forms. First, in Section 5, a property of the parameter interval called regularity
(see below) will be introduced; candidates which do not possess this property are discarded. Such
a property is sufficient to develop in Sections 5—8 some basic combinatorial and quantitative prop-
erties, but it is not well-adapted to an inductive scheme. Hence, in Section 9, a stronger property
called strong regularity is introduced, and candidates have to satisfy this property in order to be

selected.
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Sections 5—7 constitute in some sense a single logical step: in Section 5, certain classes of restrictions
of iterates of g; are inductively defined, and the definition is only possible because of properties

that are inductively proved in Sections 6 and 7.

In Section 5, the goal is to define, for each parameter interval I which is a candidate (i.e. its parent
interval at the immediately upper level has been tested as regular), a class R(I) of I-persistent
affine-like iterates. An [-persistent affine-like iterate is a triple (P, @Q,n) where P is a vertical-like
strip in some rectangle R, depending on t € I, () is a horizontal-like strip in some rectangle R/,

depending on ¢ € I, and the restriction of g;* to P is a diffeomorphism onto () which is affine-like.

However, we do not want to have in R([) all I-persistent affine-like iterates: we will argue about
them by induction (on n, for instance) and in order to do this, we want to obtain them in some
explicit constructive way. Therefore, a number of Axioms, (R1)—(R7), are introduced and together
they completely determine the class R(I). The most important feature of these Axioms is the
following: every element of R(I) consisting of more than one iteration of g; can be obtained from
simpler elements of R(I) by simple or parabolic composition; in this context, the notions of parent
and simple or non-simple child introduced here, play a relevant role; simple composition is allowed
in R(I) whenever it makes sense; and parabolic compositions of elements of R([) is allowed if and

only if a certain transversality relation is satisfied.

Thus, the definition of R([) is reduced to the definition of this transversality relation, which is
presented in Subsection 5.4. The intuitive notion behind the formal definition is the following: an
element (P, Q,n) should be I-transverse to an element (P’, Q’,n’) if the distance §(Q, P’) between
the tip of the parabolic-like strip G(Q) and P’ satisfies

5(Q. P) = |QI"" + P77

for all t € I, where |Q|, |P’| are the widths of the strips @ and P’. Here 7 is a small positive
constant, fixed once and for all. However, a number of properties, presented in Section 6, are very
helpful, and they require a definition of the transversality relation that may seem quite complicated.

In Appendix C, we explain why this seemed complication is rather necessary.

For the starting interval I, it follows from the formal definition that the transversality relation is
never satisfied; therefore, parabolic composition is not allowed and the class R(Ip) is exactly the
one associated with the symbolic dynamics given by the Markov partition. We conclude Section 5
with the definition of regularity. First, one says that a strip P (from an element (P,Q,n) € R(I))
is I-transverse if one can find finitely many ()., whose union contains the unstable set of A, such
that QQ, and P are I-transverse for every «; otherwise one says that P is I-critical. Then, given a
constant 3 > 1, one says that the parameter interval is S-regular if any (P, Q,n) € R(I) such that
both P and Q are I-critical satisfies |P| < |I|%, |Q| < |I|° for all t € I. Intuitively, this means that

no short return to the critical set is allowed.

In Section 6, we prove a number of properties of the transversality relation and the classes R(I).

11



Amongst the most important is the following: children are born from their parents. Let us explain
what it means. Let (P,Q,n) € R(I), and let (ﬁ,@,ﬁ) the element of R(I) such that P C P,
P +# P and P is the thinnest rectangle with this property; one says that P is a child of P and that
P is the parent of P. There are two cases; either n = n 4+ 1 and one says that P is a simple child;
(P,Q,n) is obtained by simple composition of (ﬁ, Q, n) with an element of length 1; or n >n+1
and one says that P is a non-simple child; one then proves that (P, Q,n) is obtained by parabolic

composition of (P, Q,7) with some element (P, Q1,n).

The most important result in Section 6 is a structure theorem for new rectangles in Subsection 6.7.
One considers an element (P, Q, n) which belongs to R(I) but not to R(I), where I is the parameter
interval containing I of the level immediately inferior (one says that I is the parent of I). Then
there is a unique way to write (P, Q,n) as the result of a sequence of k parabolic compositions,

possible in R(I) but not in R(I), of elements (Py,Qo,n0)," -+ , (Px, Qk,nr). This fundamental

result has several useful corollaries.

We have grouped in Section 7 a number of calculations and estimates related to the definitions
of Section 5, and that are necessary for the inductive construction of the classes R(I). The first
result relates the length n of an element (P, Q,n) to the width |P|, |@| of the strips. While there
is no uniform exponential estimate as in the uniformly hyperbolic case, we are still able to prove a

stretched-exponential uniform estimate.

We prove next that a uniform cone condition is satisfied by the affine-like iterates that we con-
sider, and also that they have uniformly bounded distortion. After a technical estimate related
to parabolic composition, we deal in Subsection 7.6 with the relative speed of the strips when the
parameter varies; this is clearly of capital importance if we are to succeed. A point which is worth
mentioning is that we are not able to obtain estimates for all pairs of strips (actually, it is easy
to see that such estimates do not exist); we have to restrict ourselves to strips satisfying certain
criticality conditions, that, fortunately, will be satisfied every time we need some information on
these speeds. In the last Subsection 7.7, we investigate the oscillation of the widths of the strips
with the parameter. While it is just not true that the relative oscillation is bounded (in the sense
that the maximum over a parameter interval is no greater than a constant times the minimum),

the result that we get will allow us to argue as if it was.

At the end of Section 7, the construction of the classes R(I) is complete, for every parameter

interval I whose parent Iis regular. But we still don’t know whether a single interval I is regular.

In Section 8, we develop several quantitative estimates that will turn out to be crucial both in the
parameter selection process of Section 9 and in the analysis of the dynamics for strongly regular
parameters in Sections 10 and 11. We first investigate, for a given element (ﬁ, @, n), the number of
elements (P, @, n) such that P is a non-simple child of ]5; we show that, for every € > 0, there are at

most e~ such non-simple children with width |P| larger than 5]]3 |. The constant n here is small

12



and related to the definition of the transversality relation. The meaning of this estimate is that the
presence of non-simple children is not too significant from the point of view of Hausdorff (or box)
dimension, as it is made clear in Subsection 8.2. In Subsection 8.3, we transfer this information to

parameter space, combining it with the result on relative speed of strips in Subsection 7.6.

Section 9 is the longest one in the paper and deals with the parameter selection process. The
concept of regularity is very useful to develop a number of properties of the classes R([), as we
did in Sections 5-8. Unfortunately, we are not able to prove (and it is probably false) that, given
a [-regular interval I , most candidates I C I at the next level are [-regular. [It is a consequence
of the structure theorem of Section 6 that all candidates are S-regular, where 8 = (1 + 1)~ ! is
very close to 3; this allow us to obtain all qualitative consequences of regularity for all candidates;
but obviously we cannot repeat this at many successive levels of parameter intervals, because we
need to keep (8 > 1.] The problem with the concept of regularity is that it is dealing with only one
scale |I~|ﬁ ; it could happen a priori that for a regular parameter interval I we have many I-bicritical
(P,Q,n) € R(I) with |P| or |Q| only slightly below the threshold |I|? (and therefore above the
next threshold |I|? for candidates I C I ); for each such (P, Q,n), we have to eliminate candidates
I such that (P, @, n) is I-bicritical, and no candidate will survive this selection process if there are

too many (P, Q,n).

The solution to this difficulty is to introduce the condition of strong regularity, which implies
regularity and gives a quantitative control at all scales. Actually, the strong regularity condition
involves two parts. In the first, one controls the size of the critical locus (in several slightly different
ways) by a series of eight inequalities which all amount to say that the ”dimension” of the critical
locus is not much larger than d? + d? — 1. In this case, the parameter selection process is based on
the result mentioned above in the last part of Section 8. The second part of the strong regularity
condition, by far the most subtle one, is a quantitative estimate for the number of bicritical elements
at all scales. Because of the inductive nature of the argument, which relies in an essential way on
the structure theorem of Section 6, we need to control the number of elements (P,Q,n) € R(I)
such that P is I,-critical, @Q is I-critical and |P| > x for some ¢t € I. Here, I, and I, are parameter
intervals containing I, and the control will depend on I, I, and x. The formulas in Subsection 9.4
present a phase transition with respect to the width parameter z. Discussing this phase transition
leads naturally to the hypothesis (H4) on the transverse dimensions d?, d2: a small calculation

shows that (H4) is exactly what one needs to obtain (-regularity with 5 > 1.

Having stated the strong regularity condition, the goal in the rest of Section 9 is to prove that,
given a strongly regular parameter interval I , most candidates I C I at the next level are also
strongly regular (the proportion of failed candidates turns out to be not larger than C|I ]72). This
requires the control of two things. First, is to bound the number of “new” bicritical elements
(P,Q,n) € R(I) which did not belong to R(I); this is based on the structure theorem of Section 6
and leads to a long but straightforward calculation. Second, is to estimate which proportion of

bicritical elements for I are still bicritical for I ; this is only necessary when I, or I, is equal to

13



I; when only one of the two intervals I, I, is equal to I, the idea is simply to estimate what is
the mean proportion (over all candidates), and to discard candidates for which the proportion is
much above the mean. To compute the mean proportion, we rely again on the result at the end of
Section 8. The case where I = I, = I, is the most important and the most difficult. When x is
“large”, the same argument than when I = I, # I, still applies; but when z is “small”, the phase
transition of the estimate means than the argument is not sufficient any more. A more complicated

strategy is required, which is explained in Subsection 9.8 and carried out in 9.9 through 9.13.

It is worth mentioning that up to the end of Section 9, we never consider the dynamics for a single
parameter, only for parameter intervals. In the last two sections, we study the dynamics for a
strongly regular parameter value, i.e. the intersection of a decreasing sequence (I,,) of strongly

regular parameter intervals.

In Section 10, we study the dynamics on the set of stable curves. A stable curve w is the decreasing

intersection of a sequence of vertical-like strips Py, where (Px, Qx,ni) € R = |JR(In). The set

m
of stable curves is denoted by RS°, their union by R°. In order to define a map on RS (which

is not invariant under g), we introduce the concept of prime element in R, i.e. one which cannot
be written as the simple composition of shorter elements. Let then w be a stable curve which
is not contained in infinitely many prime elements Py, and let (P,@,n) be such that P is the
thinnest prime element containing w. The image ¢™(w) is contained in a stable curve w’ and we set
TH(w) = ', Tt/w = g"/w. This defines a map T from a subset D of R onto RS which lifts

to a map 7 from the union 5+ of curves in D to ﬁﬁf’

The map T'" is Bernoulli in the following sense: its domain D, splits into countably many pieces
RS°(P) indexed by prime elements, and each piece is sent homeomorphically by T+ onto the

intersection of RS with some rectangle R, of the Markov partition.

The map T is uniformly expanding (with countably many branches) and we introduce a one
parameter family of weighted transfer operators in the spirit of classical uniformly hyperbolic maps.
One has only to be careful because the presence of countably many branches is the source of some
problems, which are dealt with in Subsection 10.3 using the estimates of Section 8 on the number
of children.

As expected, the transfer operators Ly, considered in the appropriate function space, turn out to
have a positive eigenfunction hy associated with a dominant eingevalue Ay > 0. There is a unique
value ds such that A\g, = 1. This value turns out to be, unsurprisingly, the transverse Hausdorff
dimension of the partial foliation ﬁ‘f (which is proved in Subsection 10.5 to be transversally Lip-
schitzian). The transfer operator also allows us to identify, as usual, a measure py with prescribed
Jacobian and an invariant measure vy = hgpg. For d = dg, the pg-measure (or vg-measure) of the

set of stable curves contained in any vertical-like strip P is proportional to |P|ds.

14



The set ﬁﬁ’f - 5+ where T is not defined, has transverse dimension smaller than ds, hence is
negligible in a geometrical sense. One can lift the Tt -invariant measure v = vy, to a T -invariant

measure v which is ergodic and then spread it to a g-invariant measure on A.

In Section 11, the last in the paper, we pursue the study of the dynamics of g on A = A, for
a strongly regular parameter ¢, looking now beyond the well-behaved set ﬁcf which was studied
in Section 10. In the first part (Subsections 11.1-11.5), we study the intersection of the invariant
set A with an unstable curve w* (defined as a stable curve, exchanging P’s and @’s). The main
part of this intersection is a countable disjoint union of dynamical copies of the set RS studied
in Section 10. There are also at most countably many critical points, corresponding to quadratic
tangencies between stable curves and images under G of unstable curves. And, finally, there is an
exceptional set (formed by points which come very close to the critical locus infinitely many times);
but this exceptional set is small; its Hausdorff dimension is explicitly controlled by a value much

smaller than the dimension d; of w* N A.

In the second part of Section 11, we prove that the invariant set A is a saddle-like object in the
metric sense: both its stable set W#(A) and its unstable set W*(A) have Lebesgue measure 0. So,
no attractors nor repellors are present on A. One actually expects more: certainly the Hausdorff
dimension of W#*(A) should be strictly less than 2, probably it is close to 1 + ds, and perhaps even
equal to 1+ ds;. However, we stick to the simpler, but still very meaningful result: it implies that

A4 carries no attractor nor a repellor for most g.

One has a nice combinatorial decomposition of the restricted stable set W*(A, R), but to compute
Lebesgue measure (or Hausdorff dimension), one has to transport the pieces of this decomposition
by affine-like iterates of g of high order. This is easy to do as far as Lebesgue measure is concerned,
because bounded distortion of affine-like maps mean also bounded distortion of measure (bounded
relative oscillation of Jacobians). This is much more delicate with respect to Hausdorff dimension:

the geometry of the pieces after iteration can get very distorted.

In Appendix A, we recall all formulas related to the implicit representation of affine-like maps;
many of them can already be found in [PY2], but we have also to consider the derivatives with

respect to parameter, a setting which was not considered in [PY2].

In Appendix B, we perform some calculations related to proposition 40 in Subsection 10.5, which

generates the transversally Lipschitz regularity of the partial foliation ﬁﬁf

In Appendix C, we give some justification for what seems to be a convoluted definition of the

transversality relation in Subsection 5.4.
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2 Markov Partition and Folding Map

2.1 Markov Partition and Related Charts

We will choose once and for all a finite system of smooth charts
IExI* = R,cM, aca

indexed by a finite alphabet G. Each chart depends smoothly on g € U; the intervals I, I are

compact; the rectangles R, are disjoint.

Let R =J R,. We choose the charts in order to have:
a

(MP1) for each g € U, K, is the maximal invariant set in int R; for each g € U, a € @, one has
(2.1) gOIf x I"YNR =1,

(2.2) g NI x OI*) N R = 0);

(MP2) for each g € U, the family (R, N Ky),cq induces a Markov partition for the horseshoe K.
Let

(2.3) B=/{(a,d')€a* f(R))NRy#0}.

The Markov partition provides a coding which is a topological conjugacy between the horseshoe
K, and the subshift of finite type of a” defined by B.

2.2 The Parabolic Tongues L,, L,

Denote by as, a, € G the letters such that p; € R,,, py € Rq,. We choose the corresponding charts

in order to have:

(MP3) for each g € U, the equation of the local stable manifold W (ps) is {z., = 0}, the
equation of the local unstable manifold W} _(pu) is {ya, = 0}.

We have written z, (resp. y,) for the coordinate in I (resp. I%). We also choose the rectangles R,

in order to have, for some integer Ny > 2:
(MP4) for each g € Uy, there are points gs, g, in the orbit of ¢ such that
— forn >0, ¢g"(¢s) and ¢g"(ps) belong to the interior of the same rectangle;

— for n <0, g"(qu) and ¢g"(p,) belong to the interior of the same rectangle;
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~ qs = g™(q,) and ¢*(q,) does not belong to R for 0 < i < Np.

Consider small pieces of W*(ps), W"(p,) which are tangent at ¢, for g € Uy. When g € U, these
pieces will meet in two points and bound a compact lenticular region L, C int R,,. Taking the
image under g™¥°, we get another lenticular region Ly C int R,,. These regions are called parabolic

tongues. See figure 3.

/

R
ClY R au
Figure 3
Define then, for g € Uy
(2.4) R=R |J ¢(L.)
0<i<Np

The maximal invariant set we are interested in is
(2.5) Ay =g (B).
VA

We also define

(2.6) Wi (A, R) = [)g(R),
n=0

(2.7) WA, B) = (o (R)
n<0

The dynamics in R are generated by
— the transition maps related to the Markov partition:
g:RqN gil(Ra’) - g(Ra) N Ry, for ((1, a/) € B;

— the folding map G := ¢™° from L, onto L.
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2.3 The Folding Map G

For simplicity, we write (zs,ys), (€, yy) for the coordinates in Ry, D Lg, Rq, D Ly.
The folding map G is parabolic in the sense of [PY2]; let us recall this definition.

Consider the graph T'g of the restriction G of g0 to the component of R,, N g~ (R,,) which
contains L, (for g € U, ; we then follow this component in the rest of /). Using the corresponding
charts, we can view I'g as a surface in I x I x I; x I;. Denote by 7 the projection from

I3 x It x I; x I} onto I x I; . For U small enough, from the quadratic tangency at ¢ and
(MP3) we deduce that:

(P1) the restriction of m to ' is a fold map (in the sense of singulary theory).

Denote by I'y C I x I the smooth curve which is the image of the critical locus of this fold map.
It divides I, x I; into two regions I'y, I'_ such that I'y U Ty is the image of the fold map. We

can reformulate (P1) as:

(P'1) (i) for (y°,2°) € Ty, the image G({y, = y°}) meets {xs; = 2°} in a single point, interior to

both curves, at which the curves have a quadratic tangencys;
(ii) for (y°,2°) € T_, the curves G({y, = y"}) and {zs = 2°} do not intersect;
(iii) for (y°,2°) € 'y, the curves G({y, = vo}) and {xs = 2} intersect transversally in two points.

As G is a diffeomorphism, the tangents to I'y are never vertical or horizontal. Therefore, we can

and will choose a smooth function 6 on I} x I; such that
(P2) 6=0o0onTyp, 0§ >00onTy, 0 <0onl_;

(P3) the partial derivatives 6, 8, of 6§ do not vanish on I3 x I .

Remark. The choice of 6 is far from unique. One could for instance choose 6 of the form

(28) 9(:1/11,7 xs) = EylYu + €SX(:I"S)7

with €5, €, € {—1,+1} and x monotone increasing. We prefer not to specify a particular choice in

order to keep a time-symmetric setting between positive and negative iterations.

From 0, we define a smooth function w on I'¢ by
(P4) w?>=0on

(there are two choices for w; the other is —w).
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Then, from (P3) we obtain smooth maps Y,,, X, implicitly defined by

(P5) w? = O(Yy(w,zs), xs)
= e(yU7XS(w7yu)

On the graph I'¢;, we can use either (xy,y,) or (zs,ys) or (w,y,) or (zs, w) as coordinates; therefore

we can factorize G as G4 o Ggo G_:

(2.9) (T ) = (w0, p0) & (2, 0) 5 (a,,)
with
(P6) GO(wayu) =

The last two formulas define smooth maps Yy, X, and the partial derivatives Y, Xy do not
vanish as G, G_ are diffeomorphisms. Observe that the map Gy is very similar to a quadratic

Hénon-like map.
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3 Affine-like Maps

This section is essentially a summary of [PY2].

3.1 Definition and Implicit Representation

Let Ij, Iy, I7, I{* be non trivial compact intervals, xo, 3o, 1, y1 the corresponding coordinates.

Consider a smooth diffeomorphisms F' whose domain is a vertical strip

P ={¢ (yo) <wo < 9" (yo)} C I§ x I

and whose image is a horizontal strip

Q=AY (1) <y <vF (1)} C I x I}

We say that F'is affine-like if

(AL1) the restriction to the graph of F' of the projection onto I}/ x I is a diffeomorphism onto
Iy < I3.

This allow us to define smooth maps A, B on I§ x I7 such that

zo = A(yo, 1)
(3.1) F(zo,y0) = (z1,51)

Y1 = B(yo, xl)'
The pair (A, B) is the implicit representation (or definition) of the affine-like map F'. See figure 4.
In the formulas below, we shall most of the time omit the arguments of the functions considered,
which should be obvious from the context. We will write A;, Ay, Az, Bz, By--- for partial

derivatives.

[
y ] 0
0A | A 0
, F \Z/
|
| F L » : _______
\ e IRkl -
-- S —
|
1
I
I
|
1 o -
Yo *
Figure 4
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On the graph of F', we have

(3.2) dxg = Ay dyo + Ay dxy,
dy1 = By dyo + B dry,

which leads to
1 —A
(3.3) DF = AJ( v )

-1 _ —1
(3.4) DF™' = B, (
(3.5) det DFF = A;'B,.

The main advantage of the implicit representation is the symmetry between positive and negative

iteration.

3.2 Cone Condition and Distortion

Let A, u, v > 0 satisfy
(3.6) 1< uv < N2

Let (X, Yp) be a tangent vector at some point in the domain of F', and let (X1,Y7) be its image

under T'F. The usual cone condition with parameters (A, u,v) is:
(AL2) (i) if |Yo| < u|Xol, then |Y1| < v 1 X1| and | X1| = | Xol;
(ii) if | X1| < v|Y3], then | Xo| < u™YYp| and |Yo| = A|Y3].

This is readily seen to be equivalent to

(AL'2) NAL| +ul4,| < 1,
)"By’ +v’BI’ < 17

everywhere on I x I7.

We will also need to control partial derivatives of second order of A, B. By (3.5), the partial
derivatives A, By do not vanish on Ij x I7. It turns out that the right way to look at partial

derivatives of second order is to consider the six functions

Oy log|Az|, Oylog|Az|, Ayy,
Oy log|By|, 0, log|By|, Bya.
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We define the distortion of an affine-like map F', and denote by D(F'), the maximal absolute value

attained by any one of these six functions on I§ x I7.

We also define the width of the domain P of F' by
(3.7) |P| := max|A|,
and the width of the image @ by

(3.8) |Q| = max|B,|.

3.3 Simple Composition

The composition of two affine-like maps is not always affine-like. However, the composition of
two affine-like maps which also satisfy the same cone condition (AL2) will again be affine-like and

satisfy the same cone condition (actually a better one).

More precisely, let I§, I\, I5, I}, I5, I be compact intervals. Let F : P — @ and F' : P' — @’ be
affine-like maps with domains P C I§ x I§}, P’ C I{ x I{* and images Q C I{ x I{*, Q' C I§ x I§. We
assume that both F' and F”’ satisfy (AL2) (or (AL’2)) with parameters A, u, v. The composition
F" = F' o F has domain P" = PN F~}(P') and image Q" = Q' N F'(Q). It satisfies (AL1) and
(AL2) with parameters A2, u, v (cf. [PY2]). See figure 5.

Yo Y4 P’ 0¥ §

i 4

Figure 5

Let (4, B), (A, B"), (A", B”) be the implicit representations of F', F’, F" respectively. Define
(3.9) A=1-AB,>1-u v >0.
The partial derivatives of first order of A”, B” are given by

(3.10) Al = A A AT
By = ByB,A™",
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(3.11) A=Ay + A A B,ATY
B = Bj, + B, A, B,A™".

From (3.10), we get

P//|
. -1 < | <
(3.12) ¢ < < ©
1
Q| Q|

where the constants are uniform once u, v are fixed and the distortions are uniformly bounded.

The formulas for the partial derivatives of second order are derived in [PY2] and recalled in Ap-

pendix A. They lead to the following estimate for the distortion:
(3813)  D(F") <max{D(F) + C|QI(D(F) + D(F)), D(F') + C|P'\(D(F) + D(F"))}.

where C' depends only on u, v.

3.4 Properties of the Markov Partition

We choose charts for the Markov partition discussed in Subsection 2.1 in order to have the following

property, for some A, u, v satisfying (3.6):

(MP5) for any (a,a’) € B, any g € U, the transition map g, o from Ppe = R N g Y(R,) onto
Qaar = Ry N g(R,) is affine-like and also satisfies the cone condition (ALZ2).

These values of (A, u,v) will be fixed in what follows.
To any finite word a = (ao, . .., a,) with transitions in B, we have a composition

gg = ganflan ©0...0 ga0a1

which satisfies also (AL1) and (AL2).

Moreover, as the widths decrease exponentially with the number of iterations, it follows from (3.13)
that there exists Dy > 0 such that all g, satisfy

(MP6) D(g,) < Dy.

3.5 Parabolic Composition

Let G be the folding map of Subsection 2.3, satisfying properties (P1)—(P6).
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Let also Ij, Iy, I{, I}* be compact intervals ; let F{y be an affine-like map from a vertical strip
Py C 1§ x I to a horizontal strip Qo C I X Ij ; let I} be an affine-like map from a vertical strip
Py C I; x I to a horizontal strip Q1 C I x I}".

We recall from [PY2] how, under appropriate hypotheses, the composition F; o G o Fy defines two
affine-like maps F* with domains P* C Py and image QT C Q. See figure 6.

Yo A Vs &
p-
F
+ _
P 0, ¢le)
9
£
X, Xs
lG
4 _
Y1 A 0, 0 0 Tu g P,
G (Qy)
F,
V
‘/\
x X

Figure 6

Let (Ao, Boy), (A1, B1) be implicit representations of Fy, Fi, respectively. We assume that

(PCI) |A17y| < b, ‘Al,yy| < b,
|BO,m‘ < b: ’BO,mj| < b7

with b < 1. In the system

Yu = BO(:’/Oa xu)7
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we can, as |Bp .| < 1, eliminate y,, and solve for x,, to define
(3.15) Ty = X(w,yp)
Similarly, in the system

(316) Ys = }/;(w,ﬂj‘s),
xs = A1(ys, 21),

we eliminate x4, solve for ys to get

(3.17) ys = Y (w,z1).

The next step is to define

(3.18) C(w, yo, x1) 1= w* — 0<BO(y07X(w7y0))’ Al(Y(wv$1)7x1)>'

This quantity has the following geometrical interpretation. Fix values y;, 27 for yo, 1. The image
G- o Fo({yo = y5}) is the graph

(3.19) Yo = {yu = Bo(yS,X(wayS))};
symmetrically, G o Fy '({z1 = x{}) is the graph
(3.20) n = {o, = A (Y (w,27),27) }.

Then, C(w,y§,x}) gives the relative position of the two curves vy and Gy Y(y1) (or equivalently
Go(0) and 71). More precisely, it is positive for all w if the two curves do not intersect; it vanishes

at the intersection points and is negative between the intersection points.

It follows from (PC1) just above that

(3.21) Cy — 20| <1,
(3.22) |Cww — 2| <1.
Therefore, for fixed values of yy and z1, C has a unique minimum as a function of w; we denote by
C(yo, 1) the corresponding minimum value. We have C(y&,z}) > 0 (resp. = 0, resp. < 0) if and

only if the curves 79 and G|, Y(y1) do not intersect (resp. are tangent, resp. have two transverse

intersection points).

In order to consider parabolic compositions, we shall require that C(yg,x1) < 0 everywhere on
Iy x I. Setting
(3.23) § = min —C(yo, z1)

Y0,%1

we actually want to have

(PC2) § > b7 (| P+ |Qol)-
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The geometric interpretation of this requirement is clear: the displacement of one of the rectangles
and the image of the other should be much bigger than the sum of their widths. In other words,
the distance between the tip of the parabolic strip G 1(Py) and the horizontal strip Qg should be
much bigger than the widths of these strips.

Assume now that (PC1) and (PC2) are satisfied; the equation C'(w, yo, x1) = 0 defines two smooth

functions

(3.24) w = W*(yo, 1)

with w' > w™. One then defines

(3.25) A% (yo, 1) = A0<yo,X(Wi(y07$1)ayo)>,
(3.26) B (yo,a1) = Bi (Y (W (o, 1), 1), 21 ).

As shown in [PY?2], the pair (A1, BT) (resp. (A=, B™)) implicitly defines an affine-like map F*
(resp. F'7).

Denote by PT (resp. P~) the domain of F* and by Q" (resp. Q) the domain of F~. Then P*
and P~ are the two components of Py N (G o Fy)~'(P;), Q* and Q~ are the two components of
Q1N (F10G)(Qo); F* (resp. F7) is the restriction of Fy o G o Fy to P (resp. P™).

The formulas for the partial derivatives of A*, B* are derived in [PY2] and recalled in Appendix A.
They provide the following estimate for the widths:

Il

(3.27) cl'< —————— <,
[Pol [Pr]62
+
(3.28) Cct < ’Qi’l < O,
|Qo| Q11072

where the constants are uniform once b is fixed and the distortions are uniformly bounded.

From [PY2, Theorem 3.7], we also have the following estimate for the distortion of F*: assuming

that b is small enough (in terms of the partial derivatives of first order of X,, Y, 6), we have

(3.29) D(F*) < max{D(Fo) +C|Qol67L, D(FY) + C|P1\5_1},

1
provided that D(Fy) + D(F1) < 6~ 2. The constant C' in (3.29) depends only on the partial
derivatives of first order of X, Yy, 6.

We also recall from [PY2, formula 3.50] the estimate:
1
(3:30) A7 = Aoyl < C|R|Qol0™2,

1
(3.31) |By — Bi.| <C|P||Qi]6”2,
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where the right-hand terms must be small by (PC2).

As a concluding remark for this section, let us observe that, while conditions (PC1), (PC2) are
necessary in order to consider parabolic composition, they are not sufficient: in Section 5, the

requirement for parabolic composition will be much more restrictive than (PC2).
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4 Structure of Parameter Space

4.1 Some Important Constants

Throughout the rest of the paper, we will use four main constants g, 1, 7, 8 which satisfy
(4.1) O<ep<NKLKTLP-1<1.

We roughly explain the meaning of each constant:

— &g is the maximal width of the parabolic tongues L,, Ls. It is also the size of the parameter

interval we start with.

— 7 is involved in the transversality relation (defined in Section 5) which allows parabolic compo-

sition: instead of the condition (PC2) of Subsection 3.5, roughly speaking we will ask that
(4.2) = (|Pi| + Qo).

— 7 relates the successive scales of the parameter intervals we will consider through the formula
147

Ek+1 = &y,
— 3 will actually be given in Section 9 by an explicit formula in terms of d?, d2; the condition
(H4) involving d?, d in Section 1 is required because we need 3 > 1. It appears in the definition

of regularity in Section 5, which controls the recurrence of the ”critical locus”.

4.2 One-Parameter Families

From now on, we fix a one-parameter family (g:)ie(—t4,) in Y. We assume that the family is
transverse to Uy at t = 0, with g, € Uy for t > 0 and g, € U_ for t < 0.

Observe that gg satisfies exactly the same assumptions as f, provided i/ is small enough. Therefore,

we may and shall, assume that go = f.

We will first reparametrize the family in order to make some computations simpler. Consider the
folding map Gy = giv O of Subsection 2.3. If ¢y is small enough, G is a fold map for all values of
t € (—to,to). Moreover, we can in properties (P2), (P3) of Subsection 2.3 choose a function  which

depends smoothly on .

From (MP3), Subsection 2.2, the values y,, = 0, z; = 0 of the arguments of § correspond to W} (pu)
and W} _(ps) respectively. Therefore, the transversality of the family to Uy is equivalent to

0
(4.3) = 61(0,0) [i=o > 0.
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Taking ty small enough, we can therefore reparametrize our family in order to have

(4.4) Gt(O, 0) =1, t e (—to, t()).

4.3 Parameter Intervals

The starting parameter interval will be
(45) I() = [60, 250],

where, as explained above, ¢y will be taken very small. This is the only parameter interval at

level 0.

At level k, we will deal with parameter intervals of length e, where the sequence of scales ¢ is

defined inductively by
(4.6) 1 =g,

The constant 7 is small, but ¢¢ is much smaller and in particular we will have 662 < 1. Every

parameter interval of level k is divided into [, 7] parameter intervals of level k 4 1.

The remaining part, if any, is discarded; it is of length < e, 1; the total length discarded in this

way is smaller than e; < &¢.

Let I be a parameter interval of level k and I be a parameter interval of level £ + 1 contained in
I. We say that I is the parent of I and that I is a child of I.

4.4 The Selection Process

In Section 5, we will define what it means for a parameter interval to be regular. The starting

interval Iy will be regular.

Given a regular parameter interval I of level k, we divide it into its children: these parameter
intervals of level k + 1 are the candidates. We then test each candidate for regularity and discard

those which are not regular. We then proceed to level k + 1 with each surviving candidate.

The regular parameters are those which are the intersection of a decreasing sequence of regular
parameter intervals. For such parameters, we are able to carry out some analysis of the maximal

invariant set Ag, .
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4.5 Strongly Regular Parameters

The regularity property is, in some sense, the minimal requirement that is needed to keep control
on the geometry and dynamics of the maximal invariant set. However, this requirement is of an
essentially qualitative character and this leads in particular to the following difficulty: we are not

able to estimate which proportion of the children of a regular parameter interval are also regular.

To circumvent this problem, we define in Section 9 a stronger property for parameter intervals,
called strong regularity. It implies regularity, and is better adapted to the inductive selection

process. It also gives additional geometric information on the maximal invariant set.

When 1 is a strongly regular parameter interval of level k, we will show in Section 9 that most
candidates of level k + 1 contained in I are also strongly regular. The proportion of discarded

candidates is less than oy, with

(4.7) D <1,

k>0

the < sign means that the sum gets arbitrarily small as €9 goes to zero. Then we can conclude
that most parameters are strongly regular in the sense that they are equal to the intersection of

decreasing sequences of strongly regular parameter intervals.

The non-uniformly hyperbolic horseshoes that are the subject of our study are exactly the maximal

invariant set A, for strongly regular g € Uy.
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5 Classes of Affine-like Iterates and the Transversality Relation

5.1 Affine-like Iterates

Let I be a parameter interval of some level.

Definition. An I-persistent affine-like iterate is a triple (P, @, n) such that
— P is a vertical strip in some R,, depending smoothly on ¢t € I;

— (@ is a horizontal strip in some R/, depending smoothly on t € I;

— n is a nonnegative integer;

— for each ¢ € I, the restriction of g to P, is an affine-like map onto @, i.e. property (AL1) of
Subsection 3.1 holds;

— for each t € I, each m € [0, n], we have g/"(P,) C R.

Examples.
1. For n = 0, the I-persistent affine-like iterates are the (R,, R4,0), a € Q.
2. For n =1, the I-persistent affine-like iterates are the (P,u/, Quar, 1), (a,d’) € B.

3. More generally, for any finite word a = (ao,...,a,) with transitions in B, the map g, of
Subsection 3.4 defined an I-persistent affine-like iterate (P, Qq,n).

Notation. If P is a vertical strip {¢_(y) < < ¢4+ (y)} we denote by 9P the vertical part of the
boundary, i.e. the two graphs {z = ¢*(y)}. Similarly for horizontal strips.

If (P, @, n) is an I-persistent affine-like iterate and I’ is a parameter interval contained in I, (P, Q, n)
also defines by restriction an I’-persistent affine-like iterate. A slightly less trivial property is given
by

Proposition 1. Let (P,Q,n), (P',Q',n’) be I-persistent affine-like iterates. We have

a) if n=n', then either P=P and Q = Q' forallt €I or PNP' =0, QNQ =0 forallt 1.

b) if n <n', then either P D> P', OPNP =0 forallt €I or PNP =0, forallt €.

Remark . Throughout the paper, except in Section 9 (where we break the symmetry assuming
d? > d°), we will keep a time-symmetric setting. Thus every property stated for the domains P's

is also valid for the images Q's. This apply for instance to part b) of the proposition.
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Proof. By the definition of an I-persistent affine-like iterate, for all ¢ € I, P is a connected

~

component of RN g, "(R) and also of [ ¢; "(R).

o<m<n
a) If n=n' and PN P’ # () for some ty € I, we must have P = P’ at ty and hence, PN P" # () for
t close to tg. It follows that P = P’ for all t € I, and also Q = Q' for all t € I.

b) Assume that n < n’ and PN P’ # () for some ¢y € I, then P’ C P at ty (since [ gt_om(ﬁ)

o<m<n/

is contained in (] g;,""(R)), hence P'N P # ) for ¢ close to to and P’ C P for all ¢ € I.

o<m<n
Let t € I, z € OP; then, gf(z) belongs to the vertical boundary of R and ¢/'""'(2) ¢ ﬁ; therefore,
z & P’. This proves that 9P N P’ is empty for all ¢t € 1. O

5.2 The Classes R([): General Overview

It would be nice to work with the class of all I-persistent affine-like iterates, but with this approach

one faces two problems:

— I-persistent affine-like iterates do not satisfy a uniform cone condition, and they do not have

uniformly bounded distortion;

— even if we force such uniformity in the definition, a major problem is that we lack some control on
the way in which long I-persistent affine-like iterates are constructed from shorter ones by simple

or parabolic composition.

To overcome these problems, we will define, for every parameter interval (whose parent is regular,
see Subsection 4.4 and the end of the present section on the definition of regularity) a subset R(I)
of the set of all I-persistent affine-like iterates; all elements of R(I) with n > 1 can be, from the
very definition, obtained from shorter ones by simple or parabolic composition; the elements of

R(I) will turn out to satisfy a uniform cone condition and have uniformly bounded distortion.

The main ingredient in the definition of R([I) is a transversality relation which is an appropriate
strengthening of condition (PC2) in Subsection 3.5. Simple composition is allowed whenever it

makes sense, but parabolic composition is only allowed when this transversality relation holds.

The definition of the transversality relation, given later in this section, is quite involved; this is
because we want some combinatorial properties proved in Section 6 to be satisfied. Such properties

make our later work much easier.

All the process of this definition is based on a double induction:
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— an induction on the level of the parameter interval, starting with Iy = [g, 2] at level 0;

— for a given parameter interval, an induction on the length n of the I-persistent affine-like iterates

which are considered.

In order for the definition of R(I) to be consistent, a number of properties (uniform cone condition,
uniform bound on distortion and many others) must hold; unfortunately, the proof of any of these
properties is inductive, using several other properties for shorter iterates. Our presentation, is
therefore, organized through the following scheme: we will first define R(I) and list all the required
properties conditioning the definition. Then we will proceed to the proofs of these properties, and
of other related ones. The whole process will occupy the rest of the present section and Sections 6
and 7.

5.3 Definition of the Special Class of Affine-Like Iterates R (/)

Let I be a parameter interval of some level.

We claim that there exists a (unique) class of I-persistent affine-like iterates which satisfy the
properties (R1)—(R7) below.

(R1) For any word a = (ao, - ..,a,) with transitions in B, the element (P, Qq, 1) (see example 3
above) belongs to R(I).

For the starting interval Iy = [gg, 2¢¢], it will turn out that one obtains in this way all elements of
R(Ip).

Recall from (MP5), (MP6) in Subsection 3.4 that all (P, Qq4,n) with n > 0 satisfy for all t € I a
uniform cone condition (AL2) with parameters \, u, v (satisfying 1 < uv < A?), and have distortion

bounded by Dgy. Let ug = u%, vy = V3.

(R2) All (P,@Q,n) € R(I) satisfy for all t € I the cone condition (AL2) with parameters A, ug, vo
and have distortion bounded by 2Dg for all t € I.

Let (P,Q,n), (P',Q’,n') be elements of R(I) such that Q C R,, P’ C R, for some a € . As both
iterates satisfy the cone condition (AL2) with parameters A, ug, vg, we know from Subsection 3.3

that the simple composition defined by
(5.1) P'=Png™P), Q"=Qng"@Q), n'=n+n
is an ([-persistent) affine-like iterate.

The next condition states that it should also belong to R(I).
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(R3) The class R([) is stable under simple composition.
We now turn to parabolic composition.

We first define two special elements which belong to R(I) according to (R1): define (Ps, Qs,ns)
(resp. (Py, Qu,ny)) to be the element (P,, Qq,n) with maximal length n such that Ly C Ps for all
t € Iy (resp. L, C @, for all t € Iy). We have that ps € Py and p, € Q. See figure 7.

Ra,
i
1 Qu Ly
A
I
I
Figure 7
We obviously have, for all t € I
(5.2) C e < |Ps| < Cey,
C'ep < |Qul< Coy.

The next condition guarantees that property (PC1) in Subsection 3.5 is satisfied.
(R4) Let (A, B) be the implicit representation of an affine-like iterate (P, Q,n) € R(I).
a) If P C P, then for all t € I we have
[ 4y| < Ceo, [ Ayy| < Ceo.
b) If @ C @, then for all t € I we have
|B;| < Cey, | Bzz| < Cep.

Here and in the sequel, the letter C denotes various constants which depend only on our initial

diffeomorphism f, but not on 7, 7, €.
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Let (Py, Qo,no), (P1,Q1,n1) be elements in R(I) with Qo C Q., P1 C Ps. In these circunstances,
we will define in Subsection 5.4 a transversality relation denoted by Qg M; P which may or may
not hold. When it holds, it implies condition (PC2) of Subsection 3.5 for all t € I (see (R7) below).

(R5) If (Po,Qo,n0), (P1,Q1,n1) as above satisfy Qo My Pi, then both I-persistent affine-like

iterates obtained from the parabolic composition g;'' o Gy o g;'° belong to R(I).

