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Compact manifolds that admit a metric with positive sectional curvature are still poorly
understood. In particular, there are few known obstructions for the existence of such
metrics. By Bonnet-Meyers the fundamental group must be finite, by Synge it has to
be 0 or Z2 in even dimensions, and the Â-genus must vanish when the manifold is spin.
For non-negative curvature, besides some results on the structure of the fundamental
group, we have Gromov’s Betti number theorem which states that they are bounded by
a constant that only depends on the dimension. In fact, there is no known obstruction
that distinguishes the class of simply connected manifolds which admit positive curvature
from the ones that admit non-negative curvature.

It is therefore surprising that there are very few known examples with positive curva-
ture. They all arise as quotients of a compact Lie group, endowed with a left invariant
metric, by a subgroup of isometries acting freely. They consist, apart from the rank one
symmetric spaces, of certain homogeneous spaces in dimensions 6, 7, 12, 13 and 24 due to
Berger [Be], Wallach [Wa], and Aloff-Wallach [AW], and of biquotients in dimensions 6, 7
and 13 due to Eschenburg [E1],[E2] and Bazaikin [Ba].

A different method of searching for new positively curved examples is suggested by
another property that many (but not all) of the known examples share: they are the total
space of a fiber bundle where the projection onto the base is a Riemannian submersion.
It is therefore suggestive to look for new examples which admit fiber bundle structures.
Weinstein ([We]) studied this question by considering Riemannian submersions with to-
tally geodesic fibers, such that the sectional curvatures spanned by a horizontal and a
vertical vector are positive. Even this weaker condition on a fiber bundle, called fatness,
is already strong ([DR],[Zi]).

The concept of fatness and any further curvature computations can be done in a larger
category of bundles, where the spaces involved are orbifolds and the bundle structure is an
orbifold one. Even if one is only interested in manifolds this is an important generalization.
In fact, one can now give many of the other known examples of positive curvature metrics,
apart from the rank one symmetric spaces, an orbifold bundle structure as well; see Section
2 for a summary. The only case where such an orbifold bundle structure was not known,
until now, is the family of (generic) Eschenburg biquotients Ep,q = SU(3)// S1, where the
S1 = {z ∈ C : |z| = 1} action on SU(3) is given by

z · g = zp g z q,

with p, q ∈ Z
3,

∑

pi =
∑

qi, and zp := diag(zp1 , zp2, zp3) ∈ U(3). This biquotient is
an orbifold if and only if p − qσ 6= 0 for all permutations σ ∈ S3, where we have set
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qσ = (qσ(1), qσ(2), qσ(3)). If one has that gcd(pi − qj , pi′ − qj′) = 1, for all i 6= i′, j 6= j′, the
quotient is a manifold. Further conditions must be satisfied for an Eschenburg metric to
have positive curvature; see Section 1.

The purpose of this paper is to study all isometric circle actions on Eschenburg mani-
folds (and more generally orbifolds) which act almost freely, i.e., their isotropy groups are
finite, and thus give rise to principal orbifold bundle structures. One easily sees that they
all indeed admit such actions and we will examine in detail their geometric properties. In
particular, we obtain a large new family of 6-dimensional orbifolds with positive sectional
curvature and with small singular locus.

By [GSZ], an isometric circle action on Ep,q is given by a biquotient action on SU(3)
that commutes with the original one or, equivalently, a T2 = S1 × S1 biquotient action on
SU(3) that contains the original circle as a subgroup. So, given a, b ∈ Z3 with

∑

ai =
∑

bi,
we define a circle action S1

a,b on Ep,q by

w · [g] = [wag w b], w ∈ S1 .

The projection onto the quotient π̂ : Ep,q → Oa,b
p,q is then an orbifold principal bundle if

this action is almost free. We will show:

Theorem A. The circle action S1
a,b on Ep,q is almost free if and only if

(p − qσ) and (a − bσ) are linearly independent, for all σ ∈ S3.

The quotient Oa,b
p,q is then an orbifold whose singular locus is the union of at most nine

orbifold 2-spheres and six points that are arranged according to the schematic diagram in
Figure 1.
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Figure 1. The structure of the singular locus.

The lift of the orbifold 2-spheres to SU(3) consists of the nine copies of U(2) inside
SU(3) given by

U(2)ij =

{

τi

[

A 0
0 det A

]

τj : A ∈ U(2)

}

, 1 ≤ i, j ≤ 3,
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where τr ∈ O(3) is the linear map that interchanges the rth vector of the canonic basis
with the third one. The lift of the six singular points consists of the six copies of T2 given
by

T2
σ = σ diag(z, w, z̄w̄),

where σ ∈ S3 ⊂ O(3) is a permutation matrix. We define the parity of each one of these
six singular points to be the parity of the corresponding σ. Clearly each U(2) contains
two T2’s and each T2 is contained in three U(2)’s. They are also arranged according to
Figure 1, where edges correspond to the U(2)’s and vertices to the T2’s.

For the lift of the singular locus to Ep,q under the fibration π̂, the edges in Figure 1
represent totally geodesic lens spaces, and the vertices are closed geodesics. If Ep,q is
smooth, the lens spaces are smooth as well. In Section 3 we will also determine the
isotropy groups corresponding to these lens spaces and closed geodesics, which can also
be interpreted as the orbifold groups of the orbifold quotient. They are constant along
each of these closed geodesics, and along each lens space (outside the closed geodesics).

In Section 4 we examine the question of how to minimize the singular locus in Oa,b
p,q

and its orbifold groups. There exist some Eschenburg spaces which admit a free circle
action, but in general the most one can hope for is an isometric circle action such that
the singular locus of the quotient consists of a single point. It turns out that there is a
topological obstruction to the existence of such an action.

The most basic topological invariant of an Eschenburg space is the order h of the
cyclic group H4(Ep,q, Z). We also associate to Ep,q the integers (mod h) denoted by
α(σ, ǫ1, ǫ2) ∈ Zh, where σ ∈ S3 and ǫ1, ǫ2 = ±1, that only depend on p, q ; see (4.5) for an
explicit formula. We show:

Theorem B. Let Ep,q be an Eschenburg manifold equipped with an Eschenburg metric.
Then, there exists an isometric circle action on Ep,q whose singular locus is composed of
at most 3 points with the same parity if and only if α(σ, ǫ1, ǫ2) = 0 for some choice of
σ ∈ S3, ǫ1, ǫ2 = ±1.

