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Abstract

We study the Harry Dym hierarchy of nonlinear evolution equa-
tions from the bi-Hamiltonian view point. This is done by using the
concept of an S-hierarchy, which permits us to define a matrix Harry
Dym hierarchy. We conclude by showing that the conserved densi-
ties of the matrix Harry Dym equation can be found by means of a
Riccati-type equation.

1 Introduction

An intriguing equation known as the Harry Dym (HD) equation has attracted
the attention of a number of researchers in integrable systems [7), 10 111, 12,
19, 25| 26], 27]. In one of its incarnations it can be written as
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or equivalently
Pt = 0*Paza (2)
after the substitution p = —(1 + ¢)~%/2.

Equation (l) was discovered in an unpublished work by Harry Dym [13],
and appeared in a more general form in works of P. C. Sabatier |28 29,
30]. More recently, its relations with the Kadomtsev-Petviashvili (KP) and
modified-KP hierarchy have been studied in detail by Oevel and Carillo [1§].

In the present work we discuss the HD hierarchy from the bi-Hamiltonian
point of view and show that it is amenable to the systematic treatment
developed in [3| [8 9] 16 [17].

The plan of this article is the following:

In Section [2] we review the general definitions of Poisson geometry and
bi-Hamiltonian theory. We review the important concept of an S-hierarchy
which was already used in [22] in connection with the Boussinesq equation.

Section [3 is devoted to endowing the loop-space on the Lie algebra of
traceless 2 x 2 real matrices with a bi-Hamiltonian structure following a
construction in [15].

Section M describes the construction of the matrix HD hierarchy, i.e.,
a hierarchy of commuting Hamiltonian flows in two fields that reduces to
the Harry Dym equation (1) upon a suitable reduction. Two-component
extensions of the HD equation have interested a number of researchers, see,
e.g., [1, 12, 20, 24]. Tt would be interesting to compare the hierarchy presented
herein with those presented by these authors.

We conclude in Section [fl with a Riccati type equation for the conserved
quantities of the matrix HD hierarchy.

2 Bi-Hamiltonian preliminaries

This section collects a number of facts from bi-Hamiltonian geometry. More
information could be found in [16].

A bi-Hamiltonian manifold is a triple (M, Py, P,) consisting of a manifold
M and of two compatible Poisson tensors P, and P, on M. In this context,
we fix a symplectic leaf S of P, and consider the distribution D = P,(KerP;)
on M. As it turns out, the distribution D is integrable. Furthermore, if £ =
D NTS is the distribution induced by D on S and the quotient space N =
S/E is a manifold, then it is a bi-Hamiltonian manifold. In situations where
an explicit description of the quotient manifold A is not readily available,



the following technique to compute the reduced bi-Hamiltonian structure is
very useful [5]. Assume that Q is a submanifold of S that is transversal to
the distribution F, in the sense that

1,96 E,=T,S forallpe Q. (3)

Then, Q is locally diffeomorphic to A" and inherits a bi-Hamiltonian structure
from M. The reduced Poisson pair on Q is given by

(B, a=T0,((P),a) , i=12, (4)

where p € Q, a € T;Q, the map II,, : T)§ — T,Q is the projection relative
to ([B), and & € T, M satisfies

65|Dp =0 y 5(|TPQ:O[ . (5)

Let us assume that {H;};cz is a bi-Hamiltonian hierarchy on M, that
is, PydH; = PidH;; for all j. In other words, H(A) = >, H;A ™7 is a
(formal) Casimir of the Poisson pencil P, — AP;. The bi-Hamiltonian vector
fields associated with the hierarchy can be reduced on the quotient manifold
N according to

Proposition 1 The functions H; restricted to S are constant along the dis-
tribution E. Thus, they give rise to functions on N'. Such functions form a
bi- Hamaltonian hierarchy with respect to the reduced Poisson pair. The vec-
tor fields X; = PodH; = PydH;41 are tangent to S and project on N'. Their
projections are the vector fields associated with the reduced hierarchy.

In the sequel, we shall need a more general definition than that of a bi-
Hamiltonian hierarchy. The point being that, once we have fixed a symplectic
leaf S of P, it is not always possible to determine a hierarchy on M that is
defined also on S. In other words, there exist singular leaves for the hierar-
chies of a bi-Hamiltonian manifold. Nevertheless, it is sometimes possible to
define hierarchies which are, in a certain sense “local” on §. We shall define
an S-hierarchy as a sequence {V;};ez of maps from S to T*M,

Viisw—=Vi(s) e Th M,
with the following properties:

o V; restricted to T'S is an exact 1-form, that is, there exist functions H;
on S such that Vj|rs = dH;



[ PQVJ-:Pﬂ/jJrlforaHjEZ.