Writing (P*,Q",n) and (P~,Q, n) for these two iterates, we have n = ng+nj+ Np. The domains
Pt and P~ are the two components of g~ (Qo N G5 ' (Py)); the images Q@+ and Q~ are the two
components of g™ (P; N G¢(Qo)). See figure 6, Subsection 3.5.

When (Py, Qo,n0), (P1,Q1,n1) satisfy Qo C Qu, P1 C Ps, QoM Pi, we say that their parabolic

composition is allowed in R(I).

(R6) Any (P,Q,n) € R(I) with n > 1 can be obtained from shorter elements by simple composi-

tion or (allowed) parabolic composition.

Typically, an element of R(I) can be obtained in many ways by composition of shorter ones. We
say that an element of R(I) is prime if it cannot be obtained by simple composition of shorter
ones. Prime elements play a key role in the description of the dynamics for regular parameters in
Section 10.

It is pretty clear from conditions (R1), (R3), (R5), (R6) alone that there is at most one class R(I)
satisfying these conditions. The existence of R(I), i.e. the proof of the consistency of conditions
(R1)-(R6), is much more delicate. There is actually a seventh property (R7) formulated in the

next subsection and related to the condition (PC2) for parabolic composition.

Parent-Child Terminology and Notations for Compositions.

Let (P,Q,n), (ﬁ,@,ﬁ) € R(I) with P C P, n > 7. If there is no (ﬁ,@,ﬁ) € R(I) with P C Pcp
and n > 7n > 71, we say that P is a child of P and that P is the parent of P; if moreover n = n + 1,

we say that P is a simple child; otherwise it is a non-simple child.

Let (Po, Qo,n0), (P1,Q1,n1) € R(I). If Qp, P are contained in a same rectangle R,, the simple

composition (P, Q,n) € R(I) of these elements will be written as

(5.3) (P,Q,n) = (Py,Qo,n0) * (P1,Q1,n1),

If Qy C Qu, P C Psand Qg My P, any of the two elements (ﬁ, @, n) obtained by the corresponding

allowed parabolic composition will be written as

(54) (ﬁ7 Q\aﬁ) € (P(],Q(),TL(]) O (Pvalanl)'
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5.4 Definition of the Transversality Relation

Let I be a parameter interval of some level, and let (Py, Qo,no), (P1,Q1,n1) be elements of R(I)
which satisfy Q¢ C Q, P1 C Ps.

From (R4) the condition (PC1) of Subsection 3.5 is satisfied provided ey small enough. Denote
by (zo,yo) (resp. (x1,y1)) the coordinates in the rectangle containing Py (resp. @1). A function

C'(yo,x1) was defined in Subsection 3.5, together with

(5.5) 5(Qo, P1) = min min — C(yg, z1).

Yo x1

In Subsection 3.5, we were asking for ¢ to be much larger than |Fy| and |Q1]. From the formulas

of Appendix A, we have

(5.6) CH P < |CL] < ClPy,
(5.7) CQo| < 1Cy] < C|Qo]

We will introduce

(5.8) 6(Qo, P1) := max min — Clyo, 1),
(5.9) 6r(Qo, P1) = min max — Clyo, x1),
(5.10) drLr(Qo, P1) := max max — Clyo,z1).

All together, 6, 61, dr, dr,r are the values of —C at the four corners of the rectangle of definition
of C. We have from (5.6), (5.7) that

(5.11) C™'Qo| < 6.(Qo, P1) = 8(Qo, P1) < C|Qul,
(5.12) C7H P < 0r(Qo, P1) —6(Qo, P1) < C|Py,
(5.13) C™HQo| < OLr(Qo, Pr) — 0r(Qo, P1) < C|Qul,
(5.14) CH P < 61r(Qo, P1) — 0L(Qo, 1) < C|Py.

Preliminary Definition. We write Qo Py if the following holds
(T1) for allit e,
orr(Qo, P1) = 2|1],

(T2) for somety € 1,
5r(Qo, P1) = 2|Qo" ",

(T3) for somety €1,
5.(Qo, Pr) = 2| P [,
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Definition.

We say that Qo, P1 are I-transverse and write QoM Py if there exist a parameter interval I> I,
elements (ﬁo,@g,ﬁo), (151,621,%1) S R(f) with ﬁl D P, @0 D Qo such that @0%;]31.

Remark.
1. Taking I =1, By= Py, Q1 = Q, it is obvious that if QoM Py, then Qo Py.

2. In view of our inductive procedure, all (ﬁo,éo,ﬁo), (]Bl,él,ﬁl) which have to be considered
have been constructed before (Py, Qo,no), (P1,Q1,n1).

3. As mentioned before, the definition of the transversality relation is quite involved. Some justi-
fication for the choice of quantifiers in (T1), (T2), (T3) can be found in Appendiz C.

At first sight, it appears that properties (T2), (T3) above are not quite sufficient to guarantee
condition (PC2) of parabolic composition (Subsection 3.5), because they involve only one value of

the parameter. The next property takes care of this problem.

(R7) If (Py,Qo,n0), (P1,Q1,n1) € R(I) satisfy Qo C Qu, Pi C Ps and Qo P; holds, then, for
all t € I, we have
5(Qo, P1) = CTH(IPI + Qo).

5.5 The Class R(l))

Recall that in Subsection 4.2 we had the normalization
(4.4) 0(0,0,t) =t, It| < to.

As 6 is monotonous in both variables, it follows from the definition of C' (formula (3.18) of Subsec-
tion 3.5) that for all t € (—to, to):
(515) _€<y07$17t) <t

Therefore, for the starting interval Iy = [e0, 20|, condition (T1) above is never satisfied.

Parabolic composition is never allowed in R(Iy). Thus (see Subsection 5.3) the class R(Iy) consists

only of the elements (P, Qq4,n) given by (R1) which are associated with the horseshoe K.

Condition (R2) is satisfied because of the choice of ug, vg, Dg. Condition (R3) is obviously satisfied,
as are conditions (R5) and (R6). Condition (R4) will be checked in Section 7.
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5.6 Definition of the Regularity Property

We introduce first some terminology and some concepts related to the transversality relation.

5.6.1 Let I be a parameter interval of some level, and let (Py, Qo,no), (P1,Q1,n1) be elements
of R(I) such that Qo C @, and P; C P;. When Qp and P; are not I-transverse, two cases may
happen:

— if G¢(Qo) N Py =0 for all t € I, we say that Qo and P are I-separated,
— otherwise, we say that Qg and Py are I-critically related.

5.6.2 Let (P,Q,n) € R(I). An I-decomposition of P is a finite family (P,, Qq,n) of elements of
R(I) such that the P.s are disjoint, contained in P and satisfy

(5.16) WA R) NP = | | (WA R)n Py),

«

where WS(A,E) was defined in Subsection 2.2. We say that P is I-decomposable if it admits a
non-trivial I-decomposition. Then, there is a coarsest non-trivial I-decomposition, namely by the

children of P, which is called the canonical I-decomposition.

Remark. We will see in Section 8 that any P has only finitely many children.

5.6.3 Let (P,Q,n) € R(I). We say that Q is I-transverse if either QNQ,, = ) or Q C @, and there
exists an I-decomposition (P, Qqa,na) of Ps such that, for any «, Q and P, are either I-transverse

or [-separated.
We say that Q is I-critical when it is not I-transverse. This is always the case if Q D Q.

We also define in a symmetric way an I-decomposition for ), and I-transversality or [-criticality
for P.

5.6.4 We say that (P,Q,n) € R(I) is I-bicritical if both P and @ are I-critical. The corresponding

iterate should be seen as describing some recurrence to the “critical locus”.

Definition. Let 5 > 1. We say that the parameter interval I is -regular (or just regular when the
value of [ is fixed) if any I-bicritical element (P, Q,n) € R(I) satisfies, for all ¢ € I:

(5.17) [Pl <11, QI < 1"

Remark.
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1. When d? > d°, in Section 9 we will take for 3 a number satisfying

u’

(1 —dy)(d) +dy)
O +d) — 1)

(5.18) 1< 8 < Bae i=

Condition (Hj) in Section 1.2 is actually equivalent to Bmaz > 1. When d2 > d°, we exchange d°
and dg in the definition of Bmag-

2. We will see in Section 6 that z'ff s a B-regular parameter interval, and I C I is a candidate at

the next level, then I is at least B-reqular with
(5.19) B=p1+71)""

This will allow us to apply to candidates, with only slightly worse constants, all results that have
been proven for regular parameter intervals. But, obviously, we cannot let the regularity exponent
to deteriorate too much (it must stay > 1), which explains why candidates have to pass the /-

regularity test.
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6 Some Properties of the Classes R(/)

We recall that all parameter intervals that we consider in the sequel are assumed to be regular or

candidates (meaning in this case that their parent is regular).

6.1 Transversality is Hereditary

The following obvious but fundamental property was forced into the definition of the transversality

relation.

Proposition 2. Let I > 1T be parameter intervals. Let (Py, Qo,no), (P1,Q1,n1) € R(I) and
(ﬁo,éo,ﬁo), (ﬁl,él,ﬁl) IS R(f) Assume that Qo C Qo C Qu and P, C P, C P. If Qo and P,

are I-transverse, then Qo and Py are I-transverse.

Corollary 1. Let I O I be parameter intervals, and let (Py, Qo,no), (P1,Q1,n1) € R(f) NR(I) be

such that Qo C Qu, P1 C Ps. If their parabolic composition is allowed in R(I), it is also allowed
in R(I).

Proof. This is the case @0 = Qo, P, = P, of the proposition. O
Corollary 2. Let I O I be parameter intervals. Then R(I) C R(I).

Remark. This is a slight abus de langage of no consequence: properly speaking, we mean that the

restriction to I of any (P,Q,n) € R(I) belongs to R(I).

Proof. As simple composition does not depend on the parameter interval, Corollary 2 is an imme-

diate consequence by induction on length of property (R6). O

Corollary 3. Let I O I be parameter intervals, and let (P,Q,n) € R(f) If Q is I-transverse,

then it is also I-transverse.

Proof. If Q N Q, = 0, this is obvious. Assume therefore that Q C @Q,. Then there exists an
I -decomposition (Py, Qq,Ma)a of Ps by elements of R(f ) such that for all «, @ and P, are either

I-transverse or I- -separated.

First observe that (P, Qqa,na) € R(I) and therefore this is also an I-decomposition of Ps;. By
Corollary 1, if Q and P, are f—transverse, they are also I-transverse. On the other hand, it is

obvious from the definition that if Q and P, are jf—separated they are also I-separated. The result
follows. 0
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6.2 Criticality and Decomposability

Proposition 3. Let I be a parameter interval, and let (P,Q,n) € R(I). If Q is I-transverse, then
P is I-decomposable.

Proof. Let us first assume that Q@ N Q, = 0. Let a € @ be such that Q C R,. We have

(6.1) R.AW*(AR) (pa,a, N WA, E)) U Ly
(a,a’)eB

for each @’ € @ such that (a,d’) € B, we have the simple child of P:
(6.2) (P@),Q(@),n+1) = (PQ1) * (Paat, Quars 1),
and together they form by (6.1) an I-decomposition of P (the canonical one).

Let us now assume that @ C Q,. As @ is I-transverse, there is an I-decomposition (Py, Qq, 70 )a
of P such that, for each a, Q and P, are not I-critically related. For each « such that @ and P,
are I-transverse, let (P, QF, n, +n+ Ng) be the two elements produced by the allowed parabolic
composition. Together with the simple children defined by (6.2), they form an I-decomposition of
P. O

Corollary 4. Let I be a [-reqular parameter interval and let (P,Q,n) € R(I). If P is I-critical
and |P| > |I|? or |Q| > |I|° for some t € I, then P is I-decomposable.

Proof. Indeed, by the very definition of regularity, ) cannot be I-critical. O

The decomposability of ”fat” critical rectangles is crucial to our analysis. As mentioned before,
Corollary 4 will apply to candidate intervals with 3 = 3(1 + 7)~! instead of 3.

6.3 Concavity

The following result is a partial converse to Proposition 2. We call concavity the corresponding

property of R([I).

Proposition 4. Let I be a parameter interval. Let (Py, Qo,no), (P}, Qb, ng), (P, Q1,n1) (P, Q4,n})
be elements of R(I) such that

QCQyCQu, P CP/ CP,.

If both Qo Py and QuhrP1 hold, then QuhrP] also holds.
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Proof. From the definition (3.18) of the function C' and the monotonicity of § with respect to each

variable, it follows that we have, for each t € I:

(6.3) 5(Qo. P1) > max(3(Qp, P1),8(Qo, ) )
(6.4) 01(Qp, P1) = 0.(Qo, P1) > 00(Qo, Py),
(6.5) 0r(Qo, P1) = 0r(Qo, P1) = 0r(Qp, P1),
(6.6) min(5LR(Q'o,P1),5LR(Q0,P1/)> > 0rr(Qo, Pr).

By definition of the transversality relation, there exist parameter intervals 171, I containing I,
elements (Py, Qo, 7o), (P}, Q},7}) in R(I1), elements (P}, Qp,74), (P1,Q1,71) in R(Iy) such that
Qo C Qo, Q1 C Q1,Q) C Qy, P1 C Py and

(6.7) Qo M7, P,
(6.8) Qy iy, Pr.
If we have either Qf C Qo or P C Py, we can already conclude that QoM P. Assume therefore
that @0 C Qp, ﬁl C P{. Assume also for instance that fl - .72 We have (]31, él,ﬁl) € R(fz) and

P C P|. By the coherence property (Proposition 6 in Subsection 6.5), the element (P, Q},n})
belongs to R(I3). We will show that

(6.9) Qp hy, P

which implies that @ and P| are I-transverse. We check properties (T1)—(T3) of Subsection 5.5.
First, by (6.6) and (6.8), we have, for all ¢ € I

(6.10) Sr(Q), P) = 0Lr(Qh. P1) = 2|B).

Next, by (6.8) and (6.5), there exists o € I such that

(6.11) Sr(Qp, P) = 0r(Qp, P1) = 2|QH* .

Finally, by (6.7), there exists t; € fl C .72 such that

(6.12) 01(Qo, P}) = 2|P{|'".

For this value ¢1, we then have, by (6.4):
(6.13) 01,(Q0, PY) = 61.(Qo, PY) = 2|P{|' ™" > 2| P{|* .

We have proved (6.9) and this concludes the proof of the proposition. O
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Remark. The concavity property is very helpful in the sequel. The proof of the proposition shows

why the definition of the transversality relation had to be complicated.

Corollary 5. Let I be a parameter interval, (Po, Qo,no), (P1,Q1,n1), (Pf,Q},n}) be elements of
R(I) such that Qo C Qu, Po C P| C Ps. If P| is I-transverse and QothyPy holds, then QorhP|
also holds.

Proof. There exists an I-decomposition (P,,Qq,nq) of Q, such that, for any «, Q, and P| are
either I-transverse or I-separated. There exists « such that @, and @y do intersect. As Qorhr Py
holds, @, and P] must be I-transverse. If Q, D Qo, it follows from Proposition 2 that Q¢ and Pj

are [-transverse. If @), C Qo, the same conclusion follows from Proposition 4. O

6.4 Children are Born From Their Parent

Let I be a parameter interval, (ﬁ,@,ﬁ) be an element of R(I) and a € @ the letter such that
@ C R4. The simple children of P are given by formula (6.2) and parametrized by the elements
a’ € @ such that (a,a’) € B. All children are simple unless Q C Q..

Proposition 5. Assume @ C Qqu and let (P,Q,n) be a non-simple child of P. Then there exists
(P1,Q1,n1) € R(I) such that @ M Py and

(P’Q’n) € (ﬁ)©7ﬁ) U (Plquanl)'

Moreover, the parent P of Py is I-critical.

Proof.

1. By (R6) in Subsection 5.3, (P, @, n) is obtained from shorter elements by simple or parabolic

composition. Let us first assume that we can write

(614) (PaQan) = (PonOanO) * (Plananl)a

with ng, n1 > 0. As P is a non-simple child, we must have nq > 1. Let (]51, Q1, n1) be the element
of R(I) such that Py is the parent of Py. If P| was a simple child, one would be able to write

(6.15) (P1,Q1,m1) = (P1,Q1,71) * (Paat, Qaars 1)

for some (a,a’) € B, and then

(616) (P7 Q7 n) = (ﬁ()’ éO? ﬁO) * (Paa’a Qaa’a 1)
where
(617) (ﬁ(b @07ﬁ0) = (P07 QOanO) * (ﬁla élaﬁl)‘
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Thus P would be a simple child, in contradiction with the assumption of the proposition. Therefore,

P is a non-simple child; by induction on the length, we can write

(6.18) (P1,Q1,n1) € (P1,Q1,71) O (P2, Qa,n2)

for some (P2, Q2,n2) € R(I). We must have

(6.19) Q1 thy P.
We define
(6.20) (Po, Qo, 7o) == (P, Qo,m0) * (Pr,Q1,71).

We then have Qy C Q1 and hence, from (6.19) and Proposition 1
(6.21) Qo thy Ps.
Thus, the parabolic composition of (]50, CNQO, np) and (P2, Q2,n2) is allowed; we obviously have:

(6.22) (P,Q,n) c (ﬁo,@o,ﬁo) O (PQ,QQ,TLQ).

2. We have shown so far that it is always possible to write

(623) (Pa Q?n) € (P07Q07n0) 0 (Plananl)

for some allowed parabolic composition in R(I). We take ny maximal in (6.23), and assume by
contradiction that ng < 7. Let (P, Q1,71) be the element of R(I) such that Py is the parent of P;;
let (P}, Qf, 1) be the element of R(I) such that Pj is the child of Py containing P. As ng < n, we
have n{, < n. As g;"°(P) C L, by (6.23), P} must be a non-simple child. Then, from the induction

hypothesis, we can write
(6'24) (P(/)7Q67n6) € (P07Q07n0) U (P{anhn/l)

for some (P}, Q",n}) € R(I) with P, > P;. We have thus P/ D P;. As Qg is I-transverse to P}, it
is also I-transverse to P, (Proposition 2), and we can define (Py, Qo, ) € R(I) by

(6.25) (Po, Qo, o) € (Po, Qo,m0) O (Pr,Q1,71),

and Py O P. If P, was a simple child of ﬁl, P would be a simple child of B,. Therefore, by the

induction hypothesis, we can write

(6.26) (P, Q1,m1) € (P1,Qu1,711) O (Pz, Qo.ma).

for some (P3, Q2,n2) with lerh[Pg. But then @()m[PQ (Proposition 2) and we have
(6.27) (P,Q,n) € (Po,Qo,7io) O (Py,Q2,m2)
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which contradicts the maximality of ng. We have proven the first part of the proposition.

3. Assume by contradiction that the parent 151 of Py is I-transverse. As QoM P, we have ]31 C F.
There exists, therefore, an I-decomposition (P, Qqa,nq) of @, such that @, and P, are never
critically related. By definition of an I-decomposition, there exists a such that g™ (P) N Qq # 0

then @), and Py are not T -separated and they must be I-transverse.

As QN Q, # (), we have either Q C Qa, and Qrh; Py by Proposition 2, or Q O Qa, and Qrh; Py
again by concavity (Proposition 4), because both @arh Iﬁl and @m 7P hold. Thus, we can define
(P,Q,7) by

(6.28) (P,Q,n) € (P,Q,7) O (Py,Qu, ),

and P C P. We then have P C P C ﬁ, P % P, P #* ﬁ; thus, P would not be a child of P. O

6.5 Coherence and Parametric Concavity

The coherence property, asserted in the next proposition, means that larger rectangles are con-

structed before thinner ones.

Proposition 6. Let I C I be parameter intervals, and let (P,Q,n) € R(I), (P,Q,n) € R(I). If
P C P, then (P,Q,n) € R(I).

The next property, called parametric concavity, is another partial converse to Proposition 2; it is

formally very similar to Proposition 4.

Proposition 7. Let I C I’ be parameter intervals and let (Py, Qo,no), (P, Q4 ng), (P1,Q1,n1) be
elements of R(I") such that Qo C Q) C Qu and Py C Ps. If both Qo P1 and QurPi hold, then
Qo Py also holds.

Obviously there is a similar statement exchanging P’s and Q’s. In the proof of Proposition 6, we

will use the following result, which is of independent interest.

Proposition 8. Let I be a parameter interval, and let (P,Q,n), (P',Q',n), (P",Q",n") be ele-
ments R(I) with P C P' C P", P' # P". We have:

a) If (P,Q,n) = (P",Q",n") % (P1,Q1,m1) for some (P1,Q1,n1) € R(I), then
(P, Q' n') = (P",Q",n") » (P{,Q1,n1)

for some (P{,Q},n}) € R(I).
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b) If (P,Q,n) € (P",Q",n") O (P1,Q1,m1) for some (P1,Q1,n1) € R(I), then
(P,Q',n') e (P",Q",n") O (P[,Q1,n])

for some (P, Qy,n}) € R(I).

Proof of Proposition 8. We only consider case b), case a) being similar but easier. It is sufficient
to consider the case where P’ is the parent of P. Let (ﬁl, Q1, n1) be the element of R(I) such that
P, is the parent of P;. We claim that Q" and P, are I-transverse.

Indeed, let (P,Q,7) € R(I) such that P is the child of P containing P’. As ¢"'(P) C L,, P is a
non-simple child; by Proposition 5, there exists (P, Qq,71) such that

(6.29) (P,Q,n) € (P",Q",n") O (P1,Q,m1).

We then have Q"”th;P; and Py D ﬁl; the claim then follows from Proposition 2.
We can therefore define (P, Q,7) € R(I) by

(6.30) (P,Q,7) € (P",Q".n") O (P, Q1,7)

and P C P. Let us show that P = P’. Otherwise, we have P’ C P, and P’ # P. Let (ﬁ, @,ﬁ) be
the element of R(I) such that P is the child of P containing P’

If P, was a simple child of ]51, we would have 7 =ny — 1 and n = n — 1, forcing P=r. Hence,
Py is a non-simple child; this implies that ¢”(P) C L, and that P is also a non-simple child. By
Proposition 5, there exist (Pa, Q2,n2), (]32, @g,ﬁg) in R(I) such that Py, C P, and

(6.31) (P1,Q1,m1) € (P1,Q1,71) O (P, Q2,n2),
(632) (ﬁa @7ﬁ) € (ﬁvéaﬁ) 0 (ﬁ27@27ﬁ2)‘

Then both @1 My Py and @mﬂ% hold. By concavity (Proposition 4), we also have @1 m[ﬁQ. We then
define (181, @hﬁl) by:

(6.33) (P1,Q1,71) € (P1,Q1,711) O (P, Qa,7ia)
and P C ]31. Then P C ]31 - ]51 and ]31 is distinct from P; and ]31, which contradicts that ]31 is

the parent of P;. O

Proof of Proposition 6. It is sufficient to consider the case where P is the parent of Pin R(I). Let
(P, Qo, np) be the element of R(f) such that Py is the parent of P in R(T) We want to show that
Py = P. This is clear if P is a simple child of Py. We assume therefore that Pisa non-simple child
of Py. We know that P C Py. By Proposition 5, there exists (ﬁl, @1, ny) € R(f) such that

(634) (ﬁ7@7ﬁ) € (POaQ()vnO) 0 (ﬁb@laﬁl)
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with Qorhjﬁl. By Proposition 8, there exists (P, Q1,n1) € R(I) such that

(6.35) (P,Q,n) € (Py,Qo,n0) O (P1,Q1,n1)

with QohyP;. By induction on the length, as ﬁl C P, we must have (P,Q1,n1) € R(f) By
parameter concavity (Proposition 7), as both Qorhflgl and Qo P hold, QorhzPy must also hold,

which implies (P, Q,n) € R(I). O

Proof of Proposition 7. By definition of the transversality relation, there exist parameter intervals

I > 1,7 >TI and elements (Py, Qo, 7o), (P1,Q1,71) € R(I), (B}, Qp,7h), (P}, Q},7,) € R(I)
such that QOCCNQO, Qécéﬁa P1C151,P1C131/ and

(6.36) Qo hy, P,
(6.37) Qp thy P

both hold. If either Q) C Qo or I' C I, we conclude immediately that QoM P holds. Assume
therefore that Qo C Q and IC I Let Py be the largest of P, ﬁ{

If P, C P|, (P/,Q",7}) € R(I') by coherence (Proposition 6), hence (P}, Q*,n*) always belong to
R(I"). We will show that

(6.38) Qp M= P}

holds, which implies QP .

We check properties (T1)—(T3) of Subsection 5.4. For all t € I’, we have by (6.36) and (6.6)
(6.39) SLr(QY, Pr) = OLr(Qo, 1) > 2|T.
By (6.37), there exists to € I € I’ C I’ such that

(6.40) 0r(Q0, Pi) = 2|Qp|" .

Then, by (6.5), for the same ¢y, we have

(6.41) Sr(Qo: PY) = 0r(Qp, PY) = 21Qp" "
When P; = P/, it follows directly from (6.37) that we have

(6.42) 50.(G) ) > 2P

for some t; € IcT.

When Pf = Py, we use (6.36) and (6.4) to find ¢ € I’ such that
(6.43) 5(Q, ) > 61(Go Pr) > 2P
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We have thus proved (6.38). O

Remark.

1. The coherence property means in particular that the parent-child relation does not depend on

the parameter interval (once both parent and child are defined).

2. We have presented together Propositions 6, 7 and 8 because the proofs are interconnected.
But, actually, coherence (Proposition 6) was already used in the proof of Proposition 4. Logically
speaking, all properties in Sections 5-7 should be proved together (as was already mentioned in
Section 5).

6.6 Further Criteria for Transversality

In this subsection, we give other sufficient conditions for transversality that can be seen as partial

converses to Proposition 2.

Proposition 9. Let I be a parameter interval and let (P,Q,n), (Po,Qo,n0), (P1,Q1,n1) be el-
ements of R(I) such that Q C Q. and Py C P, C Ps. Assume that QthyPy holds and that
2|Py |17 < |I| for some t1 € I. Then Q and Py are also I-transverse.

Proof. By definition of the transversality relation, there exist I D I, (]5, Q, n), (]50, Qo, ng) € R(f)
such that Q C @, Py C ﬁo and @ﬁfﬁo.

If P C ﬁo this already implies that QM;P;. Let us assume that ]30 C P;. We will show that @ﬁfPl

holds. By coherence (Proposition 4), we have (P, Q1,n1) € R(I). Let us check (T1)—(T3).

By (T1) for Q, Py and (6.6), we have, for all t € I:

(6.44) SLr(Q, P1) > 61Lr(Q,Py) > 2/I.
By (T2) for Q, Py and (6.5), there exists tg € I such that
(6.45) Sr(Q,P1) > Or(Q,Fy) > 2QI"™.
Finally, we have, for all ¢ € I, by (5.14)
(6.46) 0L(@,P1) > 0Lr(Q, 1) —C|P
> 2| — C|P|.
But, for t = t;, we have, if g¢ is small enough
(6.47) 2I| — C|Py| = 4|P|1 " — C|Py| > 2|P |,
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Proposition 10. Let I be a parameter interval and let (P,Q,n), (FPo,Qo,n0), (P1,Q1,n1) be
elements of R(I) such that Q C Qu, Py C Py C Ps. Assume that Qhr Py holds and that |Pi| < £ |Q)|
forallt € I. Then Q and Py are also I-transverse.

Proof. The argument is the same as in Proposition 9, with a slight difference to check (T3) for @,
Pi. We use (5.13), (5.14) to obtain, for the value #y of the parameter given by (T2) for Q, Pp:

(6.48) 0L(Q.P) > r(Q .P)—C|P,
> 2Q"" - C|Pi],
> 202/R))' 7" - OlP,
2 2|P1‘1*777
if ¢ is small enough. O

Proposition 11. Let I C I’ be parameter intervals and let (Py, Qo,no), (P1,Q1,n1) be elements of
R(I') such that Qo C Qu, P C Ps. Assume that Qothy Py holds and that we have 2|I'| < |Py|*",
for allt € I. Then Qo and Py are also I'-transverse.

Proof. By definition of the transversality relation, there exists 7> 1, (]50, éo,ﬁo), (]51, él,ﬁl) €
R(f ) such that Qo O Qo, PL O P, and é}oﬁfﬁl holds. If I O I, this already implies that Qo Py
holds. Assume thus that I C I’. We show that QoM P;.

Conditions (T2), (T3) in I’ follow from the same conditions in I. For the value ¢; given by (T3),

we have

(6.49) Srr(Qo, P1) = 00(Qo. P1) > 2[Py|'™" > 4|I'|.

By Corollary 11 in Subsection 7.6, this implies
(6.50) Spr(Qo, P) =2, Vtel.

which is (T1). O

6.7 A Structure Theorem for New Rectangles

6.7.1 Associativity of Parabolic Composition. Let I be a parameter interval, and let
(Po, Qo, n0), (P1,Q1,n1), (P2, Q2,n2) be elements in R(I) such that Qy C Qu, Q1 C Qu, P1 C Ps,
P, ¢ P,. We assume that both Qorhy P and Q1rhy P> hold.

Parabolic composition of (Py, Qo, no), (P1, Q1,n1) produces two elements (5, Q1> 7a1)s (Por, Qors o1 )-
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As Qarl and @, are contained in @1, it follows from Prop. 2 that both Q(ﬁ M7 Py and Q7P hold.

In the same way, parabolic composition of (Pi,Q1,711), (P2, Q2,n2) produces two elements (P,
Q5. n15), (Pr3, Q1a,n1) such that both Qorhy Pyl and Qorhr Py hold.

It is clear that the four elements of R(I) obtained by parabolic composition of (P}, Qg;,na;) or
(Py1s Qpysngy) with (P, @2,n2) are the same as the four elements obtained by the parabolic com-
position of (Py, Qo, no) with (Pl'g, Qs nE) or (Pp5, Q15, nj5). Their domains are the components
of PyN(Grog®) 1PN (Grogt oGrog®) LR If (P,Q,n) is any of these four elements, we will

write

(6.51) (P,Q,TL) S (P[),Qo,n()) O (Pl,Ql,nl) O (PQ,QQ,TLQ).

The same considerations extend immediately, by induction on k, to the case of elements (Py, Qo, no),
(Pg, Qr,n) such that P, C Ps for 0 < i < k, Q; C @, for 0 < i < k, and @Q;h;P;4; holds for
0 <4 < k. Then the successive parabolic compositions of (Py, Qo,n0), - - -, (P, Qx,nx) produce 2F

elements and we will write for any such element (P, Q,n):

(6.52) (P,Q,n) S (Po,QQ,nO) ... O (Pk,Qk,nk).

6.7.2 Statement of the Structure Theorem. We have seen in Subsection 5.5 that parabolic
composition is never allowed in the class R(Iy) associated to the starting interval Iy = [eq, 20
This class consists exactly of the affine-like iterates associated to the Markov partition of the initial

horseshoe Ky,.

On the other hand, for elements (P, @), n) belonging to some class R(I) but which are not (restric-
tions of) an element of R(1y), parabolic composition must occur. The following theorem gives some

rather precise information on this process.

Theorem 1. Let I, be a parameter interval of level > 0, T be the parent interval, and let (P,Q,n)

be an element of R(I) which is not (the restriction of) an element of R(I). Then there exists

k > 0, elements (Py,Qo,n0), -+, (Px, Qr,nk) of R(I) such that Q; C Qy for 0 <i < k, P; C P
for 0 <i <k, QithyPiy1 holds for 0 <i <k, Qith7P;11 does not hold for 0 <i <k and

(Pvan) € (POaQOanO) a..-o (Pk7Qkank)

Moreover, these elements are uniquely determined by these conditions, P; is I-critical for0<i <k
and Q; is I-critical for0<i<k.

6.7.3 We will first introduce a concept, relative to an element (P, @, n) as in the theorem above,
that leads to the determination of the (P;, Q;,n;).
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Let m, p be integers such that 0 < m < p < n. We say that [m,p] is an I-interval if there exists
(P,Q,n) € R(I) such that

g"(P)C P forall tel and 7 =p—m.

Lemma 1. The union of two I-intervals with non empty intersection is an I-interval.

Proof. Let [m,pl, [m/,p'] be these I-intervals, and let (ﬁ,@,ﬁ), (ﬁ’,@’,ﬁ’) be the corresponding

elements of R(I). Without loss of generality, we may assume that m < m’ < p < p’. Replacing if
necessary P by a larger rectangle, we also assume that the element (ﬁ, @, n) of R(f ) such that P

is the parent of P satisfies m + 7 < m/. There are now two cases:
a) p=m'.

Let R, be the rectangle containing Q. Then R, D Q = ¢"(P) D g?(P) = g™ (P); thus P’ is also
contained in R, and the simple composition

(6.53) (P, Q") = (P, Q,7) * (P, Q)
is defined. We have m +n” = p’ and g/"(P) C P”.

b) p>m'.

Then, P is not a simple child of ]3, because otherwise we would have n = n —1 > m/ — m. By
Proposition 5, there exists (Py, Qo, ) in R(I) such that

(654) (ﬁ’ ©7ﬁ) € (ﬁ’ éjvﬁ) O (ﬁDuQOaﬁO)'

The element (ﬁo, Qo, ng) of R(f) is associated to the I-interval [m, p], where m = m+n+ Ny. We
have m 4+ 7 < m/ and g7"""(P) C Ly, hence also m 4+ 7 + Ny = m < m/.

To conclude the proof, we argue by induction on the total length p’ — m of the interval considered.
The case p’ —m = 0 is trivial. In the other case, we have the I-intervals [m, p] and [m/,p/] with
m < m < m' and hence by induction [/, p'] is an I-interval. Let (P, Q1,7;) be the corresponding
element of R(I); we have ¢/*(P) C P, C Fy. From (6.54), @m;ﬁo holds, hence also does @m;ﬁl by
Proposition 2. Then, the parabolic composition of (]3, @, n) and (151, Q1, n1) is allowed and defines

an element of R(I) which guarantees that [m,p'] is an I-interval. O

6.7.4 We will now show that the (P;,@;,n;) in the theorem are uniquely determined by their
properties. Indeed, define mg = 0, pg = ng and for 7 > 0:

(6.55) m; = pi—1 + No, pi = m; + n,.
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Lemma 2. The mazimal I-intervals are exactly the [m;,p;], 0 < i < k, with associated elements
(Pi, Qismi).

Proof. First, the [m;,p;] are indeed I-intervals with associated elements (P;, Qi,n;). To complete
the proof, it is sufficient to show that no I-interval [m, p] can intersect a gap (p;, miy1). Assume
by contradiction that there exists such a [m,p] with associated element (P,Q,7) and minimal
n=p-—m. As ¢g"(P) C g*"Pi(L,) does not intersect R for p; < { < m;1, we must have m < p;

and m;y; < p. By property (R6) of R(I) (Subsection 5.3) and the minimality of n, there exists
(Py, Qo,70), (P1,Q1,71) in R(I) such that

(6.56) (P,Q,7) € (Py,Qo,m0) O (Pr,Q1,71)

with ng = p; — m < ny, N1 = p — mi+1 < njy1. But then, from @0 D @, ]51 D Piy1 and éomfﬁh
we deduce from Proposition 2 that Q;M;P;41 holds, a contradiction. O

6.7.5 Lemma 2 allow us to define k as being the number of maximal I-intervals minus one, and
to define the (P, Qi,n;) € R(I) as the elements of R(I) associated to the successive maximal
I-intervals. Observe that the maximal I-intervals [mi, pi], (0 < i< k) must indeed satisfy my = 0,
miy1 = pi + No for 0 < i < k: every £ € [0,n] not contained in an I-interval is such that
g N(P) ¢ L, for some 0 < N < Ny and then no I-interval intersects with (£ — N, — N + Ny),
while {[{ — N,{ — N + No]} are I-intervals. We observe also that QiM7Pi11 does not hold because

otherwise [m;, p;+1] would be an I-interval.

6.7.6 Let 0 <@ < k. Let us assume by induction over i that P; is I-critical for 0 < J <1, Qs
I-critical for 0 < J <, QjMrPjt1 holds for 0 < j < i and that we have an element of R([):

(6.57) (PD,QW py) € (Py,Qo,n0) O--- O(Ps, Qi i)

such that P ¢ P(®. The assumption is vacuously true for i = 0. We will prove it at step i+ 1. For
i = k, it gives the properties stated in the theorem for the (P;, Q;, n;).

6.7.7 We first prove that Q; is I-critical. Assume by contradiction that Q; is I-transverse. Then
P;is I -decomposable. Let (]31, @u n;) be an element of R(f ) such that ﬁ, is a child of P; intersecting
g™ (PN A). On the other hand, let (P® Q@ 7)) be the element of R(I) such that P is the
child of P containing P. We apply Proposition 5 twice. We find (fN’Hl, @i+1,ﬁi+1) in R(I),
(Pl 1, Q' 1,y y) in R(I) such that

(6.58) (P, Qi) € (P, Qiyng) O (PLoy, Qs ),

If we had n}, | > n41, from Qirhfﬁiﬁrl and Q(i)m[é_i'_l, we would deduce first by Proposition 2 that
Qirh 115;-' 1, then by concavity (Proposition 4) that Q;h [§i+1; parabolic composition would yield an
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element (P;,Q;,m;) € R(I) with P,;fzgpz in contradiction with coherence (Proposition 6) and
the definition of ID;

Therefore, we must have nj ; < 7;41; as 1M < n, we have also m; + n; < n, and [mi, m; + 1) is

an I-interval strictly larger than [m;, p;]; this contradiction shows that Q; is I-critical.

6.7.8 The proof that P;; is I-critical is rather similar. We assume by contradiction that it is I-
transverse. Then Q;1 is I-decomposable and we can find (P, Qipi,niyq) € R(I) such that Q* .

is a child of Q;41 intersecting gPi+1(P N A). By Proposition 5, there exists (P*(i), Ski), ng)) € R(I)
such that

(6.60) (Pry, Qi) € (PY.QY 0l O (P, Qisr, niga).

If we had ngj) > p;, we would derive a contradiction as follows: we should have Q¥ 1 P41 either (if
Nit1 < njtpq) from Q@)mléH by Proposition 2 or (if 77,41 > n;;1) from Q(i)m]é+1 and fo)mlpm
by Proposition 4; then, parabolic composition of (P®, Q™ p;) and (Piy1,

Qit1,ni41) produces an element (PG QU+ p; 1) in R(I) with Qi+12Q(i+1)2Qf+l, which is
not compatible with coherence (Proposition 6).

Thus, we must have ng) < pi; then we also have nf | < pi1 and [pi1 —nj 1, pit1] is an I-interval

strictly larger than [mji1,pit1]. This contradiction shows that Py is I-critical.

6.7.9 We now prove that Q(i) and P;1q are I-transverse. If n;11 < n;+1, we have Q(i)m[ﬁi+1 by
(6.59) and thus also QW Py by Proposition 2. Let us assume that 77;41 > n;11. In this case,
we claim that Q;y1 is I-critical. Indeed, if it was I- -transverse, P; 11 would be I- -decomposable and
we would find an element (fA’Hl, @Hb Nit1) of R(f ) such that J/D\Hl is a child of P;;1 intersecting
g™+ (PN A). By coherence (Proposition 6), we should have ]3i+1 D ]5i+1 and [myy1, M1 + Nig1]

would be an I-interval larger than [m;y1,pi+1], a contradiction.

As (Pit1, Qit1, nit1) is I -bicritical, and the parent interval I is always assumed to be (-regular,

we have, for all t € I

(6.61) Pl < |17
and thus also (with ¢ small enough)

(6.62) 2P| < |-

It now follows from Proposition 9 and Q(i)m ]ﬁ@'+1 that Q(i) and P;,1 are [-transverse.

6.7.10 When i =0, Q¥ = Qo and we have already shown that Q; and P, are I-transverse.

When ¢ > 0, (P;, Q;,n;) is I-bicritical and, therefore, we have for all t € I:

(6.63) Qi < |1°,
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and thus also
(6.64) 2Qu"" < 1.

It follows from Proposition 9 and Q@ 1Piy1 that QQ; and P;41 are I-transverse.

To conclude the induction step of 6.7.6, we simply observe that the parabolic composition of
(P(i), Q(i),n(i)) and (P41, Qi+1, ni+1) is allowed in R(I); it produces an element (P(“'l), Q(i+1)7pi+1) €
R(I) such that PC+D intersects P and therefore contains P.

The proof of the theorem is now complete.

6.7.11 In the next two Corollaries, the setting and notations are those of Theorem 1.

Corollary 6. For allt € I, we have

k
|P| < CH|Po| | Py | Pe| |T]72

Proof. We have P = P%) | with P defined in (6.57); we prove that, for all t € I
(6.65) PO < CI|Ry|--|Bi| |1]73.

As PO = Py, this is true for i = 0. The induction step is a consequence of the key estimate (3.27)

for parabolic composition if we know that, for all ¢t € I:
(6.66) 5(QW,Piyy) > |1I.