This implies in particular that a generic Eschenburg space does not admit an isometric
circle action with only one singular point. However, it is easy to find examples for which
this is the case; see Section 4. Observe that all such examples have non-negative curvature,
since this holds for the Eschenburg metric in general.

On the other hand, for positive curvature the situation is different. To illustrate this,
we study in detail the case of general cohomogeneity one Eschenburg manifolds, that is,
Ed = E(1,1,d),(0,0,d+2), d ≥ 0, which have positive curvature when d > 0. For d ≤ 2, it is
known that Ed admits a free isometric circle action, in fact even free actions by SO(3)
([Sh]). For the remaining cases, we prove the following.

Theorem C. Let Ed be any cohomogeneity one Eschenburg manifold, d ≥ 3, equipped
with a positively curved Eschenburg metric. Then:

i) There is no isometric S1 action on Ed with only one singular point.

In the following particular examples the singular locus of the isometric circle action S1
a,b

on Ed consists of:
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ii) Two points with equal orbifold groups Zd+1 if a = (0,−1, 1) and b = (0, 0, 0);
iii) Two points with equal orbifold groups Zd−1 if a = (0, 1, 1) and b = (2, 0, 0), and

3 does not divide d − 1. If it does divide, we get in addition the orbifold 2-sphere
joining these two singular points, with orbifold group Z3 ;

iv) A smooth totally geodesic 2-sphere with orbifold group Zd−1 if a = (0, 1, 1) and
b = (0, 0, 2).

Hence, an interesting open question is whether part (i) in Theorem C holds more
generally for all positively curved Eschenburg manifolds. Computer experiments sup-
port an affirmative answer: There is no positively curved Eschenburg manifold with
|H4(Ep,q, Z)| ≤ 106, altogether 10.085.359.999 spaces, that admits an isometric circle
action whose singular locus is a single point. If they do not exist, it would be interesting
to understand the phenomena behind this difference between non-negative and positive
curvature.

Finally, observe that the most regular orbifold we obtain in Theorem C is given by
diag(z, zw, z3w)\ SU(3)/ diag(1, 1, z 5w 2), which is a compact 6-dimensional positively
curved orbifold which has only two singular points with orbifold groups Z2.

We would like to thank C.G.Moreira for helpful discussions. This work was done while
the second author was visiting IMPA and he would like to thank the Institute for its
hospitality.

1. Preliminaries

Recall that an orbifold is a topological space which locally is the quotient of an open
set U ⊂ Rn under the effective action of a finite group Γ that fixes p ∈ U . The group
Γ is called the orbifold group at the projection of p in U/Γ, and the required natural
compatibility conditions for 2 overlapping orbifold charts implies that the orbifold group
is well defined. An orbifold metric is a Riemannian metric on each chart U such that
Γ acts isometrically. In many ways orbifolds can be treated just like manifolds. Local
geometric calculations can be done with the smooth metric since all geometric objects
are invariant under isometries. The simplest examples of orbifolds are manifolds divided
by a finite group (so called good orbifolds). More generally, if a compact Lie group G
acts isometrically on a Riemannian manifold M such that all isotropy groups are finite
(so called almost free actions), then M/G is an orbifold, as follows immediately from the
slice theorem for the group action. Moreover, in this case the orbifold groups are the
isotropy groups, divided by the ineffective kernel. In our case, orbifolds will be obtained
as quotients of Eschenburg spaces under circle actions with finite isotropy groups.

We now introduce some notations that will be helpful and discuss general properties of
Eschenburg spaces; see [E1], [E2]. We denote the diagonal matrices D = C3 ⊂ C3×3 by
x = (x1, x2, x3) = diag(x) ∈ C3×3. For an element in the symmetric group S3 that takes
i → j → k → i, or i → j → i, we use the notation (ijk), or (ij), respectively. We have
a natural action of S3 on D defined by xσ = diag(xσ(1), xσ(2), xσ(3)), σ ∈ S3, x ∈ D. If

z ∈ S1 = {z ∈ C : |z| = 1} and p ∈ Z3 ⊂ R3, we denote by zp = diag(zp1 , zp2 , zp3) ∈ U(3).
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Observe that

G = {(g1, g2) ∈ U(3) × U(3) : det g1 = det g2}

acts on SU(3) by (g1, g2)·g = g1 g g−1
2 . The group G has a maximal torus T5 = (D×D)∩G,

whose Lie algebra is t = (D×D)∩ g. Let tZ be the lattice in t given by tZ = t∩ (2πiZ3 ×
2πiZ3), that we identify with

tZ = {(p, q) ∈ Z
3 × Z

3 : tr p = tr q}

via (p, q) → (2πip, 2πiq).

For each (p, q) ∈ tZ we define an S1 action on SU(3) by

(1.1) z · g = zpg z q, z ∈ S1, g ∈ SU(3).

This action is easily seen to be almost free if and only if

(1.2) p − qσ 6= 0, ∀ σ ∈ S3,

since this is clearly the case only when the action is free on the Lie algebra level. In this
situation, the quotient is a 7-dimensional orbifold, which we call the Eschenburg orbifold
Ep,q, that comes with the projection π = πp,q : SU(3) → Ep,q . Furthermore, the action is
free if and only if

(1.3) gcd(p1 − qσ(1), p2 − qσ(2)) = 1, ∀ σ ∈ S3,

which is equivalent to gcd(pi − qj , pi′ − qj′) = 1, for all i 6= i′, j 6= j′. In this case, Ep,q is a
smooth 7–dimensional manifold, called the Eschenburg manifold Ep,q. Finally, the action
is effective only when

(1.4) gcd({pi − qj : 1 ≤ i, j ≤ 3}) = 1.

Indeed, z ∈ S1 fixes g ∈ SU(3) if and only if zp is conjugate to zq and if this is true for
all g, we necessarily have zp = zq = λ Id for some λ. Again, one can take 1 ≤ i ≤ 2 in the
above since tr p = tr q.

The Eschenburg metric on Ep,q is the submersion metric obtained by scaling the biin-
variant metric on SU(3) in the direction of U(2)jj ⊂ SU(3) for some 1 ≤ j ≤ 3, and it
has positive sectional curvature if and only if, for all 1 ≤ i ≤ 3,

(1.5) pi /∈ [min(q1, q2, q3), max(q1, q2, q3)], or qi /∈ [min(p1, p2, p3), max(p1, p2, p3)].