Obviously, every bi-Hamiltonian hierarchy defined in a neighborhood of S
gives rise to an S—hierarchy. In contradistinction, in Section 4l we will see
an example of S—hierarchy that does not come from any bi-Hamiltonian
hierarchy. This is also the case of the Boussinesq hierarchy [22].

It is not difficult to extend Proposition [Il to the case of S—hierarchies. In
the sequel, whenever talking about S—hierarchies and referring to such result,
it shall be understood that we mean such straightforward extension.

3 A bi-Hamiltonian structure on a loop-algebra

In this section we recall from [I5] that the bi-Hamiltonian structure of the
(usual) HD hierarchy can be obtained by means of a reduction.

Let M = C*(S5',5[(2)) be the loop-space on the Lie algebra of traceless
2 x 2 real matrices, i.e., the space of C* functions from the unit circle S* to
s[(2). The tangent space TsM at S € M is identified with M itself, and we
will assume that TsM ~ T§M by the non-degenerate form

(Vi Vo) = / w(Vi(@)Va(@) de,  ViVae M.

where the integral is taken (here and throughout this article) on S'. Tt is
well-known [14] that the manifold M has a 3-parameter family of compatible
Poisson tensors. To wit,

P()\l,)\27>\3) :A18x+>‘2[75]+)‘3[714] 5 (6)

where A1, Ay, A3 € R, the matrix A € sl(2) is constant, and

S:(p q)eM.
ro—p

In this paper we focus on the pencil

P\=P,— AP, =0, + [, A+ \S] (7)

A:(? 8)
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This means that
P2:833+[,A], Plz[S,] (8)

In [15] the bi-Hamiltonian reduction procedure was applied to the pair (Py, Ps).
In this case,

(1p)z + 1q (149)z (gl
Ps= {((l”)m = 2pup —(up)z — uQ) e ™S ’R)} - PEM

The distribution D is not tangent to the generic symplectic leaf of P;. How-
ever, it is tangent to the symplectic leaf

s={(r 2)1r+ar=0wan000], o

r

so that £, = D, NT,S coincides with D, for all p € S. It is not difficult to
prove that the submanifold

0= {S(q) _ (8 g) g€ C(S'R), qlx) £ 0 Va € sl} (10)

of § is transversal to the distribution F and that the projection Ilgq) :
TS(q)S - Ts(q)Q is given by
s : (B,4) = (0,4 — pa) - (11)

The reduced bi-Hamiltonian structure (4)) coincides with the bi-Hamiltonian
structure of the Harry Dym hierarchy (see [15] for details):

(Plrd)q = _<2qam + %:)
. 1
(PQd)q — —58:% .

Starting from the Casimir [ ,/gdz of P9, one constructs a bi-Hamiltonian
hierarchy, which is called the HD hierarchy. We refer to [23] and the refer-
ences therein for more details, and for a discussion about a “KP extension”
of the HD hierarchy (see also [1§]).

Remark 2 We take this opportunity for correcting a mistake in [23]. Equa-
tion (3.5) in that paper should be replaced with

A 1, .. j
K&+ — ) <—§(A]w)+,x + k(A]w)+) : (12)
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This entails that the definition of the Faa di Bruno polynomials should be
changed in the following way:

KUt = (0, + k)Y -N, j>0.
The remaining of the paper should be changed accordingly.

We consider now the bi-Hamiltonian hierarchies of the Poisson pair (§),
that is to say, the Casimirs of the Poisson pencil ([).

Let us suppose that
T (oz I} )
v -«

is a solution of P\V = 0, that is,
Vot [V, A+ AS] =0, (13)
and let us write the previous equation in componentwise form

o+ M +1)3—Agy=0
By +2 g — 2 \p 3 =10
Yo+ 2 \py —2(Ar+1)a=0

Upon expressing « and + in terms of 3,

(14)

~ g T PN MM a4 N

we find that [ satisfies the equation

_2q2)\2 + 2¢3\2 q_)\ FE3) ; - 2¢*\2 BN 2¢3\2 PR

+( G P GPo | 3P _ Gul _ GoT | 2D pq>ﬁ:0

e 3 2 2, 20 3¢ 2 w207
B qﬁm+< L 4 2¢p ¢ p>ﬁ$+

¢ @ @A B /SO N 7 Q@

This equation can be rewritten as

o4 =0, (15)