As Q; and P;;; are I-transverse, there exists I* D I, (P}, Qf,n}), (P, Qi 1,njy) € R(I*) such

that Q; C Qf, Piy1 C P, and Q;ka[*P{:_l holds. From (T1) in Subsection 5.4, we have, for all
tel*

(6.67) oLr(Q7, Piy1) = 2|I7.
From (6.3), (5.11)—(5.14) and (R7), we get, for all ¢t € I:
(6.68) 5(QW, Pyy) = 8(Q;, Pfy)
> 0Lr(Q7, Piy1) — c(| Py | + Q7 )
> 5 0un(Qi, Pro)
> |I"] > |1,
which concludes the proof. [

Corollary 7. For all0 <i <k, andt € f, we have
1B < |17,

For allt € I, we also have
1

Pl < efT] 7
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Proof. The first assertion is an immediate consequence of the regularity of the parameter interval
I, because (P, Qi,my) is I-bicritical for 0 < i < k.

For the second assertion, we first observe that in the proof of Corollary 6, we must have I* = [

because Qi —1M7P; does not hold; for the same reason, there exists t* € I such that
(6.69) SLr(Qir PR) < 2.
But then, from (6.6) and Corollary 11 in Subsection 7.6, we have, for all ¢ € I:

(6.70) 0(Qr—1,Pr) < dLr(Qr—1,Fr)
< 6Lr(Qk—1, P)
< .

From (R7), we have, for all t € [

(6.71) §(Qr—1,Pr) > ¢ P
and the second assertion of the Corollary follows. O
6.7.12

Corollary 8. Any (P,Q,n) in R(I) but not in R(I) satisfies, for allt € I:

1P| < 1]z, QI < ]2

Proof. From (6.70), (6.71) and (3.27), we actually have, for all t € I

1
(6.72) [Pl < [Pof 112,

and we must have |Py| < 1 as Qo C Q. O

6.7.13

Corollary 9. Any candidate interval I is B-reqular, with 3 = 3(1 + 1)~ L.

Proof. Let (P,Q,n) be an I-bicritical element of R(I). If (P,Q,n) belongs to R(I), then it is

I-bicritical and we have, for all ¢t € I:

(6.73) max(|P|, Q) < |I]®=1)".
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Assume now that (P, @, n) does not belong to R(I). We apply Theorem 1. The element (P, Qo,no) €
R(f ) is I-bicritical: Qo is I-critical by Theorem 1, and Py is I-critical because P is I-critical. Ap-
plying Corollaries 6 and 7 gives, for all t €

1
(6.74) [P| < C|Rol [Pl [1]72
< Cmﬁ-i-l—% (1+T),

with 8+ 1 — % (1+7)>p0+ %, so I-bicritical elements are much thinner in this case. O

Remark. The same phenomenon will be important again in Section 9: “fat” bicritical elements

were created much earlier.

6.7.14 The last result in this section is a complement to Proposition 5 in Subsection 6.4.

Let I be a parameter interval, and let (P,Q,7), (P,Q,n) be elements of R(I) such that P is a
non-simple child of P. From Proposition 5, we know that there exists (P, Q1,n;) € R(I) such
that Qrh; P, holds and

(6.75) (P,Q,n) € (P,Q,n) 0 (P, Q1,m).

Proposition 12. Assume moreover that P is I-critical. Then, for allt € I we have

5(Q,P) > |P|

=

Proof. Consider first the case where @ is I-critical. Then (ﬁ, @, n) is I-bicritical. From Corollary 9,

we know that I is B-regular and therefore we have, for all t € I:
(6.76) 1P| < |I)°.

On the other hand, as Qrh; P, holds, we can find (ﬁ*,@v*,ﬁ*), (Pf,Q1,n7) € R(I) with Q C Q,
Py C P such that, for all t € 1

(6.77) SLr(Q%, Pr) = 2|1,
From (R7) (cf. Subsection 5.4) and (5.11)—(5.14), it now follows that
5(Q", PY)

Z
> L6R(Q%, P)
> |1

(6.78) 5(Q, P))

W
v
@l

From now on we assume that @ is I-transverse. Let I* D I be the largest parameter interval such
that (P,Q,n) € R(I*) and Q is I*-transverse. As the transversality relation never holds for the
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starting interval [gg, 2e9] = Ip, I* is not equal to I. Let I* be the parent of I*. We claim that for
all t € I'*, we have:

(6.79) Pl < |TF)P = |17,
Indeed, from the definition of I*, we have that either (]5, Q, n) ¢ R(f*), or (]5, @,ﬁ) € R(f*) and
@ is I*-critical. In the second case, (ﬁ, @, n) is I*-bicritical and I* is [-regular, which gives (6.79).

In the first case, we obtain from (6.74) in the proof of Corollary 9 (where only the I-criticality of
P was used) that, for all t € I*

~ ~ 1 =
(6.80) |P| < C|I*|P*3 < |I*)°.
The claim is proved.

As @ is I*-transverse, there exists an I-decomposition (Pa, Qa,na) of Py in R(I*) such that, for
any «, @ and P, are either [*-separated or I*-transverse. There exists ag such that P; and F,,
intersect; Q and P,, must be I*-transverse. This implies, as for (6.77) above, that we have, for all
tel*:

_ 3.
(6.81) 0@, Pag) = 5 II"].
If P, C P,,, we have

(6.82) 3(Q.P1) > 8(Q, Pay).

If P,, C Py, we have from (5.11)—(5.14) and (R7), for all ¢ € I:

(6.83) 5(@.7) > 2 n(@,P)
> §5R(@»Pao)
> % 5(Q, Pay)-
In all cases, combining this with (6.81) and (6.79) gives the required estimate. O
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7 Estimates for the Classes R(/)

7.1 A Stretched Exponential Estimate for Widths

The next proposition is a substitute for the uniform exponential estimates for widths that are

characteristic of the uniformly hyperbolic dynamics. We denote by ~ the constant

log 2
1 = 2 1).
(7.1) 1= 2 € 01)

Proposition 13. Let I be a parameter interval and let (P,Q,n) be an element of R(I). For all
t €1, we have
|P| < C exp(—n")

with the stronger estimate
|P| < C exp(—2n")

when the parent of P is I-critical.

Proof. 1f I is the starting interval Iy = [gg, 2e¢], a stronger exponential bound actually holds. The
proof is by induction on n, and the estimates are therefore valid when n = O(log £,') (in which
case (P,Q,n) € R(Iy)). Let (P,Q,7) be the element of R(I) such that P is the parent of P. In
the case where P is a simple child of 13, the bound for P easily follows from the bound for P. Let
us therefore assume that P is a non-simple child of ]5, in which case there exists by Proposition 5
an element (P, Q1,n1) € R(I) such that Q; Py holds, the parent of Py is I-critical and

(72) (P7Q’n) € (ﬁvévﬁ)D(Plananl)'

By the induction hypothesis, we have

(73) B < Coxp(i),
(7.4) |P1| < Cexp(—2n])
From (R7) and (3.27), we have, for all t € I:

14 -1
(7.5) [Pl < CIP[[A] 2 < [P[|R]2,
and this gives
(7.6) |P| < exp(—n” —n]).

This proves the required estimate in the general case, because, when n and ny are large, we have
(7.7) n’+n] > (M+n+ Npg)? = n.
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Assume now that P is I-critical. Instead of (7.3), we have

(78) P| < Cexp(-2"),

and then from (7.5) we obtain

(7.9) |P| < exp(—2n" —nj).

This will be useful when 7 > n1. When n < ny, we prefer to rely on Proposition 12 which gives

(7.10) 3(Q,P) > |PVP > |P|.

When we use this in (3.27) and combine with (7.4) and (7.8), we get
(7.11) |P| < exp(—n” —2n]).

To get the required estimate from (7.9), (7.11), we have only to observe that the function u —

,3] and equal to 2 for u =0 and u = % O

uY +2(1 — u)? is concave on [0 5

7.2 Uniform Cone Condition

In this subsection, we will check that all elements (P, Q,n) € R(I) satisfy the cone condition (AL2)

1/2 1/2

of Subsection 3.2 for the parameters A, ug, vy of Subsection 5.3: we have ug = u , and

all (P,Q,n) € R([eo,2¢0]) satisfy (AL2) with parameters A, u, v.

, Vo =V

Let (A, B) be the implicit representation of the affine-like iterate (P, @, n); we have to prove that

(AL2) Aol + w0l Ay < 1,
A By| +v|B;| < 1.

Let u; = u%, v = vi. We will prove that, for all ¢ € I, we have
(7.12) 1Ay < url, |B.| < vt

This is sufficient to obtain (AL2): we already know that if (P, Q,n) € R(Iy) them (AL2) is satisfied;
on the other hand, if (P,Q,n) € R(ly), then, for all ¢t € I, we have from Corollary 8

1 1
(7.13) |A,| < Ceg, |By| < Ced;
with eg small enough, (7.13) and (7.12) give (AL2).
Let us now proceed with the proof of (7.12). When (P, Q,n) € R(Ip), we have the stronger estimate:

(7.14) 1Ay < ul, |B.| < v7L.
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Let (P, Q,7) be the clement of R(I) such that P is the parent of P. Denote by (A, B) the implicit

representation of the corresponding affine-like iterate.

If P is a simple child, we use formula (3.11) of Subsection 3.3 to obtain
(7.15) Ay — Ayl < CIP[Q]

If P is a non-simple child, it is obtained (Proposition 5) by the parabolic composition of (]5, Q,n)
with some (P, Q1,n1); we use formula (3.30) of Subsection 3.5 to obtain

- SR 1
(7.16) [Ay — Ayl < C|P[Q[(6(Q, 1))~ 2.
From (R7), 6(Q, P,) is much larger than |Q|. In all cases, we have
(7.17) 4, — A, < CIP| < Cexp(—i),

where we have used Proposition 13 in the last inequality. We only need (7.17) when n is large
(because we already have (7.14) otherwise), and the series ) exp(—n?) is convergent. Therefore
(7.12) is a consequence of (7.14) and (7.17).

The proof of (AL2), i.e., the first part of condition (R2) in Subsection 5.3, is now complete.

7.3 Bounded Distortion

We now check the second half of property (R2) in Subsection 5.3. We have to prove that, for all
(P,Q,n) € R(I), we have the following estimate on distortion:

(7.18) D(gi'/P) < 2Dy.

Here, the constant Dy corresponds to the stronger estimate we obtain from (MP6) when (P, Q,n) €
R(Io):

(7.19) D(g;'/P) < Do.

For m > 0, define

(7.20) D(m) = sup sup D(g;'/P).
(P,Qn)eR(I) tel
nm

To obtain, by induction on m, a bound for the non-decreasing sequence D(m), we combine (7.19),
(which gives D(m) < Dy for m = O (log e;')), Proposition 13 and the bounds (3.13) in Sub-

section 3.3 (for simple composition) and (3.29) in Subsection 3.5 (for parabolic composition). We

set

(7.21) Ds(m) = max Ds(n,n’)
n>0,n'>0
n+n'<m
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with
(7.22) Ds(n,n') = D(n) + c exp(—n")(D(n) + D(n')).

We also set

7.23 D, (m) = D, (n,n'

(7.23) o) = max Dy n.)
n+n'+No<m

with

(7.24) Dy(n,n’) = D(n) + c exp(—nn?).

Then, we have, as long as D(m) is not too large (cf. the condition for (3.29) to hold)
(7.25) D(m) < max(Dg(m), Dy(m)).

The reason for formula (7.24) to hold is that the term ¢ |P|d~! of (3.29) is smaller than |P;|" by
(R7); then one uses Proposition 13.

It is now clear that (7.18) follows from (7.19), (7.21)—(7.25).

7.4 Estimates for the Special Rectangles P, and @,

In the next subsection, we will check the estimates contained in condition (R4) of Subsection 5.3

concerning the class R(I).

These estimates, which are related to parabolic composition, are valid for an element (P, Q,n) of
R(I) which satisfies Q C Q,, (or P C Ps).

In the present section, we will be concerned with the affine-like iterates which are directly associated
with the elements (Ps, Qs,ns) and (Py, Qu, ny)-

We will make the computations for (Ps, @s,ns) the other case is obviously symmetric. We will
assume that the periodic point ps is fized: the general case is completely similar, but the notations

are more awkward.

In this subsection, we just write (z,y) for the coordinates in the rectangle R,, containing ps; we

denote by (A, B) the implicit representation of the affine-like iterate

(7.26) Gt ¢ (Ra))Ng; ' (Ra,) — gt (Ra,) N Ra,.
For n > 0, we denote by (A, B() the implicit representation of the n” iterate of this restriction.
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As the equation of WS (ps) is {# = 0} (cf. (MP3) in Subsection 2.2), we have
(7.27) A(y,0,t) = 0,

from which we deduce

(7.28) [Ay(y, z,t)| < clzl,
[Ae(y, . 1) < clzl,
[Ayy(y, 2, t)| < cla,
[ Aye(y, @, )] < cfz].

Denote by p = p(t) the unstable eigenvalue of Dy, at ps. For all t, x, y, n, we have
(7.29) Tt < AR @y )] < e

Let (z4,Yi)o<i<n be an orbit of ¢g¢ in R,,. For all 0 < ¢ < m < n, we have:

(7.30) ¢ | < fam| < ep™ .

Proposition 14. The following estimates hold:

(7.31) ‘Aé")(yo,xn,t)] < clzol < ep ",
(7.32) A (yo, 1)) < enlwo] < enp ",
(7.33) A (o, 2, )] < clzol < ep |l

Proof of 7.81: From formula (3.11) in Subsection 3.3, we have:

(nfl)B(nfl)Afl

(7.34) A (yo, 2, t) = ALV (o, 21, t) + Ay ATV B :

Y

with Bgsn — 1)A exponentially small with n and, using (7.28)—(7.30):

(735) ’Ay(yn—lamnat)A(xn_l)(yOaxn—lvt)’ < wao‘-

The inequality (7.31) is now clear.

Proof of 7.832: We use here formulas (A6), (A10) of Appendix A which give

(7.36) LA™ (g0, s t) — A (yo, 1, )|
< O (1 Ao )|+ 1B (g0, 201,014y (g1,2.0) ),

(7.37) B (g0, 20, 1) = By, w1, 0)] < CIBE D o (141477 |0 ).
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As ’BZ(/n)‘Co is exponentially small, we deduce from (7.37) that
(7.38) 1B (yo, 2, 1)] < C

and then, from (7.36), (7.28) that (7.32) holds.

Proof of 7.33: We use formulas (A6), (A18), (A20) of Appendix A to obtain

(7.39) AZSZ) - AC(UZ_I) +2A(w7;—1)Xy +A§B7;‘1)X§ + A DX,

with

(7.40) X, = AyBén_l)A_l,

(7.42) Xyy = Bz,(/nil)Ail (Aysz,(/nil)Ail + Ay0, log ‘Bgsnil)’-i-
+ AyX,0,log | B Y| — ArY AyA—l) ,

(7.43) —Ay = AyyBgSnil)Ba(cnfl)Afl + AyBg(czfl) +A,BVx,.

In these formulas, A1 B(=1) and their derivatives are taken at (Yo, Tn—1,t), A, B and their

derivatives are taken at (y,—_1, Tn,t). The terms ng;nfl), Bé’;fl), 0z log |Bl(/n71)|7 0y log ]Bl(/nfl) |, A7t

are bounded by the uniform cone condition and the uniform distortion; the terms Bé"‘l), Béz_l)
are exponentially small. Also, from (7.28) we have:
(744) |Ay(yn—17$n>t) | < C|$n|,
|Ayy(ynfla$n7t)| < C|$n|

We conclude that we can write
(7.45) AW (yo, 2, t) = AL (yo, Tn1,t) + 1 "Tnrn
with 7, exponentially small; this leads to (7.34). O
Corollary 10. For the special rectangle (Ps, Qs,ns), we have:

|A7(Jns)‘co < Cey,

A5 |0 < Ceo,

1A |0 < Ceplog £
Proof. We have only to observe that u="™ is of order . Ul

Obviously, the same estimates hold for the other special element (P, Qq, ).
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7.5 Proof of the Property (R4) of Section 5.3

We have to show that, for an element (P,Q,n) in R(I), with associated implicit representation
(A, B), we have

(7.46) |4, < Cey, |Ayy| < Ceg
whenever P C P, and
(7.47) ‘Bm‘ < Cé‘o, ’Bxa:’ < CE()

whenever @ C @Q,. We will deal only with (7.46), the other case being symmetric.

We have already proved (7.46) when P = P;, cf. the first two inequalities of Corollary 10. We will
prove (7.46) by induction on the length n. Let us denote by (P, Q,7) the element of R(I) such that
P is the parent of P, by (ﬁ, E) the implicit representation of this affine-like iterate. We assume
now that P ; P, ie., P C P,. The are two possibilities.

First, we consider the easier case when P is a simple child of P. Let (P*,Q*, 1), with associated

implicit representation (A*, B*), be the element such that

(7.48) (P,Q,n) = (P,Q,n) * (P*,Q*1).
From formula (3.11) in Subsection 3.3, we have:

(7.49) Ay = Ay + A, ByATATY

with ]Zx\ < Ceo, A4, A~! bounded and Ey satisfying the stretched exponential estimate of Propo-
sition 13: this is fully in line with the first inequality in (7.46).

Next, we have, as in (7.39) above:

(7.50) Ayy = Ayy + 24,y X + Ao X2+ Au Xy,

) X, = A;B,ATY,

7.52) A = 1-AB,,
) Xy = AT'B(45,B,ATN 4 430, 08| Byl + Ap X, 0, 0g| Byl — A,4,A471),
) —-A, = A" B/B,A™'+ A B,, + A} B, X,

Here, we have:

(7.55) [Aeyl = |As] |8, 10g| 4| < Ceo,
(7.56) |Aga| = |A4] |02 log|AL|| < Ceo,
(7.57) |A,| < Ceo.
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Moreover, Ey satisfies the stretched exponential estimate of Proposition 13; the uniform cone
condition and uniform distortion imply that the same stretched exponential estimate holds for X,

and X,,. Therefore, the estimate for A,, — Ay, in (7.50) is fully in line with the second inequality
in (7.46). This concludes the case where P is a simple child.

We now consider the more difficult case where P is a non-simple child of P. By Proposition 5,
we can find an element (P*,Q*,n*) € R(I), with associated implicit representation (A*, B*), such
that:

(7.58) (P,Q,n) € (P,Q,n) 0 (P*, Q" n").

From the formulas in Appendix A, we have:

(7.59) Ay = Ayt A(Xy + XuWy),
(7.60) X, = XuyB,Apl,

(7.61) Xy = XuwAgl,

(7.62) Ao = 1-XyyBa,

(7.63) w, = -C,C.1,

(7.64)

7.64
Here 0, X,,, W and C are associated with the fold map G as in Subsections 2.3, 3.5.

As |Chw — 2| is small (cf. 3.22)), the quantity C,, is related to §(Q, P*) by

D=

(7.65) CI8(Q, P2 < [Cul < C5(Q, P2

From (R7), 6(Q, P*) is always much bigger than |§y|; therefore, from (7.63), (7.64) we have:

—_

(7.66) W, < CIB,2.

We then obtain from Proposition 13, that the term X, + X, W, in (7.59) satisfies a stretched

exponential estimate; in view of (7.57), this concludes the proof of the first inequality in (7.46).
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For the second inequality, we write, following the formulas in Appendix A:

(7.67) Ay, Ay + 24, (Xy + X Wy) + Ape (X, + XuW,)? +
+ Ap(Xyy + 2X 0y Wy + Xuw W2 + X Wyy),

(7.68) Wyy = _CJI(waW;? + 2Cuy Wy + Cyy),

(7.69) ~Cuy = Oy BaByXyAgt + 00y ByATY, WA AT + 0, 4y,

( ) —Cyy = 9yy§§A62 + Hy?yyv

(7.71) Yy = BuyXw+ BexXuwXy + ByXuy,

(7.72)

(7.73)

(7.74)

?yy = Eyy + 2§xyXy =+ Ea:ij + Ewaya
Xuw = Ay (Xuww + 2BeXuwXuwy + BiXuyyXe, + BraXuyX1),
Xuy = AF! [( Xuwy + BeXuyyXw)(By + BoX,)

+ Xu,wa(Exy + Exny)] )

(7.75) Xy = A7 [Xuay(By + BoXy)? + Xuy(Byy + 2By Xy + Bun X3)|,
where Ag', A7! are bounded. In formula (7.67), we have that

— ]Kmy|, | Aga|, |Az| are bounded by Ceg, cf. (7.55)—(7.57) above;

— Xw, Xww are bounded, cf. (7.61) and (7.73);

- Xy, W, satisfy a stretched exponential estimate, as we have already seen earlier;
— Xuy, Xyy also satisfy a stretched exponential estimate, cf. (7.74) and (7.75).

The remaining term in (7.67) is ZwaWyy, and we have to estimate Wy, from (7.68). From (7.75),

we have, using bounded distortion:

(7.76) [ Xyy| < C‘Ey‘y
from which we deduce, by (7.72), that

(7.77) Vil < CIBy|.

In the same way, we obtain

(7.78) Xuyl < CIBy,
(7.79) Yyl < C|Byl
Plugging this into (7.69), (7.70) yields

(7.80) Cuyl < CIBy,
(7.81) Cyyl < C|Byl.



We can now conclude, using (7.65), (7.66), that
IR 1

(7.82) Wyl < CIBy[6(Q, P*)"2,
< C|Byl2.

All terms in (7.67) are now under control, A, — Avyy being bounded by Cep times a stretched
exponentially small term: this concludes the proof of the second inequality in (7.46), and so of
condition (R4).

7.6 Relative Speeds of Critical Rectangles

Let I be a parameter interval, and let (Pp, Qo,n0), (P1,Q1,n1) be elements of R(I) such that
QOCQua P1CPS~

The displacements 6(Qo, P1), 65.(Qo, P1), 0r(Qo, P1), 0r.r(Qo, P1) were introduced in formulas (5.5)
and (5.8)—(5.10) of Subsection 5.4 (see also (3.23) in Subsection 3.5) and are the values at the four

corners of the rectangle of definition of the function C(yg, 1) introduces in Subsection 3.5 as

(783) C(y()axl) = rnui)n C(w7y07x1)‘

All these quantities also depend on the parameter ¢, and we want in this section to estimate the
variation with the parameter of the displacements, which amounts to estimate the partial derivative

Ch.

Let (Ao, Bo), (A1, B1) be the implicit representations for (Py, Qo,no), (P1,Q1,n1) respectively. As
will be seen below, an estimate for C; depends very much on estimates for the partial derivatives
A1, Byt Good estimates for these two quantities are not available for all (P, Qo,no), (P1,Q1,n11).
We will only consider elements satisfying conditions (xs), (xu) below; fortunately, these conditions

will always be satisfied whenever we are interested in the variation of the displacements.

Let (P,Q,n) be an element of R(I), such that P C Ps. Let I* be the largest parameter interval
such that (P,Q,n) is (the restriction of) an element of R([*). If I* is not the starting interval
Iy = [e0, 2¢0], let I* be the parent interval and let (ﬁ, Q, n) be the longest element of R(f*) such
that P C P; (ﬁ, Q, n) is the element which is denoted by (P, Qo,no) in the structure theorem of

Subsection 6.7, as [0,7] is the maximal initial I*-interval.
We say that (P, Q,n) satisfies condition (xs) if either I* = Iy or I* # I and P is I*-critical.

We define in a symmetric way a condition (xu) (when Q C Q).

Proposition 15. Let (P,Q,n) be an element of R(I) with P C Ps. Let (A, B) be the implicit

representation of (P,Q,n). If (P,Q,n) satisfies condition (xs), we have

1
‘At| < 83.
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If (P,Q,n) € R(Ip), we have the stronger estimate:

|Ay| < Cep log g5

Proof. We first show for (P, Q,n) € R(ly) and P C Ps, that:
(7.84) |Ay] < Cep log 5%, |Bi] < C.

When P = P, the first inequality is part of Corollary 10 and the second is (7.38). If P G Py, we

set,
(7.85) (P,Q,n) = (P,Q,n) = (P*,Q*1).

Writing (A, B) and (A*, B*) for the implicit representations of (P,Q,7) and (P*,Q*,1), respec-

tively, we have, from the formulas in Appendix A:

(7.86) Ay = A+ Ag(Af + ALB) AT
(7.87) B, = B+ B}(B+ B,Ay) A7,

with, as usual, A =1 — EIA;
This gives, assuming (7.84) for (4, B),

(7.88) AL — Ayl
(7.89) |B, — B, B, B, |

< Clpl,
< G,

where we have used B, = EyB;Afl. Clearly, (7.88) and (7.89) imply, by iteration, (7.84).

We now turn to the case where I* # Iy. In this case, we introduce the integer £k > 1 and the
elements (P;, Qi,n;), 0 < i < k, of R(f*) given by the structure theorem of Subsection 6.7. We
also denote by (P®, Q@ n(®) the element of R(I*) such that P ¢ P and

(7.90) (PD,QW nM) e (Py,Qo,no) O --- O (P, Qi, n).

Our proof will be by induction, on the level of the parameter interval and on the integer k (for a

fixed parameter interval).

We first observe that if P is I-critical, then Py is I*-critical and P satisfies (xs). Therefore, if
P satisfies (xs), all P®) also satisfy (xs); moreover, Q) satisfy (xu) and P ; satisfy (xs) by

Theorem 1.

Fix 0 < i < k and let (ACtD BEHD) (A BO) and (A*, B*) be the implicit representations of
(PEHD QUAD n(+1) (PO QW) n)) and (P, Qit1,nit1) respectively. From the formulas in
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Appendix A, we have

(7.91) AT = AP 4 AD (X + X, W),
(7.92) Xi = (Xus+ XuyB)AGY,
(7.93) Xo = Xuwly',
(7.94) Wy = -G C,l

)

In these formulas, X, ¢, Xy .y, Xuw, Ay L are uniformly bounded and Bf is bounded by 6(1)/ % from

the induction hypothesis. The term C! is estimated by (7.65) above and C; is uniformly bounded
by the induction hypothesis and Corollary 11 below. We conclude that

(7.95) A AP < CIPOISQUY, Py
< PO,
as Q(i) and P;y; are I*-transverse. We have for 0 < j <1
(7.96) 1P| < |T*)°
because (Pj, Qj,n;) is T*-bicritical (we use here, for j = 0, the hypothesis that P is f*—critical).
Then, by Corollary 6, we obtain
(7.97) PO < (i |f*|(i+1)ﬁ—% (147)
which implies
(7.98) 1A — 40 < |f*|§ (1+0),

Summing (7.98) over ¢ and the levels of parameter intervals leads to the estimate of the proposition.
O

Corollary 11. Let (Py, Qo,n0), (P1,Q1,n1) be elements of R(I) with Qo C Qu, P1 C Ps. Assume
that Qo satisfies (xu) and that Py satisfies (xs). Then, the function C introduced in Subsection 3.5
satisfy )

ICy+ 1] < C¢f.

Proof. From formula (A35) in Appendix A, using the notations there, we have

(7.99) —Cy = 0, X1+ 60,Y,+ 64,
(7.100) Xi = (Aii+ Ay Yo AT,
(7.101) Yy = (Bou+ Bow Xut) Ay,

with Ay*, AT uniformly bounded. The value of 6, is taken at (X,Y,t), with

(7.102) |X| < Ceo, Y| < Ceo.

69



On the other hand, we have, in Subsection 4.2, normalized the parameter in order to have
(7.103) 0:(0,0,t) = 1.

We, therefore, have

(7.104) 0:(X,Y,t) — 1] < Cey.

1 1
In (7.100) and (7.101), we have |A; 4| < Ceq, |Boe| < Ceo, by (R4) and |A14| < &5, |Boy| < g5 by
Proposition 15. The Corollary follows, as 0, 0, Y5, X, are uniformly bounded. O

7.7 Variation of Width of Critical Rectangles

Our main purpose now is to prove property (R7) of Subsection 5.4:

(R7) If (Py,Qo,m0), (P1,Q1,n1) € R(I) satisfy Qo C Qu, Pi C Ps and Qohy Py holds, then, for
all t € I, we have
6(Qo, P) = CH (IR 4+ 1Qol' ).

A priori, the transversality condition gives some control through (T2), (T3) in Subsection 5.4 only
for some values of the parameter. However, from (T1) in Subsection 5.4 and Corollary 11 above,
we know that the order of magnitude of §(Qq, P;) is the same through out I. Therefore, to obtain
(R7), we do need to control how the widths |P;| and |Qo| vary through I. Good estimates will
be obtained under the same conditions (xs) or (xu) used to obtain Proposition 15. Again, the

estimates are even better for an element (P, Q,n) in R(ly), involving only simple composition.

Proposition 16. Let (P,Q,n) be an element of R(1y), and let (A, B) be the implicit representation
of (P,Q,n). We have

|0; log |A,]| < Chn, | Ayt
< C

< C
|8t 10g|By|| n, ’th < C.

Proof. We first observe that we have, by the same proof as for the second inequality in (7.84):

(7.105) |4 < C, |By] < C.
We write
(7.106) (P,Q,n) = (P,Q,n) % (P*,Q*,1),

and denote by (Z, E), (A*, B*) the implicit representations of (ﬁ,@v,ﬁ), (P*,Q*, 1), respectively.
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By the formulas of Appendix A, we have

(7.107) O log|As] = 8 log|A,| + 0 log|A%| + X0, log | Ay
+ Y9, log|As| — AATY,

(7.108) X, = (Aj+ A B)A ™Y,

(7.109) Y, = (Bi+A;B,)A™Y,

(7.110) A = 1-A}B,,

(7.111) —Ar = BuA,+ BmAZXt + Bz Ay + Bf"’AZth'

As Et, Ez, A, Ay, A~! are uniformly bounded, the same is true for X;, ¥;. Using bounded

distortion and the cone condition then leads to
(7.112) 0 log | Az| — 4 log |Ag|| < C(1+|Bal).

Still from Appendix A, we have

(7.113) Ay — Ay = XpAgy + XyAg + X Xy Ags + A Xy,
(7.114) X, = A;B,ATY,
(7.115) Xy = ByATYALY+ Aj0 log |By| + A,

+ ALX0,log|By| — A;AATY.

As X, Xy, Y; are bounded and also using bounded distortion, we have

(7.117) X, An| < C|AL] |8 log| ALl

(7.118) X X, Aw| < CO|A,],

(7.119) Xyl < C|By|(1+ |0 log By| + | Butl).

We, therefore, obtain

(7.120) [Aye — Ayl < ClAL|(1 + [0 log | Al]) + C|Ay| |Byl(10:log | Byl| + | Bayl).

We have symmetric estimates for By, and 0, log|B,|, writing now
(7.121) (P,Q,n) = (P*,Q",1) * (P,Q,n—1).

As |A,], |§y| are exponentially small, the estimates (7.112), (7.120) and the other two estimates
for By, Oy log|By| lead by summation to the bounds of the proposition. O

For the last estimate of this section, the setting is the same as that of Proposition 15.

71



Proposition 17. Let (P,Q,n) be an element of R(I) with P C Ps. Let (A, B) be the implicit
representation of (P,Q,n). If (P,Q,n) satisfies condition (xs), we have

log | P|
7.122 O log |A < C ,

(7.123) 1Ayl < Co.

Proof. The method is the same as in Proposition 15, but, as now we have to deal with second

instead of first order partial derivatives, calculations are more complicated.

When (P,Q,n) € R(Ip), n and | log |P|| are of the same order; as |I||log|I|| is always smaller than
eologey ! the estimates in Proposition 16 are stronger in the present case than the ones in (7.122),
(7.123).

We will now assume that (P, Q,n) &€ R(Ip); the proof of (7.122), (7.123) is by induction on the level
of the parameter interval. Let I* # I be the largest parameter interval such that (P, Q,n) € R(I*);
as |I| |log |I|| < |[I*||log |I*]|, (7.122) for R(I) follows from (7.122) for R(I*). We can therefore

assume that I* = I and denote by I the parent interval.

We apply the structure theorem of Subsection 6.7 and use the same notations as in the proof of
Proposition 15: we have an integer k, elements (P;, Q;,n;) in R(I) for 0 < i < k and partial
compositions of (P, Q® n®) in R(I) for 0 < i < k. We denote by (A4, B), (A, B), (A*, B*) the
implicit representations of (PU+D QUAD n(+1)y (PO Q0 n@)) (P, Qit1,nit1), respectively,
for some fixed integer 0 < i < k. We know that both (P® Q" n®) (P11, Qiy1,nis1) satisfy
(xs), and (P®, QW n()) also satisfies (+u). We have from formulas (A47), (A49) in Appendix A:

(7.124) O log|Ay| — O log|Ay| = 8plog|Ay| (Xy 4+ XuWy) + 8, log | Xo| +
+ Wﬁwlog ]Xw\—i-@tlog\Wx],

(7.125) Ay — Ay = Ay (Xi + XuWy) + Aus (X, + X W) +
+ Avxx (Xt + Xth)(Xy + XwWy) +
+

A:v(th + waWt + thWy + waWth + XwWyt)-

We need to estimate all terms in the right-hand sides of these formulas.

Terms involving A. By bounded distortion, |0, log ]/TIH is bounded, ﬁx, gmy, Ay are bounded
by C ]ﬁx| and /L;t is part of the induction

(7.126) |Aat| = |Ag] |04 log | Ag]l.
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Terms involving the first order partial derivatives of X. We have dealt earlier with X;,
X, Xy (cf. (7.92), (7.93), (7.60) and these formulas easily give

(7.127) X, < C,
(7.128) C' < |Xul <G,
(7.129) X, < CIBy.

Terms involving the first order partial derivatives of W. We have dealt earlier with W,, =
—CyCypt and Wy = —C,C1; the term C,;! is estimated by (7.65), the term Cy, from formula (7.64)
and the term C; from Corollary 11. One obtains

4 1 ; _1
(7.130) C18(QY, Piy1) 2| By| < [W,| < C5(QW), Pii1) 2| By,

=

) 1 .
(7.131) C1(QY, Piy1) "2 < Wi < O5(QW, Piyt) 2.

Terms involving the second order partial derivatives of X. The formulas (A63) of Ap-
pendix A express the second order partial derivatives of X in terms of partial derivatives of first
and second order of X,, (which are bounded), partial derivatives of second order of B (which are
controlled by the distortion or by the induction hypothesis), partial derivatives of first order of X
itself (see above), the bounded quantity Ay 1 and partial derivatives of first order of Y (defined
in (A31)). These partial derivatives given by (A33) are casy to estimate: we have Y, = By Xy,
Y, = EyAal, Y= (Et + EmXu,t)Aal, hence

(7.132) Yo < C,
(7.133) V,| < CIBy,
(7.134) Yy < C,

where we have used Proposition 15 to bound Et. Plugging these estimates in the formulas (A63)

gives:

(7.135) | Xww| < G,

(7.136) [Xuwy| < CIBy,

(7137) ‘ny’ g C’B/ylv

(7.138) [Xut| < C(L+|Bul),

(7.139) Xyl < CIBy|(1+ |Bui| + 0y log| By)).

Terms involving the second order partial derivatives of W. The formulas (A55) of Ap-

pendix A express the second order partial derivatives of W in terms of C;! (controlled by (7.65)),
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the partial derivatives of first order of W (see above) and the partial derivatives of second order of
C'. These partial derivatives of second order of C are in turn expressed in formulas (A56)—(A60)
in terms of partial derivatives of § (which are bounded) and partial derivatives of first and second
order of X and Y. The partial derivatives of first order of Y have been estimated above, those of

X satisfy in the same way the inequalities

(7.140) Xl < C,
(7.141) X.| < ClA,
(7.142) X, < C.

The partial derivatives of second order of X and Y are expressed in formulas (A61), (A62). The
formulas (A61) contain partial derivatives of first and second order of Y, which are firstly estimated
in the same way, through formulas (A29), (A64), as those of X:

(7.143) v, < C,

(7.144) cl < v <C

(7.145) Yol < ClALL

(7.146) Yuuwl < G,

(7.147) Yzl < ClAZ,

(7.148) Yol < ClAZ,

(7.149) Yur| < C(L+]ARD,

(7.150) Yae| < ClAZI (1 + [Ay| + |0 log [AL]]).

We can then estimate the second order partial derivatives of X and Y:

(7.151) Xwwl < C,

(7.152) [ Xuwz| < ClA7],

(7.153) [ Xuwt] < O(1+ AL,

(7.154) [ Xe2| < ClA%,

(7.155) [ Xut| < ClAZ[(1+[Ay] + [0 log |AZ]]),
(7.156) Yuww| < C,

(7.157) Yy < CIByl,

(7.158) Yl < C(L+][Bh),

(7.159) Yyl < C|By,

(7.160) Yyl < CIByl (14 Byl + |0:log | Byl)).

The next step is to estimate the partial derivatives of second order of C' (besides C\,, which is
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already known to the close to 2)

(7.161) |Cuwe| < ClA;],

(7.162) ICuwyl < C|By],

(7.163) ICuwt| < C(+ ‘§;t| +[Apl),

(7.164) Cea| < C|A;,

(7.165) Cayl < CIAL|[By,

(7.166) [Cyyl < C‘Ey‘y

(7.167) [Catl < ClAZ[ (14 [Ay] + [0 log [AZ]]),

(7.168) Cyel < CIByl (14 |Butl + |0, log | By ).

Finally, we are able to estimate the partial derivatives of second order of W:
(7.169) Watl < C62|AZ (571 + 672 (1Bl + |AZ)) + 0 log | AZ])),
(7.170) Wy < 05*%@\ (671 +6*%(\§mt\ +|A%,)) + 9 log | By ).

We have written § for §(Q¥, Py ).

We are now ready to come back to formulas (7.124), (7.125) above. We get:

~ 1 -
(7.171) |01 log | Au| — O log | Ay|| < C(671 + 07 2(|Bue| + |A}]) + |9 log | A3]]),
~ 1 - ~
(7.172) [ Ayt — Aye| < C672[A|(1 + |By|K),
with
1~ 5 ~ ~
(7.173) K =0"" 4 672(|But| + |A}]) + |0 1og | Az | + [0; log | By |-

By the induction hypothesis, we have

(7.174) |Bu| < Co,
(7.175) Ayl < Co,
log |A*
(7.176) Dlog |4 < Co Al
1] log |1
Y log |g$’
7.177 A log |A|| < —o e
( ) |0¢ log | Az | O\Illog\f\
~ log |B,|
1 log |B,|| < —o Y

1
Here Cj is large but independent of £9. This means that the term 6~ 2 (| Byt + |A},[) in (7.171) and
(7.173) is dominated by 6~1. As |I| = |I|**7, in order to prove (7.122) by induction, we need to
have, in view of (7.171):

(7.179) CI|[og |1]|67" + C ColI|"| log | A%|| + Co|log | 4| < Collog|Aq|l-
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We have here § > 2|I| from the definition of the transversality relation and, by (3.27):
~ L1

(7.180) |log[As| > [log|Az|| + [log | AZ[| — 5 [log]1]].

Therefore, (7.179) will hold as far as

(7.181) (CO

2+C) log|I|| < Co(1 -~ CIT") |1og |4z

From (R7), we know that |A}| is much smaller than . On the other hand, as @); and P;1; are not

lf—transverse, 0 cannot be much larger than I. Therefore, we must have
(7.182) [log | 43| > log |T| = (1 +7) log]1],

from which (7.181) follows if we take Cy > 3C. This completes the proof of the induction step for
(7.122).

To do the same for (7.123), we estimate the right-hand side of (7.172). From the proof of Proposi-
tion 15, formula (7.97), we have

(7.183) 1A, < CF|T]+D8-3 0+
From (R7), we have

(7.184) 1B,| < cst-m
The displacement § = § (Q(i), P;1) satisfies

(7.185) 21| < & < C|.

This gives (as § > 1)

1~ ~ .
(7.186) 6 2|A,] < mﬁ/?(H—l)’
3 ~ o~ ~ .
(7.187) 62| Ayl 1Byl < ‘1’5/2 (@+1),
1~ -~ ~ ~ .
(7.188) 572 A |Byl0ulos | &Ll < (T|PR6HD),
1~ o~ ~ ~ .
(7.189) 572 Al Byl |0 log Byl < [T1P20H0),
This leads to:
(7.190) | Ayt — Aye| < C IR0,

We can now sum over ¢ and then over the different levels of parameter intervals to obtain (7.123).

The proof of Proposition 17 is complete. O

Let us see that property (R7) of Subsection 5.4 is a consequence of Proposition 17. Consider
(Po, Qo,no), (P1,Q1,n1) to be elements of R(I) such that Qo C Q., P1 C Ps and Qoh;P; holds.
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We can assume that there are no I O I, (ﬁo, @g,ﬁo), (ﬁl, @hﬁl) € R(f) with Qg C @0, P C 131,
(Qo, P1,I) # (Qo, P1,I) and QorhyPr: otherwise, as |Qo| < |Qol, [P < [P1] and §(Qo, P1) >
0(Qo, P1), property (R7) for (Qo, P1,I) would be inherited from (Qo, P, I).

In view of this maximality property, we claim that Qo must satisfy condition (*u), and P; must

satisfy condition (xs).

Let us first finish the proof of (R7) assuming the claim to be true. Indeed, we have 6(Qo, P1) > 2|1
for all t € I by (T1) of Subsection 5.4. If |log|Qpl|| is much larger than |log|I|| for all ¢t € I, we
obviously have 6(Qo, P1) > |Qo|?; but if |log|Qo|| < C|log|I|| for some t € I, we obtain from
Proposition 17 that

(7.191) max [Qo| < C min |Qol.