If this condition is satisfied, we will call Ep,q a positively curved Eschenburg space. Since
the proof of this fact is a Lie algebra computation, it still remains valid if we consider,
more generally, Eschenburg orbifolds. Thus in the orbifold category there exists a much
larger class of compact positively curved examples. In fact, any six integers satisfying
(1.5) will determine one, since (1.5) implies (1.2).

Observe that, since (p, q), (−p,−q) and (p + k Id, q + k Id), k ∈ Z, induce the same
action and since tr p = tr q, an Eschenburg orbifold is determined by four integers only. In
fact, {pτ(1) −qσ(2), pτ(1)−qσ(3), pτ(2)−qσ(1), pτ(3)−qσ(1)} defines an Eschenburg orbifold for
fixed given permutations τ, σ ∈ S3. Furthermore, notice that Ep,q has positive sectional
curvature if and only if two rows or two columns of the matrix Aij = pi − qj contain
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integers with the same sign, and it is a manifold if and only if any two entries not in the
same row or column are relatively prime.

There are two natural subclasses of Eschenburg manifolds. One is the family of coho-
mogeneity two Eschenburg spaces corresponding to (p, q) = ((c, d, e), (0, 0, c+d+e)) with
gcd(c, d) = gcd(d, e) = gcd(e, c) = 1. They admit an isometric action of T2 × SU(2) such
that the quotient is two-dimensional. A further subclass is the family of cohomogeneity
one Eschenburg spaces corresponding to (p, q) = ((1, 1, d), (0, 0, d + 2)) which admit an
isometric action of SU(2) × SU(2) × S1 such that the quotient is one-dimensional. In
general, Eschenburg spaces admit an isometric action of T3 such that the quotient is
four-dimensional. In [GSZ] it was shown that these three groups are indeed the identity
component of the isometry group. In particular, the isometry has rank three in all cases.

The only homological invariant that varies for different Eschenburg manifolds is the
order h = h(Ep,q) of the cohomology group H4(Ep,q, Z) = Zh. This integer is given by

h = |p1p2 + p1p3 + p2p3 − q1q2 − q1q3 − q2q3|

(see [E2]), which can be rewritten, up to sign, as

(1.6) h = (pτ(1) − qσ(2))(pτ(1) − qσ(3)) − (pτ(2) − qσ(1))(pτ(3) − qσ(1)),

for any permutations τ, σ ∈ S3. Moreover, the integer h must be odd for Eschenburg
manifolds (see [Kr], Remark 1.4). Notice also that, if Ep,q is positively curved, we can
assume that pτ(1) − qσ(2), pτ(1) − qσ(3), pτ(2) − qσ(1) > 0 and pτ(3) − qσ(1) < 0, and hence
there are only finitely many positively curved Eschenburg manifolds for a given order h
([CEZ]).

Finally, we introduce notations for a few orbifolds that we will need. Given p, q, d ∈ Z,
d 6= 0, the lens space L(p, q, d) is the quotient

L(p, q, d) := S
3/Zd,

where the action of Zd = {ξ ∈ S1 : ξd = 1} on S
3 = {(x, y) ∈ C

2 : |x|2 + |y|2 = 1} is given
by

(1.7) ξ · (x, y) = (ξpx, ξqy).

This orbifold is a smooth manifold when gcd(p, d) = gcd(q, d) = 1. When there is no
restriction on ξ, we get the weighted complex projective space

CP
1[p, q] := S

3/ S1,

that is, the S1 action is still given by (1.7), for ξ ∈ S1. For convenience, we will still refer
to the orbifold

L(p, q, 0) := S
1 × CP

1[p, q]

as a lens space.
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2. Known orbifold fibrations

In this section we collect, for the convenience of the reader, the known fibrations and
orbifold fibrations where the total space is one of the known compact simply connected
positively curved manifolds and the projection is a Riemannian submersion. Here we will
leave out the rank one symmetric spaces with their well known Hopf fibrations.

We start with the homogeneous examples G/H , which have been classified in [AW] and
[BB]. All except for one admit homogeneous fibrations of the form K/H → G/H → G/K
coming from inclusions H ⊂ K ⊂ G:

1. The Wallach flag manifolds each of which is the total space of the following fibrations:

• S
2 → SU(3)/ T2 → CP

2,

• S4 → Sp(3)/ Sp(1)3 → HP
2,

• S8 → F4 / Spin(8) → CaP
2.

2. The Aloff-Wallach examples E0,q = Wq1,q2
= SU(3)/ diag(zq1 , zq2, z̄q1+q2), which have

positive curvature when q1q2(q1 + q2) 6= 0, admit two kinds of fibrations:

• S
1 → Wq1,q2

→ SU(3)/ T2,
and a lens space fibration

• S
3/Zq1+q2

→ Wq1,q2
→ CP

2,

where the fiber is U(2)/ diag(zq1 , zq2) = SU(2)/Zq1+q2
.

3. The Berger example SU(5)/ Sp(2) · S1 admits a fibration

• RP
5 → SU(5)/ Sp(2) · S1 → CP

4,

where the fiber is U(4)/ Sp(2) · S1 = SU(4)/ Sp(2) · Z2 = SO(6)/ O(5) = RP
5.

4. Finally for the homogeneous category, we have the Berger space SO(5)/ SO(3). This
space is special since SO(3) is maximal in SO(5) and hence does not admit a homogeneous
fibration. In [GKS] it was shown that SO(5)/ SO(3) is diffeomorphic to the total space of
an S3 bundle over S4, but the fibration is not a Riemannian submersion of the positively
curved metric. It was observed though by K. Grove and the last author that the subgroup
SU(2) ⊂ SO(4) ⊂ SO(5) acts with only finite isotropy groups and hence gives rise to an
orbifold fibration

• S3 → SO(5)/ SO(3) → S4.

To see this, one observes that the action by SO(4) ⊂ SO(5) has cohomogeneity one and
from the group diagram of this action (see [GWZ]) it follows that there is a codimension
two submanifold, one of the singular orbits SO(4)/ O(2), along which the isotropy group
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is a cyclic group Z3 and away from this orbit, the action is free. The quotient is homeo-
morphic to S4 and the metric is smooth, except along a Veronese embedding RP

2 ⊂ S4

where the metric has an angle 2π/3 normal to RP
2.