@ =
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Indeed, it is a well-known consequence of equation ([3]) that the spectrum of

d
V' does not depend on z, so that d—tr V2 =0. Let us set
x

r V? — PN (16)

where F'(A), = 0. Then the equation for 5 becomes

2432 0—4 02— 200 B +4(@ep—apa—¢*) B A—4q (P> +qr) N 32 +4¢° F (N N2 =( 0)-
17
We now consider the possibility of finding a solution S(A) of (I7) as a
formal series expansion in (negative) powers of A, that is, 5 =>"° | BiA ™"
In order to find the coefficients [3; recursively, we must equate the coefficients
of the same degree in A starting from the highest order one. Let us suppose
that g(x) # 0 for all . Then, it turns out that we have to distinguish the
two cases:

o If p? + qr # 0, then the highest degree of F()\) has to be even;
o If p?+ ¢qr =0, then the highest degree of F()\) has to be even odd.

We are interested in the latter case, in order to perform the reduction pro-
cess described in Section This means that in this article, we will study
the S-hierarchy on the symplectic leaf (@). The bi-Hamiltonian hierarchy
corresponding to the former case will not be considered here.

4 The matrix HD hierarchy

In this section we will show that it is possible to find a solution

V= i VAT = i (i _ﬁéi) A7 (18)

i=—1 i=—1

of equation (I3)) at the points of the symplectic leaf S, giving rise to an S-
hierarchy, to be called the matrix HD hierarchy. We will see that the second
vector field of such hierarchy projects to the HD equation.

First of all, we restrict to the symplectic leaf & and we use the now
classical dressing transformation method [31, [6, 4] to show that the matrix



V(M) whose entries are given by the solution of (I7) and (I4)) defines an S-
hierarchy if F(\) does not depend on the point of S. Indeed, equation (I
implies that there exists a nonsingular matrix K (\) such that

V(A = KAK™!,
where
0 1
A‘(m»0)
Let us introduce 4 .
M=K*S+ X)K — XK‘le : (19)

Thus, we have

Proposition 3 If F(\) does not depend on the point S € S, then V()
restricted to T'S is an exact 1-form. More precisely, if H : S — R is given

by
HO) = / tr (MA) dz | (20)

then V|rs = dH.
Proof. If V is a solution of (I3]), then

1 1
XK—lx/;cK + XK—l[v, A+ AS|K =0.

This in turn, implies that

1

Since A does not depend on z, we have that A commutes with M. Therefore,
for every tangent vector S to the symplectic leaf S, we have

(dH,S) = / tr (MA)dz = / tr (K'SKA) + tr (M, K 'K]A) dz
= /tr(SKAKl)dx:/tr(SV)dx: v, S),

since [ tr ([M, K~'K]A)dz = 0. This completes the proof. m



Let us now compute explicitly H. A possible choice for K is

<= (L )
—aft B

Since M commutes with A and both matrices have distinct eigenvalues, it
follows that M is a polynomial of A. However, since they are traceless and
we are working with 2 x 2 matrices it follows that M is a multiple of A. This
simplifies the computation of M, since it becomes

=

q
M= =A.
B
Thus, we have that
H) :/Q%F()\) dz . (21)

We define the matrix HD hierarchy to be the S-hierarchy corresponding to
the choice F'(A) = A. In order to find its first vector fields, let us substitute
p?+qr =0 and F()\) = X in equation (I7), to find

248223 — 482 — 20.08: + 4(qup — qpz — @) FPN+ 43N =0 . (22)

From now on, we use the functions p and ¢ to describe a point of S. We
know that it is possible to solve equation (22]) recursively, starting from the
highest power of A:

N Aqp — qpe — ) = 4.