We also know from Proposition 15 that

(7.192) max §(Qo, 1) < C min 3(Qo, P1).
It then follows from (T2) in Subsection 5.4 that

(7.193) 5(Qo, P1) = C7HQo|' .

for all t € I. We argue with P; in a symmetric way.

Finally, we prove the claim. Let us show, for instance, that P, satisfies condition (xs). Let I'* be
the largest parameter interval such that (P, Q1,n1) € R(I*). If I* is the starting interval Iy, P
satisfies condition (xs). Assume therefore that I* # Io; let I* be the parent interval, (Pp, Q1,71
the element of R(f *) such that Py is the thinnest rectangle containing P;. We have to show
that P is I*-critical. Assume by contradiction that Py is I*-transverse. Then, there exists an
T*—decomposition (P, Qa,na) of @ such that, for every «, @, and Py are f*—separated or I*-
transverse. Let o be such that @Q,, and Q) intersect. Then, Q,, and ]51 must be [*-transverse.
But then P, and Qo must be I-transverse, either from Proposition 2 if Q¢ C Qq,, or from concavity

(Proposition 4) if Qu, C Qo; this contradicts the maximality of (Qo, P1,I) and proves the claim.
The proof of property (R7) is complete.

The existence and properties of the classes R(I) are now fully justified. What we do not know at
this moment is whether there exists any regular parameter interval at all! This will be the subject
of Section 9. Before, we develop in the next section some results that will turn out to be essential

in Sections 9 and 10.
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8 Number of Children and Dimension Estimates

8.1 Estimates on the Number of Children

We start with some preliminary results.

Proposition 18. Let I C I be parameter intervals, and let (ﬁ, @,ﬁ) be an element of R(f) We
assume that Q is I-transverse. Then, any element (P, Q,n) in R(I) such that P is a child of P is

already an element of R(I).

Proof. We can assume that P is a non-simple child. Then (P,@,n) is obtained by parabolic
composition in R(I) of (]3, Q, n) with some (P, Q1,n1) € R(I). As Q is I-transverse, there exists
an f—decomposition (Py, Qu,na) of Ps such that each P, is I- -separated or I-transverse with @
Let ap be such that F,, and P; intersect. Then, @rhfPao holds, and also @mlpl; if we had
P ; P,,, this would imply that @ would be I-transverse to the parent Py of P and P would
not be a child of P. Therefore, we must have P,, C P1. By coherence (Proposition 6), we have
that (Pp,Q1,n1) € R(T) By parametric concavity (Proposition 7), from QP and vaTPao, we
deduce that @mfpl also holds and (P, Q,n) € R(I). O

Proposition 19. Let I be a parameter interval, and let Iy D I be the largest parameter interval

such that
1

1 -
B - 1=n
(8.1) n? < (510)
Let (]3, Q, n), (P,Q,n) be elements of R(I) such that P is a non-simple child 0f]3. Let (P1,Q1,n1),
(P1,Q1,71) be the elements of R(I) such that
(P,Q,Tl) € (f)véaﬁ) O (P17Qlanl)

and ]51 is the parent of P;.

Then, (P1,Q1,n1) belongs to R(I1), Py is I-critical, Qy is I -transverse and we have
(8.2) 21217 > |1
forallt e l.

-1

Remark. As parabolic composition is possible, we have I # Iy; then, as > (1 —n)~", we must

have It 2 I and Iy is B-regular.

Proof. That Py is I-critical has already been proved in Proposition 5. Also, as @mlpl holds but
Q7 Py does not hold (because P is a non-simple child of P), we deduce (8.2) from Proposition 9.
Then, by definition of I, we have:

(8.3) P > |I)°
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for all t € I. Let us show that (ﬁl, Q1, n1) belongs to R(I1). Otherwise, there would exist Iy D I,
with parent interval I C Iy, such that (151, él,ﬁl) belongs to R(I2) but not to R(fg) We apply
the inequality (6.74) in the proof of Corollary 9 (Subsection 6.7) to get

~ ~ 1
(8.4) |Pl| < C|L|P*3,

in contradiction with (8.3). Therefore, (ﬁl,él,ﬁl) belongs to R(I1). As I 2 I , I is (f-regular ;
(ﬁl, @1, n1) cannot be Ii-bicritical in view of (8.3) ; Py is Ij-critical and hence @1 is I-transverse.
Proposition 18 then shows that (P, Q1,n1) € R(I1). O

Corollary 12. Let I be a parameter interval and let (ﬁ, @, n) be an element of R(I). The number
of (P,Q,n) € R(I) such that P is a child of P is finite.

Proof. We argue by induction on the level of the parameter interval.

If I is the starting interval Iy, P has only simple children and the assertion is obvious. Assume
that 1 ; Ip. The number of simple children is finite, and we have to show that the same is true
for the number of non-simple children. For every non-simple child P of ]3, let Iy, (P1,Q1,n1),
(ﬁl, @1,61) € R(I) be as in Proposition 19. By the induction hypothesis, there is for each fixed
Py only a finite number of possibilities for P;. On the other hand, in view of relation (8.2), there
are obviously only a finite number of possibilities for ?1. The induction step is complete, and this

completes the proof. O

We want to make the finiteness assertion quantitative, and will do that in two distinct ways. In
each case, we have to estimate in the proof of Corollary 12 the number of possibilities for ]51, and

the number of possibilities for P; once ]51 is fixed.

Proposition 20. Let I be a parameter interval, and let (ﬁ, @,ﬁ) be an element of R(I). The
number of (P,Q,n) € R(I) such that P is a child of P is at most |I|~", where ¢ is a constant
depending only on (.

Proof. We argue again by induction on the level of I, following the proof of Corollary 12. When
I = Iy, the number of (simple) children is at most the number of rectangles in the Markov partition,

which is much smaller than £,“" when ¢¢ is small enough.

When I # Iy, the number of possibilities for P; when P is fixed in at most |I;|~" by the induction
hypothesis. We have to estimate the number of possibilities for ]51. We know that @rh 1Py does not
hold, but Qr;P; holds.

As Py is I-critical, it satisfies condition (xs), defined just before Proposition 15 in Subsection 7.5.
We have from (8.2) and Proposition 17

(8.5) max P < C m[in |Py|.
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Lemma 3. We have for allt € I

(8.6) 5(Q,P) < C|P|.

Proof. Let (ﬁ, @, n) be the element of R([) with smallest 2 such that @ C @ and @rhIPl holds. The
parent Q* of @ is I-critical: otherwise, from an I-decomposition of Ps, one would find (P, Qq4, Ny )
with Q*t; P, and P, N Py # ); one would conclude that Q*h; P, from Proposition 2 (if P, C P,) or
Proposition 4 (if P, C P;). Thus, Q satisfies condition (xu). From Corollary 11 and Proposition 17,

we get
(8.7) max [Q < C min |Q),
(88) mIax 5LR(@) f’l) - Hl]in 6LR(@, f’l) < 2’[’

As @m[ﬁl does not hold, @51131 does not hold either and at least one of the following three

inequalities must hold:

(8.9) 5LR(@; ﬁl) < 2‘]’ for some tg € I;
(8.10) Sr(Q,P) < 2|Q|'" foralltel;
(8.11) 50(Q,P1) < 2P ' forallte I

By Proposition 10, as @rh[Pl holds but @mlﬁl does not hold, we have, for some t; € I:
- 1 ~

(8.12) |P1| > §|Q|-

We can now prove (8.6).

If (8.11) holds, we have, for all t € I:

(8.13) 3(Q, P1) < 6L(Q,P1) < 0p(Q,Pr) < 2Py,

If (8.12) holds, we have from (5.12), (8.5), (8.7), (8.12):

(814) 5(©7ﬁ1) < 6LR(©7ﬁ1)

< 0r(Q, P1) + Q)

< 3lQIT < ot
foralltel.

Finally, if (8.9) holds, we have from (8.5), (8.8), (8.2), for all ¢ € I:

(8.15) 5(Q,P) <
< 4| <
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We are now able to estimate the number of possibilities for ﬁl and show that this number is at

most
__n_
(8.16) C \I\ 1-n,

This indeed follows from (8.6), (8.2) and the fact that if two distinct P; are not disjoint, the ratio
of their widths is bounded away from 1 (so the P at a given scale are disjoint; one then sums over

scales). The total number of children is thus bounded by
__n
(8.17) C+2C|I| 1=n ||,

where I; was the largest parameter interval satisfying

1

1 i
(8.18) L% < (5 m) =n,
If |I] > 2563(17"), we have I} = Iy; in this case, the term |I;|“7 in (8.17) is unnecessary because P
has only simple children. If |I| < 25€ (1777), we have
1 1
-1 —
(8.19) N G
and the term in (8.17) is bounded by [I|~¢" provided that
n L+7
8.20 .
(8.20) cn>1_n+cn1_nﬁ
As n, T are very small, any choice of ¢ > % yields (8.20). Then, as ¢ > 1, such a choice is also
convenient when |I| > 25€ (1_"), and this concludes the proof of Lemma 3. O

In Proposition 20, we have estimated the total number of children in terms of the level of the

parameter interval.

When @ is I-transverse, Proposition 18 guarantees that there will not be any new child of @ when

we consider parameter intervals IcCIof higher level.

The same is true when for all t € I
(8.21) QI > o,

with some large enough constant C. Indeed, let I* be a parameter interval strictly smaller than
I, with parent interval I *, and let (P,@,n) be an element of R(I*) such that P is a non-simple
child of P. Let (P, Q1,n1), (]31, @1, n1) be as in the previous propositions. By Proposition 19, the
element (P;,Q1,n1) belongs to R(I*). It is then easy to deduce from Qrh«P; and (8.21), using
(R7) and I* C I, that vaf* Py also holds. This proves by induction that (P, @, n) belongs to R(I).

In the next proposition, we are interested, not in the total number of children, but in the number

of children of a given width. The estimate is independent on the level of the parameter interval.
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Proposition 21. Let I be a parameter interval, and let (15, Q, n) be an element of R(I). For any
e > 0, the number of elements (P,Q,n) € R(I) such that P is a non-simple child of P satisfying
|P| > 5|]3| for some t € I, is at most e, where ¢’ is a constant depending only on the regularity

parameter 3.

Proof. Let e > 0, and let (P,Q,n) be an element of R(I) such that P is a non-simple child of P.
We assume, for some tg € I, that:

(8.22) |P| > ¢|P|.

Let (P1,Q1,n1), (ﬁl,él,ﬁl) € R(I) be as in Proposition 19. From (3.27), we have, for all ¢t € I:
(5.23) Pl < CIP|IP]5(Q. P) 2.

Property (R7) guarantees that, for all ¢t € I

(8.24) 5(Q,P) = C7H P

Combining (8.22), (8.23), (8.24), we have, for some ty € T

—

~ i/}
(8.25) 5(Q,P) > ¢l T,

As we always have

(8.26) 5(Q,P1) < Ceo,

there is no non-simple child satisfying (8.22) unless ¢ < 5§ ; we will assume that this holds in the
sequel.

From Lemma 3 above, we have, for all t € I:

(8.27) 5(Q,P) < C|P,

and thus, from (5.11), also

5[1(@7 ﬁl)

(8.28) 5(Q,P) <
< 0(Q,P)+C|P
<

Combining (8.25) and (8.28), we get, for some ¢y € I

~ 2
(8.29) |Py| > Cleltn,

an inequality which actually holds for all ¢ € I in view of (8.5).
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As in the proof of Proposition 20, the number of (]31, Q1, n1) for which both (8.28), (8.29) hold is

easily seen to be at most

_2n
(8.30) Ce 14m,

On the other hand, let T=Tif |I| > 82(5+1/3)_1; otherwise, let T be the largest parameter interval
which contains I and satisfies |I] < e2(3+1/3)7" As Py is I-critical, the same argument as in the

proof of Corollary 9 in Subsection 6.7 shows, from (8.29), that we must have
(8.31) (P1,Qu.7in) € R(D).

Now, P is I-critical. If T # I, we have, from (8.29) and the definition of I, that
(8.32) |Py| > |T)°, forall tel.

Therefore, (ﬁl,él,ﬁl) cannot be f—bicritical, Q1 is I-transverse and we conclude from Proposi-
tion 18 that (P, Q1,n1) also belongs to R(f ). The same is also obviously true when IT=1 We
apply Proposition 20: for each fixed (]51, @1, n1), the number of children P; is at most |f|_”7. But

we have

(8.33) 7] =|I| > 2B+ g || > 2004137
(8.34) 7= o if 2041370 5 ¢
(835) ’ﬂ > 62(1+T)(ﬁ+1/3)71 if £0 > 82(ﬁ+1/3)71 > ’I’
In all cases, this gives

(8.36) 7|7 > econ,

Combining Proposition 20 with the previous estimate in (8.30) for the number of possibilities for

131 gives therefore the required estimate. O

8.2 A Dimension Estimate

The goal of this subsection is to obtain a bound on the number of elements (P, @, n) in R(I) with
width |P| bounded from below. This is a first step towards estimating the transverse dimension of

the stable set W#(A), which is necessary in order to achieve our parameter selection in Section 9.

Let I be a parameter interval, and let (P*,Q*,n*) be an element of R(I). We introduce, in the

spirit of Laplace, Dirichlet and Poincaré, the series
(8.37) P, I,s) = Y _ |PJ,

where the sum runs over elements (P, Q,n) € R(I) such that P C P*. Here s is a complex variable

and the series is at first a formal object, but we will soon see that it is uniformly convergent in a
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half-plane {Re s > op}. The goal of this subjection is to obtain a nice estimate for oy and for © in
this half-plane.

The width |P| and therefore also the series O, depend on the parameter ¢ € I; but the estimate
that we will get is uniform with respect to the parameter. The dependence of the estimate on P*

is also quite straightforward, through a simple scaling factor.

Let us recall that we denote by d? the transverse Hausdorff dimension of the stable foliation W*(K)
of the initial horseshoes K for the value 0 of the parameter. It is well-known that this transverse
Hausdorff dimension depends smoothly on the parameter, and it controls in a precise way the
number of cylinders (for the Markov partition) of a given size; more precisely, as these cylinders
correspond exactly to the elements of R(Iy), we know that, for all ¢ € Iy and all € > 0 the number
of (P,Q,n) € R(Ip) such that |P| > ¢ is at most

(8.38) C g~ (d+Ce0),

This shows that for ©(P*, Iy; s) we could take o9 = d? + Ceg. For smaller parameter intervals, we

have to allow a slightly larger margin with relation to the initial value d2.

Proposition 22. The series ©O(P* I,s) is wuniformly convergent in the half-plane
0

1 40 1
{Res > d2 + ¢} ds}. When (P*,Q*,n*) € R(Ip), we have for Res > d° + &§ &

1 30
O(P". I;s) - O(P", I s)| > [P[ejn ™.

Proof. Let (P,Q,n) be an element of R(I) with P C P*. Consider the intermediary rectangles
(8.39) P*=P0O0)cCcPl)c---CcP)=P

with P(i) the parent of P(i + 1). Let

(8.40) by < €1 < -+ < 1

be the indices such that P(¢; + 1) is a non-simple child of P(¢;).

We also define for 0 < j < k elements (PU), QYW nl)) € R(Iy) by the following properties

(8.41) (P(6), Q(to), n(to)) = (P(0),Q(0),n(0) = (P, Q) n®)),
(8.42) (P(45),Q(4),n(£;)) = (P(lj—1+1),Q(€j—1 + 1),n(lj—1 + 1) * (PW QL) nW)),
(8.43) (P,Q,n) = (P(lx_1+1),Q(lr_1 + 1), n(lp_1 + 1) % (PX) QK n®)y,
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We now estimate the widths from (3.10):

(8.44) |P(ty)] < cC|P*||PY)],
(8.45) |P(¢;)] < C|P(tj_q +1)| [P,
(8.46) Pl < C|P(ly_1 +1)] | PP,

From (3.27) and property (R7), we also have:

(8.47) Pt + 1) < £2|P(¢))].

Define m; for 0 < j < k to be the largest integer such that, for all ¢ € 1
1
(8.48) P4+ 1)] < 275 |P(¢)].

From Proposition 21, for each fixed P(¢;), the number of non-simple children P(¢; 4+ 1) satisfying
(8.48) is at most

_1N\¢
(8.49) (2t =2)"

Combining (8.44), (8.45), (8.46) and (8.48), we also have

k k
(8.50) P < P (TTIP9Y) eg 2>,
0

We will take this to the power s and sum over P. We introduce (corresponding to the term [PU)|*)

(8.51) Ou(s): = >oope

(P,Q,n)eR(Io)

= Y O(Rq In,s),
a

and also
1 _1 .,
(8.52) 0(s) =Y _(Ced 27™)* (2 ey 2)em.
m2=20

The function O is controlled by (8.38), while 0 satisfies

/ L(s=¢ / -1
(853) 9(3) = 92¢N (18 53( n) (1 . 2*(876 77)) 7

and therefore, for C~! < s < C:

lis—¢ Lig—¢
(8.54) c1e2C T sy < 02T

N

From (8.38), we have, for s > d? + Ceq:

(8.55) Op(s) < C(s—d°—Cep)™t

85



In particular, for s > dY + 5[1)/ 3 dg, we have
140
(8.56) Oo(s) < C¢gy® *
1 j0
(8.57) Ou(s)O(s) < Celd ™.

But, from (8.50), we have for real s

(8.58) O(P", I,s) < C|P"|* S OF(s) 6% (s).
k>0
and therefore we deduce from (8.57) that the series defining © is uniformly convergent in the half

140
plane {Res > d% + ¢ *}.

Assume now that (P*, Q*,n*) € R(ly); the difference O(P*, I, s) — ©(P*, Iy, s) consists of the sum
of |P|® over those P for which k£ > 0. We get, for real s

(8.59) O(P*,1,5) — O(P*, In,s) < C*|P*"S O+ (s)0(s).
k>0

0

1
For s > d% +¢§ dS, we have, from (8.55), (8.54):

_1 g0
(8.60) Oo(s) < Cgy° -
1 40
(8.61) odo(s) < O™
which gives the second part of the proposition. O

8.3 Transfer to Parameter Space

8.3.1 Our goal in this subsection will be to prove the following result, which expresses a transfer

of the dimension estimate of Subsection 8.2 to parameter space.

Proposition 23. Let I be a reqular parameter interval. Let (P*,Q*,n*) be an element of R(T)
such that Q* 1is I-critical and

(8.62) Q| < %m(lﬂ)(lfn)‘l

forallt € I. The, the number of candidates I C I of the next level, such that Q* is I-critical, is at

most |1|~7 d:, where df = d° 4+ Cnr=! can be made arbitrarily close to d..

Recall that the total number of candidates is |I~\_T. Proposition 23 is the key estimate that will
allow us in Section 9 to proceed with the selection process for parameters. The rest of the section

is devoted to the proof of Proposition 23.
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8.3.2 We start with some general observations, that could have been made much earlier, but are

only useful now.

Let I be a parameter interval. Let (P,Q,n), (Py, Qo,n0), (P1,Q1,n1), be elements of R(I) such
that Q C Qu, Py C Ps, P1 C P; and Py N P = (). Associated to the pair (Q, Py) (resp. (@, P1)),
we have defined in Subsection 3.5 a function Cy(w,y,z) (resp. C1(w,y,z)) which is the basis for
the definition of 0(Q, Py), drr(Q, Po),- -+ (resp. 6(Q, P1), oLr(Q, P1),--+). It follows immediately

from the monotonicity of the function 6 that, since Py and P; are disjoint, we have either

(863) CO(waya:EU) > 01(10,3/,1‘1) for all w,y,xo,1,t, oOr
(8.64) Co(w,y,xg) < Cy(w,y,z1) forall w,y,xo,x,t.

In the first case, we have, from the definitions in Subsection 5.4:

(865) 5R(Q7P0) < 5(Q;P1)7
5LR(Q7P0) < 6L(Q>P1)7

while in the second the same inequalities hold exchanging Py and P;.
We see in particular that if (8.63) holds and @, P, are I-separated, then @, Py are also I-separated.

On the other hand, we will prove (see figure 8).

AN

g

Proposition 24. Assume that (8.63) holds and that |P|'=" < |I| for some t € I. Then, if Q and

Py are I-transverse, @ and Py are also I-transverse.

Figure 8
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Proof. Let I>1and (ﬁ, @,ﬁ), (ﬁo, éo,ﬁo) € R(T) be such that Q O Q, Py O Py and @ﬁjﬁo holds.
If P C ﬁo, we immediately conclude that () and P; are [-transverse. We assume, therefore, that
PNP = 0; replacing (Py, Qo,no) by (]50,@0,50), and (P,Q,n) by (]5,@,5), we can also assume

that (P, Q,n), (Po,Qo,no) € R(I) and Qh;Py holds.

Let (ﬁl, Q1, n1), be the element of R(f ) with Py C Py and smallest P;. We will prove that Q and
]51 are I-transverse. We have, for all ¢t € f, that

(8.66) SLr(Q, P) > 61r(Q, Py) > 2|1,

and also for some tg € I, ,

(8.67) Sr(Q, P1) > 0r(Q,Py) > 2|QI"™.

Therefore, assuming that meﬁl does not hold, we must have, for all ¢t € I, , that
(8.68) 0L(Q, Pr) < 2[R,

We cannot have in this case P; = Py, because, for all t € 1,

(8.69) oL(Q.P1) > 6rr(Q.Po) > 2|1],

and (8.68), (8.69) together would contradict the hypothesis of the proposition. Therefore, P strictly
contains Py and I strictly contains I. But, then, applying the structure theorem of Subsection 6.7
to the child of P; which contains P, we obtain that @1 is T-critical. As T is [B-regular, it then follows
from (8.68), (8.69) and (5.14) that P, is I-transverse. This implies that there exists (P,Q',n) €
R(I) with QNQ' # 0 such that Q'hzP; holds. If Q C @, it follows that QrhzP; holds. When @’ € Q
we use both QP and Q' rhffﬁl to conclude, as in the proof of Proposition 4, that thfﬁl. O

8.3.3 We now switch back to the setting of Proposition 23.

Let (P,Q,n) € R(I) with P C P,. We say that P is eventually I-separated from Q* if there exists
an f—decomposition (Py, Qa,na) of P such that @* and P, are f—separated for every a. We say
that P is eventually I-transverse to Q* if there exists an I -decomposition (Py, Qq,nq) of P such
that Q* and P, are I-transverse for every . We say that P is eventually I -Q*-critical if it is

neither eventually I -separated from @Q* nor eventually I-transverse to Q*.

Lemma 4. If P is eventually I-transverse to Q* and 2|P|*~" < |I| holds for some t € I, then
Q*MzP holds.

Proof. This is an immediate consequence of Proposition 9. O

Lemma 5. If P is eventually T—Q*-critical, then P is I-critical.
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Proof. If P was I-transverse, there would exist (Pa, Qa,yna) € R(f) with Q*NQq # 0 and Qa5 P.
But, then, from Proposition 2 if @, D Q* or Proposition 9 if Q, C Q*, we would deduce that
Q"3 P also holds. O

Lemma 6. If P is eventually I-Q*-critical and |P| > |I|? holds for some t € I, then some child of

P is also eventually T-Q*-cm'tz'cal.

Proof. By Lemma 5 and Corollary 4 in Subsection 6.2, P is f—decomposable. If all children of P were
eventually I-transverse to Q* (resp. eventually f—separated from Q*), we would put together the
corresponding I -decompositions and obtain that P is eventually I-transverse to Q™ (resp. eventually
I -separated from @Q*). Therefore, we shall assume that some child Py is eventually I-transverse to

Q*, and some child P is eventually I -separated from Q*.

By contradiction, we assume that none of the children is eventually I -(Q*-critical and we will show
that Q* is I-transverse. We construct an I- -decomposition (P, Qa,nq) of Ps such that every P, is

either I-separated from Q* or I-transverse to Q* in the following way.

Actually, it is sufficient to have an f—decomposition such that every P, is either eventually I-
separated from Q* or eventually I-transverse to Q*. Starting from the trivial decomposition of
P,, we have at step i an I-decomposition (Pc(f), S’,nﬁfh. As long as there is one (Pc(f), Qg),ng))
with P C Po(f), we observe that Po(f) is I-critical and therefore I- -decomposable and break it into its

children to go to step 7 + 1.

After a finite number of steps, each Péi) is either a child of P or disjoint from P. Comparing ng)
with Py and P;, we conclude from Proposition 24 or from the remark before this proposition that
Po(f) is either eventually I-transverse to Q* or I -separated from @Q*. Thus, we have constructed the

required I -decomposition and the lemma is proved. O

Lemma 7. If Py, P are eventually I-Q*-critical and disjoint, then we have |Po| < Com, |P| <
Coll| for allt € 1.

Proof. From Lemma 6, we can find (ﬁo, @O,ﬁg), (181, @1,ﬁ1) in R(T) with Py C Py, P c Py, such
that both ﬁo, ﬁl are eventually I -(Q*-critical and we have

(8.70) Bl < [I°, |P| < |I)° forall tel.
If we had, for all t € I and i =0 or 1,
(8.71) 5(Q, B = 2],

then, from (8.62) and (8.70), one would have that Q*ﬁ;ﬁi holds and P; would not be eventually
I -QQ*-critical. We have, therefore,

(8.72) SLr(Q*, Py) < 2|I| for some ty €I and

89



(8.73) (5LR(Q*,ﬁ1) < Q‘ﬂ for some t; € I.

In the same way, we must have

(8.74) (5LR(Q*,]30) > 0 for some ) € I and also.
(8.75) & p(Q*,P)) > 0 for some t) €I

Let (P, Q',n'), (P}, Qp,ng), (Pf,Q},n}) be the elements of R(f) such that Q* c Q', Py C P},
ﬁl - P{, and

(8.76) Q< 1, Bl <, Pl <], Vtel

and which are maximal with these properties.

Then, P satisfies condition (xs) of Subsection 7.6: this follows easily from (8.72). Similarly, P|
satisfies condition (xs) and @’ satisfies condition (xu). We are therefore allowed to apply the

estimate of Corollary 11 in Subsection 7.6 to conclude that
(8.77) max 61r(Q', Pf) — min 61p(Q', P}) < 2[I|
T T

for i = 0, 1, and similarly for 8, dr,, 0g. We either have (8.63) or (8.64). Assume, for instance, that
(8.63) holds. If P C P}, we have |P;| < |I| from (8.76). If P| C Pi, we have

(8.78) max 07 (Q*, P1) < max §.(Q, Py)
I I
< min 6,(Q', P]) + 21|
I
< min 04(Q%, Py) + c|@']) + 2|1
I

< ol

Similarly, we have |Py| < |I| from (8.76) if Py C P} and otherwise

(8.79) min 0, p(Q*, Fy) > min 0pp(Q', PY) — c[I|
I I
> max pp(Q, P)) — (c+2)|]]
I
> —I.

Observe that, for all ¢t € I, , the inequalities
(8.80) Il > 6L(Q*, P1) > 6Lr(Q" Po) > —cll|

are also valid when P, C P| or Py C P;. However, there is a constant ¢ > 0 such that, for any child
P} of Py, any child Fj of Py, we have, for all ¢ € I, that

(8.81) or(Q%, Pr) = 6L(Q, P1)+ c|Pl,
(8.82) OLr(Q", Fy) < 0Lr(Q7, Po) — c| Pl
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As we also must have, for some children P}, Py, that

(8.83) oL@, Py <,
(8.84) oLr(QF5) = —dll,
because these children are eventually I -(Q*-critical, we obtain the conclusion of the lemma. O

8.3.4 Consider the set IT of elements (P,Q,n) € R(f ) which are eventually I-Q*-critical, satisfy
(8.85) P| < |[T]M7
for all t € I and are maximal (in P) with respect to these two properties.

Lemma 8. We have

1~
H < _ _[—Tds7
#1 < o

where df = d° 4+ Cn 71~ is as in the statement of Proposition 24.

Proof. From Lemma 7, there exists a unique element (Py, Qo,ng) € R(I) with the following prop-
erties:

— PC Py forall (P,Q,n) eIl
— |Po| > Co|I] for some t € T
— every child Py of Py which contains a rectangle P with (P, Q,n) € II satisfies | P,| < C,|I] for
all t € 1.
As Py is eventually I-Q*-critical and |Py| > Co|I| for some t € I, Py must be I-critical. From

Proposition 20, the number of children of Py is at most |f | e,

For every (P,Q,n) € I, either P is a child of Py or the parent P of P is contained in a child Py of
Py. Observe that we have by definition of 11

(8.86) |P| > |[I|'"*"  for some t € I.

As P satisfies condition (xs) of Subsection 7.6 since Py is I-critical, we also have
(8.87) |P| > ¢ Y I forall tel.

As we also have

(8.88) 1P| < Col|I| forall tel,
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the number of possible ﬁ, given Py, is from Proposition 22 at most,
(8.89) (o)~

140 ~ ~
with df = d% +¢§ % The number of children of P is at most |I|=¢". This gives a bound for the

cardinality of II by
(8.90) [T + [T]7*7(0)7) %,

in accordance with the statement of Lemma 8. ]

8.3.5 Proof of Proposition 23: By Lemma 5 and Corollary 4 in Subsection 6.2, every (P, Q,n) €
R(I) such that P is eventually I-Q*-critical and |P| > |I|° (for some ¢ € I) is I-decomposable.

Therefore, there exists an I-decomposition (Pa, Qa,nqa) of Ps such that every (Py, Qq, ¢ ) is either

eventually I -separated from Q* or eventually I-transverse to Q" or an element of II.
Let I C I be a candidate interval of the next level, i.e. |I| = mHT, such that Q* is I-critical.
We claim that there exists (P, Q,n) € II such that P is eventually I-Q*-critical.

Indeed, every (P, Qa,nq) which is eventually I-transverse to Q* (resp. eventually f—separated
from @Q*) is a fortiori I-transverse to Q* (resp. I-separated from @Q*). If every (P, Qq,nq) € 11
was also either eventually I-transverse to Q* or eventually [-separated from Q*, we would obtain

a decomposition of Py which expresses that Q* is I-transverse.

On the other hand, fix (P,Q,n) € II. We show that there are at most Cy candidates I C T such
that (P, Q,n) is I-critical. Together with Lemma 8, this will imply the statement of Proposition 23.

Choose (P',Q',n’) € R(T), with Q* C @', |Q'| < m for all ¢ € I, and maximal with this property
as in the proof of Lemma 7. Then, @’ satisfies condition (xu) of Subsection 7.6; we already know

that P satisfies condition (xs). Then, by Corollary 11 of Subsection 7.6, we have

d 1
(8.91) % 5LR(Q,,P) —1] < 058
But, if we have for all t €
(8.92) 5LR(Q/7 P) < 0,

then Q' and P are I-separated and a fortiori Q* and P are [-separated.
On the other hand, if we have

(8.93) §5(Q',P) > 3|I| forall tel,
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it is easy to conclude from (8.62) and Proposition 9, that P is eventually I-transverse to Q*. But,
by (5.11)—(5.14), we have

(8.94) orr(Q, P) < 6(Q,P)+cl|l]

and our claim then follows from (8.91). Proposition 23 is proved. O
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9 Strong Regularity and Parameter Selection

9.1 Partitions of the Critical Locus

As it was mentioned in Subsection 4.5, regularity is a rather qualitative property which is not appro-
priate for the quantitative estimates needed for parameter selection. Therefore, we will introduce

later in this section, a stronger quantitative property, that we call strong reqularity.

This property is built up from several bounds: the number of bicritical elements of a given size
(including, of course, that there are no ”fat” bicritical elements), and also sizes of the ”critical
locus” (see below), which should be of approximate dimension d° + d% — 1. These last bounds are

more elementary and will be taken care of first.

In all of Section 9, we fix a parameter interval I which is strongly regular, i.e. satisfies all bounds
that will be stated shortly. We will prove at some point that the starting interval satisfies this
strong regularity. As mentioned before, and as will be proved in Subsection 9.6, strong regularity
implies (-regularity for some 8 > 1. We denote by I any parameter interval contained in T of the
next level, i.e. |I| = [I|**7; such a candidate interval is B-regular (Corollary 9 in Subsection 6.7),
with 3 = B(1 + 7)~1. The aim of this section is to estimate how many of the candidates I fail to

be strongly regular.

We denote by Cy(I) the set of (P,Q,n) in R(I) such that P is I-critical, |P| < [I|'*7 for all t € I,
and P is maximal with this property: the parent P of P satisfies |P| > |I|'*7 for some t € I.

Obviously, if (P,Q,n), (P',Q’,n’) are distinct elements in C(I), P and P’ are disjoint. Moreover,
if (ﬁ, @,ﬁ) belongs to R(I), P is I-critical, and ]lB| < || for all ¢ € I, there is a unique
(P,Q,n) € C,(I) such that P C P.

Exchanging P’s and Q’s, we define C_([) in a similar way. The sets C(I), C_(I) correspond to the
I-critical locus at the |[I]**7 scale. We will also need to consider this at the |I] scale, as follows. We
define C (I) to be the set of (P,Q,n) € R(I) such that P contains some P’ with (P',Q’,n’) € C4(I),
|P| < || for all t € I, and P is maximal with this property. We define similarly C_ ().

We will need in the sequel to consider I -criticality (for some parameter interval I>1 ) for rectangles

~ ~

in R(I) but not in R(I). The following definition will be useful.

Definition. Let I, D I be parameter intervals, and let (P,Q,n) € R(I). We say that P is thin
I,-critical if there exists (Py, Qa,na) € R(I,) with P C P,, P, is I,-critical and

|Pal'™" < 2|1
for some t € I,,.
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The main justification for this definition is the following lemma, which is an immediate consequence

of the structure theorem of Subsection 6.7 and Proposition 11 in Subsection 6.6.

Lemma 9. Let I be a parameter interval with parent f, and let (P,Q,n) be an element of R(I)
which is not the restriction of an element of R(f) Let (P;,Qi,n;), for 0 < i < k, be the elements
of R(f) given by the structure theorem of Subsection 6.7. Then P; is thin I-critical for 0 <i <k,

and Q; is thin I-critical for0<i<k.

9.2 Size of the Critical Locus

We will state several inequalities related to the size of the sets Cy (I), C—(I), C+(I), C—(I). All these
inequalities are part of the definition of strong regularity: they have to be satisfied by a strongly
regular parameter interval. We will then see that if these inequalities are satisfied by the parent

interval IN, most of the candidates I C I also satisfy these inequalities.

Recall that d°, d” are the transverse Hausdorff dimensions of W*(K), W*(K) at t = 0. In Propo-
sition 23 of Subsection 8.3, we introduced df = d? + Cnr~!. Let also d} = d) + Cnr~L.

1 40
In Proposition 22 of Subsection 8.2, we have used d} := d° + ¢j % < dY. Define similarly

140

&y = dd+e5™.

u u

~

I\1—df—df-7 __
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The heuristics behind the second set of inequalities is the following: in the mean, one expects that

elements of R(I) more or less satisfy

(9.1) P~ Q"

and, for (P,Q,n) € C,(I) (for instance), one should have

(9-2) [P~ |I|

which explains the relation between (SR1); and (SR2)s.

Let us check that the starting interval I satisfies these eight inequalities.

Then C (Iy) (resp. C—(Ip)) consists of the elements (P, Q,n) € R(Iy) with PNPy # 0 (resp. QNQ., #
0), |P| < eyt™ for all t € Iy (resp. |Q| < gy'™ for all t € Iy) and maximal with this property. Then,
(SR1)s follows from (8.38) and (SR1), is similar. Writing (P,Q,n) = (Ps,Qs,ns) * (P,Q',n'),
the inequality (SR2)s becomes

(9.3) 3@t < ¢
C+(I)

which is a standard property of uniformly hyperbolic horseshoes. The proof of (SR2),, is similar.
The case of CA+(IO), CA_(IO) is even simpler. For the induction step, we have:

Proposition 25. If the parent interval I is B-regular and satisfies one of the eight inequalities
(SR) above, then all candidates I C I satisfy the same inequality except perhaps for a proportion
not larger than C|I|7".

Notation. Let (P,Q,n) € C,(I). We denote by Cr(P) the set of candidates I C I such that P
contains a thin I-critical rectangle.

Lemma 10. For any (P,Q,n) € C+(I), we have

#COr(P) < CI|77% .

Proof. Let (P*,Q*,n*) € R(I) be an element such that P* C P and
(94) |P*’ < %’f’(l—l—ﬂ(l—n)fl

for all t € 1. By Proposition 23 in Subsection 8.3, there are at most |.7 |_Td;r candidates I C I such
that P* is [-critical. Let I € Cr(P). By definition, there exists (Py, Qo,n0) € R(I) with Py C P,
Py I-critical and

(9.5) |Po|*™" < 2|I| for some tg € I.
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But if Py is I-critical and (9.5) holds, there must exist (P, Q’,n’) € R(I) and t; € I such that
(9.6) 0 < 0Lr(Q, Py) < 2|1].

As Py, P* are contained in P and |P| < |I| for all t € I, we also have

(9.7) 0Lr(Q', PY)| < CIII.

Proceeding as in the Proof of Lemma 7, Subsection 8.3, we deduce from Corollary 11 in Subsec-
tion 7.6, that there exists I’ C I at distance ¢|I| of I such that P* is I’-critical (except perhaps

when [ is very close to the boundary of I). This proves the lemma. O

Proof of Proposition 25. We will deal with (SR1)s, (SR1)s, (SR2)s, (SR2)z, the other four being

symmetric.

For each (Py,Qa,na) € C4+(I), we consider the elements (P, ;, Qa,i,Na,i) € R(I) which satisfy
P,; C Py, |Payl < | \(HT)Q for all t € I , and which are maximal with respect to this property.

This gives an I-decomposition of P,: indeed, it is easy to see that for each (PL,Q.,,n.) € R(I) with
P! C P,and |P)| > [I|*7* for some ¢ € I, Q, is I-transverse and therefore P, is I-decomposable.

Using Propositions 20 and 22, we argue as in the proof of Lemma 8, Subsection 8.3, to see that for

each P,, the number of P, ; is not larger than

(9.8) | I =em [T~
140

with df = d? +e5 °.

Obviously, if (P, Q,n) € C(I), there exists «, ¢ such that P O P, ; and I must belong to Cr(F,).

We, therefore, have

(9.9) Yo#C(I) < CHTrTIHNE N LCr(P,)

Icl ci(I)
< #C (D) |17 TG max #Cr(P).

We have
(9.10) df > &1 +7)+Onrt
and therefore, using also Lemma 10:

(9.11) > #CL(I) < CHCL (DT,

Icl

The induction step for (SR1), follows immediately. In the same way as in (9.8), we obtain from
Propositions 20 and 22 that

(9.12) 4., (I) < |T17On |11 4C.(T)
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On the other hand, for every (P,Q,n) € CA+(I), there exists a (P,, Qa,Na) € C+(f) with P, C P
and I € Cr(P,). Therefore, we have

(9.13) YT HC) < D #OT(Pa).
ci(I

IcI I)

Putting together (9.12), (9.13) and Lemma 10, we get

~ ~ _rd —r + o~ ~
(9.14) D #CL(I) < CHTOrTETTh 4e (D)
and we conclude as above.

Let us now consider (SR2)s. We must sum |Q|% over elements (P, Q,n) of C1(I). Fix (Pa, Qa,Na)

in Cy(I) such that I € Cr(P,). When we consider the partial sum over those @) contained in Q,,

we get, from Proposition 22 in Subsection 8.2.

(9.15) SR < ClQaln.
QCQa

As every (@) is contained in such a Q,, we will have:

(9.16) Yol < Y (Qal™

c,(I) 1€CT(Py)

Summing then over candidates I and using Lemma 10, we get

(9.17) YD IR < C Y [Qul% #CH(Pa)
)

I ¢ cy (D)

< O N |Qa

C+(I)

*
du
)

which allow us to conclude as above the induction step for (SR2);. The argument for (SR2); is

similar and left to the reader. O

9.3 Classes of Bicritical Rectangles

Now that the size of the critical locus is under control, we must pay attention to the number of

bicritical rectangles, which represent the returns of the critical locus to itself under the dynamics.

In order to have an appropriate induction scheme, we need to bound the number of bicritical
rectangles according to all width scales and also according to the level of criticality (i.e., the
distance to critical locus) of both P and ). As we will see in the next subsection, the number of
bicritical elements experiments a ”phase transition” which is crucial for our argument but brings a

lot of complications.

98



Let I be a candidate interval as above, and let I, I, be parameter intervals such that I C I, N1,.

Let also = be a positive number.

Definition. We denote by Bi (I, I, I,,; z) the set of elements (P, Q,n) € R(I) such that P is thin

I,~critical, @ is thin I,-critical and |P| > x for some t € I.

Similarly, Bi_(I, I, I,;x) is the set of elements (P, Q,n) € R(I) such that P is thin [,-critical, @

is thin I,-critical and |Q| > = for some ¢ € I.

We denote by Bi't*“ (I, I,, I,; ) the set of elements (P, Q,n) € Biy (I, I, I,;x) that do not belong
to R(f), I being as above the parent interval of 1.