The remaining known examples of positively curved compact manifolds are given by
biquotients:

5. A free action of T2 on SU(3) gives the inhomogeneous positively curved flag manifold
discovered by Eschenburg, SU(3)// T2 := diag(z, w, zw)\ SU(3)/ diag(1, 1, z2w2)−1. It
admits the fibration

• S2 → SU(3)// T2 → CP
2

which one obtains by extending the action of T2 to the U(2) action on SU(3) given by
A · B = diag(A, det A) B diag(1, 1, detA2)−1. To see that the base SU(3))// U(2) is CP

2,
one first uses the identification SU(3)/ SU(2) ∼= S5 given by [g] 7→ e3g. The remaining
circle action of the center of U(2) then becomes (v1, v2, v3) → (z̄2v1, z̄

2v2, z
2v3) which

effectively is conjugate to the Hopf action with quotient CP
2.

6. For the 7-dimensional Eschenburg spaces, there are 3 subfamilies which are known
to admit fibrations. One is the family of Aloff-Wallach spaces discussed above. A second
one arises from the inhomogeneous flag manifold which gives rise to a fibration

• S1 → Ep,q → SU(3)// T2,

for every (p, q) of the form (p, q) = ((p1, p2, p1 + p2), (0, 0, 2p1 + 2p2)).

The third subfamily consists of the cohomogeneity two Eschenburg manifolds defined
by (p, q) = ((p1, p2, p3), (0, 0, p̄) where p̄ = p1 + p2 + p3 and the pi’s are pairwise relatively
prime. They admit an action by SU(2) acting on the right since it commutes with the
circle action. As was observed in [BGM], it gives rise to an orbifold fibration

• F → Ep,q → CP
2[p2 + p3, p1 + p3, p1 + p2] ,

where the fiber F is RP
3 if all pi’s are odd, and F = S

3 otherwise. Here the base is a
2-dimensional weighted complex projective space. Indeed, if one first uses the identifi-
cation SU(3)/ SU(2) ∼= S5 as above, the remaining circle action becomes (v1, v2, v3) →
(zp̄−p1v1, z

p̄−p2v2, z
p̄−p3v3). This also shows that the coordinate points in the weighted

projective space correspond to U(2)’s inside SU(3), and the isotropy groups are cyclic of
order p̄ − pi. On the other hand, we also have that gcd(p̄ − pi, p̄ − pj) =: a > 1 for at
least one pair i, j and hence the orbifold set also contains at least one CP

1 ⊂ CP
2 with

orbifold group Za.

7. Finally, we have the Bazaikin biquotients Bq = SU(5)// Sp(2) · S1 given by

Bq = diag(zq1 , . . . , zq5)\ SU(5)/ diag(A, z q0)−1,

where A ∈ Sp(2) ⊂ SU(4) ⊂ SU(5), q = (q1, · · · , q5) is an ordered set of odd integers and
q0 =

∑

qi. In this case we obtain the fibration

• RP
5 → Bq → CP

4[q0 − q1, · · · , q0 − q5].
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by enlarging the biquotient action of Sp(2) · S1 to one of SU(4) · S1. The isotropy groups
and the weights are obtained as in the case 5 above.

It is an interesting fact that there are no other two tori that act freely on SU(3) besides
the ones in fibrations 2 and 6; see [E2]. Besides some of the rank one symmetric spaces,
it thus only remains the general family of Eschenburg spaces, which was not known, until
now, to admit an orbifold fibration.

3. Circle orbifold fibrations

We now search for an almost free S1 action on Ep,q. We also require that the circle
action acts isometrically in the positively curved Eschenburg metrics. As mentioned in
Section 1, the isometry group of a positively curved Eschenburg space has rank 3 and
hence any circle action is conjugate to one lying in a maximal torus. This maximal torus
can be chosen to be the 3-torus induced by the biquotient action of the maximal torus
T5 ⊂ G ⊂ U(3) × U(3). We are thus forced to consider circle actions induced by a circle
inside this 3-torus. This amounts to finding an S1 action on SU(3) that commutes with
the one that defines Ep,q, in such a way that they give together a T2 = S1 × S1 ⊂ T5

almost free action on SU(3).
To describe this T2 ⊂ T5, let (a, b) ∈ tZ, and write the T2 action as

(3.1) (z, w) · g = wazpg z qw b, z, w ∈ S1, g ∈ SU(3).

The action is almost free if and only if it is free at the Lie algebra level. Since the Lie
algebra of T2 is spanned by i(p, q) and i(a, b) ∈ u(3) × u(3), this holds if and only if
there are no x, y ∈ R such that xp + ya is conjugate to xq + yb. Since both are diagonal
matrices, the almost free property is then equivalent to

(3.2) (a − bσ) and (p − qσ) are linearly independent, ∀ σ ∈ S3.

This T2 action on SU(3) defines a circle action on Ep,q, which we denote by S1
a,b and its

quotient by Oa,b
p,q. This circle action is clearly almost free if and only if the T2 action

is almost free, and, in this case, Oa,b
p,q is an orbifold. Recall that we have the projection

πp,q : SU(3) → Ep,q and we define a further projection π̂a,b
p,q : Ep,q → Oa,b

p,q. If clear from
context, we also denote these projections simply by π and π̂, respectively. Our purpose
is to study the geometry of the orbifold fibration

S1 → Ep,q → Oa,b
p,q.

From now on we assume that (p, q) and (a, b) satisfy (3.2). Notice that this implies that
(1.2) holds for n(p, q)+m(a, b), for all (n, m) ∈ Z2 \ {0}. Thus Ea,b is also an Eschenburg
orbifold and we obtain a symmetry in the process and the commutative diagram of orbifold
fibrations given in Figure 2.
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Figure 2. Orbifold fibrations of Eschenburg spaces.

Since S1
a,b is almost free, there are only regular orbits and exceptional orbits. We define

the exceptional set Sa,b
p,q ⊂ Ep,q to be the union of all exceptional orbits, which thus

coincides with the set of points in Ep,q where the action is not free.

Recall that we have the nine embeddings U(2)ij ⊂ SU(3), 1 ≤ i, j ≤ 3, and the six
two-dimensional tori T2

σ, σ ∈ S3. They give rise to their respective images in Ep,q,

Lij := π(U(2)ij), Cσ := π(T 2
σ ).

While the Cσ’s are clearly circles, we claim that the Lij’s are lens spaces. Indeed, if
g ∈ U(2)ij and z ∈ S1, we get

(3.3) τiz
pgz qτj =





zpi1
−qj1x zpi1

−qj2y 0
−zpi2

−qj1λy zpi2
−qj2λx 0

0 0 zpi−qjλ



 ,

where λ ∈ S1 and (x, y) ∈ S
3 and we have used the index convention {i1, i2, i} =

{j1, j2, j} = {1, 2, 3}. Taking a representative g ∈ SU(2) = S3 in the orbit (i.e. λ = 1)
and identifying the upper 2× 2 matrix in (3.3) with its first row, we conclude that Lij is
the lens space

Lij = L(pi1 − qj1, pi1 − qj2 , pi − qj).