We choose the positive solution

q3
B, = . 23
' @ — @0+ qps (23)

Using the expressions ([I4) for a and v we get a recursive formula for the
matrices V;. Indeed, we have that

_ B
Ty
B 24
Y1 =T——
q



and
1
O[Z- = —

(—(Bi—1)e + 26ip)

2
i (25)
Vi = 5((0%—1)9: + Bir + Bi-1)
for all ¢ > 0. Therefore, we can compute the first 1-form
_ (P g
V—l - (7, _p) QO(ZL') )
where p(z) = \/ 5 d , and verify immediately that it actually com-
4 — 4zP + qPa

mutes with S, as expected.
Applying the Poisson tensor P, to V_; we obtain the first vector field

Xo = P(V_y) =V_q, + [V_1, A] of the hierarchy:

b= Pe)+ay (26)
= (q)s

We saw in Section 2l that every S-hierarchy can be projected on the reduced
bi-Hamiltonian manifold. Since V_; belongs to the kernel of P, we have
that V_q|rs = 0 and that Py(V_;) belongs to the distribution D, so that
the projection of X, vanishes. However, let us check it explicitly. We must
evaluate X at the points p = 0 of the transversal submanifold O, then we
have to project this vector field according to the formula (IT), thus obtaining

the predicted result:
dq 5

The next step in the iteration is:

A 2q8-18-1,, — q(ﬁ,1$)2 —2q,8-10-1, = 8(‘12 — QuP+qP2)B-15 -

Using also equation (23]), we get that

B =12 (200(q0)2e — (40)3 — 2420(q0)z) (27)

8
V, = <Oéo Bo ) 7
Yo —Qo
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where

R P e
ap = =5 — o+ (200(q9)er — (09)2 — 2420(q) )
2 2q 8
1 Py’ P, o Py’
Y = q(pso)x Y- (¢9)ax + 2 (qv); + 1q (q¥)s -

We can now determine the second vector field X, := Pa(Vy) = Vo, + [Vo, 4]
It is given by

. 1 0o p )
D 5% (2q90)m (qﬁo ) Bo (25)
¢ = Boy
The latter in turn, using equation (27)), has the more explicit form
[ p= o (Zo) 4 (= PP P (000200 — (49) — 200(a0)s)
2 2¢" ), 8p 8¢ 8 *
pY
5 (200(209)0 — (99)% — 2q.0(qp)2),
. (a4 2
| 1= (g (200(29%) 2z — (q90)2 — 2¢20(q) )

(29)
Starting from (28]), we calculate the reduced vector field, first evaluating X;
at the points p = 0 of the transversal submanifold Q,

2 \/a 4q2 32 q2 8q2 <30>
j= (-t 2% | G
4> 3243 8¢2 ),

and then projecting this vector field on the transversal submanifold. We thus
obtain the HD equation ()

g . . 1/[1
This equation is equivalent to Equation (I]) after the change of variables
g+ (1+q) and t; — —A4t.
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5 A Riccati equation for the conserved den-
sities

The goal of this final section is to point out that the conserved densities
of the matrix HD hierarchy can also be found by means of a Riccati-type
equation.

We recall that equation (2II) gives, for F'(A) = A, the expression of the
potential H of the 1-form V'|rs. The corresponding density is clearly defined
up to a total x-derivative. This fact allows us to introduce

Q: B,
5 a5

which transforms the equation (7)) in the Riccati-type equation

h:

h$+h2—%”h:(p$+q—q§p))\. (31)

Its solution h yields

H(\) = % /hdx (32)

for the functional H. We set z = v/, and substitute h = >ooe  hiz"in the
Riccati equation (31), which takes the form

00 1 o)
5 (et Dot )= =3 s = (px . %p) 2 (3)
j=0 i=—1

i=—1

Once again, this equation can be solved recursively, starting from the highest
degree of z. The firs step is
2 qx

22 h(‘il:px+q—;p :

/ G
h_y = pm+q—gp-

A hoy, 42k — R =0
q

which gives, up to a sign,

Similarly, we have that

12



from which we obtain
h_1 z q_az

C2h_,  2¢°
Let us notice that this is a total x—derivative. More generally, it is evident

from (B2)) that every even densities is a total z—derivative. Indeed, H(\) =
Zz‘zo Hi)\_i, with

ho =

In particular, Hy = 2fh_1dx, and it can be checked that dHy = Vp|rs, as
affirmed in Proposition [3l
The next equation is

L hey+2hh k2 — Lho =0
q

and the corresponding density is

1
2h_4

hy = (hox TR %”ho) .

This leads to

h,,l 3}7/712 Qza 3q2
H — 2 T _ T _ X d .
! / <4h2_1 8%,  dhaq shag)

Integrating by parts and substituting the expression for h;, we find
2
P4z

1:2/ ;o = e Pq
PG\ NUP 2 _ P
32 <p$+q_ q) 4q /Pt 4 . 8¢° /Pt 1 .

This is the Hamiltonian (with respect to the symplectic structure obtained
by restricting P; to its symplectic leaf S) of the 2-component extension (29))
of the HD equation.
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