We will estimate the cardinality of all sets Biy ([, I, I,;x), by induction on the level of the pa-
rameter interval I. The easy case is when [ is strictly smaller than I, and I,. In this case,
no parameter selection is needed. An element of Bii (I, 1, I,;x) is either in BiY*(1, Iy, 1,; )
or in Bi+(f 1o, Iy ), where I is the parent interval of I. We will see that the cardinality of
Bi (1,14, 1,;x) can be estimated from the induction hypothesis and the structure theorem of
Subsection 6.7, and this cardinality is much smaller than the cardinality of Bz’+(f ,Io, I,; ) which
is controlled by the induction hypothesis.

When I is equal to I, but strictly smaller than I, (or in the symmetric case I = I, ;Cé I,), a pa-
rameter selection is needed in order to obtain satisfactory estimates. An element of Bi (I, 1, I,;x)

ynew

is either in Bi"* (I, I, I,,; x), whose cardinality can be again estimated from the structure theorem
and the induction hypothesis, or it belongs to Bi+(.7 , I, ,I,;x). But in this last case, the vertical
rectangle P, which is known to be I -critical, is only I-critical for a small fraction of candidates I
which is controlled by Proposition 23 in Subsection 8.3. Averaging, like in Subsection 9.2, allows

us to get the required estimate.

By far the most difficult case occurs when I = I, = I,,. When x is large, we have a set of estimates,
which is taken care of in the same way as for I = I, # [I,. But when x is small, the parameter

selection process is much more subtle and will be explained in Subsection 9.8.

9.4 Number of Bicritical Rectangles

In this subsection, we will state, and comment, the estimates for the cardinalities of the sets Bi4
introduced above. The rest of Section 9 will then be devoted to the proof of these estimates under

appropriate parameter selection.

At this point, we have to break the symmetry between past and future, P’s and Q’s, stable and
unstable direction: the estimates are indeed not symmetric, except when d? = d°, i.e., in the

conservative case of area-preserving diffeomorphisms.
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We will assume that d > d° (and dY + d2 > 1). The case d) > d! is obviously symmetric.

U

For I, 1, 1, x as above we want to have

(SR3)s #Biy(I,1,,1,;z) < CB,
with
(9.18) B = max(By,B1),
x \—pro (|Iy[\ootor /|1,]\ 70
(919 B = (om) ") ()"
e () ) (B

Here |P,| denotes the supremum over Iy of the width of P,: the exponents pg, p1, 0o, o1 will be

specified more precisely later, but anyway they satisfy

(9.21) po = dj+o(l),
dg 0 10
(9.22) e (2d2 + d° — 1) + o(1),
(9.23) o0 = 1—d%+o(1),
(9.24) op = dY—d+o(1).

The meaning of the o(1) terms in these formulas is that they become arbitrarily small when 7 >

1 > €p are small enough.

For the Bi_ sets, we should have:

(SR3)y #Bi_(I,1,,1,;2) < CB,
with
(9.25) B = maX(B(/),Bi),
—=po (|Ia|\o0tor /|I,]\ 20
2 B, = x Hal Mol
(9 6) 0 (50|Qs|> < €0 > ( €0 ) ’
= (Lo - (Hal w0
27 B, = * — _—,—
(9 ) ! (€0|Qs|> < €0 > (mln ( €0 ’ €0 )) ’
/ dO 0
/ do do 0 0
(9.29) Py = 20 p1 = D0+ 0 (2dg +d, — 1) + o(1).

Observe that the formulas (9.22), (9.29) for p1, p} are not symmetric.

Definition. A parameter interval is strongly regular if it satisfies (SR3)s, (SR3), and the eight
conditions (SR1), (SR2) of Subsection 8.2.
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Remark. The definition will only be complete when we specify precisely the exponents pg, p1, - -

We now comment on the inequalities above. First, observe that B does not depend on I: this

reflects the fact mentioned above that Bi}*"(1, I, I.,;; x) is small compared with Bi+(f, Iy, 1,; 7).

From the formulas (9.21), (9.22), we have

(9.30) o1 < po.
Set
I, |1, 70
(9.31) Ter = 0| Pyl (maX (u’ u)>p0 "
€0 €0

Then, we have B = By for x < x.- and B = B for x > x,: this is the ”"phase transition” mentioned

earlier. We have

(9.32) mem = o),
(9.33) po‘f’pl = dg;édg +o(l) > 1.
For z = z.,, we have
(934 B =B = (o) (Y™ (i (el Py 3utor
Assume I, = I,; we then have
(9.35) Ber = ('?")UWO o
0
Here, the exponent satisfies
(9.36) o1 + 00 ’)poo__zppll =2 2d° — 2d° + o(1) < 0.

As |I,| < g9, we have B, > 1. As B is a decreasing function of x, we have B < 1 (in which case
(SR3)s means that the Biy set is empty!) iff By < 1 which corresponds to

’I ‘ ooto1

(9.37) ©>T = g|Py| (—“) 2z
€0

The exponent here satisfies

oo + 01 1—d2 dg—i—dg n (1)
= o

(9.38)

We are finally able to justify the assumption (H4) of our Main Theorem stated in Subsection 1.2!
Indeed, with d > d°, it means that

(H4) 2(d9)? + (d°)? +2d°d° < 2d° + d°
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and this is exactly what is needed to guarantee that

o9+ 01
P1

(9.39) > 1.

We will choose the constant § (related to the regularity property) in order to have

(9.40) 1<pg< Bt
P1

and also

(9.41) 1P| < el .

Then, from (9.37), we will have that

(9.42) T < |I)°.

Summarizing: if (SR3)s holds, and if (P,Q,n) € R(I) is such that P and @ are thin I,-critical, we

must have
(9.43) 1P| <z < |IJ°
for all ¢t € I. This is almost what we need for B-regularity. The full proof is given below.

The discussion for (SR3),, is similar; the critical threshold is

Lol LN\ 72
(9.44) zl. = e0|Qs| (max (u,u»po o
€0 €0
with
dy (1 —dg) dy
(9.45) po—p = &0+ 0 +o(1) = &0 (Po — p1)
00 op dY dd + d
(9:46) G-d  memd a4 O

When I, = I,,, we have

Po—20)
I + 7
(947) BéT = (L{(};‘)Ul (o} Po—P1 :BCT 2 1.
Thus, we have B’ < 1 if
ootoi
(9.48) z > T = eolQsl (@) ‘i
€0
We have here
oo+ 01 op+ 01 d(s)
9.49 = — > f
(9-49) P’ p1 dY

102



and we choose ( close enough to one to have
(9.50) 1Qs| < &7

Then, we are again able to conclude that, if (SR3), holds, any (P,Q,n) € R(I) such that both P
and () are thin I,-critical must satisfy, for all ¢t € I

(9.51) Q| < T < |I)°.

Proposition 26. If a candidate interval satisfies (SR3)s and (SR3),, then it is (-regular. In

particular, strong reqularity implies reqularity.

Proof. We argue by induction on the level of the parameter interval. For the starting interval I,
we use (for the first time!) the assumption (H1) of Subsection 1.2 that the periodic points ps, py,
do not belong to the same periodic orbit. Then, if (P,Q,n) € R(ly) is such that P C Py, Q C Qu,

we must have, for all t € I
(9.52) Pl < &), Q| < &b

if we take (3 close enough to one. This proves that I is S-regular (independently of (SR3)s, (SR3),,).
Assume that I # I satisfies (SR3)s, (SR3), and that (P,Q,n) € R(I) is I-bicritical. Assume also,

for instance, that
(9.53) max Q] < max | P|
and, by contradiction that

(9.54) max |P| > |15

From the proof of Corollary 9 in Subsection 6.7, we know that (P,Q,n) € R(f) (f being the parent
of I). As (P,Q,n) is I-bicritical, we must have

(9.55) max |P| < 1117,

Therefore, P would be thin I-critical; similarly @) would be thin I-critical. But (SR3)s , (see (9.43),
says that such a (P, Q),n) satisfying (9.54) does not exist. O

Remark. While there are only eight inequalities (SR1), (SR2) for each parameter interval I, the
inequalities (SR3)s, (SR3), form a family parametrized not only by I, but also by the parameter
wtervals I, O 1 and 1, D I and the real number x > 0. Because each inequality, at least when
I =1, or I = 1,, is only obtained after parameter selection, we will discretize the continuous
variable x by considering only the values x = 2N, N > 0. There is still an infinite number of

inequalities, but we will see that they are trivially satisfied if N is large enough.
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9.5 The Starting Interval

Our main purpose in this subsection is to prove the following fact.

Proposition 27. The starting interval is strongly reqular.

Proof. We have already checked in Subsection 8.2 that Iy satisfies the eight inequalities (SR1),
(SR2). We have therefore to prove that (SR3)s, (SR3), are also satisfied. We clearly have I, =
1, = Iy. Then Bi(ly, Iy, Ip;x) is the set of (P,Q,n) € R(Ip) such that P C P,;, Q C @, and
|P| > x for some t € Iy. Writing (P, @, n) as a simple composition

(9.56) (P,Q,n) = (Ps,Qs,ns) * (P,Q",1) * (Puy Qusnu))

(here we use again assumption (H1)), we, then, use the standard estimate (8.38) to obtain:

x >—(d2+060)

(9.57) #Bi (Io, Io, To;x) < 0(50\ 7

)

and similarly

] T —(d%+Ceo)
(9.58) #Bi_(Io, Ip, Ip; ) < c(m>

Therefore, we obtain (SR3)s and (SR3),, if we have:

(9.59) po > dY+ Ceo,
(9.60) py > dY 4 Cey,
which is compatible with (9.21), (9.28). O

The other part of (SR3)s, (SR3), which can be taken care of right now is the case where x is

extremely small.

In this case, we will just forget about the criticality conditions for P and ) and bound the cardinality
of Biy(I,I,,1,;z) by the cardinality of the set of (P,Q,n) € R(I) for which |P| > x for at least

some t € I.

This cardinality was estimated in Proposition 22 of Subsection 8.2. Actually, the estimation was
given for fixed parameter but it is easy to check that the same proof gives the same estimate as in
Proposition 22 for the set we are considering. One obtains

x\ 45
(9-61) #Bi (1,1, Io;z) < (%)

1 ;50
. Ly
with df = d? +¢§ ™ as above.

104



We want to have (for all I,,, I, D I)

(9.62) (3)% < By,

which is equivalent to

» (5 < i ()
This will be satisfied if

(9.64) T < T = TGP0
So, we need to have

(9.65) po > d

which is compatible with (9.59), (9.21). The exponent C(py — d%)~! will be very large. We have

proved

Proposition 28. The estimate (SR3)s is satisfied for all candidates I, all 1, 1, D I, as soon as
T < Tin- A similar statement holds for (SRS3),, with a threshold

(9.66) ol = |T|Ce )

min

9.6 New Bicritical Rectangles

We consider in this section the set Bi}*" (I, I, I,; x) of bicritical rectangles which were not defined
over the parent I of I: cf. Subsection 9.3. We assume that I C I,N1,. We apply to each element
(P,@Q,n) in this set the structure theorem (Theorem 1) of Subsection 6.7. We obtain an integer

k > 0, elements (Py, Qo,n0), - , (P, Qr,nk) of R(I) such that

(967) (P, Q,n) S (P(), Q(), no) g.-..-d (Pk, Qk,nk)

Moreover, P; is I-critical for 0 < 4 < k and Q; is I-critical for 0 < i < k. On the other hand,
Py is I,-critical because P is I,-critical, and Q) is I,-critical because @) is I -critical. Denote by

x; = 27 ™ the largest integral negative power of 2 such that
(9.68) |Pi| > z; for some ¢ € 1.
Lemma 11. We have

(P()vQOvnO) S Bi-‘r(ji[a?j:;x())a
(PkHQkank) S BZ+(f7iIW7xk)7
(P,Qini) € Biy(I,I Lz

for0<i<k.
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Remark. This lemma is the reason why we need to consider different levels of criticality for P

and Q.

Proof. For 0 <i <k, P; is I-critical and it is even thin I-critical by Corollary 7 of Subsection 6.7.
Similarly, for ; when 0 < j < k. Finally, P is thin P,-critical because P is thin I,-critical and
Py is the thinnest rectangle containing P which is defined over I (which is contained in I,), so
the thinnest rectangle containing P and defined over [, also contains Py. Similarly, Qf is thin
I ,-critical. O

The widths |P;| are related to the width of P by Corollary 6 in Subsection 6.7 which gives
L,k
(9.69) r < CF|I"2 H x;.
0

Let us write

#(zo) = #Bis(I,1a,I;x0),
#(zy) = #Bi(I,1, L),
#(x;) = #Biy(I,1,T;2;)for0<i<k.

Then, as each parabolic composition produces two elements, we have

k
(9.70) #B (I o, Liz) < Y 28 > T #(@).
0

k>0 L0, Tk

The term #(x;) is estimated by the induction hypothesis (SR3), for I. In view of the threshold
(9.31), we divide Bi"}*" into two parts. In the first, we put the elements for which every x; is above

the threshold z; ., given by (9.31). In the second, at least one of the x; is below x; .

Let us consider the first part. Then all #(x;) are estimated by B; and we have

k k ~

| N (k1)pr (Hal\ 71 (L[ D70tk
o Tl < o (fTa) et (B (D
In view of (9.69), the right-hand side is bounded by

x \P /Lol ‘ﬂ o0
(9.72) ) () (5) 7
with
1 I|\oo+o

(9.73) Z = (Ceo\Puy yl|5)pl<€0’> e

For all 0 < i < k, from (9.31) we have

=
(9.74) Tier > 0Pl (g)
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(with equality when i ;é 0,k). Therefore, the number of (k + 1)-tuples (ng,---,ny) such that
27" > xe for 0 < @ < k is at most (Clog [I|"H*+1 < (Clog [I|"1)%*. We conclude that the

new

cardinality of the first part of Bi'}

(975) (mn) ") () T

k>0

is bounded by

with
(9.76) Zy = 2(Clog|I|™")*Z
In view of (9.73), we have

1 |I‘ o0+o1—p1 ~l

— =L 3P1
(9.77) Z < 2( ) 111371,
with o9 + o1 — p1 > 0 (cf. (9.39)).

As Z; < %, the bound (9.75) is smaller than

(0.78) ( T ) p1<|I|>20'0+0'1 p1 (’I |>UI‘[‘7P1

e0| Pyl €0 €0
Thus, (9.78) is a bound for the cardinality of the first part of Bi}*"(I, I, I,;x). Let us turn to
the second part. Let J be the non-empty subset of indices i € {0, --- , k} for which z; < z; ¢, and
write j = #J.

We first estimate the product [[, #(x;). As po > p1, we have from (9.69)

k —
(9.79) [Ler Lo < (c7hmze) ™.

J Je
As we also have I C I, Ic 1, we obtain

- Iy|\ootor o |I,|\o0 i1
9.80 0 < orr(E ol 1o\ 70y i1y k
(9.80) 1:[#@) (50\Pu|) ( €0 ) ( €0 ) 0 “L»
with
(9.81) Yo = (colPul)y ('7')”"
u 50 Y
1 ’I| oo+o1

= “1r2
(9.82) vio= (o) Melrd ()
We have
(9.83) Yo < 1,

and we can rewrite Y] as

I o0to1—75 P0(1+7) p1— L po(147)
2 o p1
) €0 |P |

(9.84) — o ( -
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The exponents satisfy

1 1

(9.85) oo+ 01— 5 po(1+7) :1—d2—§d2+0(1),
1 d2(3d% + dY — 2)

. — Zpo(1 = ey Tu 1).

From (H4), we have 1 —dJ — £ d? > 0; from dJ +d3 > 1, d2 > dY, we have 3d2 +d) —2 > 0. We
can, therefore, find oo > 0 such that

(9.87) vy < |1

Consider now the number of (k + 1)-tuples (ng, - -+ ,ng) for this second part. From (9.69), we have
k k

(9.88) [[z > cFzi2
0

and we have only to consider the case

-1

(9.89) T > Ty o= |1|CP0~%)

From Corollary 7 in Subsection 6.7, we also have, for 0 < i < k,

(9.90) z < |1

We conclude that the number of (ng, - -- ,ng) is smaller than
~ k+1

(9.91) (Cloo— )10 117")

Using k + 1 < 2k for k > 0, we carry this to (9.70) to obtain a bound for the second part of Bi}*",

which is equal to

(9.92) <€0|$})u‘)_,00 <|_£z>ao+01 (|_§;|>oo Z vk

k>0

with
(9.93) Y = 2C(po — df)~*(log|T|7)* V1.

Here, (po —d:)_2 is large but independent of £y, which is always assumed to be as small as necessary.

In view of (9.87), we have

(9.94) S vk < 1)
k>0

We have now estimated the cardinalities of the two parts of Bi't*”. Taking oo smaller if necessary,

we have
1
(9.95) 0 < o2 < 3 1
In (9.78), as ¢ + 01 — p1 > 0, we have,
7| 2004+01— o
(9.96) (ﬂ> e« (min ol @) g
€0 €0 €0

Thus, we have proved
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Proposition 29. Assume that (SR3)s is satisfied by the parent interval I. Then, for all x > Tmin

and all candidates I C f, all I, 1, containing f, we have
#Bi" (1, 1o, Lyw) < 2B|I17,

with B given by (9.18).

The presence of the term |I|72 puts Bi*" well under control.

Corollary 13. Assume that ICI,NI, and that (SR3)s holds for I= I, N 1,. Then, (SR3)s
holds for all candidates I C I.

Proof. Anelement (P,Q,n) € Biy(I,1,,1,;x) either belongs to Bi+(f, I, 1,;x) or to Bily (I*, I, 1 x)
for some interval I* with T G I* C I. As the series ). [I*|7? is bounded (actually very small), the
Corollary follows. O

The conclusions of Proposition 29 and Corollary 13 also hold for the Bi_ sets; let us review briefly

the proof of Proposition 29.

In the formulas for B(), B} the exponents oy, o1 are the same as for By, By but we have to replace

d° d° .
the exponents pg, p1 by P6 = dfjpo, P’1 = Cng‘Pl (Wlth dg Z dg)'

Therefore, we have oo+ 01— p} > 0 (cf. (9.77), (9.78)), oo+ 01— 5 ph > 0 (cf. (9.85)), py — 3 pfy = 0
(cf. (9.86). Therefore, Proposition 29 holds for the set Bi"" (I, I, I,,; ) with an appropriate choice
of o9 and Corollary 13 holds for (SR3),.

The induction step in the case where [ is distinct from I, and I, is complete.

9.7 The Case [ =1, # 1,

We consider here the set Biy ([, 1, 1,;x) with I, D I. We will estimate the size of this set for most
candidates I C I.

Let (P,Q,n) be an element of Bi (I, 1, 1,;x). Either it belongs to Bi'}*"(I, I, I,; x) or to Biy (f, 1,1, x).
In the second case, as P in thin I-critical, there exists (P*, Q*,n*) € C+(f) such that P C P* and,
moreover, we have I € Cr(P*) by definition of this set (Subsection 9.1). We will denote by Bi (P*)

the set of (P,Q,n) € Bi+(f, T, I,; x) such that P C P*. We, thus, have

(9.97) #Biy (1,1, 1;2) < #Bit™ (1,1, L;x) + > #Bi(PY)

(P*,Q*,n*)eCy(I)
IeCr(P*)
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As the sets Biy(P*) are disjoint, we have

(9.98) > #Bi(P*) < #Biy(I,1,L;x).

C+(I)
We also have

(9.99) Bi"(I,1,1,;x) C Bi"(I,1,1,;x).

We assume that (SR3), holds for parameter intervals containing I. Write B = max(By, B;) for
the values of (9.18)~(9.20) with I, = I. Thus, we have

(9.100) #Bi (I,1,1,;2) < CB,

and, from Proposition 29,

(9.101) #Bin (1,1, I;x) < 2B|I|°.
We now sum over candidates I C I the estimate (9.97). We obtain

(9.102) D #Bi (1,1, 1;x) < 2B[I|%|I]77 4 Y #Bi (P )#Cr(PY),

IcI C+(I)
and then, using Lemma 10 and (9.100), the same sum is bounded by
(9.103) 2B|I|7>" + C'BII|”™™ < C"B|I|7"%

Write B = max(By, By) for the values of (9.18)—(9.20) with I, = I. The number of candidates I
such that #Bi,(I,1I,1,;x) > B is at most

(9.104) C"BB Y|
From formulas (9.18)-(9.20), we see that

(9.105) BB™! = |I|7Tleoto),
The exponents oy, o1 will be chosen in order to have

(9.106) oo +o1+df < 1-27,

which is compatible with (9.23), (9.24). Then, we obtain that (SR3)s holds except for a proportion

of candidates no greater than C|I |272. This assertion has been proved for a fixed value of x and
a fixed parameter interval I,,. But (in view of the constant C' in (SR3);), it is sufficient to prove
(SR3)s when x = 27", n a nonnegative integer, and x > Tpyi,; and the number of intervals I, D I
is at most

log |7 I)

1 1
(9.107) Cr~L log (log -

Thus, the total number of cases that we have to consider is much smaller than ]f |*72. We obtain
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Proposition 30. Assume that (SR3)s holds for parameter intervals containing I. Then, (SR3),
holds for Biy(I,I,1,;x), for all I, D I and all x, except perhaps for a proposition of candidates

no greater than |I|=7".

Proposition 30 is also valid exchanging I, and I,. There are also two similar statements involving
(SR3), and Bi_. We review briefly the slight difference in the proof.

For Bi_(I,1,1,;x) (with I, D I), we proceed exactly as for Biy (I, I,1,;z). For Bi,(I,1,,I;x),

we use C_(I) instead of C4 (I) to subdivide the set of bicritical elements.

We now have, by the dual version of Lemma 10

(9.108) #Cr(Q*) < C)I .

On the other hand, from formulas (9.18)-(9.20), we must replace (9.105) by
(9.109) BB™' = |I|77°.

Thus, we will choose oy in order to have

(9.110) oo+df < 1-—2r.

Obviously, this is compatible with (9.23), (9.24), (9.106). The end of the argument is the same as

before.
This completes the proof of the induction step except for the case I = I, = I,.

In this last case, we can actually apply the same argument as above to complete the induction step

when z is large. When I, = I, is equal to I or i indeed we have

(9.111) Bo(z) = ( * )_po(ﬂ)%ﬁgl,

€0 Pul €0
x —p1 |[I|\ootor
9.112 B - ( ) (7) :
(9112) @ = (o) (5
~ T —po ’_ﬂ 200+01
9.113 B - ( ) (7> :
( ) 0(1‘) 80’1:)“| 0
~ T —p1 m oo+o1
9.114 Bi) = (=) (%)
(9.114) 1() =oIP] ;
For = > x.., we, therefore, have
(9.115) B(z)B(z)™! = |I|7(oota1)
and the same argument as before applies.
For z < z.,, we have
(9.116) B(z)B(z)~! = |10t
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with 200 + 01 = 2 — d? — d2 + o(1): this case will be the object of the rest of Section 9.

In the intermediate range . < = < T, we write © = Ty, where we have, in view of (9.31),

~ _T00

(9.117) 1 >y > |I|po—rr.

We now have in this range:

(9.118) B(x)B(z) ™ Boy(z)Bi(z) 7!

= yPLro ’f|—T(ao+01).

Therefore, the proportion of bad candidates will not be greater than C|I |272, as long as we have

(9.119) ypo—m > |f’7’(1—o’0—o’1—d;~;_27—)'

We recall that pg — p1 > 0 and that 1 — o9 — 01 — df — 27 is positive according to (9.106), but it
has to be small according to (9.23), (9.24). We state

Proposition 31. Assume that (SR3)s holds for all parameter intervals containing I. Then, it
holds for Biy(I,I,I;z) in the range

~_ T
(9.120) r > :'Evcru‘pofpl (1—o0—01—dy, —27)

except for a proportion of candidates no greater than |ﬂ72.
For Bi_(I,1,1;x), the corresponding range is
(1—oo—o1—df —27)

_T
(9.121) x> 7, |I|Po—r

9.8 The Case I =1, = 1,: General Overview

We explain in this subsection the strategy which will be pursued in the case I = I, = I,  small.

The exponent 20¢ + o1 in (9.116) means that we have take into account the criticality of both P

and @ in the selection process.

We start as before. An element (P,Q,n) in Biy(I,I,1;x) is either in Bi*(I,I,I;x) or in
Bi+(7 1,1 x). The cardinality of the first set is bounded as before by

(9.122) #Bi"(I,1,1;x) < 2B|1|72.

On the other hand, let (Py, Qa,na) € C+(I) and (P, Qu,nw) € C_(I). We denote by Bii (Py,Quw)
the set of (P,Q,n) € Bi+(f, f, f, x) such that P C P, and Q C Q. These subsets are disjoint and

their union contain the elements (P, Q,n) of Biy (I, I,I;z) which belong to R(I) because P and
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@ are thin I-critical. Moreover, only those P,, Q. such that I € Cr(P,) N Cr(Q,) will actually

appear.

Thus, in analogy with (9.97), we have

(9.123) #Bi(I,1,T;x) < 2BII|7 + ) #Bii(Pa,Qu),

where the sum is over pairs (Py, Qa,na) € C+(I), (P, Qu,ny) € C_(I) such that I C Cr(FP,) and
ICCr(Qu).

Unfortunately, we are not able to estimate the size of the intersection Cr(P,) N Cr(Q,) directly
in a satisfactory way: while these two sets seem ”independent” in the naive sense, it is another

matter to translate this intuition in a quantitative estimate in the style of Lemma 10.

Instead of this approach, we will use some degree of independence, when «x is small, of the variables
P, and Q, in Biy(P,,Q.). To explain the technique, consider first the unrealistic model case

where we would have

(9.124) #Biy(Pa, Qu) = bi(Pa)b—(Qu),

for some functions by, b— on Cy(I), C_(I), respectively.

The formula (9.123) now gives

(9.125) #Bi (1,1, I;2) < 2B[I|7 + ¢, ()¢ (D),

with

(9.126) o) = > bi(Pa),
IeCr(Pa)

(9.127) o-(I) = > b(Qu.
1eCr(Quw)

We now average separately ¢4 and ¢_. We obtain

(9.128) Y 6.l) < (max #Cr(Pa)> 3 bi(Pa),
I

e+ e ()
(9.129) Yool < (énz(% #C1(Qu)) D b-(Qu),
1 N c_(I)

where Cr(P,) and Cr(Q,) are estimated by Lemma 10 and we have

(9.130) D 0(Pa) Y b-(Qu) = D #Bir(Pa.Qu) < B.

It is then sufficient to eliminate candidates for which either ¢ or ¢_ is much above its average

value to be able to conclude the proof.
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As (9.124) does not hold, we will find an appropriate substitute as follows.

We will subdivide each class Biy(Py, Q) into subclasses Biy(P,, Qu,¥); the index ¢ runs through
a finite large set L dependent on I and x but independent on P, and @),. Moreover, we will have
functions by (P, ¥), b_(Qu,¢) on Cy (I ) x L, C_(I ) x L, respectively, such that,

(9.131) #Biy (P, Qu,l) < by(Pa,l),b_(Qu, ).

We then set, for each £ € L:

(9.132) bial) = D b(Pa0),
IeCr(Pa)

(9.133) o) = > b(Qu0):
IeCr(Quw)

We average each of these functions to get, in view of Lemma 10,

(9.134) > drald) < CTT ba0),
I

(9.135) S oD < T ),
I

with

(9.136) bi(0) = Y bi(Pal),

c(D)
(9.137) b(0) = D b (Qul)

-

For each ¢, we will have

(9.138) pre(D) < [ITOH30 b (1)
(9.139) bol) < |II=ETDp ()
except for a proportion of candidates not greater than C|I |37 Set
(9.140) B =Y bi(f)b-

L

Because we need to eliminate candidates for each ¢, L should not be too large. We will have, see
Proposition 33 in Subsection 9.10, that

(9.141) 4L < ClI|™™.

Taking into account that we must eliminate candidates for each x = 27" > x,;,, the total propor-
tion of the failed candidates is at most \I \T . On the other hand, for the surviving candidates, the

discussion above gives

(9.142) Yo #Bi(Pa QU< Y D Y bi(Pa )b (Qu0)

1€CT(Pa)NCTr(Quw) L IeCr(Py) I€eCT(Quw)

— Z ¢+,£(I) ¢_7é([) < |T|T(2_dj—di—67) 5
L
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(9.143) #Bi, (I,1,1;x) < 2B|I|°? + B|I|7@ds —di—67),
We definitely have E!T |72 < B. In order to obtain (SR3)s, we need
B 71 (2—df —df —67)
(9.144) B|T| < CB.
As 2—df —df — 67 =209+ 01+ 0(1), we see from (9.116) that B cannot be much larger than B.
In the next three subsections, we will
— define precisely L and the subclasses Biy (P, Qu,{);
— bound the cardinality of L (to obtain (9.141));

— obtain an appropriate estimate for B (cf. (9.144)).

9.9 Subclasses of Bicritical Elements

9.9.1 Bound elements.

Definition. Let (Po, Qa;na) € Co+(I), (Py, Qu,nw) € C—(I). An element (P,Q,n) € Biy(Pa, Qu)
is bound if n < ny +mny,,. Otherwise, we say that (P, Q,n) is free. We will denote by Biy(Py, Qq, O)
the subset of bound elements of Biy(Py, Q).

Thus, ¢ is an element of L. On the other hand, free elements will correspond to many elements of
L. Recall that we have x < Z... When z < Z.., most elements are free. When x > Z.., on the

opposite, most elements are bound.

Proposition 32. For any (Py,Qasna), (Pu, Qu,nw) € R(I), and any n < ny + ny, there is at
most one element (P,Q,n) € R(f) of length n such that P C P,, Q C Q.

Proof. We argue by induction on the level of the parameter interval.

When 7 is the starting interval Iy, no parabolic composition is involved and the result follows from
usual symbolic dynamics: as n < nqo + 1y, the word associated to a bound element is determined

by its initial and final parts.

Assume that the result holds for parameter intervals strictly larger than I. Denote by I, the parent

interval of 1.

Assume first that both (P, Qq,nq) and (P, Q,,ny) belong to R(fl) We claim that any bound
element also belongs to R(lfl), which allow us to conclude the proof by the induction hypothesis.
Indeed, if (P, Q,n) satisfies P C P,, @ C @, and does not belong to R(fl), we apply the structure
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theorem in Subsection 6.7: it gives elements (FPy, Qo,n0), (Pr, Qk,nk) € R(fl) such that Py is the
thinnest rectangle containing P defined over fl, Q) is the thinnest rectangle containing () defined

over I1, and n > ng + ng + Ng. Therefore, ng > na, ng > n, and n > n, + ng,.

We now consider the case when, for instance, (Py, Qq,nq) does not belong to R(Ii) We now apply

the structure theorem of Subsection 6.7 to (Py, Qa,na) and also to an element (P,Q,n) € R(I)
with P C P,, Q C Qu, n < ng + ny,. We obtain integers 0 < j < k, elements (P;, Q;,n;) € R(I~1)
for 0 < 7 < k such that

(9145) (PuQan) S (P07Q07n0)[:|'”|:| (Pkanank)
and also (IBJ, @j,ﬁj) € R(I,) such that
(9.146) (Pay Qay 1) € (Py,Qo,m0) O---0 (Pj—1,Qj—1,nj-1) O (P}, Qj, ;).

There also exists m with 0 < m < j and (P, Q’,,7,) in R(I;) such that

m? m
— either m = j = k, (]5,;1, ~;n,ﬁm) = (P, Qusnw);
— or m < k and we have,

(9147) (PwaQwanw> € (fzg’u@;naﬁ;n) a---0 (kaQk7nk)

If m < j, the sequence (P;,Q;,n;) and the choice of the result (out of two possibilities) in each
parabolic composition are completely determined by P, and (),: the assertion of the proposition

follows.

When m = j, the sequence (P;, Q;,n;) for ¢ # m = j is determined by P,, Q.; but we also have
P; C 13]-, Qj = Qm C Qm and nj < nj + n,,, so by the induction hypothesis (P;, Q;,n;) is also
determined by P,, (),. Again, the choices of the results in the parabolic compositions are also

determined by P,, Q.. The proof of the proposition is complete. O
Recall that, by Proposition 13 in Subsection 7.1, we have

(9.148) |P| < Cexp(—n")

for any (P,Q,n) € R(f), any t € I, with ~ = log %/log 2. Any bound element in Bii(P,,Qu, <)

must satisfy |P| > z for some ¢ € I, and we therefore have

(9.149) n < (log i)i

For x > xnin, we have

2=

(9.150) (log %) < (log |T])%.
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We thus shall define

(9.151) b (P, 0) = b_(Qu,0) = log |T|7},
and we will indeed have, from Proposition 32,
(9'152) #BM(Pa,Qw,Q) < b+(Pa7<>) b*(QUJaO)‘

9.9.2 Decomposition of a free element.

Let (P, Qa,na) € Co(I), (P, Qu,ny) € C—(I) and let (P,Q,n) € Biy(P.,Q.) be a free element.
We will analyze with respect to the structure theorem of Subsection 6.7 the way in which (P, @, n),
(Poy Qayna), (Pu,Qu,ny) have been created. This will allow us in the sequel to define various

subclasses of free elements.

Denote by Ty the largest parameter interval such that (P,Q,n) € R(fg) Elements (P, Q,n)
for which E) is the starting interval Iy are said to have depth 0. They form a first subclass of
Bi.:,_(PO” Qw) denoted by Bi-i-(Paa Qwa 0)

We now assume that fg # Iy and denote by T() the parent interval of fg. We apply the structure

theorem of Subsection 6.7. We obtain an integer k > 0, elements (Py, Qo,n0), - , (Px, Qk, k) in
R(Iy) such that
(9153) (P,Q,TL) € (P07Q0an0) a---0 (Pk7Qk;ank)

As in the proof of Proposition 32, we find 0 < j < k and (ﬁj,éj,ﬁj) € R(E)) such that either
Jj=0, (Pjanvﬁj) = (PaaQaana) (1f (PaaQaana) € R(IO)) orj>0 and

(9.154) (Pay Qasna) € (Po,Qomo) O---0 (P}, Qy,7y),

Similarly, we find 0 < m < k and (P, Q’,,7.) € R(Iy) such that either m = k, (P, Q. . 7,) =
(P, Qu,ny) or m < k and

(9.155) (P, Quinies) € (P Qi) O+ 0 (P, Qe k).

We also must have P; C ]Bj, Qm C @;n Moreover, as (P, @Q,n) is free, we must have j < m and,

when j = m, we must also have n; = n,, > n; +n,.

We say that (P, Q,n) is fully decomposed if one has here j < m or j = m and (P}, Q;,n;) € R(lp).

Such elements are said to have depth one.

Assume that (P, @, n) is not fully decomposed. Then, we have j = m, P; C lgj, Qj C QV; and
the largest parameter interval 1, for which (Pj,Qj,n5) € R(fl) is not the starting interval Iy. We

denote by I, the parent interval. We rewrite

(9156) (Pval’nl) = (f)ijjanj)7
(POzl? iwntl)z) = (Pijjaﬁj)v
(Pu.ln innclu) = (leaQ;aﬁ;)a
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and proceed with these elements as we did with (P, Q, ) (Po, Qa, na) (P, Qu,ny): we will find
integers 0 < j1 < my < k1 (with k; > 0), elements (P}, Q},n}) for 0 < i < kp and also (P2, Q2,n2),
(P2,Q%,n2), all in R(I}), such that

9.157) (P4, Qn") e (PLQbnl)O---O (Pkllanlglan}ﬂ)
(Pl 1 é) < (PO’QO’TLO) 0.0 ( Ji— 17@]1 1,7 ]1 1) U <P2 2 i)v
(Pl wv 3.)) S (P2 u.;v w) Il (P11+17Qm1+1; m1+1) .---0d (Pkl’Qk?Nnkl)

Again, we say that (P!, Q',n!) is fully decomposed if either j; < m; or j; = m; and (lel, ]l,njll)
is defined over the starting interval I; otherwise we set
2 12,2 1 1
(9.158) (P*,Q%n?) = (P}, Qj,nj,),
and we go on. The sequence of parameter intervals fo C fl C --- is strictly increasing and therefore

the process will stop. We define inductively the depth of (P,Q,n) to be the depth of (P, Q! n')

plus one.

9.9.3 Size of the subclass of depth 0

We will define in this subsection b4 (P,,0), b—_(Q.,0) in order to have
(9.159) #Bii(Py,Qu,0) < bi(Pa,0) b_(Qu,0).

Let (P, Qasna) € Co(I), (P, Qu,nw) € C_(I) and let (P,Q,n) € Biy(Pa,Q.,0). Then (P,Q,n)
is obtained by a simple composition

(9'160) (P,Q,n) = (Paanwna) * (Planvn/) * (Puananw)'
We have here, for all ¢t € I

(9.161) [Pl < C|Pa| [P |Pul,
(9.162) |P,| < |I]™*7 (cf. Subsection 9.1),

and also, for some ty € I
(9.163) |P| > =x.
This gives, for this value tg:

-1
(9.164) P > ¢t |I]~0+D (m§x|Pw|> z.
1

We observe that, as (P, Qu,nw) belongs to R(ly) and |Q,| is of the order of mHT, we have

(9.165) max |P,| < C mln | P,
I
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From the estimate (8.38) in Subsection 8.2, we can thus define, as d° + Cgq < d,

(9.166) by(Py,0) = (ClI* Tz if (P Qasna) € R(10),
’ + (6%) -
0 otherwise,
(9 167) b (Q 0) _ (m%n|Pw|)d; if (POMQw’na)) S R(Io),
0

Then, (9.159) is satisfied.
9.9.4 Subclasses of higher depth

Let (P, Qa,nga) € C+(I), (P, Qu,nw) € C—(I) and let (P,Q,n) € Bii(Pa,Q.) be an element of
depth s > 0.

Let us first restate and extend somewhat the notations and the setting of 9.9.2. We set

(9.168) (P%,Q%n% = (P,Q,n),
(PO 0 84) = (PCwQOuna)?
(PO w? 2:) = (PwaQw7nw)-
We have

— a strictly increasing sequence of parameter intervals
(9.169) Ihchc---cl,,cl,=I
with I C JA'O; we denote by fr the parent interval of fr for 0 < r < s;

— a sequence (P",Q",n"), 0 < r < s such that (P",Q",n") belongs to R(IAT) but not to R(E) for
r < s;also (P5,Q%,n®) € R(I,_1):;

— two sequences (PL, Q% nl), (P, QL,nl,), 0 < r < s; foreach r < s, resp. r = s, the two elements

belonging to R( r), resp. R(I5—1);

— two sequences (P},Q",n ), (P7,Q",n" ), 0 <r < s; for each r, the two elements belonging to
R(Ir—1).

These data are related by the following properties: for each 0 < r < s, we have

(9.170) (P hQ Y e (PLQ ) O (PT,Q", ") O (P, Q) nT),
(9-171) (Pa ' Quhngh) € (PL,Q,n") O (Pr,Q0, ny),
(9-172) (P QL 17 n ) € (PLQLnG) O (PL QY ).
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The process stops at step s because of one of the two following cases occur

a) (P, Q*,n*) does not belong to R(I,_1); then, by the structure theorem of Subsection 6.7, there
exists an integer h > 0, elements (F§, Q§,ng) - -+ (P, Q5 ,ny) in R(fs_l) with

(9.173) (P%,Q°,n®) € (F5,Q4,ny) O---0O(Pr,Q7, 1)
and also
(9.174) Py C Pj, Q; C Q2.

b) (P?,Q* n®) belongs to R(Ip); in this case we set h = 0.

We also observe that the parabolic compositions in (9.170) through (9.172) take place in R(I,_1)
but not in R(I,_1); in (9.173), they take place in R(Iy_1) but not in R(Is_1).

A subclass Biy(P,,Quw,¥), i.e. an element of L, distinct from the two (O, 0) that we already know
is determined by the following data

— the depth s(> 0);

the sequence fo c---C fs = Ip;

the integer A > 0

— for each 0 < i < h, the smallest integer u; such that |P’| > 27" =: x; for some ¢ € I when
h>1;

— when h > 0, the smallest integers ug, uj, such that |P_| > 27% =: z, for some ¢t_ € I,
|Py| > 27Uk =: g, for some t, € I; here, the elements (P_,Q_,n_
byPCP_,QCQ+ and

)y (P,Q+,ny4) are determined

©0173)  (P.Q.n.) € (PLQL.nl) 00 (P5.Q . nt) O (B, Q).
(9176) (P+7Q+7n+) € (Plf’QZanZ) O (P—f—an-anj-) .---g (P—%-’Q}{-an}i-)

Thus, we group together in a subclass Bii (P, Qy,¢) the elements of Bii(P,,Q,) who share the
same data; the elements of L, distinct from ¢, 0, are the sets of data for which at least one subclass
Bii(P,,Qu,¥) is non-empty, for some (Py, Qq,n¢y) in C+(:f), (P, Qu,ny) in C_ (.7)

The definition of the set L is now complete.
9.9.5 Sizes of subclasses of higher depth

The context and notations are the same as above. We want to define by (P,,¢) and b_(Q,,¢) in
order to satisfy (9.131) in Subsection 9.8.
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We first observe that (Pa,Qa,na) determines (P, QL nl), ---, (P%,Q%,n%), (P$,Q%,n3) and
the result of parabolic compositions between these elements. Similarly, (P, Qu,n,) determines
(PL,QY,nt), -, (P5,Q%,n%), (PS5,Q%,ns) and the result of parabolic compositions between

these elements. Therefore, the only ”freedom” for the element (P, ), n) in the subclass Bi (P, Qu, {)
is through (P?,Q*,n®), and this freedom is constrained by the relations P* C P2, Q° C Q2.