From their very definition, we see that each lens space Lij contains precisely two of the
circles Cσ ⊂ Lij, where σ is one of the two permutations that satisfy σ(i) = j. Moreover,
each circle is then obtained as the intersection of three lens spaces. They are arranged as
shown in Figure 1 in the Introduction.

⋄ The exceptional set. We now proceed to investigate the structure of Sa,b
p,q . The

isotropy group S1
[g] ⊂ S1 at [g] ∈ Ep,q is the finite cyclic group given by the elements

w ∈ S1 such that there is z ∈ S1 with

(3.4) g−1zpwag = zqwb.
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If 1 6= w ∈ S1
[g], there must be z ∈ S1 and σ ∈ S3 such that

(3.5) zpwa = zqσwbσ .

If there exists a w such that the two matrices in (3.5) have a triple eigenvalue, then it acts
trivially on all of Ep,q and hence belongs to the ineffective kernel, whose order we denote
by κ0 ∈ N.

Otherwise, there are two possibilities. If all eigenvalues are distinct, (3.4) implies that
g(ei) = µieσ−1(i) with µ1µ2µ3 = 1 and thus [g] ∈ Cσ. Furthermore, it follows that there
exists a κσ ∈ N such that S1

[g] = Zκσ
for all [g] ∈ Cσ, i.e. the isotropy group has constant

order along the exceptional subset Cσ.
If, on the other hand, the matrices in (3.5) have a double eigenvalue, the third eigenvalue

must coincide as well since (p, q) and (a, b) belong to tZ. Thus there exist i, j with
1 ≤ i, j ≤ 3 such that z pi′−qj′ = wai′−bj′ , for all i′ 6= i, j′ 6= j. It follows that [g] ∈ Lij, and
that w fixes all of Lij. Hence there exists a κij ∈ N such that the isotropy group along
Lij is Zκij

, except along the two circles Cσ ⊂ Lij where it is Zκσ
, with σ being one of the

two permutations that satisfy σ(i) = j.
We thus have shown that the exceptional set is given by

(3.6) Sa,b
p,q =

⋃

(i,j)∈Γ

Lij

⋃

σ∈Σ

Cσ ,

where Γ = {(i, j) : κij > κ0, 1 ≤ i, j ≤ 3} and Σ = {σ ∈ S3 : κσ > κ0}.

Notice that each lens space Lij in this exceptional set must be totally geodesic. To
see this, it is sufficient to show that U(2)ij is totally geodesic in SU(3) with respect to
the Eschenburg metric since U(2)ij is invariant under the circle action S1

a,b. This in turn
follows since U(2)ij is the fixed point set of an isometry on SU(3) of the form g → zvgz̄vσ

for some zv with two equal diagonal entries and some permutation σ. The circles Cσ,
being intersections of two totally geodesic submanifolds, are thus closed geodesics.

The metric on the lens spaces are in general not homogeneous, in fact they are homo-
geneous if and only if the circle action on U(2)ij is one sided; see the proof of Theorem
4.1 in [GSZ]. This is only possible when the Eschenburg space has cohomogeneity two.
In the case where the lens space is homogeneous, the metric is a Berger type metric, i.e.
induced from a metric on S3 shrunk in direction of the Hopf fibers. In the cohomogeneity
one case there are 6 such homogeneous lens spaces and in the remaining cohomogeneity
two spaces 3 of them are homogeneous. When the lens space is not homogeneous, its
isometry group still contains a 2-torus.

⋄ The isotropy groups. We next determine the order of the isotropy groups of our
circle actions. To do so, for v ∈ Zn, set gcd(v) = gcd({v1, . . . , vn}) and define

κ(v, w) := gcd(v)−1 gcd({viwj − vjwi : 1 ≤ i < j ≤ n}).

Proposition 3.7. For the almost free circle action S1
a,b on Ep,q given by (3.1) the

following holds:



12 LUIS A. FLORIT AND WOLFGANG ZILLER

(a) The ineffective kernel is Zκ0
, κ0 = κ(P, A), where P, A ∈ Z

6 are the vectors whose
components are pi−qj and ai−bj , respectively, with i 6= j (the same index ordering
for both).

(b) The isotropy group along Cσ is Zκσ
, where

κσ =
|(p1 − qσ(1))(a2 − bσ(2)) − (p2 − qσ(2))(a1 − bσ(1))|

gcd(p1 − qσ(1), p2 − qσ(2))
.

(c) The isotropy group along Lij, outside Cσ ⊂ Lij with σ(i) = j, is Zκij
, κij =

κ(V, W ), where V, W ∈ Z4 are the vectors whose components are pi′ − qj′ and
ai′ − bj′, respectively, with i′ 6= i, j′ 6= j (the same index ordering for both).

Proof. We need the next elementary lemma concerning the lattice points Zn inside the
parallelogram spanned by v, w ∈ Z

n, Pv,w = {tv + sw : t, s ∈ [0, 1)}.

Lemma 3.8. If p = (p1, . . . , pn), a = (a1, . . . , an) ∈ Zn are linearly independent, the
projection of the lattice points Pp,a ∩ Zn inside Pp,a to the s-coordinate is the set Zκ =
{i/κ : i = 0, . . . , κ − 1} ⊂ [0, 1), with κ = κ(p, a).

Proof. We start with the case of n = 2. The number of lattice points Z
2 inside Pp,a is

equal to its area, that is, #(Pp,a ∩Z2) = |p1a2 − p2a1|. Indeed, using translations, we can
assume that pi, ai ≥ 0 and, if we inscribe Pp,a inside the rectangle P(p1+a1,0),(0,p2+a2), it
follows that ±#(Pp,a ∩ Z2) = (p1 + a1)(p2 + a2) − a1a2 − p1p2 − 2p2a1 = p1a2 − p2a1.