Consider first a subclass with h = 0, i.e., (P*,Q*,n*) € R(lp). The widths of the strips are related

as follows: for every t € I, , we have
P

P 1P _
D IRRT AT A IR

This allows us to take, as in the case of depth 0,

(9.177) c1

C|I| 7 t)® it (P5,Q5,n3) € R(I),
(9178) b+(Pa7£) — ( ’ | ) ( ) Yo a) (0)
0 otherwise,
(9.179) b(Qu.t) = o " if (P3,Q5.n) € R(Io),
’ 0

Consider now a subclass with h > 0, i.e., case a) in Subsection 9.9.4 above.

By the structure theorem in Subsection 6.7, see Lemma 11 in Subsection 9.6, for 0 < ¢ < h, the

s

element (P, Q7,n;) belongs to Biy(Is—1,Is—1,1s—1;x;). From Corollary 6 in Subsection 6.7, we

have
~ 1\ h
(9.180) r < c(cus_lri) ToT1 - T

Thus, the data of every subclass must satisfy (9.180). Assuming that (9.180) holds, we set
by (Pa, ) = 0 if (Pa, Qayna) & R(Ip). When (Pa, Qa,na) € R(Ip), we set

(9.181) b (Pa,t) = 2"( T] #Bis(hor T, Tovi ) ) #Bis (Pa, To1i 20).
o<i<h

Here, Bi(Py, Iy_1, o) is by definition the set of elements (P_, Q_,n_) in R(I) such that P_ C P,
(Q_ is thin fs_l—critical and |P_| > z¢ for some t € I.

Similarly, when (9.180) holds, we set b_(Qu,¢) = 0 if (P,, Qu,nw) € R(I). When (P, Qu, n,) €
R(Iy), we set

(9.182) b-(Qu,l) = #Biy(Is—1,Qu;xn),

where now Bi (Iy_1,Qu;xy) is the set of elements (Py, Q4 ,ny) in R(I) such that Q1 C Qu, Py
is thin I, ;-critical and |Py| = xp, for some t € I.

The factor 2 in (9.181) takes care of the possible results of the ”free” parabolic compositions, i.e.,

those compositions which are not constrained by (P, Qq,na) or (P, Qu,nw).

The definition of L, by, b_ is now complete, and relation (9.131) is satisfied.
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9.10 The Size of the Index set L
It is not difficult from (9.180) to see that the index set L is finite, but we need an explicit bound
on its cardinality (cf. (9.141)).

Proposition 33. The index set L satisfies

#L < ClII™™.

Proof. In the first part of the proof, we fix the depth s and the sequence of intervals fg C - C
fs,l C fs = Iy. There is one subclass with h = 0 and we will estimate the number of subclasses
with h > 0, i.e., the number of (h+ 1)-tuples (uo, - - -, up) such that (9.180) is satisfied; the integer
h itself is not fixed.

By Corollary 7 in Subsection 6.7, we have

(9.183) 2 < |L_y|® for 0<i<h,

1

(9.184) x, < ClL_q |0
As P_ C P,, we also have, for a non-empty subclass
(9.185) zo < ||

We rewrite (9.180) as

xo Zi Th x e L\h
9.186) — [[ - S (c T 2) .
( ) Vi <O<i<h |131|5> C\f 1‘%” C|I|1+T|Isil|6(h71)+(1777)—1 | Ls—1|

Using B > 1, and taking base-two logarithms, it is sufficient to bound the number of non-negative

integral solutions of

(9187) ng+---+np < Ao—Alh,
with
(9.188) Ay = logy(|I]z™Y),

1 ~
(9.189) A = 3 logy 1To_1|7L.

As x < ZTor € |f|, both Ay and A; are large; by taking Ag slightly larger and A; slightly smaller,
we can assume that both Ay, A; are integers. The number of non-negative integral solutions of

(9.187) is then the coefficient of 21 in the power series for

(9.190) X(z) =D M1 -2 = (1-2) M1 -2 -2
h>0
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We estimate this coefficient by a Cauchy integral on the circle |z| = 1 — 2141_1 log A1. On this circle,

we have
(9.191) A < AT
1
(9.192) X < 5 Af(log A1) 7.

The number of solutions of (9.187) is, therefore, not greater than
(9.193) A%(log A1) 72(1 — 247 M log Ay)~ .

In view of (9.189), this quantity is smaller than

- log | log | T,
(9.194) (log |T,_1])2exp (CAO °g|°g|1”> .

| log |j;71||

This is a bound for the number of subclasses with fixed depth s and sequence fo Cc.---C fs_l. We
have now to sum over these remaining data. Observe that (9.194) depends on \f&_l\, not on the
depth s and the intervals E, 0<r<s—1.

Fix an interval T with I C T C Io, I # Iy. Let S(I) be the number of parameter intervals I*
with I C I* C IA, I* + I. Every I* in this range may or may not be one of the fr, for a sequence
fo Cc - C fs_l terminating with fs_l = f, in other terms, there are exactly 25() such sequences

(of various lengths). This means that the total number of subclasses is bounded by

(9.195) 3 25D (log | T])%exp <C’A0 W) .
og

T
We have here

log | log |1| < log log &, *

9.196 = <
e [log |1] log &
(9.197) llog |T| = (1+7)5D log 1],
- log |I]~!
(9.198) S(I) < 2r'log <0g||_1) = Smax.
log ¢,

The sum (9.195) is thus bounded by

3 1.2 log log 551
(9.199) C2°m>(log gy )“exp | CAg —————

log ¢,

= 1o log log g5 "
< (log ’I|—1)2T ! exp <CA() OgOg_&“lO) .
log ¢,

AS T > Ty o= [I]CP0=d)7" (cf. (9.64)), we have

(9.200) Ay < Clpo—dO) " log 1)1

123



We choose the exponent pg in order to have
(9.201) po > di+T.

As gg can be chosen arbitrarily small, we have

log log 661

1 ~
(9.202) CAy L < 572 log |I]71.

log g4

We conclude, then, that with £y small enough, the term in (9.199) is indeed smaller than |[I|=7". O

9.11 The Size of B

According to the roadmap exposed in Subsection 9.8, we have now to estimate the quantity set in
Subsection 9.8

(9.140) B = by(0)b_(0)
L

with

(9.136) bi(f) = Y by(Past),
c+ (D)

(9.137) bo() = > b (Qu,0).
c_(I)

Consider first the bound elements. In view of (9.150), we have:

(9.203) b (0) = #Cy(1) log 1|7,
b-(0) = #C_(I) log |1]".

Consider next the class of depth 0, and also the classes of higher depth with h = 0: in view of
(9.166)—(9.167) and (9.178)—(9.179), we have in these cases

(9.204) b (0)
(9.205) b_(0)

(O™l % e, (1),
P )%,
Z (mI@XI )

c_(I)

<
<

Also, the number of such classes, according to the discussion in the proof of Proposition 33 is not

larger than

~ 2T~
log 1]~}
Smax
(9.206) 2 < (1



The remaining subclasses are more complicated! Formulas (9.181), (9.182) suggest an induction.
We thus assume that (SR3); is satisfied for all parameter intervals containing I. We have, for a
class of depth s > 0 with h > 0:

(9.207) by(f) < 2h< 11 (#Bi+(fs—1,zs—1,fs—1;$i))> #Biy (1,1, 1, 1;7)
0<i<h

(9.208) b_(0) < #Bi(I,I, 1, I;xp).

Observe that, from (9.31), the critical value z., in each of the Biy sets above in the same and
equal to

g0

I, .
(9.209) Tor = 50’Pu|(|zl|> o=,
0

As in Subsection 9.6, we separate the subclasses into two parts: those for which every x; is above

the critical value x. and the others. In the first case, we have from (SR3);

R z; N\ (|L_a]\ootor :

21 B Is— 7IS— 7-[5— 5 Ly < ( ) ’ for O ha
(9.210) #Biy([s—1,Is—1,15-1;7;) 0(50|Pu|) - or0<i<
(9.211) #Bi (I, T, I,_1;70) < C( o )_pl ('IN‘)UW1

. v \4, 1, 15-1720) X 50’Pu| 0 )

. ~ ~ ~ Th —pP1 |[~S_1‘ o1 ‘ﬂ o0
9.212 Biy(I,T,1,I:x1) < C( ) ( ) (7) .
( ) # Z+( 1 xh) 50‘Pu’ 0 €0

Multiplying these inequalities, we obtain, taking (9.180) into account

(9.213) bi(0)b_(0) < Al As
with
(Lot L L\m
(9.214) Ay = 2( - ) (Ceo\PuHIS_ly 2)
€T —p1 |f| oot+o1
21 Az = CP ([ —— =
(9.215) 3 ¢ (50\Pu|> <50>

In the second case, as pg > p1, we have

Ly T T Ti PO |TS,1‘ oo+o1
216 Biy(Io1, I, Io1iz) < C (B,
(9.216) #DBiy (L1, 151, Is—1;2;) (50|Pu|) o
L~~~ xo —po |]~‘ oo+o1
9.217 Bi (1,1, T, 1:70) < C( ) <7) ,
( ) # l+( 1 xo) SO’Pu| 0
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R >~ xp \Po /| Is—1|\o1 /|| o0
(9.218) #Bi (I, T,_1,1:2p) < C<50|Pu|> ( - ) <5> .
Moreover, comparing the o exponents in (9.19) and (9.20), we see that if ; <z, 0 < i < h, the
corresponding inequality is still true after multiplying the right-hand side by (%)UO. As this
happens at least once, we get, by multiplying the three inequalities together:

(9.219) b (0)b_(¢) < Ab As,
now with
= |f[v571| oo+o1 ~ _1\po
(9.220) A, = 2( - ) (CaOyPu| 17,_1] 2)
~ T —po |f| 200+01
9.221 Ay = CPo 2l .
( ) 3 <€O‘Pu’> (60)

With B as in Subsection 9.8, we have max(As, gg) < CB.

We observe that in both (9.213) and (9.219), our estimate for by (¢), b_(¢) depends on the class
¢ only through fs—1 and h. We first sum over subclasses with a fixed depth s and sequence
fo Cc---C 1/';_1, using the same method of generating series as in the proof of Proposition 33. To
deal with the two cases at the same time, we first observe that

1 1
(9.222) co+o1—5 p(l+7) = 1—d2—§d2+0(1) > 0

under (H4), and a fortiori og + o1 — 2 p1(1 + 7) > 0. Thus, Ay and A, are larger when I,_; is

larger; the largest case is .78,1 = Iy, which gives

~ ~ 1q_,
(9.223) max(As, Ay) < Ay = 2(053(1 )|Pu‘)m.
We, then, set
(9.224) xi(z) = Y AbeMh(1—z)7h2

h>0

= Ayt (1—2)"2%1—-2— gngl)*l.

The (partial) sum of by (¢)b_(¢) is, thus, not larger than C'B times the coefficient of 240 in the
power series for x1(z). Recall that Ag, A; were defined in (9.188), (9.189).

We estimate this coefficient by Cauchy integration on the circle {|z| = 1 — Aj" — Ay}, on which we

have

(9.225) 1—272 < (A + A" 72 < AL
(9.226) 11—z — Ax2™1|~! < A,

(9.227) x1(2)] < AAf,

(9.228) |24 < C(1+ Ay,
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The (partial) sum of by (¢) b_(¥) is therefore dominated by
(9.229) C(1+ Ay A, A3 B

We now have to sum over sequences E) C - C fs,l and depth s; but (9.229) is independent of
these data and the same remarks as in the proof of Proposition 33 apply. So, we finally obtain for
the sum of by (¢) b_(¢) over subclasses with s > 0 and h > 0, a bound by

(9.230) C(1+ Ay)Ao Ay A3 25max B

with Spay 1= 2771 log<lii|7£|:ll> (cf. (9.198).
0

We have here, from (9.200), (9.201)

(9.231) Ay < Crllog |17,
(9.232) (1+A)Ay < |[I)7C7 A2,

1
(9.233) A, < 2"

As g can be made as small as we want with regard to 7, the term in (9.230) is bounded by
(9.234) e§ |17 (log |1]71* ' B
for some fixed o > 0.

We summarize the calculations in this subsection in
Proposition 34. The quantity B = > b (0)b_ (L) is bounded by Bi + By + Bs, with
By = (#Ci(I))(#C_(I))(log |T|7)?,

1 f_l 2r—1 ~ . - .
By = (B cpipera)t (e, (1)) Y (max P,
log e, o T

By = eg|I|"Blog|l]™)? 'B.

9.12 End of the Induction Step for (SR3),

Of the two inequalities that were assumed in Subsection 9.8 to make work the argument, the first

has been the subject of Proposition 33. The second is

(9.144) B|I|T2-ds —di=6T) < B

From Proposition 34, it is sufficient to prove the same inequality with B replaced by Ei, 1=1,2,3.
First consider §3. For x < ¢, we have

(9.235) B = EO - ’f|—7(200+01)BO < ‘f’—T(QUo-&-m) B,
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and, therefore,

(9.236) By| T|72d3 —di=67) < o (100 | 7712 || B,
with w = 7(2 — df — df — 67 — 209 — 01) — £§.

We choose the exponents g, o1 in order to have

(9.237) w > 72

which means

(9.238) 200+ 01 < 2—df —df — 17 —efr!

which is compatible with the previous conditions on o, .

As gy can be chosen arbitrarily small with respect to 7, (9.144) holds for Bs.

Next consider By. We assume that the sizes of Cy(I), C_(I) are controlled by (SR1)s, (SR1),.

Then, we have

~ o~ - I|\2-2df —2df—2r -
(9.239)  By|I|72~d i =67 < C(log ,1|—1)2<u) "o (d+d) | Fir(2-df ~df —67),

€0

The right-hand will be smaller than C'Bj as soon as

(9.240) 0" (log |1]71)7%,

( T )po < (ﬁ|>200+012+2d?+2dj+A7—
— E

EO‘Pu’ €0

for some fixed constant A > 0.

We would like (9.240) to be a consequence of x < Z.,, but unfortunately this is only true if I is not

too large. Observe that

(9.241) po (200 + o1 — 2+ 2dF +2d + A1) — (po — p1) " too = o(1),
where (po — p1)log is the exponent appearing in the definition (9.31) of Z... Write
(9.242) o = 200+01—2+2d} +2d} + At =df +d} +o(1).

We choose the exponent p; in order to have

a0

(9.243) P> p()(l - ) + K,

o
with £ > 0 small to guarantee that (9.22) holds. Then, we have

g0 a0

< —C 1k
pPo—pP1+ K (po — p1)

(9.244) polo <
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and therefore (9.240) holds as soon as

_ f —C 1k ~ 2
(9.245) r < x(|€|) 7 (log |T|~1) #o
0
Keeping x> 7, the right-hand side is larger than Z when |I| < 6(1)+C“_17, C fixed large enough.

Thus, we are able to conclude that (9.144) holds for B except in the range

~ -1
(9.246) o = |I| =TT,
Ter =1 = Tl

We shall deal directly with this case below. Before that, we consider (9.144) for By. In this case,
we assume that (SR1)s and (SR2), hold. A small calculation shows that (9.144) holds as soon as

—d* TING ~ TI—-1\ _9,—1
(9.247) (=52)" " < (ﬂ)a ed (%) ’
go| Pyl €0 log ¢,
with
(9.248) G = —242df +df —d* + 200+ 01 + AT

and A a fixed positive constant. Here, both pg — d* and & are o(1).

With « as above, i.e., Kk = 0o(1), 7 = o(k), we choose the exponents in order to have

(9.249) po > df+ K2,
(9.250) G < =2k,

which corresponds to
(9.251) 200+ 01 < 2—2dF —df +d — At — 2k

If (I, z) is not in the range

~ —1
(9.252) eo = |I| = eito" T,
~ > > ~ CFL_IT
Ler =z X =Z Ter€g ’

then, (9.247) follows from x < Z¢,.

The final step in the inductive proof of (SR3); is, therefore, the proof of
Proposition 35. Assume that

‘ﬂ < 6(1)—1—07’5’1

and that (SR1);, (SR1)z, (SR2); hold for some candidate I C I. Then (SR3), holds for I in the
range

~ ~ -1
Ter 2 T 2 xcrgocq—H .
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Proof. Any element (P,Q,n) in Biy(I,I,I;x) satisfies P C Ps, Q C Q. Using (H1), this implies,
forall t € I:

(9.253) |P| < CeolPu.

It, then, follows from Corollary 6 in Subsection 6.7 that for x > Z., sgm_l, one must have
(P,Q,TL) € R(IO)

As P is thin I-critical, there exists (P,, Qa,Na) € CA+(I ) with P C P,. Similarly, there exists
(Py, Qu,ny) € C_ (I) with @ C Q.; see Subsection 9.1 for the definitions of CA_(I), é\+(I).

Let us estimate the number of possible (P, Q,n) for fixed Py, Q..

If n < ng + ny, there is at most one for each value of n. If n > n, + ny,, we can write (as
(P,Q,n) € R(Iy)), (P,Q,n) as a simple composition

<P7 Q'}n) = (POH QOH nOc) * (Plv Q/7n/) * (Puh Quh nw)
and conclude that there are no more than
—d°
‘/1: S
(9.254) C <)
] [P
possible P’ (at this scale, the dependence of dimension on the parameter is not relevant).

The total number is, therefore, at most

0255 Clog(*) (1) (HE) + D) () Z PI%,

In view of (SR1)s, (SR1)g, (SR2)g, this is not greater than

P, TN\ 2—2dd —2df —2r T\ 2—2d —dif —27+d* —d;
026 1oy W) (11 vo (I (=%-)

T €0 €0 g0/ Pul
and this should be smaller than C By with

x —po ]I‘ 200+01
9.257 By = ( ) (7)
(9.257) 0 ol P -
and
z ||

9.258 < ( )”0 o
( ) E()|Pu’ €0

The second part of (9.256) is as required as pg > d} (cf. (9.65) and we ask that
(9.259) 200+ 01 < 2—2df —df — 27 +d.

In the first part of (9.256), we bound the logarithmic term by a small negative power of | Pl and

we use (9.258) to conclude.

This ends the proof of (SR3)s in this case. O

130



The induction step for (SR3)s is complete. We have proved

Theorem 2. Assume that all parameter intervals which contain I are strongly regular. Then, all

candidates but a proportion not larger than |I|™ satisfy (SR3)s.

9.13 The Induction Step for (SR3),

We have already explained for (SR3), the cases where I, or I, contains 7, and the case where

I =1,=1, and x is large (cf. Proposition 31).

The case I = I, = I,, x small which has been treated for (SR3)s in the Subsections 9.8-9.13 is
completely similar for (SR3),. It is only not completely symmetric because we have assumed that
d? > d° and thus the formulas for the exponents are not symmetric. So, one has only to be careful

with the inequalities involving the exponents. For instance, in (9.222) we had

1
O‘o—|—0‘1—§p0(1+7') > 0.

0
As pj) = fl—“é < po, we still have

1
o0+ 01— 5 po(l+7) > 0.

Checking everything in this way is rather tedious, and we leave this to the reader.

Remark. At several points, we have asked that the exponents po, p1, pp, Py, 00, 01 of (SR3)s,
(SR3),, should satisfy some inequalities; one could worry whether these inequalities are compatible
between themselves (it is easy to check that each is compatible with (9.21) through (9.24) and (9.28)
through (9.29). But we are always bounding po, p1, p, P} from below and oy, o1 from above, hence

the compatibility is obvious.
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10 The Well-Behaved Part of the Dynamics for Strongly Regular

Parameters

10.1 Prime Elements and Prime Decomposition

In the last two sections, we fix a strongly regular parameter, i.e. the intersection of a decreasing

sequence (Ip,)m>o of strongly regular parameter intervals.

The sequence R(I,) is increasing and we set

(10.1) R = |J Rn).

m =0

Definition. An element (P,Q,n) € R is prime if n > 0 and it cannot be written as a simple

composition of two shorter elements.

Obviously, for any (a,a’) € B, the element (P,,, Qqar, 1) is prime. Such elements are called trivial

primes. Non trivial primes are those of length bigger than 1.
There are only finitely many trivial primes. On the other hand, there are typically countably many
non trivial ones.

Proposition 36. Any element (P,Q,n) € R with n > 0 can be uniquely written as a simple

composition of a finite sequence of prime elements.

Proof. The existence of such a decomposition is clear. We have to show it is unique. Assume on

the opposite that we can write

(102) (Pann) - (Plquvnl) Koeeo ok (PerT‘vn'r‘)

It is sufficient to show that (P, Q1,n1) = (P[, @}, n}). This is true if ny = n}. Assume for instance
that n; < nj. Then we have P C P{ C P, with P{ # P;. By Proposition 8 in Subsection 6.5, we

can write
(103) (Plvallvnll) = (Plananl) * (ﬁ’@aﬁ)
which contradicts the fact that (Pf, Q},n}) is prime. O

Remark. In the prime decomposition

(10'4) (P,Q,’I’L) = (Pthanl) * (PraQranr)7

Py can be characterized as the thinnest prime rectangle containing P.
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We will denote by P the set of prime elements of R. We denote by R* the set of elements of R of
length > 0.

Let (P,Q,n) be an element of R* and let

(10.5) (P,Q,n) = (P1,Q1,n1) *--* (Pr,Qr,ny),

be its prime decomposition. We define

(10.6) TT(P,Q,n)) = (P»,Qa,n2) %% (Pr,Qp,n;),
Tﬁ((P’Q’n)) = (Plle’nl) Koeeeox (PT—l)QT—17nT—1)7

if r > 1. When (P, Q,n) is prime, with P C R, and Q C R/, we set

(10.7) TH((P,Q,n)) = (Ry,Rqy,0)
T~((P,Q,n)) = (Rq,Rq,0).

For S = (P,Q,n) € R, we write S« R, resp. R xS, for the set of elements which can be written as
(P,Q,n) x (P,Q',n), resp. (P',Q',n) x (P,Q,n), for some (P, Q’,n') € R. We have partitions

(10.8) R*=]]S+R =] ]R=*S.
P P

Moreover, for any S € P, the restriction of T, resp. T, to S * R, resp. R = S, is a bijection onto
R, inverse of 8" — S * S’ resp. S — S’ % S.

10.2 Number of Factors in a Prime Decomposition

We write r(S) for the number of factors in the prime decomposition of an element S of R (setting
r(S) = 0 if S has length 0). Let (P,Q,n), (P',Q’,n’) be elements of R such that P’ is a child of
P. When P’ is a simple child, it is obtained by simple composition of P with an element of length

1 and we have
(10.9) r(P,Q'\n') = r(P,Q,n) + 1.
Proposition 37. If P’ is a non-simple child of P, we have

T(P/7Q,7n,> < T'(P,Q,TL)

Proof. Let

(1010) (PaQan) = (P17Q11n1)*“'*(PTervnT)

be the prime decomposition of (P, Q,n).
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Let (13, Q, n) be the element of R such that
(10.11) (P,Q'.n') € (P,Q,n) O (P,Q,n),

(cf. Proposition 5 in Subsection 6.4). There exists m > 0 such that @ and P are I,,-transverse.
Define

(10.12) (P1,Q"\n") = (P, Qing) % (Pr,Qr,my)
= (TH"1(P,Q,n), 1<i<r

We have an increasing sequence
(10.13) RQ=Q'c@Q*c---cQ =0Q,.

Let 7/ be the largest integer in {1,---,r} such that Q" and P are I,,-transverse for some m > 0
(and then for all large enough m). Define (]5, Q, n) € R by the condition Q' C Q and

(10.14) (P,Q,n) € (P",Q",n")O(P,Q,n).
We then have

(1015) (PlaQ/)n/) - (Pl,Ql,ﬂl) koeoee ok (PT’—laQT’—lunT’—l) * (ﬁ7©7ﬁ)

The assertion of the proposition is, thus, a consequence of

Lemma 12. (ﬁ,@,ﬁ) is prime.

Proof. Assume by contradiction that we can write

(10.16) (P,Q.7) = (P, Q1,71) * (P2,Qa,72)

with n1, ng > 0. Define

(10.17) (P, Q4,nh) = (Pr,Q1,m1) - % (Pu_1,Qu_1,nm_1) % (P1, Q1,71).
We have P’ C P{, P’ # P|, hence P C P{. We also have

(10.18) (P, Q) = (Pl.Q1,n}) * (P2, Q. 7ia).

By Proposition 8 in Subsection 6.5, there exists (P*, Q*,n*) such that

(10.19) (P.Q,n) = (P{,Q1,n1) * (P",Q",n).

We claim that there exists j € {1,---,r} such that

(1020) (P1/7Q/17n/1) = (Pl)Ql)nl) Foew ok (PJ’Q]7n])
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Indeed, if j is the smallest integer such that

(10.21) ny < nyp+--- 40y,

it follows from Proposition 8 that we can write

(10'22) (Pvalvnl) Kok (]Dj7Qj7nj) = (Pl,lelvnll) * (Pv@’ﬁ)
for some (P,Q,n) € R. By the same proposition, we can also write

(10.23) (P;,Qj,n;) = (P, Q%) « (P,Q,n)

for some (?/,@/,ﬁ’) € R. We have m < n; by the definition of j, hence 7’ > 0. As (P}, Q;,n;) is

prime, we have m = 0 which implies our claim.

The integer j satisfies v’ < 7 < r. We have

(10.24) (P2, Q2,72) € (PPT1,Q7T i ™) O (P, Q,7),
which contradicts the definition of 7/.

This concludes the proof of the lemma and also of the proposition. O

10.3 A Weighted Estimate on the Number of Children

We present in this subsection a variation over the estimates in Subsection 8.1, which will be im-

portant in the definition of a transfer operator.

We fix a constant x € (0,1) close to 1, but independent of 5. We set
(10.25) d; = d° — Ce,

with a constant C sufficiently large so d; is smaller than the transverse Hausdorff dimension of the

stable foliation W#*(K) for the parameter that we are dealing with.
For S = (P,Q,n), we set

(10.26) 1PI| =PI w9,

(we will also write r(P) instead of 7(S5)).

Proposition 38. For any m > 1, any (P,Q,n) € R, we have

Y_IIPI < Cr2 ||P|
P/

where the sum in the left-hand side is over elements (P',Q',n’) such that P’ is a descendent of the

mt generation of P.
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We will first state a Lemma, then prove the proposition from the Lemma, and finally prove the

Lemma.

Lemma 13. Let e1 > 0. If g9 is small enough, we have
MNP < e |P]]
P/

for all (P,Q,n) € R, where the sum in the left-hand side is over non-simple children of P.

Proof of the Proposition.
Let mp > 1 be an integer to be determined later. Consider all chains
(10.27) P=P’>pP'5...opm=p

where P is given and P! is a child of P’. If P'*! is, for each 4, a simple child of P?, one has

r(P") = mg + r(P) and the corresponding part of the sum in Proposition 38 satisfies
(10.28) Y IP| < O™ ||P]

(as long as mg = o(g;")). We choose mq such that in (10.28) we have From the lemma above, it

follows that for every P, we have

my
(10.29) 20 K™ < K 2.

(10.30) Y IPIN < cllp|

where the sum is over all children of P. Using the lemma again, when we sum over chains such

that Pj;1 is a non-simple child of P; for some i, we obtain

(10.31) STP < mpC™o ey|[Pl.

Taking €1 small enough, we obtain

(10.32) S IPI < w2 P

where the sum is now over all chains. The proposition follows immediately from (10.32) and (10.30).
Proof of Lemma 13. Let (P,Q,n) € R. Any non-simple child P’ of P is obtained as

(10.33) (P, Q',n") € (P,Q,n) O (P, Q1,m)

and we denote by 151, the parent of P;. One has

(10.34) P'| < C|P||P]5(Q,P) 3.
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Therefore, we will have

(10.35) 1P ST P < ¢ S |t wrP)-rP)gm s

From the proof of Proposition 37, there is an increasing sequence

(10.36) Q=Q'c@*c---cq®

such that r(P’) is the largest integer for which Q" and P; are I,,-transverse for large enough m. If
(10.37) Q" < §(Q,P1)?

then, by Proposition 10, Q" and P; are I,,-transverse for large m and thus r(P’) > r. On the other
hand, there exists k* € (0,1) such that

(10.38) Q" < ¥ Q™Y

for r < r(P). We infer that

(10.39) r(P) —r(P') < Clog(s(Q,P)) .
Therefore, if  is close enough to 1, we have

(10.40) TP < (5(Q, Py)) B
and the right-hand side of (10.35) is bounded by

(10.41) C Y|P (5(Q, P)) 3%
Using (R7), this is smaller than

(10.42) c Y |P1|%ds‘.

To estimate this sum, we first fix the parent P; and sum over children Pr; it follows from Proposi-

tion 21 that the corresponding sum is bounded by C’|]51]%ds_ and (10.42) is not greater than
(10.43) c >y yﬁl\%d?.

For each integer m, let us count now how many P, may satisfy

(10.44) 27 P = [P = 27 |y

As @ is transverse to P; but not to ﬁl, we must have, by Proposition 10:

(10.45) 5(Q,P) < c2 ™)

which shows that there are no more than C 2" such P;’s. This implies that the sum (10.43) is at

3 ds . .
most of order C'e§ ~ , which yields the statement of the lemma. O
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Remark.

1. In the lemma, the value d; = d° — Ceq that has been used to define ||P|| is irrelevant. The

assertion of the lemma is still true if we replace d; by any positive number bounded away from 0.

2. In the proposition, we can replace d; by a slightly lower value (assuming, as usual, that eg is

arbitrarily small): if we take
(10.46) d; = d°—o(log 1),
the same argument works and the result of the proposition is still valid.

Corollary 14. Let e; > 0. If ¢ is small enough, we have

> nlPl% < g

where the sum in the left-hand side is over non-trivial primes (P, Q,n).

Proof. Let (P,Q,n) be a non trivial prime. We have, by Proposition 13 of Subsection 7.1

log 2
(10.47) n < (1og(C\Pr1)) log3/2

Consequently, we have
(10.48) n|Pl= < |P|%,

with d; as in (10.46) and d? — d; being independent of £y (as P is a non trivial prime, one has
|P| < e0). Observe also that the thinnest (P, Q,7) € R(ly) with P C P satisfies Q C Q, hence

1P| < e for some fixed positive a.

We apply the proposition, taking the Remark 2 above into account and using cz; instead of d ; we

obtain

(10.49) Sonpd < S |P®
= &Y _|IP

< CrY1-w) YR,

where, in the last sum, (P,Q,7) runs through the elements of R(Iy) with |P| of the order of £§ -
We have

(10.50) S P < Y gt kOl
< C 88(d‘: —d0)+C~1 log /@_1’
and the exponent is positive from (10.46). Putting this into (10.49) yields Corollary 14. O
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Remark. We do not know the range of d for which
> |PN
P

1s convergent. The Corollary shows at least that there are relatively few primes: the sum

Z |P|% is convergent.
R(Io)

10.4 Stable Curves

Let (P, Qk,nk)k>0 be a sequence of elements of R such that Py is strictly contained in Py for
k > 0. Let R, be the rectangle of the Markov partition which contains Fy. The vertical part of
the boundary of Py is the union of two graphs {z, = cp,f(ya)}, and the cp,f are uniformly bounded
in the C? topology. Moreover, there exists x* € (0,1) such that [Py 1] < x*|Py| for all & > 0. Tt
follows that both sequences @f converge in the C! topology to the same limit ¢4, which is of class
C1*LP  where Lip stands for Lipschitz. We state this as

Proposition 39. The intersection (| Py is the graph {xa = ¢oo(¥a)} of a CI1HLP function. More-
k>0

over, the C' P norm of oo is bounded independently of the sequence (Pr)k>0-

Definition.

1. A stable curve is the intersection w = [ Py of a decreasing sequence of vertical-like rectangles as
k>0
above. An unstable curve is the intersection w’ = (1) @}, of a decreasing sequence of horizontal-like
k>0
strips.

2. The set of stable curves, resp. unstable curves, is denoted by R, resp. R>. The union of

stable curves, resp. unstable curves, is denoted by ﬁf, resp. R>.

3. Any stable curve w C R, has a canonical defining sequence characterized by the following
conditions: Py = R, and, for each k, Py is a child of P.

4. Two stable curves are equal or disjoint. Hence there is a canonical projection
T ﬁcf — R
We will now define dynamics on a part of the sets R, ﬁﬂ’f

Let N, be the set of stable curves w which are contained in infinitely many prime elements and
let Dy be the complementary subset in RS°. For (P, Q,n) € P, denote by R°(P) the set of stable

curves w € D, such that P is the thinnest prime containing w.
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We, thus, have partitions

(10.51) RY = N.||Dy,

(10.52) D, = || RT(P).
P

We denote by Ny, D, ﬁf(P) the respective pre-images by .

Let (P,Q,n) € P, w € RY(P). For any (Pg, Qk,nk) with w C P, C P, we can write (cf. Remark
after Proposition 36)

(1053) (Pk7Qkank) = (P’Q7n) * (P];7Q;<:7n;<:)

for some (P], Q) ,n;) € R; we have

and we define w’ = T (w) to be the stable curve obtained by the intersection of the P; when Pj

decrease to w. We have
(10.55) g"(Py) C Py, g"(w) C W
and we also define
(10.56) T+ ) RE(P)=g" /| RY(P).
We, thus, have a commutative diagram

~ f+ ~
(10.57) lw lw

T+ o

We observe that for (P,Q,n) € P with Q C R,, the image T (w) of any w € RS°(P) is contained
in R,.

Conversely, let (P,Q,n) € P with Q C R, and let ' € R, ' C R,. For any (P}, Q},n}) with
w C Py, we define (Py, Qk,ni) by (10.53); the intersection w of the Pjs, when P}, decrease to u’, is
the unique stable curve in RS(P) such that TH(w) = w'.

Thus, T induces a bijection from R (P) on the set R (a) of stable curves contained in R,. For
w € R (P), we have

(10.58) THw) = ' NQ.
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10.5 Topology and Geometry of R and ﬁf

Each stable curve is a compact subset of R = UR,. Therefore, RS may be viewed as a subset of
the set of non empty compact subsets of R endowed with the Hausdorff topology. The topology
induced on RS° can also be viewed directly: for any w = NPy in R°, a basis of neighbourhoods of

w is obtained by considering for each k the set Vj of stable curves contained in Pj.

Equipped with this topology, R is a Cantor set. Each R°(P), P € P, is a closed subset, and

also a Cantor set. The restriction of T" to each R3°(P) is a homeomorphism onto R (a) (with
Q C Ry).

However, the subset Ay may be dense and the map T in general is not continuous on the whole

of D. We will see in the sequel that A, is, in some appropriate sense, negligible.

For each w € RY(a), we denote by ¢, the C'™P map such that w = {z, = @u(ya)}; for each
a € a, each 30 € I¥, the map

(10.59) Py R¥(a) — I
w = u(ye)
is a homeomorphism onto its image. Letting yg vary, we get an homeomorphism from R3°(a) x I}
onto ﬁf(a)
The regularity of the partial foliation ﬁﬁ’f (a) is given by

Proposition 40. There exists C > 0 such that, for all a € @, all distinct w, W' € RY(a), all y,
y €I, (cf. Subsection 2.1) we have

Pw(y) — pur(y)
(') — pur(y)

In particular, the homeomorphisms ¢, o ¢, L are bi-Lipschitzian, uniformly in y, y'.

(10.60) log < Cly—9).

Proof. The calculations that support the proof will be found in Appendix B. Write w = NP,
w' = NP[, where (Py)r>0, (P])k>0 are the canonical sequences associated with w, w’. We write ¢y,

@), for cpz, cp;:. Let £ be the largest integer such that Py = P;. There are two cases.

Case 1. Py or Py, is a simple child of P,. Let (A, B) be the implicit representation for
(Pp, Q¢,ng). We have in this case, for all y € I

(10.61) CTP| < lpuly) — v (y)l < CIP.

To prove (10.60), we observe (cf. Appendix B) that we can write, for k > ¢,

(10.62) er(y) = Ay, ¥e(v)),
or(y) = Ay, i),
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with 9, 1}, uniformly C!-bounded and

(10.63) [r(y) — r(y)| = C >0,

We then have,

1060 AW - o) = [ Ao (- 00lo) + 40 ) 0) — o)

From (10.64) we deduce (10.60) with ¢,,, ¢, replaced by ¢k, ¢}. We then let k goes to +oo to

obtain (10.60) for ¢, @,

Case 2. Py and P, are non-simple children of P,. In this case (10.61) does not hold. The

computation in Appendix B shows that

er1(y') — ep41(Y)
By the same proof as in Case 1, we have
Peo+1 (y) — Pw (y) /
10.66 log < Cly—vl,
(10.66) eer1(y) — pu(y) | |
er1(y) — l(Y) /
10.67 log < Cly—191.
(10.67) i (y) — L) | |

As we have

(10.68) [oer1(y) = P W) < Clew(y) — e (W)l
(10.69) [eer1(y) — o) < Clew(y) — ur ()],
(10.70) [eb1(y) — oo W] < Clowy) — vu ),
the inequality in the proposition follows. O

The result of Proposition 40 implies that the transverse Hausdorff dimension ds, = ds(g) of 753_0
is well-defined, being equal to the Hausdorff dimension of ¢,(R°(a)) for any a € a, y € I?. We
have just proved that it does not depend on y. That it does not depend on a is seen as follows: for
(a,a’) € B, g sends Ef’f N P,y into Ef N R, ; the transverse Hausdorff dimension of Ef’f N R, is

therefore not smaller than that of fiﬁ_o N R,; as this is true for all (a,a’) € B, the conclusion follows.

We will also identify below in this section the transverse Hausdorff dimension ds through a transfer

operator in the classical manner of Bowen, Ruelle and Sinai.

Another partial control on the geometry of Eio is obtained via the usual estimate on the graph
transform, in the setting of uniformly hyperbolic dynamics. Let w, @ be two stable curves and
§ > 0. Assume that w and @ belong to the domain of (T+)/. We say that w and & belong to the
same component of the domain of (T7)/ if, for each 0 < i < j, there exists a prime P; such that
(T")"(w) and (T)"(@) belong to R (F).
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Proposition 41. There exists Oy € (0,1) such that, if w, © belong to the same component of the
domain of (TT)?, we have
[Deu,(y) — Deop(y)| < C 6

for all y.

Proof. We leave the proof of this very standard estimate to the reader. O

10.6 Transverse Dilatation

This subsection is a preparation for the definition of a transfer operator in the next subsection.
The weight function in this transfer operator is, up to a coboundary term, given by a transverse

dilatation.

Let (P,Q,n) € P, w = {z = ¢u(y)} a stable curve in RY(P), o' = TT(w) its image. Let (A, B)
be the implicit representation of (P, Q,n).

For z = (¢, (y),y) € w, let

0 0
(10.71) w(2) = 5o+ Deult) 57

be the normalized tangent vector to w at z.

The matrix of DT}y at z, computed in the bases (a%,vw(z)) at z, (a%,vwr(z')) at 2/ = TH(z), is

lower triangular; the first diagonal coefficient is
(10.72) 474 (y,2') (1= Baly, ') Dous(y))

We denote by g(z) the logarithm of the absolute value of this coefficient. As ¢, is C'FP yniformly

in w and ¢" : P — @ has bounded distortion, we have, for all z, z* € w
(10.73) b(z) —b(z")| < C|z—2*].

Let j > 0 and let w, @ be stable curves which belong to the same component of the domain of (TF)/.
Let z, Z be point of w, &, respectively, with the same y coordinate. It follows from Proposition 41

that one has
(10.74) Ib(z) — b(2)] < C8.
We also have, from the definition of b:

(10.75) b(z) +1log |P|| < C.
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We want to get rid of the dependence of b on the y coordinate along w by adding a coboundary
term. We define

(10.76) DY = () Dom (T*) = () (TH) 7 (Dy).

20 720

For each a, fix some 30 € I*. Then, for w € D, w C Ry, 2 € w, define

(10.77) Ab(z) = > (BT () =BT (")) )

i>0

where 2" is the point on w with vertical coordinate equal to 30.
From the cone condition, we have, for ¢ > 0:
(10.78) [(T)i(z) = (T ()] < OA.

The series defining Ab is uniformly convergent from (10.73), (10.78), and Ab is bounded on ZSSf =
=1(D%).

Write 2! for the point on Ty (w) € Ry with vertical coordinate yg,. We have

(10.79) Ab(z) — AT (2)) = b(z) — b(w),

with

(10.80) b(w) =b(z") + ) [5(@*)"“@0)) = b((TT)'(z")|.
120

We call b the (logarithmic) mean transverse dilatation.

Proposition 42. The mean transverse dilatation b, which differs fromg on DY by the coboundary
of the bounded function Ab, satisfies

(10.81) b(w) —b(@)] < CO)
if w, @ belong to the same component of the domain of (TT)7. Here 0y is a fized constant in (0, 1)

larger than 6.

Proof. We have only to prove (10.81). Let z° € w, 2! € T*(w) as above and let 2° € @, 2! € TH(®)
be similarly defined. We have, for ¢ > 0:

(10.82) BT —b(TH' ) < Ca,
(10.83) BUTH™ED) —b(TH'EN] < CA,
From (10.74), we also have

(10.84) [b(=°) - b(2%)| < C6).



For 0 < i< j— 1, we compare b((T)1(20)) and b((T+)"+1(29)) as follows: let 21 be the point
on T (&) with the same y-coordinate as (TH)1(29); one has

(10.85) bET) —b(THHE)| < ceT

(10.86) Héi-‘rl _ (Tv—i—)i—i—l(?:,O)” < C)\i—&-l—j.

Dealing in the same way with the terms involving 2!, 2!, we obtain (10.81) with
(1087) f; = max (95/27)\71/2)

proving the proposition. O

10.7 Definition of a Transverse Operator

As Ab is bounded, it follows from (10.75) that
(10.88) |b(w) +log |P|| < C
for all (P,Q,n) € P, w € RY(P).
It is then a consequence of Corollary 14 in Subsection 10.3 that the series
(10.89) > exp(—db(W))
THw'=w

over pre-images w’ of a given stable curve w is converging, uniformly in w, for d > d;. We will,
therefore, define a transfer operator Ly for d > d as follows: for a bounded function h defined on

D, for w € D, we set

(10.90) Lgh(w) = Y exp(—db(w)) h(w).
THw'=w

We can also view this sum over pre-images as a sum over inverse branches of T, which are
in one-to-one correspondence with the primes (P,Q,n) such that ) and w belong to the same
rectangle R,. Accordingly, we split the series in two parts: a finite sum corresponding to the trivial
primes, (cf. Subsection 10.1), which we denote by L) and which is defined for all values of d, and a
perturbative term which we denote by AL;. The formula (10.90) defines a bounded operator from
the space of bounded functions on DS into itself, but to have nice spectral properties we need, as

usual, to restrict to spaces of slightly more regular functions.

Let 6 be a constant with

(10.91) 0, < 0 < 1
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where 01 comes from Proposition 42 and satisfies §; > A~! (cf. 10.87). Denote by E the space of

bounded functions h on D$° which satisfy, for some constant C' > 0,
(10.92) |h(w) — h(@)| < CH

whenever w, @ belong to the same component of the domain of (T+)/. We denote by ||h||s the

usual norm on bounded functions, by |h|g the best possible C' and set
(10.93) Ihlle = max (|h|g, |[A]]oo)-
It is clear that F is a Banach space.

Proposition 43. Ford > dJ, Lg restricts to a bounded operator on E. Moreover, the norm of the

perturbative part ALg is as small as we want if g is small enough.

Proof. Let h € E, w, W € D, j > 0. Assume that w, & belong to the same component of the
domain of (T*)/. Let (P,Q,n) be a prime such that @, w, & belong to the same rectangle R,
and let wy, W be the inverse images of w, @ by TF corresponding to this inverse branch. By the

definition of | |g, we have

(10.94) h(wr) = h(@) < |hlg 071,

From Proposition 42, we have

(10.95) b(wi) — b(@1)] < COIT.

It follows from (10.88) that

(10.96) lexp(—db(w1)) — exp(—db(@1))| < C(d)|P|*6IT".

Putting together (10.94) and (10.96), we have

(10.97)  |h(wi)exp(—db(wr)) — h(@1)exp(—db(@1))| < C(d) [P|* (7 bl + 6][|Al]o0).
Summing over (non trivial) primes yields for d > d :

(10.98) |ALghle < eillhl|E,
(10.99) |Lahle < CllhllE,

where €1 can be made arbitrarily small if g9 is small enough, according to Corollary 14. The
same estimates (for d > d ) for ||ALgh||s and ||L4h||o are easier and can be seen directly. The

proposition follows. O
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10.8 Spectral Properties of the Transfer Operator

Let us denote by RY°(K) the set of stable curves w which are intersections of a sequence of rectangles

belonging to R(Ip); these stable curves are precisely those which meet the initial horseshoe K.

Observe that R (K) C DY. Denote by Ek the space of bounded functions h on RS (K) which
satisfy

(10.100) h(w) — h(@)] < CO7,

whenever w, & belong to the same component of the domain of (T7)/. Define |h|g,, ||h||z; as

above, which makes Fx a Banach space.

Let h € E; the restriction of h to R (K) belongs to Ex and we have
(10.101) h/RE(K)llex < [IMlle-

The formula for Lg defines a bounded operator, still denoted by LY, on Ex and we have a commu-
tative diagram
FE — F

(10.102) | |r

Ex —— Eg
Lg

where r : E/ — FE is the restriction operator. The bounded operator Lg : Fx — FEi is the subject

of the classical theory by Bowen, Ruelle, Sinai for uniformly hyperbolic systems.

Let us recall some standard results of this theory.

a) There is a direct sum invariant decomposition
(10.103) Ex =Rh, ® H)

depending analytically on the parameter d, such that b/, is a positive eigenfunction, with associated

eigenvalue X\, > 0, and such that

(10.104) sp<L3/H;,> c{lz] < N,

b) There exists a (unique) probability measure p/; on R (K) such that
(10.105) H) = {he Ex, /hdu; — 0}

One normalizes h); to have [ hldu/, = 1. Then, the~pr0bab~ility measure v, = hlu!, is invariant
under the restriction of 77 to RP(K) (observe that T on R3°(K) is just the restriction of g).

Let E° be the kernel of the restriction operator 7 : E — E. It is invariant under Lg.
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Lemma 14. One has, for all d € R.

sp(Lg/E()) C{lz] < 0N}

Proof. Let h € E°, j > 0. We have

(10.106) (LY h(w) =

0

/ — @),
(T4 ')y h(w")exp(—dbV’ (w")),

where the symbol ZO indicates that we only consider inverse branches of T associated with trivial

primes. The notation ) denotes the Birkhoff sum

(10.107) B = > b((TH) (W)

0<i<y

We observe that in the sum in (10.106), each w’ belongs to the same component of the domain of
(TT)7 as a stable curve in R°(K). As h belongs to EY, this implies that for such a w’ we have

(10.108) |h(W)] < |h|E 6.

On the other hand, we have

(10.109) ZO exp(—dbP (W) < CNJ,
and it follows that

(10.110) I(ZGY Bl < CMJO7 IRl

Let & € RY belong to the same component of the domain of (T )¢ as w. Denote by &' the inverse

image of @ associated to the same sequence of trivial primes as w’. We have

(10.111) |h(W') — h(&)| < |hlp 67,

and, from Proposition 42

(10.112) b9 (W) — U@ < C 6.

Using also (10.108) and (10.109), we obtain

(10.113) (LYY h(w) — (LYY R@)| < CO N1kl

which implies the statement of the Lemma. O
We deduce from Lemma 14 that there is a unique function in F, still denoted by h/,, which restricts
to hl; on R°(K) and satisfies

(10.114) LY(hY) = N,k
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Moreover, defining a supplementary hyperplane by

(10.115) H] = r Y(H) ® E,
we have that H/ is invariant under L) and

(10.116) sp(Lg/Hg) c {2l < NI},

where X7 < X, is independent of ¢.
Using Proposition 43, we now consider L, itself, assuming that ¢ is small enough and d > d .

As the norm of the perturbation part ALy is arbitrarily small, we conclude that L, has a positive
eigenfunction hg, with associated eigenvalue \; arbitrarily close to X/, and an invariant supplemen-

tary hyperplane H,; satisfying

(10.117) sp(Ld/Hd> c {2l < A}
Moreover, hg, Ay and H; depend analytically on d for d > d; because Ly does. We check that

(10.118) hg > ¢t >0.

Indeed, the sequence h(™ = A;"L7(1) converge to a positive multiple of hq. We have
(10.119) Mw) = > exp(—db™(w)).
(T (w)=w
Let w, @ be elements of D in the same rectangle Rgy; let w’, @' be pre-images of w, @ by (1)
associated with the same sequence of primes. We have (cf. 10.112)
(10.120) 6™ (W) — ™M@ < C,
and it follows that
(10.121) c™t < (W) TR (W) < ¢
This implies (10.118). One normalizes hy in order to have

(10.122) ha = lim A" L7 (1).

n—-+o00

Denote then by pg the linear form on E with kernel H; normalized by pg(hg) = 1. We have, for
allhe F

(10.123) lim AL h = pia(h)ha.

As L is a positive operator, pi4 is positive. Observe also that for all (P, @, n) € R, the characteristic
function xp (equal to 1 if w C P, 0 otherwise) belongs to E and satisfies L"xp > 0 everywhere
for some n > 0. Therefore, there exists a unique probability measure on R°, still denoted by g,

which coincides with pg on the intersection of E with C(RS°).
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10.9 The Gibbs Measure

From the defining property (10.123) of p4, we have, for all h € E
(10.124) td(Lah) = Aapa(h).
We will now check the classical Jacobian property for pg.

Let (P,Q,n) € R. Let P; D P be the thinnest prime containing P. The application T is injective
on the set RY(P) formed by the w € RS°(Py) which are contained in P. The image of this set by
T is exactly the set of stable curves contained in P’, with Tt(P,Q,n) = (P',Q’,n/).

Let h be a function in E which vanishes outside RS°(P). Then, Lgh vanishes on any curve not

contained in P’, and satisfies
(10.125) Lgh(TTw) = h(w)exp(—db(w))
for w € RY(P). The relation (10.124) for h is the Jacobian property.

Consider in particular the case where h is the characteristic function of R3°(P). We then obtain

(10.126) Ma(RE(P) = [ expl=db((T) ).

We now will specify the value of d by asking that
(10.127) A o= L

Indeed, we have, for d > d_

S

B
(10.128) g M < 0.

This follows from the formula for L; and the fact that b(™ increases at least linearly with n
(cf. (10.107)).

We also see easily that

10.129 li Ag = 0.
( ) d—1>I-iI—100 d
Finally, we have

(10.130) A > L

Indeed, d was chosen in order to be smaller than the transverse Hausdorff dimension of W*(K).
This means that the eigenvalue X’ _ for Lg, on Fi satisfies /\;_ > 1. As AL, is also a nonnegative
operator, we have A - > )\il,. Therefore, (10.130) holds, and it follows from (10.128)—(10.130) that
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(10.127) holds for a unique value of d. We will denote this value by ds. We shall indeed see that

ds is the transverse Hausdorff dimension of ﬁf which we were able to define in Subsection 10.5.
We just write p for the measure pg, and h* for the eigenfunction hg,.
Proposition 44. For any (P,Q,n) € R, we have

CHPI* < p({wc PY) < ClP[*™.

Proof. Let

(10.131) (P,Q,n) = (P,Q1,m1) *---% (Pr,Qr,ny)

be the prime decomposition of (P, Q,n). If w € DY satisfies (T1)"(w) € RP(Piy1) for 0 <i <,
we have, from (10.88), (see the definition of (") in (10.107)):

(10.132) C7YUPI% < exp(—dgb(w)) < C|P|%.
It, then, follows from the Jacobian property that

(10.133) p{w C P} CHP|" p({w € RE(a)}),

>
> TP,
where R, is the rectangle containing Q.

For the opposite inequality, we have also to take into account the other inverse branches of 17

when we estimate L} (xp), where xp is the characteristic function of {w C P}. For 0 <i <7, let

(10.134) (P, Q" n") = (Pt1,Qir1,ni11) *---* (Pr,Qp,ny)

(with (P",Q",n") = (R4, R4,0)). We have

(10.135) La,xp = Xp+Axp
where
(10.136) (W) = 0 i Wt P
exp(—dsb(w?) if w! =TT (w0 for some w® € R°(P)
and
(10.137) Axp < CY_ |Pr|%,

where the sum runs over prime elements (P, Q7,n}) with Pj contained in P and distinct from P.

By Proposition 38 in Subsection 10.3, we obtain
r—1
(10.138) w(Axh) < C|lP|% k2.
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If r > 1, we write similarly
(10.139) Lixp = Xp + Axp,

where X%: is associated with the inverse branch defined by the prime P, and vanishes outside P2.

The perturbative term satisfies
(10.140) Axp < CIPY% D> 5™,

where the sum now is over primes Py contained in P! and distinct from P!. Proposition 38 now

gives

-2
(10.141) n(AXP) < CIP* [P %2
r—2

< C|P|* k2.
We iterate this process. At the last step, we have from (10.132)
(10.142) uixi) < CIP|.

The contribution of the perturbative terms is bounded by

T T .
(10.143) “(Z x%) <P Y kT < ClP|n.
1 1

O]

Corollary 15. The transverse Hausdorff dimension of ﬁf 1s < ds. More precisely, for any curve
~v which is transverse to ﬁf, the Hausdorff measure in dimension ds of the intersection of v with
7%3_0 1s finite.

We will see below that the transverse Hausdorff dimension is equal to ds.

Proof. Let 6 > 0, choose a finite collection of disjoint rectangles P; with |P;| < § for each i and
ﬁ‘f C UP;. We have

(10.144) 1 = ZH(Pi) > C—lz ’pl.‘ds
> C') [diam(yn Py))%

and the statement of the Corollary follows. O

The following statement shows that the dynamics 7" is only undefined on a small set.

Proposition 45. The transverse Hausdorff dimension of the set ﬁf — 253r° s < dy < ds.
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Proof. We have
(10.145) RY -DY = ()W)
n=0
As each (T™)™ has countably many inverse branches which are Lipschitzian, it is sufficient to prove
that the transverse Hausdorff dimension of N is < d;. But by the definition of Ny, for any

0 > 0, the union of prime rectangles P with |P| < § contains D. Proposition 45 then follows from
Corollary 14. O

10.10 Transverse Hausdorfl Dimension of ﬁf

Proposition 46. The transverse Hausdorff dimension of ﬁf is the number dg characterized by
Ad, = 1.

Remark. We have already seen that the Hausdorff measure in dimension ds of the intersection of

ﬁf with a transverse curve is always finite. We do not know whether it is positive or always zero.

Proof. Let v be a smooth horizontal-like curve in some R,. We denote by [v] the set of stable

curves which meet v. We will show that
(10.146) w([y]) < C(diam )% (log(diam~) =)0,

This, being true for all such «, clearly implies that the transverse Hausdorff dimension of ﬁ‘f is

> dg, which is sufficient to prove the proposition in view of Corollary 15.

Clearly, we may assume that pu([v]) > 0. Define (Py, Qo,n0) € R to be the element such that P
is the thinnest rectangle containing any stable curve in [y]. There are at least two children of P

which contain a stable curve in [7]. If one of these children is simple, we must have

(10.147) diamy > C71 Py
and also
(10.148) p() < p({w C Po}) < C|Py|™

by Proposition 44, which gives the required estimate (and even better). This case is said to have
complexity 0. In the remaining case, denote by P ; the (non-simple) children of P which contain

a stable curve in [y]. Each Py ; is obtained by parabolic composition:

(10.149) (Po.i, Qo,isno,i) € (Po,Qosno) O (Fh,, Qp.4,m0.4)
and the widths are related through

— — * | — * 1
(10.150) C™ < [Pl [Pl 7M1 6(Qo. Fyy)2 < C.
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Let 6 = sup 3(Qo, P(T,i); let 1 be any horizontal-like curve with the following property: a stable

(2
curve meets v if and only if it is contained in some F;. For £ > 0, denote by 1, a piece of 7

with the property that a stable curve meets v ¢ iff it is contained in some Fj; with
(10.151) 527 < 6(Qo, By;) < 6027
(if there is no such Fy;, take 71, = 0)). We can now write
(10.152) w(y]) < CZ |Poi|% (from Proposition 44)
i

ds

D=

< CIP|% > IP51% 6(Qo, Piy)”
7

1
—5ds tds (Z)
< ClR% 6y 2 Z 22 Z ‘P(T,ids
>0
1
—=ds tds
< CIP|* 6,27 D22 pllnd)
>0

again by Proposition 44. We have written Z(Z) for the partial sum over those Iy, satisfying
(10.151). Assume for some constant A > 0, that we have, for each ¢ > 0:

(10.153) p([ed) < A(diamy )%

Observe that we have

(10.154) diam~;, < C2 fdiam~y,

(10.155) diamy > C! 50_% | Po| diam ;.

Making use of (10.153)—(10.155) in (10.152) yields

(10.156) p(l]) < AC(diam )%,

which is of the same form as (10.153), but with a worse constant AC' instead of A.

To obtain (10.146), it is thus sufficient to define a complexity index ¢() € N which satisfies

(10.157) c(y) < cloglog |Py| ™,
(10.158) c(y) = 1+s1t}pc(71,e),

the case of complexity 0 having already been defined and dealt with.

We want to use (10.158) to give an inductive definition of ¢(y). This will work if the v, are in
some sense "simpler” than ~. If all v; o have complexity 0, we just set c(y) = 1. Assume therefore
that some 7 o has complexity > 0. This means that there exists an element (P ¢, Q1,¢,11,) with

the following properties:
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— each Py, related to 1, through (10.151) is contained in some non-simple child of P 4;
— at least two non-simple children of Py, contain some Fg,.

For any parameter interval I containing the given parameter value, P; is I-critical (cf. Proposi-

tion 5 in Subsection 6.4). We now distinguish two cases.
Case 1. P, is also [-critical (for any I as above).

Let I* be the largest parameter interval for which we have

(10.159) |Po| > |I*)°.

Then, (Py, Qo,no) cannot be I*-bicritical as I'* is (-regular, hence @y cannot be I*-critical. This
implies

(10.160) 50270 = CTIYIH| = Y Py|P (),

As Py 4 is not transverse to QQp (because Py ; was a child of Py), we must have from Proposition 10
in Subsection 6.6 that

(10.161) 1P| = C (g2~ O,
Comparing with (10.160), this guarantees that

1
(10.162) 1P| < |Pug|2 (1+8)

This means indeed that every P; ¢ (such that the complexity of 71 ¢ is > 0) is indeed simpler than
Py and allows us to use (10.158) to define inductively ¢(vy). Observe that the hypothesis of case 1
is always satisfied by the P . The inequality (10.157) follows from (10.162).

Case 2. P, is I-transverse for I small enough.

From Case 1, we have already defined the complexity indices ¢(v;) using (10.158) and again we
define ¢(v) by (10.158). We have to check (10.157) in this case. This will hold if we have, for each
£,

(10.163) log log |Pys|™' < clog log |Py|~".

But (10.161) still holds. We also have

(10.164) Qo] < 6027¢ (from (RT)),
(10.165) log |Qo|™! < Chy,
1 log %
(10.166) log log | Py > ] log ng — C,
og 2

from Proposition 13 of Subsection 7.1. Putting this together, we obtain (10.163). The proof of the

proposition is now complete. O
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10.11 Invariant Measures

From the Gibbs measure p, which is not invariant but has the Jacobian property, we define a

T*-invariant measure v on DS by
(10.167) dv = h*dp.

The measure v is actually a probability measure on RS by Proposition 44 and Corollary 14 (see

proof of Proposition 45), which implies that
(10.168) w(RY —DY) = 0.

As h* is bounded and bounded away from 0 (cf. (10.118)), the statement of Proposition 44 is also
valid for v instead of u. To check that v is indeed T -invariant, we first observe that, if hg, h; € F,
the product hgh; also belongs to E; indeed we have

(10.169) lhohile < [[holloolPa| & + [ho| £][h1]]co-
In particular, for any h € E, hh* also belongs to E. Let h € E. We write
(10.170) /h(Ter)du(w) = /h(Ter)h*(w)du(w)
= 3 [ T @ @),
P

where xp is the characteristic function of R°(P). The Jacobian property gives

(10.171) [ @t o @) = [ hwh' @ esp(-dabw) duw)

where ' is the image of w under the inverse branch of T’y associated with P. Summing over P and

using that h* is Ly -invariant gives

(10.172) /h(T+w)du(w) = /h(w)du(w).
But ENC(RY) is dense in the space of continuous functions C'(RY); the invariance of v follows.

Let us now check that the invariant measure v is ergodic. Let A C RS be a T -invariant Borel
subset with v(A) > 0 and A€ its complement. Let ¢ > 0. We will prove that there exists a € @
such that

(10.173) V(ANRE(a)) = (1 —¢) v(RT(a)).
As e > 0 is arbitrary, this easily implies v(A) = 1.
As v(A) > 0, we can find (P, @, n) such that

(10.174) v({w Cc P}NA°) < v({wc P}),
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1

where £’¢! is small. Let r be the number of factors in the prime decomposition of (P,Q,n). Up

to a set of measure 0, we have

(10.175) {fwcpPt = |J J@THRT(P)) modo
0<j<r Py

where P; runs through prime elements satisfying P; C (T7)7(P) and (T)77 is the inverse branch
of (T")7 whose image contains P. From (10.174), there exists 0 < j < r and P; such that

(10.176) V(AN (TH T (RY(FP))) < £ v((TH)(RT(FP))).

We apply the Jacobian property, taking (10.120) into account to get (10.173) with ¢ = Ce’. We

have proved that v is ergodic. We summarize:

Proposition 47. The measure dv = h* dy is T -invariant, ergodic. It satisfies, for all (P,Q,n) €
R:
CTIIPI* < wlfwc P}) < C|P[

and v(DY) = 1.

We will now lift v to obtain a T+-invariant probability measure on ﬁf

Proposition 48. There exists a unique probability measure U on ﬁ‘f which is T -invariant and

projects onto v under w. It is ergodic.

Proof. The arguments are standard.

Existence. Denote by M(v) the set of probability measures on RS which project onto v. This is
a compact set for the weak topology, invariant under T because v is Tt-invariant. One obtains a
T+ -invariant measure in M (v) by taking any 7y € M(v) and choosing a weak limit of a subsequence
of

n—1
(10.177) Y UTHYT ().
0

Uniqueness. The set of fixed points for the action of T+ on M(v) is thus non-empty. It is also
compact and convex. If it has more than one point, it has at least two distinct extremal points 7y,
1. As v is ergodic, 7g and 77 are also ergodic. Still by the ergodicity of v, some stable curve w
must meet the basins of both 7y and ;. But stable curves are contracted exponentially fast under

positive iteration by T'F; we should thus have 7y = 77, a contradiction.

We have already said that v is ergodic. O

157



Finally, we want to ”"spread” the T -invariant measure ¥ in order to obtain a g-invariant measure
o. Let A = Ay as in the Introduction (cf. Subsection 1.2).

We first observe that the support of v is contained into Aﬁﬁf: if N C ﬁ‘f is compact and disjoint
from A, then N is disjoint from the image of (T*)j if j is large enough, hence v(NN) = 0.

Let now h be a continuous, and thus bounded, function on A. For z € A N DS°, we write
(10.178) TH(z) = gV @ (),
where N (z) = n if 2 € RP(P) with (P,Q,n) € P. We define:

(10.179) Sh(z) = Y hg(x)).

0<G<N ()

The function Sh is defined v-almost everywhere. It satisfies:
(10.180) |Sh(z)| < ||h]leoN(z).

By Proposition 47 and Corollary 14 in Subsection 10.3, the function N is v-integrable. We have

therefore defined an operator
(10.181) S: C(A) — L'(v).
where C'(A) stands for the space of continuous functions on A = A,.

We define a finite measure ¢ on A by

(10.182) / hdo = / Shdp,
for h € C(A). From the definition of Sh, we have
(10.183) S(hog) = Sh+hoT* —h.

Thus, the T+ -invariance of ¥ implies that o is g-invariant. It is ergodic. The Lyapunov exponents
of T for ¥ are non-zero because T is uniformly hyperbolic. To get the Lyapunov exponents of g

for o we have only to change time, which is possible since N is r-integrable.

In the next and last section, we will see that in some appropriate geometric sense, the measure
o captures "most” of the dynamics on A, and therefore can be considered as a naturally defined

geometric invariant measure on A.

We end this section by observing that everything that has been done for T and positive iteration
in Section 10, can also be done for 7'~ and negative iteration, leading to another naturally defined

geometric invariant measure o~ on A.
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11 Some Further Geometric Properties of the Invariant Set

In this final section we pursue the geometric study of the invariant set A = Ay in two directions.
First, we will describe in a rather precise way, both from a dynamical and a geometrical point of
view, the intersection of an unstable curve in R°, as defined in Subsection 10.4, with the invariant
set A. In the second part of the section, we prove that A is a saddle-like invariant set in the
measure-theoretical sense: both its stable and unstable sets have Lebesgue measure 0; thus, no

attractors are present in A.

11.1 One-Dimensional Analysis of the Invariant Set

Let w* € R be an unstable curve as defined in Subsection 10.4. Let (P}, QF,n})r>0 be the

canonical sequence associated to w* (cf. definition also in Subsection 10.4). We have

(11.1) Wt = @

k>0

where Qf is a rectangle R, and Q_ is a child of Q for each k > 0. We want to analyze the
intersection w* N A. In Section 10, we have analyzed the set ”Ich and we know, in particular, that
w* N A contains the subset w* N ﬁf, this last subset has Hausdorff dimension d, characterized in
terms of the transfer operator studied in Section 10; in particular, this dimension is independent

of w*.

Let us summarize the results of our analysis in this section.
Theorem 3. The intersection w* N A is the disjoint union of
— a, at most countable, family of Cantor sets A;(w*),

— a, at most countable, set Cr(w*),

— an exceptional set £(w*),

with the following properties

(i) For each i, there exists a piece w*(i) of w* containing A;(w*), an unstable curve w*; and an

integer n; such that

(11.2) WD) = o

19

(11.3) gU(A(WH) = wiNRY.

In particular, there is a special index i = 0 for which ng =0, w*(0) = w§ = w*, Ag(w*) = w* ﬂﬁ?ﬁ
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(it) For every point ¢ € Cr(w*), there exists a stable curve wi(c) € R, an unstable curve
w_(c) € R, a positive integer n(c) such that g™ (c) is a quadratic tangency point between w*(c)
and gNo(w™ () N Ly,).

(iii) The Hausdorff dimension of E(w*) is not greater than

2dY

11.4 04 d0 — 1) 5

+0o(1)

where the o(1) term is small provided T is small enough. Consequently, the Hausdorff dimension
of w*N A is equal to ds.

(iv) Every point x € E(w*) is the intersection of a decreasing sequence of pieces (w*(in()))n>0-

Remark.

1. The structure will be made more precise in the next subsections. We have tried here to extract

the most significant features of our analysis.

2. Bven with d° + d° > 1, it may happen that A is a uniformly hyperbolic horseshoe; then, the
family (A;(w*)); is finite, Cr(w*) and E(w*) are empty. When A is not uniformly hyperbolic, the
family (Ai(w*))i is countable and E(w*) is a Cantor set; it is not clear in this case if Cr(w*) can

be empty.

11.2 Parabolic Cores
Let (P,Q,n) € R, R as in Subsection 10.1.

Definition. The parabolic core of P, denoted by c(P), is the set of points of W#(A, R) which belong
to P but not to any child of P. The parabolic core of @), denoted by ¢(Q), is the set of points of
WH(A, R) which belong to @ but not to any child of Q.

We have partitions
(11.5) RAWS(A,R) = |]|ecP)u R,
R

(11.6) ROAWYA,R) = (Q)u R™.

Al

If R, is the rectangle which contains w*, we also have

(11.7) Ww'NA = || @neP) U (W nNRY).
PCR,
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The parabolic core is empty if and only if P is I-decomposable for a small enough parameter
interval containing the given strongly regular parameter value. In particular, ¢(P) is empty if @ is
I-transverse. Thus, the union in (11.5), (11.7) can be restricted to those (P, Q,n) € R such that
Q is I-critical for all I.

We will denote by C'(w*) the set of elements (P,Q,n) € R such that ¢(P) N w* is not empty. For
any (P,Q,n) € C(w*), Q is I-critical for all I.

*

11.3 Decomposition of ¢(P)Nw

Let (P,Q,n) € C(w*). For k > 0, set

(118) (Pkanank) = (P;,QZ,HZ) * (P7Q7n)7
(11.9) wp = [ Q.
k>0

The unstable curve w} is contained in () and we have
(11.10) g (w*Ne(P)) C wpN Ly

We define a tree A(w*, P) as follows. The vertices are the rectangles P’ C Py with the following
property: for any parameter interval I (containing the given parameter value, say t), for any

Qr D wp, Qi and P’ are not I-separated, and @y, and the parent of P’ are I-critically related.

We connect two vertices by an (oriented) edge if one is the parent of the other. We say that a
vertex P’ is critical if, for all I and Qi D w}, Q and P’ are I-critically related. Otherwise, we say
that P’ is transverse. The parent of a vertex is always a critical vertex, except if this vertex is Pk,
the root of the tree. When P’ is a transverse vertex, the smallest integer k such that Qg, P are

I-transverse for I small enough is called the level of P’.

Let P’ be a critical vertex; then, for every parameter interval I > ¢, P’ is I-critical and, therefore,

decomposable.

Let P’ be a transverse vertex of level 0. We have Qo = ). Therefore, the parabolic composition
(P,Q,n) O (P',Q',n') is well defined and produces two children of P.

Let P’ be a transverse vertex of level k > 0. For all m > k, the parabolic composition (P, Qum, 1) O (P, Q'

is well-defined and produces two elements (PF, QF nt). The formulas

(11.11) Whpy = NQY,

WTD’P17_ = N Q,r_n,
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define unstable curves wp, p/ ;. contained in Q'. We also define pieces w*(P, P/, &) through

(11.12) g (PP L) = Wi,
(11.13) npp = n+n +Np.

Lemma 15. Let = be a point in w* Nc(P), y = ¢g"TNo(x). Either y belong to a transverse vertex

of level > 0 or it belongs to an infinite decreasing sequence of critical vertices.

Proof. We have ¢g™(z) € L, (cf. (11.10)), y € Ly C Ps, and P; is the root and a critical vertex of
the tree A(w*, P). We assume that the first possibility in the statement of the lemma does not

hold and construct, starting with P, a sequence of critical vertices containing y.

Assume that y belongs to a critical vertex P’. As P’ is indecomposable and y € W*(A), y belongs
to some child P{ of P’. This rectangle is a vertex of the tree: otherwise, Q) and P] would be
I-separated if I and @}, are thin enough, and then ¢™°(¢g"(w*) N L,) N P (which contains y) would
be empty. The vertex P| cannot be transverse of level 0 because, as remarked above, the parabolic
composition of (P,Q,n) and (P, Q},n}) would produce a child of P containing z, contradicting
the hypothesis that « € ¢(P). Finally Pj cannot be transverse of level > 0 by hypothesis. It must

be a critical vertex, and the induction step is complete. O

Proposition 49. There is at most one point x € w* N c(P) such that y = g"+No(x) belongs to a
decreasing sequence of critical vertices. When such a point exists, the intersection of this decreasing
sequence of vertices is a stable curve which intersects g™vo(Ly N wp) at y as a quadratic tangency

point.

Proof. Let = be a point in w* N ¢(P) such that y = ¢"*™0(x) belongs to a decreasing sequence
(P})e=o of critical vertices. Denote by w, the stable curve which is the intersection of these critical
vertices. For all parameter intervals I, all k > 0, £ > 0, Qi and P; are I-critically related. This
implies that

(11.14) lim 6(Qg, P)) = 0.

k—+o00
{—-+o00

For large k and ¢, let 7 (resp. (7;) be the image in @ (resp. the inverse image in P)) of the
intersection of P with an horizontal curve (resp. the intersection of @), with a vertical curve).
By (11.14), the distance between the vertical-like curve 7, and the tip of the parabolic-like curve
gNo (1) goes to zero as k, £ go to +oo. Passing to the limit, we see that w, has a tangency with
g™ (wh N Ly). This tangency is quadratic in the following sense (cf. also the remark after the end
of the proof): First, g™Vo (wp N Ly) is contained, with the exception of the tangency point, in one of
the components of P — w,; moreover, the angle between the tangent lines to w (z), g0 (L, Nw?)

at points on these curves at the same distance and on the same side of the tangency point is of the
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same order as this distance to the tangency point. This is a consequence of the uniform estimates
(3.21), (3.22) in Subsection 3.5.

As wy and g™ (L, Nw}) meet at only one point, this point must be y. If 2’ is a point with the
same property as x, and we construct «’, in the same way as wy, we must have w; = w/, because
otherwise g™° (L, Nw}) Nwy or gNO (L, Nw}p)Nw', is empty. But, then, we have y' := g" ™o (2/) =y

and 2’ = x. O

Remark. Calculations involving partial derivatives of higher order for the maps (A, B), which
implicitly represent elements of R, show that stable curves and unstable curves are actually of
class C™, with uniform estimates in the C* topology for all k. Then, quadratic tangency can be
taken in the usual sense. However, the calculations involved, especially when considering parabolic
composition, are quite long and not very interesting; we decided to stick to the C'P regularity
class, where the notion of "quadratic” tangency, as explained in the proof of Proposition 49, still

makes sense.

It is easy to see exactly when a point x € w* N ¢(P) with the property specified in Proposition 49
does exist: a necessary and sufficient condition is that the tree A(w*, P) is infinite. In this case, the
point z will be a point of the set Cr(w*) in the statement of Theorem 3 and the point y = g™t (x)

is said to be critical.
Summarizing what we have established so far, two cases may happen:

1) The tree A(w*, P) is finite. Then, the intersection w* N ¢(P) is the finite disjoint union of the

sets
(11.15) w*(P, P’,i) n A

where P’ runs through the vertices of the tree which are transverse of level > 0. The image under
g"PP" of the set (11.15) is the intersection wp, p, 4 M A.

2) The tree A(w*, P) is infinite. Then, the intersection w* N ¢(P) is the countable disjoint union
of the sets w*(P, P/, £) N A as above and a single point € Cr(w*). The point 2 = zp is the limit
of the pieces w*(P, P',+) (whose diameters goes to 0 as |P’| goes to 0).

11.4 The Structure of w*NA

We are now ready to prove all the statements in Theorem 3, stated above in Subsection 11.1, with

the exception of (iii) (the estimate on the Hausdorff dimension of £(w*)).

The structure of w*NA that we are looking for, which is roughly described in Theorem 3, is obtained

by iterating the partition (11.7) and the decomposition of w* N ¢(P) described in Subsection 11.3.
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At the first step, we have partitioned w* N A into the following subsets:
— the intersection w* N ﬁj’f, points in this set ar said of type I;

— for each (P,Q,n) € C(w*) such that A(P,w*) is infinite, a point xp such that yp = ¢" T (xp)

is critical; such points xp are said of type II;

— for each (P,Q,n) € C(w*), each vertex (P’,Q’,n') of A(w*, P) which is transverse of level bigger
than 0, each € € {+, —}, the intersection w*(P, P’,&) N A; the image of this set under g"»#’ is the

intersection w}, p . N A of another unstable curve with A.
The intersection w} p . M A will be analyzed in the same way that w* N A.

Consider a point zg € w* N A. If it is of type I, it belongs to the set Ag(w*) := w* N ﬁﬁ’f of the
statement of Theorem 3. If it is of type II, it belongs to Cr(w*). Assume now that it is of type III.
Then, it belongs to some w*(P, P',e) N A as above. Define

(11.16) 21 = g"PP (20),

which belongs to w} p/ . M A =: wj. This point may in turn be of type I, II, III with respect to wy.
The process stops if z; is of type I or II; if 2; is of type III, it belongs to some piece wi(Py, Py, e1);

we define

(11.17) 2 = g (),
which belongs to w3 N A, with

(11.18) Wi = g (Wi (P, P e)).
Iterating this process lead to one of three possible outcomes:

1) the z;’s are defined and of type III for all £ > 0; the corresponding initial points zp form the
set E(w*).

2) the zp’s are defined for 0 < k£ < £ and zy is of type I, i.e. it belongs to ﬁf, let (Py, P}, ey) for
0 < k < £ be the data involved in the definitions of the zx’s. We collect together the initial points

zp’s with the same set of data; such a set form one of the Cantor sets A;(w*) in Theorem 3.
3) the z;’s are defined for 0 < k < £ and z; is of type II. Then 2y belongs to the set Cr(w*).

We have now completely defined the partition of w* N A described in Theorem 3. The properties

(1), (ii), (iv) follow immediately from the definitions.
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11.5 Hausdorff Dimension of the Exceptional Set &£(w*)

The self-similar structure apparent in the definition of £(w*) is the key to obtain an estimate of

the dimension of this set. More specifically, we have
(11.19) Ew*) = |_| g P (E(WTpPe)),
(P,P'g)
where € € {4, —}, P runs through C(w*) and P’ through vertices of A(w*, P) which are transverse

of level > 0.

Lemma 16. The maps

/
g"Pr s W (P, Ple) — wppr,

have uniformly bounded distortion.

Proof. Let k be an integer larger than the level of the transverse vertex P’. Then, the parabolic com-
position of (P, Qk,nk) (cf. (11.8)) and (P',Q’,n’) is defined and produces an element (P}, Q},n},)
such that Q) contains w} p, .. Let 7} be an horizontal segment in P}, 7, its image under g%, Ve

the image of 7 N P}, under g

The affine-like maps

(11.20) g P> QL gk = Pl —Qh,
have bounded distortion, hence the one-dimensional map

(11.21) g o (g")h = e

have also uniformly bounded distortion. Letting k go to +oo, ;, converge to wp p, . and v to w*

in the C?~*-topology for all £ > 0. The statement of the lemma follows. O

Lemma 17. Let

wp P') = lim 6(Qu. P)

We have Ji (PP

< - <C
[PIP(0(wp, P1)) "2

Proof. As in the proof of Lemma 16, we write
(11.22) grrE = g"k o (g") 7.

From the estimate (3.27) for parabolic composition in Subsection 3.5, we have
di r
(11.23) ot < o

< _<cC
| Pel, | P'[(6(Qk, P')) "2
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We also have, from the estimates on simple composition

diamw*(P, P’ e) | P}|

11.24 ct < < G,
( ) diam
_ | P

(11.25) ct < — < C.

[Pl
Multiplying these three inequalities yields the Lemma. O
Let us introduce
(11.26) x(d) = Z [diam w* (P, P, €)%

(PP’ )

If we are able, for some value of d, to show that the series defining y is convergent and x(d) is
small, then by (11.19) and Lemma 16, we will deduce that the Hausdorff dimension of £(w*) is < d.

In order to study x, we will first fix P in C'(w*) and sum over (P’,¢). As ¢ takes only two values,

and in view of Lemma 17, we define, for P € C'(w*):
1
(11.27) wr(d) = 3 1P a(wp, P2
P/
We will then have

(11.28) x(d) < € [P xp(d)
P

In the sum (11.27), P’ is a transverse vertex of level > 0, and we therefore must have
(11.29) S(wh, P') < Omax = min(gg, C|QI).

In the series (11.27), we first sum over those P’ such that

(11.30) 27 Gmax = 0(wWh, P') = 27 Gax

for some fixed £ > 0. This allow us to write

(11.31) xp(d) < Cér?éxd > 2% (Zm \P'Id)a

£>0
where Z(Z) means that P’ is constrained by (11.30). We divide Z(Z) into two parts.
In the first part, denoted by Zgé), we consider only those P’ such that its parent P’ satisfies
(11.32) 1P| < 27 0max.

To estimate Zg) |P'|4, first observe that, with d bounded away from 0, it follows from Proposi-
tion 21 in Subsection 8.1 that the sum of |P’|% over children of a fixed parent P’ is bounded by
C|P'|%. We must therefore bound de) |P'|4.
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Also, as P’ is a critical vertex, P’ cannot be very thin: from Proposition 10 in Subsection 6.6, we

have

1

(11.33) Pl > ¢T3, PO > O (a2 )T

Finally, the number of P’ with \ﬁ’ | of order 27 §ax is at most C2™ and the integer m here is
restricted by (11.33) to the range

(11.34) 1 <2™ < C((;maxg—li)—n(l—n)*l'

We, therefore, obtain for d bounded away from 0 and 1,

O] /\d O
(11.35) Zl |P'| C’Zl |P'|
< Caria,x 2—€d Z 2m(1—d)

N

N

C (Omax 2754
In the second part of Z(Z), denoted by Zg@, we have on the opposite
(11.36) 1P| > 27 6imax.

As |P'| > 6(w}, P'), the number of possibilities for P’ is now bounded. As each P’ is a transverse

vertex, we must have (by (R7))
(11.37) 1P| < O Spmax) P

In particular, from (11.36), (11.37), P’ is a non-simple child of P’. From Proposition 21 in Subsec-
tion 8.1, the number of P’ with |P’| of order 2™ is at most 267,

We have

11.38 O prid < ot N gom(d-On) o co=Cnggts  yd-Cn.
2 0 0

Putting (11.35) and (11.38) together yields

14
(1139) Z|P’|d < C((Smax Q—Z)d—C’n

and introducing this in (11.31) allow us to estimate x p:

Lo o
(11.40) xp(d) < Co2a .
Finally, we obtain

1
(11.41) X(d) < € > [P|*[min(eo, [Q)] 27",

C(w*)
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We do not know exactly the set C'(w*), but we know that if (P,Q,n) € C(w*), the parabolic
core ¢(P) is non-empty and () must be I-critical for all parameter intervals I containing the given

parameter value.