Setting p′ = d−1p, observe that Pp,a is the union of the d = gcd(p1, p2) disjoint
rectangles kp′ + Pp′,a, k = 0, . . . , d − 1, since tp + s0a, t′p + s0a ∈ Z2 implies that
(t− t′)p ∈ Z. Thus the number of points in the projection of Pp,a∩Z2 to the s-coordinate
is gcd(p1, p2)

−1|p1a2 − p2a1|. This proves our claim if n = 2.
For n > 2, by the above argument we can assume gcd(p) = 1, and thus the number of

points of the projection of the lattice to the s-coordinate is equal to κ = #(Pp,a ∩ Zn).
In the plane Π = span{p, a}, consider the lattice L = Π ∩ Zn. From the case n = 2
it follows that κ = |p ∧ a|/|v ∧ w|, where {v, w} is a base of L, or, equivalently, κ =
max{|p ∧ a|/|v ∧ w| : v, w ∈ L are linearly independent}. Since gcd(p) = 1, we can take
v = p and thus a = rp± κw, for some r ∈ Z. This implies that κ divides (ai − rpi)pj and
(aj − rpj)pi and thus aipj − ajpi for every i, j, i.e., κ divides κ(p, a). On the other hand,
if we choose u ∈ Zn with 〈u, p〉 = 1, κ(p, a) divides

∑

j uj(aipj − ajpi) = ai − 〈u, a〉pi for

every i, and hence w′ = κ(p, a)−1(a−〈u, a〉p) ∈ L. Therefore, κ ≥ |p∧a|/|p∧w′| = κ(p, a),
and the lemma follows.

Assume the action is not effective. Then, there exists 1 6= w ∈ S1 such that, for every
g ∈ SU(3), there exists z = zg ∈ S1 with g−1zp

gw
ag = zq

gw
b. By choosing different g, it is

easy to see that there exist z, λ ∈ S1 such that zpwa = zqwb = λ Id. We can write this as
z (pi−qj) = w(ai−bj), for all 1 ≤ i, j ≤ 3. If we set

(3.9) z = e2πit, w = e2πis, (t, s) ∈ [0, 1) × [0, 1),

this means that tP + sA ∈ Z6 and the claim follows from Lemma 3.8.
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From our discussion above it follows that the determination of the isotropy groups falls
into 2 cases, depending on whether the matrices in (3.5) have simple eigenvalues or a
double eigenvalue.

Case 1: Simple eigenvalues. Using (3.9), there is t ∈ [0, 1) such that

(3.10) t(p − qσ) + s(a − bσ) ∈ Z
3.

We need only to consider the first two coordinates since (p, q), (a, b) ∈ tZ and hence
we look for the lattice points Z2 inside the two dimensional parallelogram determined
by vσ = (p1 − qσ(1), p2 − qσ(2)), wσ = (a1 − bσ(1), a2 − bσ(2)) and its projections to the
s-coordinate. Thus the claim follows from Lemma 3.8.

Case 2: Double eigenvalue. Since (p, q) and (a, b) belong to tZ, the third eigenvalue
must coincide as well. Thus there are 1 ≤ i, j ≤ 3 such that z pi′−qj′ = wai′−bj′ , for all
i′ 6= i, j′ 6= j. This is equivalent to tV + sW ∈ Z4 and we apply Lemma 3.8.

Remark 3.11. Notice that, by Proposition 3.7 (b) and (3.2), the circle action given by
(3.1) is almost free if and only if κσ 6= 0 for all σ ∈ S3. Observe also that the order of
the isotropy groups are in terms of the possibly ineffective action. The orders need to be
divided by κ0 to obtain the isotropy groups of the action when made effective. In explicit
computations it is useful to notice that since (p, q), (a, b) ∈ tZ, the number of entries in
the definition of κ(P, A) in part (a) can be reduced from 6 to 4 numbers, and for κij from
4 to 3.

⋄ The singular locus. We finally discuss the singular locus of the orbifold Oa,b
p,q, i.e.,

π̂(Sa,b
p,q ) ⊂ Oa,b

p,q. Each π̂(Cσ) will be called a vertex of π̂(Sa,b
p,q ), while π̂(Lij) will be called

a face.
For this purpose, we assume for simplicity that the Eschenburg space Ep,q is a smooth

manifold. In this case (1.3) implies that the lens spaces Lij are all smooth manifolds as
well. This is evident if all pi are distinct from pj . If two of them agree, Lij is either equal
to L(0, a, 1) = S3 or to L(1, 1, 0) = S2 × S1 (the latter two are not possible in positive
curvature).

Clearly, by Proposition 3.7 and the slice theorem, each π̂(Cσ) is a point with orbifold
group Zκσ/κ0

, while the orbifold group of π̂(Lij) is Zκij/κ0
, outside π̂(Cσ) and π̂(Cσ′) with

σ(i) = σ′(i) = j.
On the other hand, each face π̂(Lij) is two dimensional and is itself an orbifold which is

totally geodesic in Oa,b
p,q. We claim that it is homeomorphic to S

2 and that it has only two
orbifold points, namely the vertices π̂(Cσ), π̂(Cσ′) ∈ π̂(Lij) with orbifold angles 2πκij/κσ

and 2πκij/κσ′ , respectively. Indeed, S1
a,b preserves Lij, with Cσ and Cσ′ as two of its

orbits. We now apply the slice theorem of the action restricted to Lij at a point in Cσ

where the isotropy group is Zκσ
. This isotropy group acting on the two dimensional slice

has Zκij
as its ineffective kernel, while the quotient group Zκσ

/Zκij
acts effectively via a

finite rotation group. Thus, Zκσ/κij
is the orbifold group of π̂(Cσ) as a singular point of

the two dimensional orbifold π̂(Lij). Away from Cσ, Cσ′ ⊂ Lij , the circle action is free,
modulo its ineffective kernel Zκij

, and hence π̂(Lij) has only two orbifold points. As a
consequence, the singular two sphere π̂(Lij) is smooth if and only if κij = κσ = κσ′ . Since
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the metric on the lens space has T2 as its isometry group, the orbifold still admits a circle
of isometries, i.e., it is rotationally symmetric.

4. Minimizing the singular set

Given an Eschenburg space Ep,q, it is natural to try to find quotients O = Oa,b
p,q as

regular as possible by minimizing the exceptional set S = Sa,b
p,q . This can be achieved in

several ways, e.g., by making the orders κσ and κij as small as possible, or κij = 1 for
most pairs 1 ≤ i, j ≤ 3 to eliminate the corresponding lens spaces from S.

Recall that there exist precisely two 2-tori T2 ⊂ U(3) × U(3) that act freely on SU(3)
as a biquotient action. In particular, there are two infinite families of Eschenburg spaces
which admit a free S1 action; see Section 2. For the general case, we can try to minimize
the singular set as follows.

Proposition 4.1. For each Eschenburg manifold Ep,q endowed with an Eschenburg
metric, there exists an isometric circle action whose exceptional set is composed of at
most 3 totally geodesic lens spaces, intersecting along one closed geodesic, and the order
of the cyclic isotropy groups of these lens spaces is bounded by h = |H4(Ep,q, Z)|.

Proof. Fix σ ∈ S3, and let σ′ = σ ◦ (123), σ′′ = σ ◦ (132) ∈ S3 be the two permutations
with the same parity of σ. Observe that if κσ′ = 1, by (3.6) and Proposition 3.7 the three
lens spaces that contain Cσ′ consist of regular points. If, in addition, κσ′′ = 1, then 6
of the lens spaces are regular, and therefore S would be composed of at most the 3 lens
spaces that meet at the circle Cσ. In particular, in this situation all the κij must divide
κσ. Now, we claim that this can always be done, and with κσ ≤ h.

Fix ǫ1, ǫ2 = ±1. Since Ep,q is smooth, there are x, y, z, w ∈ Z such that

(4.2)

{

x(p1 − qσ(2)) − y(p2 − qσ(3)) = ǫ1,

w(p1 − qσ(3)) − z(p2 − qσ(1)) = ǫ2.

In view of (1.3), the set of all solutions of (4.2) is given by x′ = x + k1(p2 − qσ(3)),
y′ = y + k1(p1 − qσ(2)), w′ = w + k2(p2 − qσ(1)) and z′ = z + k2(p1 − qσ(3)), with k1, k2 ∈ Z.
Now, we define (a, b) ∈ tZ, which depends on σ, ǫ1, ǫ2, k1, k2, by a = (−z′,−x′, y′ + w′),
bσ = (w′−x′, y′− z′, 0). By definition this implies that κσ′ = κσ′′ = 1 for S1

a,b. The orders
of the other 4 circles are given by

(4.3)























κσ = |sh + (x + y − z)(p1 − qσ(1)) − (w + z − x)(p2 − qσ(2))|,

κσ◦(12) = |s(p1 − qσ(2))(p2 − qσ(1)) − w(p1 − qσ(2)) + y(p2 − qσ(1))|,

κσ◦(23) = |s(p2 − qσ(3))(p3 − qσ(2)) + (z + w)(p2 − qσ(3)) + x(p3 − qσ(2))|,

κσ◦(13) = |s(p1 − qσ(3))(p3 − qσ(1)) − (x + y)(p1 − qσ(3)) − z(p3 − qσ(1))|,
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where s = k1−k2 and h has the sign in (1.6). Since (a, b) and (a+np+m Id, b+nq+m Id),
n, m ∈ Z, induce the same circle action on Ep,q, we can assume k1 = s, k2 = 0 and we get

(4.4)

{

a =
(

−z,−x − s(p2 − qσ(3)), y + w + s(p1 − qσ(2))
)

,

bσ =
(

w − x − s(p2 − qσ(3)), y − z + s(p1 − qσ(2)), 0
)

.

Now, by Remark 3.11, S1
a,b is almost free if and only if the orders in (4.3) are nonzero.

On the other hand, using (1.3) it is easy to check that κσ◦(12), κσ◦(23), κσ◦(13) 6= 0, unless
at least two of the integers pi − qj with i 6= j are ±1, and κσ = 0 or 4. Therefore, since h
is odd, we can make 0, 4 6= κσ ≤ h by choosing s appropriately, which proves our claim.

In order for an action to have only one singular point, there should be 3 vertices with
the same parity that are regular, where recall that the parity of the vertex π̂(Cσ) ∈ O
is the parity of σ. That is, there should exist 3 permutations σ, σ′, σ′′ with the same
parity such that κσ = κσ′ = κσ′′ = 1. Notice that, by the last observation in the proof
of Proposition 4.1, in this situation the action is automatically almost free. In addition,
when such permutations exist, the singular locus of O is composed of at most the 3 vertices
whose parity is the opposite to that of σ.

To see when such an action exists, define the following integers mod h = |H4(Ep,q, Z)|:

(4.5) α(σ, ǫ1, ǫ2) :=
(

(x + y − z)(p1 − qσ(1)) − (w + z − x)(p2 − qσ(2)) + 1
)

mod h

where x, y, z, w are defined in (4.2). One easily verifies that α(σ, ǫ1, ǫ2) does not depend
on the choice of x, y, z, w, i.e., they do not depend on k1, k2, and are hence well defined for
every Eschenburg manifold Ep,q. Now, Theorem B in the Introduction is an immediate
consequence of the first equation in (4.3).

Notice that the condition in Theorem B depends only on the parity of σ, hence giving 8
tests to check. Moreover, it is trivially satisfied when h = 1, i.e., H4(Ep,q, Z) = 0. Using
(1.6) one easily sees that there are infinitely many Eschenburg manifolds with h = 1, for
example, p = (2k+2, k, 0), q = (2k+1, k+2,−1), with k ∈ Z such that gcd(k−1, 3) = 1.
One can further try to minimize the singular set to get only one point. It turns out
that such actions exist in abundance. For example, on E(3,2,1),(4,2,0), the almost free circle
action given by a = (1, 1, 0), b = (2, 0, 0) has only one singular point of order 3.

However, no Eschenburg manifold with positive curvature seems to satisfy the condition
in Theorem B, aside from the ones that already admit a free circle action. By means of
a computer program (whose C code can be found in www.impa.br/∼luis/eschenburg),
we searched among all positively curved spaces with h ≤ 106, in total 10.085.359.999
Eschenburg manifolds. It turns out that none of these spaces satisfies the condition,
apart from the 314.617 ones that admit free actions. Moreover, none of these 314.617
spaces admit an isometric circle action with only one singular point. On the other hand,
we will see that there are many spaces that admit circle actions with only two singular
points of opposite parity.

We can use the above methods to obtain a nice singular locus for a general positively
curved Eschenburg space. We give two typical examples here, obtaining in particular the
proof of Theorem C.
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Cohomogeneity one. Consider an arbitrary cohomogeneity one Eschenburg manifold,
that is, Ed = E(1,1,d),(0,0,d+2), d ≥ 0. It has positive curvature if d > 0 and satisfies

h = 2d + 1. For d ≤ 2, Ed is known to admit a free S1 action; cf. Section 2. So, assume
d ≥ 3. We want to study all isometric S1 actions on Ed for which at least 3 of the vertices
are regular. We will see that, for such an action, the regular vertices do not have the same
parity. As a consequence of this analysis, we will obtain the proof of Theorem B in the
introduction.