We use Holder’s inequality to separate the P and @ in (11.41): for any p, ¢ > 1 such that

1 1
(11.42) -+- =1
P q
we have
1 1
(11.43) x(d) < Cx4(d)Px—(d)4
where
(11.44) ) = S|P,
Q critical
. (ldfcn)q
(11.45) (@) = 3 min(s, @)Lz
Q critical

We will choose d, p, ¢ (satisfying (11.42) in order to have x4 (d) bounded and x_(d) small (when

g¢ is small). For such a choice, we can conclude that the Hausdorff dimension of £(w*) is < d.

We now use that the parameter value is strongly regular, more precisely that the eight estimates
(SR1), (SR2) of Subsection 9.2 on the size of the critical locus are satisfied.

It is not difficult to deduce from (SR1); that, if

1 0, 40
(11.46) 3 dg > d,+d, —1
then, y_(d) will be small.

From (SR2)g, one can also deduce that if

dy,
(11.47) dp — > 2+ dd—1
then x4 will be bounded. The relations (11.42), (11.46), (11.47) are compatible exactly when
2d?
114 d > (d2+d)—1) ——>—.
We observe that the right hand size is always < d2. This ends the proof of Theorem 3.

Remark. The inequalities (11.46), (11.47) should be understood in the following sense: the differ-

ence between the left and right-hand sides is much larger than T (which is itself much larger than

n).
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11.6 The Stable and Unstable Sets of A

Our goal at the end of this final section is to prove that the invariant set A is a saddle-like object

in the following measure-theoretical sense:

Theorem 4. For a strongly regular parameter, both the stable set W5(A) and the unstable set
W™(A) have Lebesgue measure 0.

The situation is symmetrical and we will deal with the stable set.

We have:

(11.49) We(A) = | | g "(W*(A,R)NR).
n>0

Therefore, it is sufficient to show that W#(A, ﬁ) N R has Lebesgue measure 0. We write

(11.50) RNWS(AR) = | | (WS(A,]?{)ﬂng*”(ﬁSf)) LEt,
n>0

with

(11.51) EY = {zeW*(A,R)NR,¢"(z) € R for all n >0}

We have seen in Section 10 that ﬁf is Lipschitzian with transverse Hausdorff dimension ds. There-
fore, the Hausdorff dimension of ﬁ,of is 1 + ds and its Lebesgue measure is 0. The same is true of

g*"(ﬁf) We have to prove that the Lebesgue measure of £ is equal to 0.

11.7 Decomposition of £

By the definition of £ and of the parabolic cores, we can write

(11.52) e = | | ef (),
Py

where

(11.53) ET(R) = ETNe(Py)

and (Py, Qo,np) runs through the set C_ of elements of R with ¢(Py) # (. In particular, Qg is

I-critical for all I containing the given parameter value.

For any such Py, we have

(11.54) g (ET(P)) C QoNL,NET
(11.55) guotNoET(Py)) c LynET.
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For P, € C_, define
(1156) 5+(P0,P1) = {Z S g+(P0),gn0+NO(Z) S C(Pl)}
We have a partition

(11.57) EX(R) = | | €F (P, ).
Py

At step k, we have a partition

(11.58) et = |_| ET(Py, -, P
Py, , Py

where the (P;, Q;,n;) runs through C_. We write

(11.59) mg = g,
m; = mng+ Ng+np
m; = mnog+No+ny+No+---+nj_1+ No+mn;

= mj- —i—Ng—i-nj.
For 0 < j < k, we have

(11.60) g(EN( Py, -, P) C QiNL,NET,
(11.61) gt er(py, - P,)) < LynET.

We define, for Py € C—
(1162) &5 (P, Py Pept) = {2 € EX(Roy o+, i), g™+ (2) € e Posa )}

and we have

(1163) 5+(P07"' 7Pk) = |_| 5+(P01"' aPk7Pk+l)'
Pry1
However, in order to have ET (P, -+, P;) # () strong restrictions on the P; must take place. We

have already mentioned that (P;,Q;,n;) € C—. This is the only restriction on (Py, Qp,no). But,
from (11.55), P; must meet Ps and we also know that @y is critical. As the parameter is regular,

we must have
(11.64) max(|Pi],|Q1]) < 5.

Assume that ET (P, -+, Pry1) is not-empty. We already know that Q.1 is critical. It is also
true that, for any parameter interval I containing the given parameter value, Q) and Py, cannot
be I-transverse: if they were, parabolic composition would produce children of P, whose union

contains 4 (P, -+, Pr11), in contradiction with the definition of the parabolic core of P.
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Let I be the smallest parameter interval satisfying
(11.65) 1] > 2(max [Ql, [Phsa])' ™.

As Qp, Py41 are not I-transverse, it follows from Proposition 9 in Subsection 6.6 that Py is

I-critical. Therefore, we must have

(11.66) max (| Piya], [Qus1]) < 1117
which implies

(1L.67) max (|Pesa, [Qusi)) < ClQI,

with 8 = B(1 — n)(1 +7)~L. Taking 3 < 3 but close to 8 and & sufficiently small, (11.67) and
(11.64) give

(11.68) max (|P}],1Q;]) < €.

11.8 Size and Area of Parabolic Cores

Proposition 50. Let (P,Q,n) € C_. With Leb standing for Lebesgue measure, we have

N

(11.69) diam(g"(c(P))) ||z (-
(11.70) Leb(g"(c(P))) < CIQ!%‘%’7
(11.71) Leb(e(P)) < C|P||Q|2 ™.

)
)

Remark. A posteriori, ¢(P), which is contained in W*(A, R), will have zero Lebesgue measure.
However, we estimate here the diameter and Lebesgue measure of a larger set, as will be apparent

in the proof.

Proof. We start with a general observation on an affine-map with implicit representation (A, B).
The Jacobian of the map is the product A} 1By. The distortion of Lebesgue measure under the
map, which is produced by the oscillation of the logarithm of the Jacobian, is, therefore, controlled
by the distortion of the affine-like map in the sense of Subsection 3.2. In particular, the distortion
of Lebesgue measure by the restriction of iterates corresponding to the elements of R is uniformly
bounded.

Thus, the third inequality (11.71) in the proposition is a consequence of the second. On the other
hand, as ¢"(c(P)) C @, the second inequality (11.70) is an obvious consequence of the first. We
have, therefore, only to prove (11.69). Set

(11.72) Z = g"tNo(¢(P)).
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This set is contained in g™¥o(Q N L,) N W$(A, R), and, a fortiori, in P,. Let R(Z) be the set of
(P*,Q*,n*) € R with P*NZ #£(, P* C Ps.

By the definition of the parabolic core, @ and P* cannot be I-transverse (for any parameter interval
I). Assume that |P*| > 2|Q)|; it follows from Proposition 10 in Subsection 6.6 that P* is I-critical
(for any I); this implies that P* is I-decomposable if I is small enough.

We conclude that

(11.73) ZC U [P* N g™ (Q N Ly)l.

(P.Q",n")ER(Z)
[P |<2|Q|

We replace P*Ng™No(QNL,) by the larger Jordan domain V (P*, Q) defined as follows (see figure 9):
the boundary of V(P*, @) is made of one arc in the boundary of P* and one arc in the boundary
of gNo(Q N L,) and the interior of V(P*, Q) meets both P* and ¢™°(Q N L,).

nP0)

< » width ~ § , (O.P™)

4

Figure 9

N
g “nL,)

Observe that, if (P, QF,n7), (Py,Q%,n3) belong to R(Z), we have either V(Pf,Q) C V(P5,Q)

or the opposite inclusion. Moreover, the parabolic geometry of the picture (cf. (3.22)) gives the
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estimate

(11.74) diam V(P*, Q) < C(51r(Q, P*)2.

But, for |P*| < 2|Q|, the fact that @ and P* are not I-transverse (for any I) implies that
(11.75) Srr(Q, P)) < ClQI'™.

We conclude that

(11.76) diamZ < sup diam V(P*, Q)
(P*,Q*n*)ER(Z)
|P*|<2|Q|

< Clop

Taking the image by the fixed map g=™° yields (11.69). O

11.9 Proof of Theorem 4

We will estimate first the Lebesgue measure of each domain £1(P,- - , P;). We have
(11.77) g TN (et (py o PY) C e(P).

We now use that both the fixed map ¢™¥° and the affine-like iterates ¢"s : P; — Q; (for 0<j <k)
have uniformly bounded distortion with respect to Lebesgue measure. We are, therefore, able to
deduce from (11.70) in Proposition 50 that

k
31 P;
(11.78) Leb(€ ™ (Fy-o+ ) < CHQuE8 [T 120
5 1@

By (11.67), we have |Pjy1]| < |@Q;| for j > 0 and it is easy to check that this still holds for j = 0
(using (11.64) if |Qo| = €0, (11.67) otherwise). It then follows from (11.78) that we have (for & > 0)

1
(11.79) Leb(ET(Py, -+, Py)) < |Py| |Qk,§(1fn).

To obtain the estimate for £1, we have to sum over sequences (P, - - , P,). We first estimate, when

(Po, Qo,nop) and (Py, Qr, nk) are fixed, how many admissible sequences have these two extremities.
The element (Py_1,Qk_1,nk—1) must satisfy

(11.80) Q1] > O max(| Pyl Qi)Y

and also that Qx_1, Py are not I-transverse (for any I). This implies that there is at most

(11.81) ClQuI 7
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possibilities for (Py_1,Qr—1,nk—1). Iterating leads to a total number of sequences (with Py, Qg

fixed) which is at most
(11.82) ClQx| =M.
Therefore, we obtain

1
(11.83) Leb (ET) < Y [Ro||Qu27".
Po,Qk

The sum ) |Pp| is obviously bounded. The sum } |Qk|%_077 is arbitrarily small (when k is
large). Indeed, we have from (11.68)

2k
(11.84) Qil < & -

On the other hand, recall that Qy is [-critical (for any I). As the parameter is strongly regular,

we know, for instance, from (SR1)g;, that the series

(11.85) > el

Q@ critical

is convergent if d > d2 +d? —1+o0(1). As the maximal value taken by d? 4+ d% — 1 under hypothesis
(H4) is 1, we indeed have
1

11.86 li 27¢m — ¢
(11.86) im %: |Qxl :
k

and this concludes the proof of Theorem 4 and, thus, of the Main Theorem in the paper.

We can sum up the results in Sections 10 and 11 by rephrasing our main result as follows:

Theorem 5. Assume (H1)-(H4). Then, for most g € Uy, Ay C W?3(Ay) and Ay C W¥(Ay)
carry geometric invariant measures, a la Sinai-Ruelle-Bowen [Si, Ru, BR], with non-zero Lyapunov
exponents. Both W*(Ay) and W*(Ay) have Lebesgue measure zero and thus Ay carries no attractors

nor repellors.
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Appendix A
Composition Formulas for Affine-Like Maps

We mostly recall in this appendix the formulas for the simple and parabolic compositions of im-

plicitly defined affine-like maps.

We follow closely [PY2]. The main difference with [PY2] is that we consider maps depending on a

parameter t, and we are interested also in some partial derivatives with respect to the parameter.

A.1 Simple Composition. Here we consider a map F; : (g, o) — (x1,y1) implicitly defined by

= Alyo, 71,1
(A1) %o = Alyo, 71,¢)

y1 = B(yo, z1,1).

and a map F} : (x1,y1) — (z2,y2) implicitly defined by

= A'(yy, w9, t
(A.2) 71 = Ay, 22, 1)

yo = B'(y1, z9,t).

The composition F}' = F/ o F; is implicitly defined by

:A// , ,t
(A.3) o (30, 22,1)

Y2 = B"(yo, 72, 1)
and we want to relate the partial derivatives of A”, B” to those of A, B, A’, B’. Set
(A4) A = 1— Ay(y1,22,t)Be(yo, 71, 1).

When we solve the system (A.1), (A.2) for z1, y1, we obtain

= X (yo, x2,t
(A.5) I (Yo, x2,t)

y1 =Y (yo,z2,1)

where the partial derivatives of X, Y are given by

X, = A AL
X, = A, B, A~}
(A6) Xy = (A} + A, B;) A~
Y, =A.B, A}
Y, = B, A™!
| Yi = (Bi + 4;B,;) A

175



We have

A" (yo, z2,t) = A(yo, X, 1)
B”(yO?xQ;t) = B/(K ZIZ‘Q,t),

(A7)

which gives

Al = A AL AT

(A.8)
B! = B,B, A,
Al = A, + A X
(A.9) v Y
B! = B, + BJY,,
Al = Ay + A X
(A.10) e !

B/ = B, + BY;.
Next, from (A.4), we have

—Ay = By Xy Aj + Be ALy + Be Ay Ya
(A.11) —Ay = A, YyB, + A, Byy + A} Byp X,
—A¢ = Byt Al + Bpo X4 Al 4+ B, Al + B, A} Y.

Taking logarithmic derivatives in (A.8) gives

(A.12) Oy log | A = 9, log |AL| + Y0, log |AL| + X0y log |Ay| — Ag AT
(A.13) Oylog | Al = 9, log |Ay| + X0, log |Ay| + Yy 0, log |AL| — AyA™Y
(A.14) Oplog|AY| = Oplog |Ay| + O log |AL| + X110, log | Az | + Yi0, log | AL | — A AL
(A.15) 9y log|By| = 9, log | By| + X0, log |By| + Y, 0, log |B}| — A,A™Y,
(A.16) 0, log |B;’| = 0, log |B;| + Y, 0, log |B;| + X,0; log |By| — Az AT
(A.17) Oy log | B)| = 0 log | By| + O¢log | By| + Y;0, log | B) | + X:0, log | By| — A AT

Taking derivatives in (A.9) gives

Al = Ay 4 240y Xy + Ape X7 + Ar Xy

(A'18) " ! / / 2 /
Bll, =B, +2B,,Y, + B} Y2+ B, Yy,
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(A 19) Agt = Ayt + XtAa:y + XyAxt + XthAmx + A:prt
Bll, = B}, + VB, + Y, B}, + Y}V, B], + B} Yy,

where the partial derivatives of X, Y are obtained from (A.6):

(A.20) Xyy = ByA™ (A, + A0, log |By| + A}, X0, log | B,| — Ay A,A™Y),
(A.21) Yoo = ALATH(Buo Xy + BuOy log | A7| + ByYz0y log |A| — BoAzATY),
(A.22) Xyt = ByA N (ALY, + Ay + Ay log | By| + A) X, log |By| — Ay A AT,
(A.23) Yot = ALAN(Bra Xt + But + BoOylog |AL| + B,Y;0, log | AL — BoAA™).

A.2 Parabolic Composition. We have now a fold map Gy = G4 o Gyo G_:

G_ G G
(xmyu) - (wvyu) =5 (l'Saw) - <x57y5>7

with

(A 24) ys:sz(wafL'syt)
Ly = Xu(wa Yu, t)a

(A.25) w? = 0(yu, Ts,t).

We also have an affine like map Fj : (o, y0) — (zu,yy) implicitly defined by

=A s Ty t
(A.26) o 00, @, )

Yu = BO(yO» Loy t))

and another affine-like map F} : (z1,y1) — (x1,y1) implicitly defined by

s:A S9 ot
(A.27) 7a = A1ym 1, t)

y1 = Bi(ys, z1,1).

We assume that (PC1), (PC2) in Subsection 3.5 are satisfied. As we have seen in [PY2] and
Subsection 3.5, the first step is to write

x, = X(w,yo,t
(A.28) (w, Yo, 1)
Ys = Y(w,l'l,t),
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where the partial derivatives of X, Y are given by
X = XowAg?

Xy = XuyBoy Agl
X = (Xug + XuyBor) Ap'

(A.29)
Yw = Y:e,w Al_l
Ya: = Y:s,xAl,x Al_l
Yy = (Yor+ YouAr) A,
Ao=1-X,,Boz
(A.30) ° v
A1 =1- Y:s,acAl,y-
We set
Y (w,yo,t) := B , X, 1
(A31) 7( Yo, t) o(yo, X, )
X(waxlut) = Al(}/a .Tl,t),
(A.32) C(w,yo,x1,t) == w? — (X, Y,1).

The partial derivatives are given by
7w = BO7wa

(A.33) Yy = Boy + BoaXy = Boy Ay
Y, = Boy + BouXe = (Boy + BowXug) Ay,

Yw = Al,wa
(A34) yr — Al,x + Al,yY:p — Al,:c Afl
Xp= A+ AyY, = (Aig + Ay Y AT

,

—Cy = 2w+ 0, X, +0,Y,
—Ug = nym
(A.35) —
_Cy = eyYy
| —Ct =0 Xt +0,Y ¢ + 0.
We solve
(A36) C(w,yovxlvt) =0
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to define
(A.37) w = W(yo,z1,1t)
(there are two solutions W and W ™).

The corresponding branch of the parabolic composition is implicitly defined by

Ty = AO(y07 X(VI/? yﬂut)’ )

t
(A.38)
Y1 = Bl(Y(Wa X1, t)7 X1, t)

=: A(yo, x1,1)
=: B(yo,x1,1).

The partial derivatives of A, B, W are given by

A:c = AO,a:XwW:L‘
(A.39) Ay = Aoy + Aoa(Xy + XuW,)
A = A + Ao (Xt + XoWh)

By = By ,Y,W,
(A40) Bm - Bl,:): + Bl,y(Yx + Ywa)
By = Bit + B1y(Y: + Y W)

W, = —C,C!
(A.41) Wy _ —CyC;l
W = —thlzl.

Substituting (A.29), (A.41), (A.35), (A.34) in the formulas (A.39)—(A.40) leads to

Ay = Ap 2 A1,20510, X0 A AT

(A.42)
By = BiyBoyCp'0,Ys g AL
(A.43) Ay = Aoy + A02Boy Ay (Xuy + XuwbyAy ' Cpt)
Bm = Bl,x + Bl,yAl,xAl_l(Y;,x + sz,weazAl_lcal)
(A 44) At = AO,t + AO,anl[Xu,t + Xu,yBO,t + Xu,wcu_jl(et + ezpyt + ey?t)]

By = Bii+ BiyAT Ve + Yoo Avs + YauCo (0 + 0. X1 +0,Y )]
Taking the logarithmic derivatives in the first formula of (A.39), we obtain

(A.45) Oy log |Ay| = Wy X0y log | Ao | + Wady log | Xy | + 05 log [W,
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(A.46) Oylog|Az| = 0Oylog|Aoz| + 0z log| Aoz |(Xy + XuwWy)
+ Oy log | X | + Wy0y log | X | + 0y log [Wy|,

(A47) 8t log |Am’ = &g lOg |A07x| + 61 log |A0’x|(Xt + Xth)
+ O log | Xo| + W30y log | Xy | + O log [We|.

From the second formula in (A.39), one gets

(A.48) Ayy=A04y + 240 2y(Xy + X W) + A 2 (Xy, + X W,)?
+ A0 (Xyy + 2XwyWy + X Wy + XuWyy),

(A.49) Ayt:AQyt + A()jwy(Xy + Xth) + Ao,xt(Xy + XwWy)
+A0,zx(Xt + Xth)(Xy + XwWy)
+A0,z(th + waWt + thWy + waWth + XwWyt)-

The symmetric formulas for B are

(A.50) Oy log |By| = W, Y,,0ylog | By y| + 0y log |W,| + W, 0y, log Yy,

(A.51) Oy log | By|=0y log | By y| + 01 10g |Yy|
+0; log [Wy| + 9y log | B y|(Yz + Yo Wy) + W,0, log |Yy,

(A.52) O¢log |By| = O¢log |Bi y| + 0y log |Biy|(Y: + Y Wr)
+ O¢log Y| + W0y log |Yyy| + 0 log |, |,

(A.53) Buo=B1 2z + 2B1 4y (Yo + Yo We) + By gy (Yo + Y, W, )?
+B1y(Yaw + 2Yua Wa + Yo W2 + Y Waz),

(A'54) Byt=B1 a2t + Bl,ry(Yt + Yth) + Bl,yt(Ym + Y, Wy)
+B1,yy (Yo + Y Wo ) (Y + Y W)
+B1.y (Yt + Yoa Wi + Yo W 4 Yo W Wy + Vi Wiy,

In formulas (A.45)-(A.54), the partial derivatives of order 2 of W are obtained from (A.41):

,

me — _Cu_;l(cwwwgg + QCwach + sz)
Way = —Cp (Cw Wa Wy + Copa Wy + CopyWa + Cly)
—Cy (

(A.55) Wyy = —CiH(Cuww W, + 2Cuy Wy, + Cyy)
Wx =—C, 1 waWth + C’szt + C’th:p + Cxt)

w

t=—Cou'(
Wy = —Cwl(waWth + CuwyWi 4+ Cut Wy + Cye)
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The partial derivatives of order 2 of C' are obtained from (A.35):

(A.56)

(A.57)

(A.59)

(A.60)

—Cluo = —2 4 0, X o + 0y s + Ous X oy + 200y X oo Yoy + 0 Y

w?

—Cpt = thyw + exxyzyt + eacyya:?t + Qxyzt
—Cyt = 0y Y y + 0y Yy Ve + 00y Vy Xy + 0,Y g

The partial derivatives of order 2 of X, Y are obtained from (A.34):

(A.61)

(A.62)

S

ww = A1,45Y2 + A1y Yo

we = AtzyYw + A1 yyYuYe + A1y Yue

wt = A1yt Yw + A1,y Y Y + A1y Y

Koo = Al ge + 2410y Ve + A1y V2 + A1y Vau

xt = Al,azt + Al,xyyi + Al,yth + Al,ymeY;S + Al,nyt'

<l

b

)..<

ww — BO,szgj + BO,a:wa
wy — BO,xwa + BO,x:vaXy + BO,mey
wt = BO,xtXw + BO7xwaXt + BO,wat

yy = Boyy +2Bo.zy Xy + Bo,meQ + BoaXyy
yt — BO,yt + BO,rth + BO,mth + BO,szth + BO,met-

| =

~| ~

<l

Finally, from (A.29), we obtain

(A.63)

X = A5 X + 2Xuy Yo + Xy Yoy + Xy Boza X2),
Xy = D5 (XuwyYy + XuyyY Yy + Xy X (Bogy + Bowe Xy)),
Xyy = Aal(Xuvyy?i + Xu,y(Bny + 2Bo,2y Xy + BO,ngg))
Xuwt = Aal[Xu,wt + Xy Yt + XugyY Yt + XugtY w

+ Xy Xw(Boazt + BogaXt)],
Xyt = A0_1 [Xu,yt?y + Xu,yy?y?t

+ X,y (Boyt + BoayXt + Boat Xy + Boza Xy Xt)],
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~

ww — Afl(y(s7ww + 2sz,wxyw + YS,I-’EYZ) + }/S»IAL:L/Z/YUQI’)7

Yo = Al_l(Ys,w:Jch + sz,:mcywyx + YS,OCYW(ALZ?J + ALyny)),
_ 2
Yor = A7 (Yoao Xy + Yo (Arar + 2410y Vs + A1y V7))
(A64) th = Al_l[}/s,wt + }/s,wxyt + Ys,xxywyt + }/;,xtyw

+sz,wa(A1,yt + Al,yyY;‘/)]a
Ymt = Al_l[yrs’ztyz + Y’s,zmyzyt
+}/s7a:(Al,$t —|— Al,xy}/t + Al,yth + Al,yny}/t)]'
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Appendix B
On the Lipschitz Regularity of }N%of

B.1 In this appendix, we will perform some calculations and obtain some estimates that uphold
the proof of Proposition 40 in Subsection 10.5, showing that the holonomy maps of the partial

foliation ﬁf are uniformly Lipschitz.

As always, we have to consider two cases, dealing separately with affine-like maps and parabolic

composition, the later case being more involved than the first.

B.2 The Case of Affine-Like Maps. We consider here, with the notations of Subsection 3.1,
an affine-like map F' with implicit representation (A, B): the domain of F' is a vertical strip P in a

rectangle I3 x Iy, its image is a horizontal strip in a rectangle I7 x I}, the respective coordinates

being Zo, Yo, L1, Y1-

In I} x I, we are given a one-parameter family of vertical-like curves which are graphs
. 0%}
(B.1) w(s) ={z1 = v(y1,s)}, with ‘8— not too large.
Y1

We assume that, for all y1, s

i

(B.2) o

(yl,S) >0

and that we have a uniform bound

0 dp
(B.3) o log P (y1, ) T

We define the vertical-like curves in P by
(B.4) Q(s) = F Y (w(s) N Q).

We assume that F' satisfies a cone condition and we have a good control on the distortion of F.

Under these hypotheses, Q(s) will be a graph
(B.5) Q(s) = {zo = 2(yo 5)}

and we want to obtain the analogue of (B.3):

0

(B.6) 0

oP
1 ‘— , ‘ < T
o8 | 5 (o, s)

The relation between ¢ and @ is as follows in the equation

(B.7) y1 = B(yo, ¢(y1,9)),
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we solve for y; to define

(B.8) Y1 =1v(yo, ).

We then have

(B.9) (50, 5) = Ay, (¥ (30, 5). ) ).
From (B.7), (B.8), we get

W _p a<p<1 B a—‘p)_l

(B.10) Bs Os T oy

(where, as always, the functions must be taken at the appropriate arguments); then, from (B.9) we

get

0P dp Op\ 1
(B.11) S =4 (1 ~ B, 8y1)

We must now take the logarithmic derivative of the right-hand term with respect to yg. It is the

sum of three terms:

dp Y
(B.12) = Oy log |Az| + 0, log | Az D01 Do
0 o
(B.13) Zy = Em <10 g) G
B dp\~1(0% O dp Op 0P

(B.14) Zg—(l B, 8TJ1> {<9y18y()B o (38 log | B, y+Bx$8—y1%)}.
In these formulas, we have from (B.7), (B.8)

%4 Ip\ 1
(B.15) o =B (1 B, 6—y1> .
We see that we obtain (B.6) with
(B.16) T < aT+C.

Here, the constant C' is bounded in terms of ||(1 — B, g—i)_lﬂoo, the distortion of F', the cone

condition, ||-2 By £ | and || Hoo The constant a is given by:
9y

B.17 C||B

( ) a ||ay0 o < ClBylls

and, therefore, a will be < 1 if |Q| = || By ||~ is sufficiently small.

Remark. The control of g—; s guaranteed by the cone condition and the control of %27? by the
0
distortion of F.

184



Thus, the mixed second derivative does not “explode” by taking pre-images by affine-like maps. [

B.3 The Parabolic Case. We now use the setting and notations of Subsection 3.5. We have

intervals 15, I, I, I}, I, I¥ with respective coordinates xo, Yo, Tu, Yu, Ts, Ys-

We have an affine-like map F' with domain P C I§ x I§, image ) C I, x I}}, and implicit represen-
tation (A, B). We also have a folding map G with domain L,, C I} x I}, image Ly C I x I}!. The
map G is implicitly defined by the system

Ys = Y;(’LU, ws)
(B.18) Ty = Xu(w, yu)
w? = e(ym xs)

with Ys, X, € as in Subsections 2.3 and 3.5. The affine-like map F should satisfy (cf. (PC1) in
Subsection 3.5, (R4) in Subsection 5.3):

(B.19) |Bs| < b, |Bzz| < b.
with b < 1. As above we are given a one-parameter family of vertical-like curves which are graphs
(B.20) w(s) = {zs = (ys, 8)},

but these curves are now very close to being exactly vertical

dp
B.21 <b b.
(B.21) ys ’ dy?
We also assume as above that

i

B.22 - (Us; 0
(.22) 2 (o) >
and that we have some uniform bound
(B.23) ‘ ‘ <T

We then define the curves Q% (s) as the connected components of F~1(Q NG~ (w(s) N Ly)).

They should be graphs
(B.24) OF(s) = {zo = ™ (yo, s)}
and we want some uniform control

(B.25) < T

8y0 ‘ ‘

As in Subsection 3.5 (formulas (3.14), (3.15) we eliminate y, to write

(B.26) Ty = X(w,yo)-
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Similarly, in the equation

(B.27) ys = Ya(w, 0(ys, ),

we solve for y; to write

(B.28) ys = Y(w,s).

We then set

(B.29) X(w,s) =Y (w,s),s),

(B.30) Y (w,y0) =B(yo, X (w,0)),

(B.31) C(w,yo,s):=w? — (Y (w,y0), X (w, 5)).

Then, one should solve C' = 0 to get
(B.32) w = W*(yo, ),
(B.33) ®(yo,s) = A(yo, X (W (0, $), v0)),

with W = W+, & = &7,

The relations (B.26) through (B.33) are the equations which allow us to calculate 3%0 log |%—f .

From (B.33), we have

(B.34) (gf = A, X, 52/:.

From the implicit definition of X

(B.35) X (w, yo) = X (w, Bo(yo, X (w,0)) )
we get

(B.36) X =(1—XuyBs) X

One has also
ow _ oC o1

B. - _—_ =
(B.37) s 55 Cw
oC dp Op Y

B- _— = — T — —_— .
(B.38) ds (83 y 83)
From (B.27), (B.28), one obtains

oY Oy Op\ 1
(B.39) ds ™~ Os ( ’ 8y>
and putting this in (B.38) leads to

oc Oy dp\—1
(B-40) 5 = (1= Y g)
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Therefore, introducing (B.36), (B.37), (B.40) into (B.34), we have

oe 11, Op A
(B.A1) 55 = ArXuw(l = XuyBa) 10510, 2 (1= Ya 5F)

We now take the logarithmic derivative of this product of seven terms with relation to yo. We

obtain a sum of seven terms:

(B.42) Zy = Oylog|Az| + 0;1og |Az| (Xy + XuwWy),
(B.43) Zy = (0w log | Xy w| )Wy + 0y log | Xyw|(Yy + Y W,),
(B.44) Zy=(1— Xu,sz)*l{Xuy(Bzy + Bua(X, + X W)

+ Bz(Xu,way + Xu,yy(?y + ?’LUW?J))}7
(B.45) Zy=C;! [exfwwy +0,(V, + ?wwy)],
(B.46) Zs = 0ylog |0,|(Yy + Y W) + 0y log |0, X Wy,

0 dp

(B.47) Zs = ( 5y o8 g) YW,

_ Do\t % dp
(B48) 2= (1-Yeagl) {Vau GEVa Ty + 57 (Vo Wy + Voas XuW) .

The terms in these expressions that have not yet been introduced are:

(B.49) Xy = XuyBy(1 — Xy yB,)™!
(B.50) W, = - C,Ct =0,Y,C"
(B.51) Y, = B, + B, X,,
(B.52) Y = By Xu,

_ 8¢
B.53 X p= = Yy,
(B.53) ys

dp\—1

B.54 Yw — Isw 1_}/3x7
( ) ’ ( ’ 8y5>
We obtain the estimates
(B.55) 1Xu| <C, Yol < C,
(B.56) X .| <Cb, Y| < Cb,
(B.57) X, <ClQI, Yy < Clal,
(B.58) W, < ClQIICS",
(B.59) |Zi| <C+C|Q||C,Y fori=1,2,3,57;
(B.60) 1Z4] < C|QIIC, |+ CblQl |0y
(B.61) 1Zs| < ClQ||C,T.
Therefore, we obtain (B.25) with
(B.62) T' = ClQI 10y oo T+ C + ClQ |0y oo + CHIQI|Cy 1.
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Regarding C;,;!, the same considerations as in Subsection 3.5 apply. One checks that C, is close

to two, hence the value of |C;;!| at the argument where C' vanishes is of the order of |€|_% where

(B.63) C(yo,s) = mui}n C(w,yo, ).

In the context of Section 10, we have

(B.64) Q] < |IC| < 1,

and, therefore,

(B.65) T < C|QET +C.

This shows that T’ does not ”blow up”. O
B.4 In the context of Proposition 40 in Subsection 10.5, Case 2 in the proof, we had an element

(Pr,Qe;n¢) € R and two non-simple children Ppyy, Py, of Pp. Let wyy1, wy,,; be components of
the vertical part of the boundary of Ppy1, Py, respectively. We wanted to have (cf. (10.65))

or1(y) — Vo1 (y)

B.66 log
(B.66) e11(Y) — @y ()

< Cly -]

where w1 = {2 = w1 (Y)}, wyp = {2 =) 1Y)}

To prove (10.66), we will imbed both w1 and wy_; in a one-parameter family of curves

(B.67) Qs) ={z =2(y,s)}
with
(B.683) Qso) = weyr,  Qs1) = wigq
d

(B.69) 2:2>0

d oD

— < .
(B.70) 3y log ==| < C

Indeed, in this case, we can write

0P
peni(¥) — G W) _ o 5 (9:9)ds
er1(y) — P () 222 (y, s)ds’

(B.71)

with, from (B.70), for any s

(B.72) e < (Fwe) G s < e

which yields (B.66). O
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Appendix C
A Toy Model for the Transversality Relation

C.1 Our goal in this appendix is to explain why the complicated definition of the transversality
relation in Subsection 5.4, is in some way "natural”, if we require some useful properties for the
proof of our Main Theorem. The toy model that we are considering is an abstract one. It is much
simpler than the real situation of Section 5 because the sets in which the relation takes place are
well defined to begin with: in Section 5, we need to know the transversality relation in order to

construct the classes R([).

C.2 A partially ordered set X is a forest if, for any xy € X, the set {x > z¢} is finite and totally
ordered. A tree is a forest with a single maximal element. Let Xy, -+, X}, be forests and let A be
a subset of X = X x --- x X, (one should think of A as the graph of an n-ary relation). We say
that A is hereditary if whenever x = (21, -+ ,2p), ¥ = (y1,- - ,Yn) are such that and y; < x; for all
1 <i < n (abbreviated as y < z), then y € A if z € A.

Two points = = (21, -+ ,Zpn), ¥ = (Y1, ,yn) of X are coordinate-wise comparable (c-comparable
for short) if for each i € {1,--- ,n}, we have x; > y; or x; < y;. In this case, we set
(C.1) xVy = (max(z, ¥i) ) 1<i<n-

The set A is concave if, whenever x, y € A are c-comparable, then the point x V y also belongs to

A.

The intersection of hereditary, resp. concave, subsets of X is hereditary, resp. concave. It follows
that any subset A C X is contained in a smallest concave hereditary subset, called the c.h-envelope
and denoted by A.

Example. When the number of factors n = 1, any subset is concave: the c.h-envelope of A C X3

is the set of x € X; such that = < y for some y € A.
C.3 We construct the c.h-envelope when n = 2.

Proposition. Let X1, Xs be forests and A be a subset of X = X1 X Xo. Let Ay be the set of v € X
such that x =y V z for some c-comparable y, z € A. The c.h-envelope of A is equal to the set Ao
of t = (t1,t2) such that t; < x1, to < xo for some x = (x1,x2) € Aj.

Proof. 1t is clear that the set Ay defined in the proposition is hereditary and it is contained in the
c.h-envelope A of A. We have to prove that As is concave. We first prove the

Lemma 18. Ify, z € Ay are c-comparable, yV z also belongs to Aj.
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Proof. By the definition of Ay, we can write y = ¢/ Vo, 2z = 2/ V2" with ¢/, ¢/, 2/, 2" in A, ¢/
and y” c-comparable, 2/ and z” c-comparable. We may assume that 1; < 21 and yo > 29, and
also z1 = 2|, y2 = vh; then, we have 2] = z1 > y1 > v} and yh = y2 > 22 > 25, hence ¢/, 2/ are

c-comparable with ¢/ V 2/ =y V 2. O

End of the Proof of the Proposition. Let t/, t’ € Ay be c-comparable and let 2/, " € A;
be such that x} > t,, 2/ >t/ for i = 1,2. As X; and X are forests, 2/ and 2" are c-comparable.
From the lemma, 2’ V 2" belongs to Ay; then t' V ¢’ belongs to As. O

C.4 For n > 3, the situation is more complicated, as the two examples below indicate.

Example 1. Let Xi, X2, X3 be forests and let x, y, z be three points of X = X; x X5 x X3 such
that

(C.2) r12Y 2 21,
(C.3) Y2 =2, Yo = 22,
(C4) Z32X3, 23 2 Y3

Let A= {x,y,z} C X. If we define, as in the proposition above,

(C.5) A ={uVwv, u,ve€ A, u,v c-comparable}

and if we assume that x5, 2o are not comparable and x3, y3 are not comparable, then we have
(C.6) Ar=A{z,y,2, yVz=(y1,y2 23)}.

On the other hand, the point w = (x1,y2,23) = = V (y V 2) certainly belongs to the c.h-envelope of
A, but does not satisfy w; < u; (i = 1,2,3) for any u € A;. This example shows that the analogue

of the proposition above is false for n = 3.

Example 2. Let X, Xo, X3 forests and let x, y, z € X = X1 x X9 X X3 such that

(C.7) 1 2Y1, T 22
(C.8) Yo =T, Y2 = 2o
(C.9) 23 213, 23 2 Y3

but none of the pairs (y1, 21), (22, 22), (z3,ys3) is made of comparable elements. Let A = {x,y, z}.
The sets {u < z}, {v < y}, {w < z} are disjoint and their union is the c.h-envelope of A: any
u < z, v < y cannot be c-comparable; otherwise, as X3 is a forest and z, y are larger than
u A v = (min(u;,v;)), xs and y3 would be comparable. On the other hand, if v’ < z, v” < z and

u', u” c-comparable, then v/ vV u” < z.
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C.5 We have the following partial result:

Proposition. Let Xy, -+, X, be forests and let A be a subset of X = X1 X --- x X,,. Let Ay be

2 n j

the set of elements x € X for which there exists x*, 2%, --- 2" in A with z; = 2 > x; for all

J
1 < 4,7 <n. Let Ay be the set of elements y € X such that y < x for some x in Ay. Then A

contains the c.h-envelope of A.

Remark. Ezample 2 above shows that As can be strictly larger than the c.h-envelope. Example 1

shows that the straightforward generalization of the case n = 2 does not work.

Proof of the Proposition. It is very similar to the proof of the proposition in C.3 above and left to
the reader. O

C.6 We will now see how the definition of the transversality relation in Subsection 5.4 is a natural
consequence of the proposition above. As observed earlier, an essential difference with the toy
model is that the transversality relation is used to construct the classes R(I). So, let us just try

to define the relation for the starting class R([y) associated to the initial horseshoe K. We would

have:
(C.10) Xi={(P,Q,n) € R(lp), Q C Qu},
(C.11) Xo={(P",Q',n") € R(Iy), P C Ps},

and X3 is the set of parameter intervals. All sets are partially ordered by inclusion (of the @Q’s for

X1, of the P’s for X3), and are obviously trees, with respective roots (Py, Qu, ), (Ps, Qs,ns), lo.

We start from an intuitive definition of transversality: for (P, Q,n) € X1, (P',Q',n’) € Xo, I € X3,
we write
QP
if for all ¢t € I we have
(C.12) 8(Q, P') = 2max(, Q""" |P'|'1).

(The number 7 in the exponent is necessary in order to keep the distortions under control.)

The corresponding subset of X7 x X9 x X3 is
(C.13) A={(Q,P.I), Qh;P}.

This set is hereditary but it is not, a priori, concave. The concavity property (Propositions 4 and
7 in Section 6) is very useful in many places. So, we wish to replace A by a larger set which is

hereditary and concave. If we apply the recipe of the proposition in C.5, we are led first to define
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a set A; and then a set As. According to the proposition, A; should be the set of (Q, P, I) for
which there exist Q2, Q3 C Q, Py, Py C P', I, Iy C I satisfying

(C.14) Qv P, Qyhp P, Qs P

As I, Is can be chosen arbitrarily small, we can replace them with single values t1, to € I of the

parameter; the three conditions in (C.14) become:
— there exists P{ C P’, t; € I such that

(C.15) 8(Q, P{) > 2max(|Q'~",|P{['™")

— there exists Q2 C @, ta € I such that

(C.16) 5(Q2, P') > 2max(|Qo|" ", |P'|'™")

— there exists Q3 C Q, P C P’ such that
(C.17) §(Qs, P5) > 2max(|I],|Qs|*™", | P51™")
forallt € I.

As P{, Q2, Q3, P; may be chosen arbitrarily thin, it is natural to replace (C.15), (C.16), (C.17) by

(C.15) 5(Q,P)) =2|QI" fort =ty;
(C.16)’ §(Qq, P") = 2|P'|'™" for t = to;
(C.17) 5(Qs, Py) >2|I| foralltel.

Finally, the largest t value of (@, P{) that one can hope for (by choosing P| C P’ appropriately) is
Or(Q, P'); similarly, the largest value of §(Q2, P’') that one can hope for is 07,(Q, P’) and the largest
value of 6(Q3, P3) that one can hope for is 0.z(Q, P'). Notice that we need anyway to eliminate
P/, Q2, Pi, Q3 from the definition because in R(I) (instead of R(Iy)), elements are constructed
inductively and thinner rectangles are constructed at the end. Replacing §(Q, P|) by dr(Q, P’),
3(Q2, P') by 61.(Q, P') and 6(Q3, P3) by 6r,r(Q, P'), we obtain the three conditions, (T1), (T2),(T3)
in Subsection 5.4. This defines rh.

The last step is to go from A; to As, taking the hereditary envelope of Aj, which corresponds

exactly to the transition from h to M in Subsection 5.4.
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