If there are 3 regular vertices, at least two of them correspond to permutations σ′, σ′′

with the same parity as the one of, say, σ. Thus we are in the situation of the proof of
Proposition 4.1, and we have (4.2), (4.3) and (4.4). It is not difficult to compute all the
possibilities in (4.3), getting two cases:

Case (a): σ(3) = 3. The integers x = ǫ1, z = −ǫ2, y = w = 0 solve (4.2), we can
assume that σ = Id, and (4.3) becomes

κId = |2λ − s|, κ(12) = |s|, κ(23) = |dλ − ǫ2|, κ(13) = |dλ − ǫ1|,

with λ = s(d + 1) − ǫ1 − ǫ2. The only other order that can be 1 is the second, κ(12), that
is, we can assume s = 1 and then a = (ǫ2, d + 1 − ǫ1, 1), b = (d + 1 − ǫ1, ǫ2 + 1, 0). Since
there is no lens space connecting C(23) and C(13), the only possibly singular lens spaces
are L11 and L22 whose orders are gcd(d−1, 3) and gcd(d−2, 5) if ǫ1 = −ǫ2, or both equal
to 1 if ǫ1 = ǫ2. Therefore, the minimal singular locus we can get in case (a) is given by 3
isolated singular points for ǫ1 = ǫ2 = 1, whose orbifold orders are 2d− 3, d(d− 1)− 1 and
d(d − 1) − 1. Notice that for d ≤ 2 we recover the known free S1 actions.

Case (b): σ(3) 6= 3. The integers y = −ǫ1, w = ǫ2, x = z = 0 solve (4.2), we can assume
that σ(3) = 1, and we get for (4.3)

κσ = |(2d + 1)s − ǫ1(d + 1) + ǫ2|, κσ◦(12) = |(d + 1)(s − ǫ1) + ǫ2|,

κσ◦(23) = |2s − ǫ1|, κσ◦(13) = |ds + ǫ2|.

Notice that, again, κσ > 1, which says that no cohomogeneity one Eschenburg manifold
with d ≥ 3 satisfies the condition in Theorem B. To get one of the other 3 orders equal
to one, we should have either

(b1) s = 0, with a = (0, 0, ǫ2 − ǫ1), bσ = (ǫ2,−ǫ1, 0), and κσ = κσ◦(12) = d+1− ǫ1ǫ2 and
the other 4 orders equal to one; or

(b2) s = ǫ1, with a = (0,−ǫ1, ǫ2), bσ = (ǫ2 − ǫ1, 0, 0), κσ = κσ◦(23) = d + ǫ1ǫ2 and the
other 4 orders also equal to one.

For (b1), since b1 = 0 and b2, b3 = ±1, the orbifold order of the only possibly singular lens
space L31 is κ31 = κ((1,−d − 1, 1), (−b2,−b3,−b2)) = d + 1 − ǫ1ǫ2 = κσ. So, it coincides
with the orbifold order of the two exceptional circles it contains. Therefore, the singular
locus is a smooth totally geodesic 2-sphere with constant orbifold group Zd+1−ǫ1ǫ2.

Similarly, for (b2), the orbifold order of the only possible singular lens space L1σ(1) is
κ1σ(1) = κ((1, 1 − qσ(2), d), (−ǫ1,−ǫ1, ǫ2)) = gcd(qσ(2), d + ǫ1ǫ2).

For σ = (13) we get as before that κ13 = d+ǫ1ǫ2 = κσ. So, also in this case the singular
locus is a smooth totally geodesic 2-sphere with constant orbifold group Zd+ǫ1ǫ2, and the
exceptional set is the homogeneous lens space L13 = S3/Zd+1. Notice also that this action
gives the smallest possible value for κσ under the assumption that κσ′ = κσ′′ = 1.
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On the other hand, for σ = (123), it holds that κ12 = gcd(d + 2, 2 − ǫ1ǫ2). Therefore,
either κ12 = 1 if ǫ1 = ǫ2, in which case the singular locus has only two vertices with the
same orbifold group Zd+1, or κ12 = gcd(d − 1, 3) if ǫ1 = −ǫ2, for which we get a 2-sphere
as singular locus if and only if 3 divides d − 1, that is smooth if only if d = 4.

Cohomogeneity two. Observe that (p, q) = ((1, c, d), (0, 0, c + d + 1)) lies in the same
plane generated in Theorem B iv) for Ed. So, for any element in this cohomogeneity two
subfamily, the same action has as its exceptional set the smooth lens space L13 = S3/Zd+c

with constant isotropy group Zd−c.
For a general cohomogeneity two Eschenburg manifold Ep,q, that is, p = (c, d, e),

q = (0, 0, c + d + e), with gcd(c, d) = gcd(d, e) = gcd(e, c) = 1, we can consider the
action generated by a = (0, 0, 0), b = (1,−1, 0). In this case, we get κId = κ(12) = |c + d|,
κ(123) = κ(23) = |c + e|, κ(13) = κ(132) = |d + e|. The orders of the lens spaces are
κ13 = gcd(2, d+e), κ23 = gcd(2, c+e), κ33 = gcd(2, c+d), and κ11 = κ12 = gcd(c+d, c+e),
κ21 = κ22 = gcd(c+d, d+e), κ31 = κ32 = gcd(c+e, d+e). In particular, for the positively
curved Eschenburg space given by (c, d, e) = (1, 2, 3) the singular locus consists of one
2-sphere and 4 isolated points, whereas for (c, d, e) = (1, 2,−3) it consists of one 2-sphere
and 2 isolated points. On the other hand, (c, d, e) = (1, 3, 5) has the full set in Figure 1
as its singular locus.

Remark. With a simplified version of the arguments in Section 3, it is easy to compute
the singular locus of the circle action that defines a general Eschenburg orbifold Ep,q.
Again, it is given by Figure 1, composed of the Cσ’s and the Lij’s, but now the orders
of their cyclic orbifold groups are gcd(p − qσ) and gcd(p − qσ, p − qσ′), respectively. In
particular, unlike in the case of circle actions on Eschenburg spaces, the order of the lens
spaces is the gcd of the orders of the two circles which are contained in them. There is
now no difficulty to obtain positively curved Eschenburg orbifolds that are not manifolds
with the smallest possible singular locus. For example, E(5,3,−5),(2,1,0) has only one circle
as singular locus with order 3.
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